251
|
Vlek AL, van der Graaf Y, Braam B, Moll FL, Nathoe HM, Visseren FL. Blood Pressure and Decline in Kidney Function in Patients With Atherosclerotic Vascular Disease: A Cohort Study. Am J Kidney Dis 2009; 54:820-9. [DOI: 10.1053/j.ajkd.2009.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 07/02/2009] [Indexed: 02/07/2023]
|
252
|
Polichnowski AJ, Cowley AW. Pressure-induced renal injury in angiotensin II versus norepinephrine-induced hypertensive rats. Hypertension 2009; 54:1269-77. [PMID: 19858406 DOI: 10.1161/hypertensionaha.109.139287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The susceptibility to renal perfusion pressure (RPP)-induced renal injury was investigated in angiotensin II (Ang II)- versus norepinephrine (NE)-infused hypertensive rats. To determine the magnitude of RPP-induced injury, Sprague-Dawley rats fed a 4% salt diet were instrumented with a servocontrolled aortic balloon occluder positioned between the renal arteries to maintain RPP to the left kidney at baseline levels whereas the right kidney was exposed to elevated RPP during a 2-week infusion of Ang II IV (25 ng/kg per minute), NE IV (0.5, 1.0, and 2.0 microg/kg per minute on days 1, 2, and 3 to 14, respectively), or saline IV (sham rats). Over the 14 days of Ang II infusion, RPP averaged 161.5+/-8.0 mm Hg to uncontrolled kidneys and 121.9+/-2.0 mm Hg to servocontrolled kidneys. In NE-infused rats, RPP averaged 156.3+/-3.0 mm Hg to uncontrolled kidneys and 116.9+/-2.0 mm Hg to servocontrolled kidneys. RPP averaged 111.1+/-1.0 mm Hg to kidneys of sham rats. Interlobular arterial injury and juxtamedullary glomerulosclerosis were largely RPP dependent in both models of hypertension. Superficial cortical glomerulosclerosis was greater and RPP dependent in NE- versus Ang II-infused rats, which was primarily independent of RPP. Outer medullary tubular necrosis and interstitial fibrosis were also primarily RPP dependent in both models of hypertension; however, the magnitude of injury was exacerbated in Ang II-infused rats. We conclude that elevated RPP is the dominant cause of renal injury in both NE- and Ang II-induced hypertensive rats and that underlying neurohumoral factors in these models of hypertension alter the pattern and magnitude of RPP-induced renal injury.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | |
Collapse
|
253
|
Wang Y, Wang DH. Aggravated renal inflammatory responses in TRPV1 gene knockout mice subjected to DOCA-salt hypertension. Am J Physiol Renal Physiol 2009; 297:F1550-9. [PMID: 19794112 DOI: 10.1152/ajprenal.00012.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To test the hypothesis that deletion of the transient receptor potential vanilloid type 1 (TRPV1) channel exaggerates hypertension-induced renal inflammatory response, wild-type (WT) or TRPV1-null mutant (TRPV1(-/-)) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for 4 wk. Mean arterial pressure (MAP) determined by radiotelemetry increased in DOCA-salt-treated WT or TRPV1(-/-) mice, whereas there was no difference in MAP between two strains at the baseline or after DOCA-salt treatment. DOCA-salt treatment increased urinary excretion of albumin and 8-isoprostane in both WT and TRPV1(-/-) mice, and the increases were greater in magnitude in the latter strain. Periodic acid-Schiff and Mason's trichrome staining showed that kidneys of DOCA-salt-treated TRPV1(-/-) mice exhibited more severe glomerulosclerosis and tubulointerstitial injury compared with DOCA-salt-treated WT mice. NF-kappaB assay showed that DOCA-salt treatment increased renal activated NF-kappaB concentrations in TRPV1(-/-) mice compared with WT mice. Immunostaining and ELISA assay revealed that DOCA-salt-treated TRPV1(-/-) mice had enhanced renal infiltration of monocyte/macrophage and lymphocyte, as well as increased renal levels of proinflammatory cytokine (TNF-alpha, IL-6) and chemokine (MCP-1) compared with DOCA-salt-treated WT mice. Renal ICAM-1 but not VCAM-1 expression was also greater in DOCA-salt-treated TRPV1(-/-) than WT mice. Dexamethasone (DEXA), an immunosuppressive drug, conveyed a renoprotective effect that was greater in DOCA-salt-treated TRPV1(-/-) compared with WT mice. These data show that renal inflammation is exacerbated in DOCA-salt hypertension when TRPV1 gene is deleted and that the deterioration is ameliorated by DEXA treatment, indicating that TRPV1 may act as a potential regulator of the inflammatory process to lessen renal injury in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
254
|
Temporal relation between body mass index and renal function in individuals with hypertension and excess body weight. Nutrition 2009; 25:914-9. [DOI: 10.1016/j.nut.2008.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/19/2008] [Accepted: 12/25/2008] [Indexed: 01/08/2023]
|
255
|
Guan Z, Pollock JS, Cook AK, Hobbs JL, Inscho EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension 2009; 54:1062-9. [PMID: 19720952 DOI: 10.1161/hypertensionaha.109.137992] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanotransduction mechanism underlying the myogenic response is poorly understood, but evidence implicates participation of epithelial sodium channel (ENaC)-like proteins. Therefore, the role of ENaC on the afferent arteriolar myogenic response was investigated in vitro using the blood-perfused juxtamedullary nephron technique. Papillectomy was used to isolate myogenic influences by eliminating tubuloglomerular feedback signals. Autoregulatory responses were assessed by manipulating perfusion pressure in 30-mm Hg steps. Under control conditions, arteriolar diameter increased by 15% from 13.0+/-1.3 to 14.7+/-1.2 microm (P<0.05) after reducing perfusion pressure from 100 to 70 mm Hg. Diameter decreased to 11.3+/-1.1 and 10.6+/-1.0 microm after increasing pressure to 130 and 160 mm Hg (88+/-1 and 81+/-2% of control diameter, P<0.05), respectively. Pressure-mediated autoregulatory responses were significantly inhibited by superfusion of 10 micromol/L amiloride (102+/-2, 97+/-4, and 94+/-3% of control diameter), or 10 micromol/L benzamil (106+/-5, 100+/-3, and 103+/-3% of control diameter), and when perfusing with blood containing 5 micromol/L amiloride (106+/-2, 97+/-4, and 97+/-4% of control diameter). Vasoconstrictor responses to 55 mmol/L KCl were preserved as diameters decreased by 67+/-4, 55+/-8, and 60+/-4% in afferent arterioles superfused with amiloride or benzamil, and perfused with amiloride, respectively. These responses were similar to responses obtained from control afferent arterioles (64+/-6%, P>0.05). Immunofluorescence revealed expression of the alpha, beta, and gamma subunits of ENaC in freshly isolated preglomerular microvascular smooth muscle cells. These results demonstrate that selective ENaC inhibitors attenuate afferent arteriolar myogenic responses and suggest that ENaC may function as mechanosensitive ion channels initiating pressure-dependent myogenic responses in rat juxtamedullary afferent arterioles.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
256
|
Cobas R, Santos B, Braga L, Cunha EF, Gomes MB. [Type 1 diabetic patients evolution to hypertension]. ACTA ACUST UNITED AC 2009; 52:628-34. [PMID: 18604375 DOI: 10.1590/s0004-27302008000400008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/25/2008] [Indexed: 11/22/2022]
Abstract
PURPOSE Check the evolution of type 1(T1) diabetic patients to hypertension and prehypertension and baseline factors related to final blood pressure levels (BP). METHODS Observational study involving 127 T1 diabetic patients submitted to clinical and laboratory evaluation and followed by for 5 (2.4-9.2) years. RESULTS From the initially normotensive patients, 21.7% developed prehypertension, 4.7% developed hypertension and 73.6% remained with normal BP. From the prehypertensive patients, 35% returned to normal BP, 50% remained prehypertensive and 15% developed hypertension. The relative risk for hypertension development was 3.2 (0.8-12.3) in the prehypertensive compared to the normotensive group. The prevalence of prehypertension and hypertension increased from 15.7% to 26% and 0.8% to 7% respectively. Levels of serum creatinine predicted final levels of systolic and diastolic BP. CONCLUSION It is emphasized the importance of renal function and BP evaluation even when they are in normal range to minimize the deleterious effects of hypertension in the development of nephropathy and cardiovascular disease.
Collapse
Affiliation(s)
- Roberta Cobas
- Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
257
|
Fujimoto T, Takechi S, Machida M, Isu N, Imamura W, Kakinoki S, Kanda K, Kobayashi T, Nomura A. Excretions of urinary albumin and various proteins increase in hypertension. Blood Press 2009; 17:270-3. [DOI: 10.1080/08037050802449418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
258
|
Siu KL, Sung B, Cupples WA, Moore LC, Chon KH. Detection of low-frequency oscillations in renal blood flow. Am J Physiol Renal Physiol 2009; 297:F155-62. [DOI: 10.1152/ajprenal.00114.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detection of the low-frequency (LF; ∼0.01 Hz) component of renal blood flow, which is theorized to reflect the action of a third renal autoregulatory mechanism, has been difficult due to its slow dynamics. In this work, we used three different experimental approaches to detect the presence of the LF component of renal autoregulation using normotensive and spontaneously hypertensive rats (SHR), both anesthetized and unanesthetized. The first experimental approach utilized a blood pressure forcing in the form of a chirp, an oscillating perturbation with linearly increasing frequency, to elicit responses from the LF autoregulatory component in anesthetized normotensive rats. The second experimental approach involved collection and analysis of spontaneous blood flow fluctuation data from anesthetized normotensive rats and SHR to search for evidence of the LF component in the form of either amplitude or frequency modulation of the myogenic and tubuloglomerular feedback mechanisms. The third experiment used telemetric recordings of arterial pressure and renal blood flow from normotensive rats and SHR for the same purpose. Our transfer function analysis of chirp signal data yielded a resonant peak centered at 0.01 Hz that is greater than 0 dB, with the transfer function gain attenuated to lower than 0 dB at lower frequencies, which is a hallmark of autoregulation. Analysis of the data from the second experiments detected the presence of ∼0.01-Hz oscillations only with isoflurane, albeit at a weaker strength compared with telemetric recordings. With the third experimental approach, the strength of the LF component was significantly weaker in the SHR than in the normotensive rats. In summary, our detection via the amplitude modulation approach of interactions between the LF component and both tubuloglomerular feedback and the myogenic mechanism, with the LF component having an identical frequency to that of the resonant gain peak, provides evidence that 0.01-Hz oscillations may represent the third autoregulatory mechanism.
Collapse
|
259
|
Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertension 2009; 54:393-8. [PMID: 19546375 DOI: 10.1161/hypertensionaha.109.133777] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anil K Bidani
- Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
260
|
Bahous SA, Blacher J, Safar ME. Aortic stiffness, kidney disease, and renal transplantation. Curr Hypertens Rep 2009; 11:98-103. [DOI: 10.1007/s11906-009-0019-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
261
|
|
262
|
Abstract
Antihypertensive therapy remains the most effective strategy for slowing the progression of chronic kidney disease (CKD). However, in proteinuric nephropathies, calcium channel blockers (CCBs) are less effective than other antihypertensives unless normotension is achieved. This is because the glomerular capillaries, rather than larger vessels, are the primary site of hypertensive injury in proteinuric nephropathies. CCBs impair renal autoregulation, which protects glomerular capillaries against the transmission of systemic pressures. CCBs' renoprotective inferiority in the comparator group likely accounts for the greater renoprotection observed with renin-angiotensin system blockade rather than blood pressure (BP)-independent renoprotective superiority. Nevertheless, CKD patients are at greater absolute risk for cardiovascular events rather than end-stage renal disease. Therefore, if the needed BP reductions cannot be achieved with other agents, it may be appropriate to use CCBs because of their antihypertensive effectiveness, provided care is taken to ensure normotension and to closely monitor proteinuria and renal disease progression.
Collapse
|
263
|
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
264
|
Klanke B, Cordasic N, Hartner A, Schmieder RE, Veelken R, Hilgers KF. Blood pressure versus direct mineralocorticoid effects on kidney inflammation and fibrosis in DOCA-salt hypertension. Nephrol Dial Transplant 2008; 23:3456-63. [DOI: 10.1093/ndt/gfn301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
265
|
Abstract
Chronic kidney disease is both a cause and a consequence of hypertension. Extracellular volume expansion is an important, if not the most important, contributing factor to hypertension seen in chronic kidney disease. Beyond volume expansion, chronic kidney disease-related hypertension is without truly defining characteristics. Consequently, the sequencing of antihypertensive medications for the patient with chronic kidney disease and hypertension becomes arbitrary. Prescription practice in such patients should be mindful of the need for multiple drug classes with at least one of them being a diuretic. Blood pressure goals in the patient with chronic kidney disease and hypertension are set at lower levels than those for patients with essential hypertension alone. It remains to be determined to what level blood pressure should be lowered in the patient with chronic kidney disease, however.
Collapse
Affiliation(s)
- Domenic A Sica
- Section of Clinical Pharmacology and Hypertension, Division of Nephrology, Virginia Commonwealth University Health System, Richmond, VA 23298-0160, USA.
| |
Collapse
|
266
|
Sakakura K, Kubo N, Hashimoto S, Ikeda N, Funayama H, Hirahara T, Sugawara Y, Yasu T, Ako J, Kawakami M, Momomura SI. Determinants of in-hospital death in left main coronary artery myocardial infarction complicated by cardiogenic shock. J Cardiol 2008; 52:24-9. [PMID: 18639774 DOI: 10.1016/j.jjcc.2008.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/17/2008] [Accepted: 03/18/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) due to left main coronary artery disease is associated with significantly elevated morbidity and mortality. The aim of this study was to identify the predictors of in-hospital death from left main AMI complicated by cardiogenic shock. METHODS Clinical record review identified a total of 25 cases of left main AMI with cardiogenic shock. Patients' background characteristics, laboratory data, and angiographic findings were analyzed according to the in-hospital mortality. RESULTS In this patient subset, in-hospital mortality (60%) was associated with a history of hypertension (p=0.02) and a higher heart rate (p=0.02). Furthermore, in-hospital mortality was also associated with a complete right bundle branch block (CRBBB) pattern in the admission ECG (p=0.01) and low HCO(3)(-) (p=0.0004). In stepwise logistic regression analysis, a CRBBB pattern (OR 48.59, 95% CI 1.34-1768.10, p=0.03) and low HCO(3)(-) (OR 0.62, 95% CI 0.40-0.94, p=0.02) were found to be independent predictors of mortality. CONCLUSIONS Left main AMI with cardiogenic shock was associated with high in-hospital mortality. A CRBBB pattern in the ECG on admission and a low HCO(3)(-) concentration were significant independent predictors of in-hospital death.
Collapse
Affiliation(s)
- Kenichi Sakakura
- Division of Cardiovascular Medicine, Department of Integrated Medicine I, Jichi Medical University Saitama Medical Center, Omiya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Fujimoto S, Satoh M, Horike H, Hatta H, Haruna Y, Kobayashi S, Namikoshi T, Arakawa S, Tomita N, Kashihara N. Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production. Hypertens Res 2008; 31:305-13. [PMID: 18360051 DOI: 10.1291/hypres.31.305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Angiotensin type 1 receptor blockers are more effective than other antihypertensive agents in slowing the progression of renal disease. Angiotensin II (Ang II) induces production of NAD(P)H oxidase-dependent superoxide in vascular and mesangial cells, but the direct role of Ang II in glomerular superoxide production remains unknown. Here we examined the effect of Ang II on superoxide production both ex vivo and in vivo. Ang II increased superoxide generation in isolated normal glomeruli in a dose-dependent manner, and co-incubation with olmesartan, an angiotensin type 1 receptor blocker, suppressed such increase. Subtotal nephrectomized rats (Nx, n=8) showed impaired renal function, increased glomerular sclerosis, and significantly high superoxide production in glomeruli. These changes were inhibited in olmesartan-treated (n=8), but not hydralazine-treated (n=8) Nx rats. Oxidative stress and nitrosative stress were observed in Nx glomeruli, as evidenced by increased levels of carbonyl protein and nitrotyrosine formation, respectively. These changes were inhibited by 8-week treatment with olmesartan. The apoptosis observed in Nx glomeruli was also suppressed by olmesartan. Superoxide generation in Nx glomeruli was blocked by an NAD(P)H oxidase inhibitor, diphenylene iodinium. The mRNA expression levels of two NAD(P)H oxidase subunits were increased in Nx, and olmesartan significantly reduced the mRNA expression levels. These results indicate that Ang II directly induced superoxide production through activation of NAD(P)H oxidase, and olmesartan would inhibit superoxide production and oxidative stress independent of its blood pressure-lowering effect. These findings support the notion that superoxide plays a primary role in glomerular injury in chronic kidney disease.
Collapse
Affiliation(s)
- Sohachi Fujimoto
- Division of Nephrology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Drummond HA, Jernigan NL, Grifoni SC. Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 2008; 51:1265-71. [PMID: 18378856 PMCID: PMC2788303 DOI: 10.1161/hypertensionaha.107.093401] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N State St, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
269
|
Drummond HA, Grifoni SC, Jernigan NL. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 2008; 23:23-31. [PMID: 18268362 DOI: 10.1152/physiol.00034.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Myogenic constriction is a vasoconstriction of blood vessels to increases in perfusion pressure. In renal preglomerular vasculature, it is an established mechanism of renal blood flow autoregulation. Recently, myogenic constriction has been identified as an important protective mechanism, preventing the transmission of systemic pressure to the fragile glomerular vasculature. Although the signal transduction pathways mediating vasoconstriction are well known, how the increases in pressure trigger vasoconstriction is unclear. The response is initiated by pressure-induced stretch of the vessel wall and thus is dependent on mechanical signaling. The identity of the sensor detecting VSMC stretch is unknown. Previous studies have considered the role of extracellular matrix-integrin interactions, ion conduction units (channels and/or transporters), and the cytoskeleton as pressure detectors. Whether, and how, these structures fit together in VSMCs is poorly understood. However, a model of mechanotransduction in the nematode Caenorhadbditis elegans (C. elegans) has been established that ties together extracellular matrix, ion channels, and cytoskeletal proteins into a large mechanosensing complex. In the C. elegans mechanotransducer model, a family of evolutionarily conserved proteins, referred to as the DEG/ENaC/ASIC family, form the ion-conducting pore of the mechanotransducer. Members of this protein family are expressed in VSMC where they may participate in pressure detection. This review will address how the C. elegans mechanotransducer model can be used to model pressure detection in mammalian VSMCs and provide a new perspective to pressure detection in VSMCs.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, and Center for Excellence in Cardio-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | |
Collapse
|
270
|
Pimenta E, Gaddam KK, Pratt-Ubunama MN, Nishizaka MK, Aban I, Oparil S, Calhoun DA. Relation of Dietary Salt and Aldosterone to Urinary Protein Excretion in Subjects With Resistant Hypertension. Hypertension 2008; 51:339-44. [DOI: 10.1161/hypertensionaha.107.100701] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eduardo Pimenta
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| | - Krishna K. Gaddam
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| | | | - Mari K. Nishizaka
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| | - Inmaculada Aban
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| | - Suzanne Oparil
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| | - David A. Calhoun
- From the Vascular Biology and Hypertension Program, University of Alabama at Birmingham
| |
Collapse
|
271
|
Renal Modulation: The Renin-Angiotensin-Aldosterone System (RAAS). NEPHROLOGY AND FLUID/ELECTROLYTE PHYSIOLOGY: NEONATOLOGY QUESTIONS AND CONTROVERSIES 2008. [PMCID: PMC7152415 DOI: 10.1016/b978-1-4160-3163-5.50013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
272
|
Kirchhoff F, Krebs C, Abdulhag UN, Meyer-Schwesinger C, Maas R, Helmchen U, Hilgers KF, Wolf G, Stahl RAK, Wenzel U. Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int 2007; 73:643-50. [PMID: 18033241 DOI: 10.1038/sj.ki.5002689] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The C57BL/6 mouse strain serves as the genetic background of many transgenic and gene knockout models; however, this strain appears to be resistant to hypertension-induced renal injury. We developed a new model of hypertensive end-organ damage in C57BL/6 mice by combining deoxycorticosterone acetate (DOCA) and salt with angiotensin II infusion. The systolic blood pressure (SBP) was significantly elevated in DOCA salt-angiotensin II mice compared to control mice or mice treated individually with DOCA salt or angiotensin II. Hypertensive glomerular damage, increased expression of profibrotic and inflammatory genes, albuminuria, tubular casts, increased plasma cholesterol, cardiac hypertrophy, and fibrosis were found in mice treated with DOCA salt-angiotensin II. The SBP in the angiotensin II-infused group was further increased by increasing the infusion rate; only mild injury was observed in these mice, suggesting that blood pressure was not a causal factor. Removal of DOCA and the angiotensin pump lowered blood pressure to normal; however, albuminuria along with the glomerular and cardiac damage did not completely resolve. Our study describes a new model of hypertensive end-organ damage and repair in C57BL/6 mice.
Collapse
Affiliation(s)
- F Kirchhoff
- Division of Nephrology, Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Guan Z, Osmond DA, Inscho EW. P2X receptors as regulators of the renal microvasculature. Trends Pharmacol Sci 2007; 28:646-52. [PMID: 18022254 DOI: 10.1016/j.tips.2007.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 10/22/2022]
Abstract
P2 receptors are expressed by renal vascular, glomerular, mesangial and tubular epithelial cells, suggesting that extracellular ATP serves a diverse array of physiological roles in regulating renal hemodynamic and tubular function. Evidence indicates that ATP, or its analogues, alter renal vascular resistance and renal blood flow significantly in vitro and in vivo. This review will focus on the recent evidence that supports extracellular ATP as an important regulator of renal microvascular function. The vascular actions of ATP involve the activation of P2X receptors to regulate renal vascular function, renal blood flow and also to mediate renal autoregulatory behavior. The review will also consider the implication that renal microvascular dysfunction in disease is related to P2 receptor dysfunction and we highlight some important issues and challenges that require further attention.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
274
|
Jernigan NL, LaMarca B, Speed J, Galmiche L, Granger JP, Drummond HA. Dietary salt enhances benzamil-sensitive component of myogenic constriction in mesenteric arteries. Am J Physiol Heart Circ Physiol 2007; 294:H409-20. [PMID: 18024548 DOI: 10.1152/ajpheart.00571.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent work from our laboratory indicates that epithelial Na(+) channel (ENaC) function plays an important role in modulating myogenic vascular reactivity. Increases in dietary sodium are known to affect vascular reactivity. Although previous studies have demonstrated that dietary salt intake regulates ENaC expression and activity in epithelial tissue, the importance of dietary salt on ENaC expression in vascular smooth muscle cells (VSMCs) and its role in myogenic constriction is unknown. Therefore, the goal of the present study was to determine whether dietary salt modulates ENaC expression and function in myogenic vasoconstriction. To accomplish this goal, we examined ENaC expression in freshly dispersed VSMCs and pressure-induced vasoconstrictor responses in isolated mesenteric resistance arteries from normotensive Sprague-Dawley rats fed a normal-salt (NS; 0.4% NaCl) or high-salt (HS; 8% NaCl for 2 wk) diet. VSMCs from the mesenteric arteries of NS-fed animals express alpha-, beta-, and gamma-ENaC. The HS diet reduced whole cell alpha- and gamma-ENaC and induced a pronounced translocation of beta-ENaC from intracellular regions toward the VSMC membrane (approximately 336 nm). Associated with this change in expression was a change in the importance of ENaC in pressure-induced constriction. Pressure-induced constriction in NS-fed animals was insensitive to ENaC inhibition with 1 microM benzamil, suggesting that ENaC proteins do not contribute to myogenic constriction in mesenteric arteries under NS intake. In contrast, ENaC inhibition blocked pressure-induced constriction in HS-fed animals. These data suggest that dietary sodium regulates ENaC expression and the quantitative importance of the vascular ENaC signaling pathway contributing to myogenic constriction.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
275
|
Vaziri ND, Bai Y, Ni Z, Quiroz Y, Pandian R, Rodriguez-Iturbe B. Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. J Pharmacol Exp Ther 2007; 323:85-93. [PMID: 17636006 DOI: 10.1124/jpet.107.123638] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Significant reduction of renal mass triggers a chain of events that result in glomerular hypertension/hyperfiltration, proteinuria, glomerulosclerosis, tubulointerstitial injury, and end-stage renal disease. These events are mediated by a constellation of hemodynamic, oxidative, and inflammatory reactions that are, in part, driven by local AT1 receptor (AT1r) activation by angiotensin II (Ang II). Here we explored the effects of 5/6 nephrectomy with and without AT1r blockade (losartan for 8 weeks) on AT1r and AT2r and Ang II-positive cell count, pathways involved in oxidative stress and inflammation [NAD(P)H oxidase, nuclear factor kappaB (NFkappaB), 12-lipooxygenase, cyclooxygenase (COX)-1, COX-2, monocyte chemoattractant protein (MCP)-1, plasminogen activator inhibitor (PAI)-1, renal T cell, and macrophage infiltration] as well as renal function and structure. The untreated group exhibited hypertension, deterioration of renal function and structure, reduced or unchanged plasma renin activity, aldosterone concentration, marked up-regulations of AT1r (250%), Ang II-expressing cell count (>20-fold), NAD(P)H oxidase subunits (gp91(phox,) p22(phox), and P47(phox); 20-40%), COX-2 (250%), 12-lipooxygenase (100%), MCP-1 (400%), and PAI-1 (>20-fold), activation of NFkappaB, and interstitial infiltrations of T cells and macrophages in the remnant kidneys. AT1r blockade attenuated the biochemical and histological abnormalities, prevented hypertension, and decelerated deterioration of renal function and structure. Thus, the study demonstrated a link between up-regulation of Ang II/AT1r system and oxidative stress, inflammation, hypertension, and progression of renal disease in rats with renal mass reduction.
Collapse
Affiliation(s)
- N D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, CA, USA.
| | | | | | | | | | | |
Collapse
|
276
|
Dechend R, Shagdarsuren E, Gratze P, Fiebeler A, Pilz B, Meiners S, Derer W, Feldman DL, Webb R, Muller DN. Low-dose renin inhibitor and low-dose AT(1)-receptor blocker therapy ameliorate target-organ damage in rats harbouring human renin and angiotensinogen genes. J Renin Angiotensin Aldosterone Syst 2007; 8:81-4. [PMID: 17703434 DOI: 10.3317/jraas.2007.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We studied the effects of extremely low-dose human renin inhibition (aliskiren) with low angiotensin II receptor blockade (losartan) in a novel double-transgenic rat model harbouring both human renin and angiotensinogen genes. We found that low-dose aliskiren and low-dose losartan effectively reduced mortality and target-organ damage with minimal, non-significant, effects on blood pressure (BP). Our data suggest that renin-angiotensin system (RAS) inhibition ameliorates target-organ damage in an Ang II-driven model of hypertension. Direct renin inhibition is equally efficacious in this regard. Our study does not fully answer the question of BP-lowering versus RAS inhibition. This question is important and was at least partially addressed with our low-dose model.
Collapse
Affiliation(s)
- Ralf Dechend
- Universitary Medicine Berlin, Charite Campus Buch, Franz Volhard Clinic, HELIOS Klinikum-Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Affiliation(s)
- Michel E Safar
- Paris Descartes University, Faculty of Medicine, AP-HP, Diagnosis Center, Hôtel-Dieu Hospital, Paris, France.
| |
Collapse
|
278
|
Madeddu G, Bonfanti P, De Socio GV, Carradori S, Grosso C, Marconi P, Penco G, Rosella E, Miccolis S, Melzi S, Mura MS, Landonio S, Ricci E, Quirino T. Tenofovir renal safety in HIV-infected patients: results from the SCOLTA Project. Biomed Pharmacother 2007; 62:6-11. [PMID: 17574807 DOI: 10.1016/j.biopha.2007.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/26/2007] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To evaluate the prevalence and incidence of nephrotoxicity in HIV-infected patients enrolled in the SCOLTA Project tenofovir cohort and to identify possible risk factors. DESIGN The SCOLTA Project is a prospective, observational, multicenter study involving 25 infectious disease departments in Italy created to assess the incidence of severe adverse events in patients receiving new antiretroviral drugs. PATIENTS The SCOLTA Project tenofovir cohort includes a total of 754 HIV infected patients. RESULTS Data including grade II-IV creatinine elevations according to ACTG scale were available in 354 patients, 237 (67%) males with a mean age of 40.1+/-7.6 years enrolled in the SCOLTA Project tenofovir cohort. During a mean follow up of 19.5+/-11.5 months creatinine elevations were reported in 9/354 (2.5%) patients, all males. Mean duration of tenofovir therapy at the event was 9.5+/-5 months. The overall incidence was 1.6 (95% CI 1.5-1.7) per 100 person-years (p-y) and 0.5 (95% CI 0.4-0.6) p-y for grade III. No grade IV creatinine elevations were reported. Patients with nephrotoxicity were older and more frequently male, HCV infected, in CDC stage C and their CD4 cell count was significantly lower than those without nephrotoxicity. No significant difference was found between tenofovir co-administered antiretroviral drugs. CONCLUSIONS Both prevalence and incidence of nephrotoxicity were low in patients receiving tenofovir in a non-selected clinical setting. Renal injury in patients receiving tenofovir seems associated with the presence of co-morbidities and with advanced HIV infection.
Collapse
Affiliation(s)
- Giordano Madeddu
- Department of Infectious Diseases, University of Sassari, Via De Nicola 1, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Flaa A, Aksnes TA, Strand A, Kjeldsen SE. Complications of hypertension and the role of angiotensin receptor blockers in hypertension trials. Expert Rev Cardiovasc Ther 2007; 5:451-61. [PMID: 17489670 DOI: 10.1586/14779072.5.3.451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypertension is a high-prevalence disease that may affect several organs. In recent years, data have accumulated indicating that angiotensin II receptor blockers (ARBs) may have a supplementary effect beyond lowering blood pressure. The aim of this review is to evaluate the impact of ARBs on the most important complications of hypertension--heart, cerebrovascular and renal diseases, and metabolic complications--based on the findings from large clinical hypertension trials. The results may indicate that ARBs have a superior effect compared with placebo or other antihypertensive drugs in order to prevent left ventricular hypertrophy, atrial fibrillation, stroke, renal disease and diabetes mellitus, while there appears to be no blood pressure-independent superior effect of ARBs regarding prevention of myocardial infarction or heart failure.
Collapse
Affiliation(s)
- Arnljot Flaa
- Ullevaal University Hospital, Department of Acute Medicine, Oslo, Norway.
| | | | | | | |
Collapse
|
280
|
Lindeman RD. Hypertension and kidney protection in the elderly: what is the evidence in 2007? Int Urol Nephrol 2007; 39:669-78. [PMID: 17487566 DOI: 10.1007/s11255-007-9207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 03/06/2007] [Indexed: 12/31/2022]
Abstract
Hypertension and diabetes mellitus are the two most widely recognized risk factors for cardiovascular disease (CVD), chronic kidney disease (CKD), and end-stage renal disease (ESRD) requiring dialysis/transplantation; both become increasingly important as one ages. Common pathways and mechanisms are involved in the development of renal vascular lesions in both conditions, and effective treatments for each are now available to reduce morbidity, mortality and progression of organ damage. Although this review will focus primarily on the ability to protect the kidney and vasculature elsewhere by lowering blood pressure in the elderly, other approaches, specifically dietary restriction of protein, strict control of diabetes mellitus, and the management of the different dyslipidemias, must be used in conjunction with the antihypertensive agents to obtain optimum protection.
Collapse
Affiliation(s)
- Robert D Lindeman
- Department of Internal Medicine, The School of Medicine, University of New Mexico Health Sciences Center, Room #215, Surge Building, Albuquerque, NM 87131-5666, USA.
| |
Collapse
|
281
|
Tanemoto M. Regulatory mechanism of "K+recycling" for Na +reabsorption in renal tubules. Clin Exp Nephrol 2007; 11:1-6. [PMID: 17384992 DOI: 10.1007/s10157-006-0447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 10/27/2006] [Indexed: 01/05/2023]
Abstract
Hypertension is one of the predominant risk factors for the progression of renal impairment, and the most common disorder in industrialized societies. Because reduction of the systemic blood pressure in hypertension can halt the progression of renal impairment, it is imperative to appropriately control the systemic blood pressure. Recent genetic analysis has reconfirmed that renal maladjustment of Na(+)-homeostasis, which determines the extracellular fluid volume, is a key element in the pathogenesis of hypertension. The distal tubules adjust the net Na(+)-excretion according to Na(+)-ingestion and maintain the Na(+)-homeostasis. The distal convoluted tubules and the connecting tubules are the predominant sites for the adjustment in individuals with a modern lifestyle. In these tubules, Na(+)-reabsorption depends on "K(+)-recycling", which is conducted through K(+) channels. Because the functional expression of K(+) channels in these tubules is regulated by signal motifs for intracellular localization, the adjustment of "K(+)-recycling" through the modification of signal motifs could be a new target for the treatment of hypertension.
Collapse
Affiliation(s)
- Masayuki Tanemoto
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai, 980-8574, Japan.
| |
Collapse
|
282
|
Tian N, Gu JW, Jordan S, Rose RA, Hughson MD, Manning RD. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2007; 292:H1018-25. [PMID: 17040973 DOI: 10.1152/ajpheart.00487.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to test the hypothesis that renal infiltration of immune cells in Dahl S rats on increased dietary sodium intake contributes to the progression of renal damage, decreases in renal hemodynamics, and development of hypertension. We specifically studied whether anti-immune therapy, using mycophenolate mofetil (MMF), could help prevent increases in renal NF-κB activation, renal infiltration of monocytes/macrophages, renal damage, decreases in glomerular filtration rate (GFR) and renal plasma flow, and increases in arterial pressure. Seventy-four 7-to 8-wk-old Dahl S, Rapp strain rats were maintained on an 8% Na, 8% Na + MMF (20 mg·kg−1·day−1), 0.3% Na, or 0.3% Na + MMF diet for 5 wk. Arterial and venous catheters were implanted at day 21. By day 35, renal NF-κB in 8% Na rats was 47% higher than in 0.3% Na rats and renal NF-κB was 41% lower in 8% Na + MMF rats compared with the 8% Na group. MMF treatment significantly decreased renal monocyte/macrophage infiltration and renal damage and increased GFR and renal plasma flow. In high-NA Dahl S rats mean arterial pressure increased to 182 ± 5 mmHg, and MMF reduced this arterial pressure to 124 ± 3 mmHg. In summary, in Dahl S rats on high sodium intake, treatment with MMF decreases renal NF-κB and renal monocyte/macrophage infiltration and improves renal function, lessens renal injury, and decreases arterial pressure. This suggests that renal infiltration of immune cells is associated with increased arterial pressure and renal damage and decreasing GFR and renal plasma flow in Dahl salt-sensitive hypertension.
Collapse
Affiliation(s)
- N Tian
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | |
Collapse
|
283
|
Abstract
Substantial evidence indicates that hypertension is a major contributor to the development of end-stage renal disease in most patients. However, such risk ranges from being fairly low in essential hypertension to a marked increase in susceptibility to hypertensive injury in patients with chronic kidney disease, including diabetic nephropathy. Studies in experimental animal models using blood pressure radiotelemetry have provided significant insights into the quantitative relationships between blood pressure and renal damage and the importance of protective renal autoregulatory capacity as a determinant of such differences in susceptibility to hypertensive injury. Moreover, such investigations have also emphasized the predominant importance of achieving normotension per se over the selection of particular antihypertensive regimens, including renin-angiotensin system blockade, in slowing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola University Medical Center and Edward Hines VA Hospital, Maywood, IL 60153, USA.
| |
Collapse
|
284
|
Van de Wal RMA, Voors AA, Gansevoort RT. Urinary albumin excretion and the renin-angiotensin system in cardiovascular risk management. Expert Opin Pharmacother 2007; 7:2505-20. [PMID: 17150005 DOI: 10.1517/14656566.7.18.2505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microalbuminuria has been shown to be a strong predictor of cardiovascular morbidity and mortality in diabetic and hypertensive patients, but also in the general population. Moreover, several reports suggest that reduction of urinary albumin excretion (UAE) is associated with improvement of cardiovascular prognosis. Reduction of UAE can be achieved by lowering arterial blood pressure, but blockers of the renin-angiotensin system (RAS) with their specific renal actions have demonstrated to be able to reduce UAE more than might be expected from reduction of blood pressure alone. Consequently, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may also provide superior cardiovascular protection, especially in subjects with higher levels of albuminuria, but evidence is still scarce. The ability of both angiotensin-converting enzyme inhibitors and angiotensin receptor blockers to reduce UAE and provide cardiovascular protection suggests that the RAS may play a central role. New developments in this area include the use of aldosterone antagonists in albuminuric/proteinuric subjects, and the development of oral renin inhibitors. Combinations of the aforementioned drugs may have the ability to fully block the RAS, potentially avoiding all detrimental effects of this hormonal cascade. However, combination therapy is expected to also increase the incidence of side effects, such as hyperkalaemia and acute renal insufficiency. The current knowledge of microalbuminuria represents the proverbial tip of the iceberg, and future studies should focus on the underlying pathophysiological mechanism of urinary albumin excretion in relation to cardiovascular protection. Only then can a better understanding of the problem be achieved and the optimal pharmacological approach be ascertained.
Collapse
Affiliation(s)
- R M A Van de Wal
- St Antonius Hospital, Department of Cardiology, Nieuwegein, The Netherlands
| | | | | |
Collapse
|
285
|
|
286
|
Abstract
The United States is currently beleaguered by twin epidemics, heart failure (HF) and renal insufficiency (RI). HF and RI frequently coexist in the same patient, and this conjunction, often called the "cardiorenal syndrome," has important therapeutic and prognostic implications. Approximately 60% to 80% of patients hospitalized for HF have at least stage III renal dysfunction as defined by the National Kidney Foundation (NKF), and this comorbid RI is associated with significantly increased morbidity and mortality risk. Numerous studies have demonstrated that in patients with HF, indices of renal function are the most powerful independent mortality risk predictors. Comorbid RI can result from both intrinsic renal disease and inadequate renal perfusion. Atherosclerosis, renal vascular disease, diabetes mellitus, and hypertension are significant precursors of both HF and RI. Moreover, diminished renal perfusion is frequently a consequence of the hemodynamic changes associated with HF and its treatment. Both HF and RI stimulate neurohormonal activation, increasing both preload and afterload and reducing cardiac output. Inotropic agents augment this neurohormonal activation. In addition, diuretics can produce hypovolemia and intravenous vasodilators can cause hypotension, further diminishing renal perfusion. Management of these patients requires successfully negotiating the delicate balance between adequate volume reduction and worsening renal function. Despite this, few evidence-based data are available to guide management decisions, indicating a compelling need for additional studies in this patient population.
Collapse
Affiliation(s)
- Gregg C Fonarow
- Division of Cardiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, USA.
| | | |
Collapse
|
287
|
Vanourková Z, Kramer HJ, Husková Z, Vanecková I, Opocenský M, Chábová VC, Tesar V, Skaroupková P, Thumová M, Dohnalová M, Mullins JJ, Cervenka L. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens 2006; 24:2465-72. [PMID: 17082731 DOI: 10.1097/01.hjh.0000251909.00923.22] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE In the present study we compared the effects of treatment with the AT1 receptor antagonist candesartan and of 'triple therapy' (hydralazine, hydrochlorothiazide, reserpine) on the course of blood pressure, cardiac hypertrophy and angiotensin II concentrations after induction of hypertension in transgenic rats with inducible expression of the mouse renin gene (Cyp1a1-Ren-2 rats). METHODS Hypertension was induced in Cyp1a1-Ren-2 rats through dietary administration of the natural xenobiotic indole-3-carbinol (I3C, 0.3%) for 4 days. Starting on the day before administration of I3C, rats were treated either with candesartan or received triple therapy for 9 days. Systolic blood pressure was measured in conscious animals. Rats were decapitated and angiotensin II levels in plasma and in whole kidney and left ventricular tissues were determined by radioimmunoassay. RESULTS Administration of I3C resulted in the development of severe hypertension and cardiac hypertrophy that was accompanied by marked elevations of plasma and tissue angiotensin II concentrations. Candesartan treatment prevented the development of hypertension and cardiac hypertrophy and was associated with a reduction of tissue angiotensin II concentrations. In contrast, triple therapy, despite maintaining systolic blood pressure in the normotensive range, did not prevent the development of cardiac hypertrophy and tissue angiotensin II augmentations. CONCLUSIONS Our findings indicate that hypertension in Cyp1a1-Ren-2 rats is a clearly angiotensin II-dependent model of hypertension with elevated circulating and tissue angiotensin II concentrations, and that antihypertensive treatment with AT1 receptor blockade is superior to conventional triple therapy in effective protection against hypertension-induced end-organ damage in this rat model.
Collapse
Affiliation(s)
- Zdenka Vanourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Tian N, Rose RA, Jordan S, Dwyer TM, Hughson MD, Manning RD. N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. J Hypertens 2006; 24:2263-70. [PMID: 17053549 DOI: 10.1097/01.hjh.0000249705.42230.73] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental animals causes progressive increases in renal damage and dysfunction. The Dahl salt-sensitive (S) rat closely mimics human salt-sensitive hypertension. AIM Our goal was to test the hypothesis that enhancing the glutathione system with dietary N-acetylcysteine administration in Dahl S rats on a high sodium intake for 5 weeks will attenuate the increases in arterial pressure, the decreases in renal hemodynamics and the increases in renal damage that normally occur in S rats on high sodium. METHODS Forty-four 7- to 8-week-old Dahl S/Rapp strain rats were maintained on a high sodium (8%), high sodium + N-acetylcysteine (4 g/kg per day), or low sodium (0.3%) diet for 5 weeks. Rats had arterial and venous catheters implanted at day 21. RESULTS By day 35 in the high-sodium rats, N-acetylcysteine treatment significantly increased the renal reduced-to-oxidized glutathione ratio, glomerular filtration rate, and renal plasma flow, and decreased renal cortical and medullary O2 release, urinary protein excretion, renal tubulointerstitial damage and glomerular necrosis. At this time, mean arterial pressure increased to 183 +/- 1 mmHg, and N-acetylcysteine reduced this arterial pressure to 121 +/- 4 mmHg. By day 35 in S high-sodium rats, N-acetylcysteine had caused a 91% decrease in glomerular necrosis and an 83% decrease in tubulointerstitial damage. CONCLUSIONS In Dahl S rats on high sodium intake, arterial pressure increases significantly and renal injury is pronounced. Treatment with N-acetylcysteine enhances the renal glutathione system, improves renal dysfunction and markedly decreases arterial pressure and renal injury in Dahl salt-sensitive hypertension.
Collapse
Affiliation(s)
- Niu Tian
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | |
Collapse
|
289
|
Bidani AK, Griffin KA. The benefits of renin–angiotensin blockade in hypertension are dependent on blood-pressure lowering. ACTA ACUST UNITED AC 2006; 2:542-3. [PMID: 17003827 DOI: 10.1038/ncpneph0299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 07/14/2006] [Indexed: 11/08/2022]
Affiliation(s)
- Anil K Bidani
- Division of Nephrology and Hypertension at Loyola University Medical Center, Maywood, IL 60153, USA.
| | | |
Collapse
|
290
|
Bidani AK, Picken M, Hacioglu R, Williamson G, Griffin KA. Spontaneously reduced blood pressure load in the rat streptozotocin-induced diabetes model: potential pathogenetic relevance. Am J Physiol Renal Physiol 2006; 292:F647-54. [PMID: 16968892 PMCID: PMC1794259 DOI: 10.1152/ajprenal.00017.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat streptozotocin (STZ)-induced diabetes model is widely used to investigate the pathogenesis of diabetic nephropathy. However, overt nephropathy is inexplicably slow to develop in this model compared with renal mass reduction (RMR) models. To examine whether blood pressure (BP) differences correlated with the time course of glomerulosclerosis (GS), BP was measured continuously throughout the course by radiotelemetry in control (n = 17), partially insulin-treated STZ-diabetes (average blood glucose 364 +/- 15 mg/dl; n = 15), and two normotensive RMR models (systolic BP <140 mmHg)--uninephrectomy (UNX; n = 16) and 3/4 RMR by surgical excision [right nephrectomy + excision of both poles of left kidney (RK-NX); n = 12] in Sprague-Dawley rats. Proteinuria and GS were assessed at approximately 16-20 wk (all groups) and at 36-40 wk (all groups except RK-NX). At 16 wk, significantly greater proteinuria and GS had developed in the RK-NX group compared with the other three groups (not different from each other). By 36-40 wk, substantial proteinuria and GS had also developed in the UNX group, but both the control and the STZ-diabetic rats exhibited comparable modest proteinuria and minimal GS. Systolic BP (mmHg) was significantly reduced in the STZ-diabetic rats (116 +/- 1.1) compared with both control (124 +/- 1.0) and RMR (128 +/- 1.2 and 130 +/- 3.0) groups (P < 0.01). Similarly, "BP load" as estimated by BP power spectral analysis was also lower in the STZ-diabetic rats. Given the known protective effects of BP reductions on the progression of diabetic nephropathy, it is likely that this spontaneous reduction in ambient BP contributes to the slow development of GS in the STZ-diabetes model compared with the normotensive RMR models.
Collapse
Affiliation(s)
- Anil K Bidani
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
291
|
Gómez-Garre D, Martín-Ventura JL, Granados R, Sancho T, Torres R, Ruano M, García-Puig J, Egido J. Losartan improves resistance artery lesions and prevents CTGF and TGF-beta production in mild hypertensive patients. Kidney Int 2006; 69:1237-44. [PMID: 16482098 DOI: 10.1038/sj.ki.5000034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although structural and functional changes of resistance arteries have been proposed to participate in arterial hypertension (HTA) outcome, not all therapies may correct these alterations, even if they normalize the blood pressure (BP). The aim of this study was to investigate the mechanisms of the protection afforded by the angiotensin receptor antagonist losartan in resistance arteries from patients with essential HTA. In all, 22 untreated hypertensive patients were randomized to receive losartan or amlodipine for 1 year and the morphological characteristics of resistance vessels from subcutaneous biopsies were evaluated. Protein expression of connective tissue growth factor (CTGF), transforming growth factor beta (TGF-beta), and collagens III and IV was detected by immunohistochemistry. In comparison with normotensive subjects, resistance arteries from hypertensive patients showed a significant media:lumen (M/L) ratio increment and a higher protein expression of CTGF, TGF-beta, and collagens. After 1 year of treatment, both losartan and amlodipine similarly controlled BP. However, M/L only decreased in patients under losartan treatment, whereas in the amlodipine-treated group this ratio continued to increase significantly. The administration of losartan prevented significant increments in CTGF, TGF-beta, and collagens in resistance arteries. By contrast, amlodipine-treated patients showed a higher vascular CTGF, TGF-beta, and collagen IV staining than before treatment. Our results show that the administration of losartan, but not amlodipine, to hypertensive patients improves structural abnormalities and prevents the production of CTGF and TGF-beta in small arteries, despite similar BP lowering. These data may explain the molecular mechanisms of the better vascular protection afforded by drugs interfering with the renin-angiotensin system.
Collapse
Affiliation(s)
- D Gómez-Garre
- Vascular Biology and Atherosclerosis Research Laboratory, Medicina Interna III, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
292
|
Griffin KA, Bidani AK. Progression of renal disease: renoprotective specificity of renin-angiotensin system blockade. Clin J Am Soc Nephrol 2006; 1:1054-65. [PMID: 17699327 DOI: 10.2215/cjn.02231205] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent guidelines for management of patients with chronic kidney disease recommend both lower optimal BP targets and agents that block the renin-angiotensin system (RAS) for specific additional BP-independent renoprotection. Although there are other compelling rationales to use RAS blockade in patients with chronic kidney disease, including its antihypertensive effectiveness and ability to counteract the adverse effects of diuretics, a critical review of the available scientific evidence suggests that the specificity of renoprotection that is provided by RAS blockade has been greatly overemphasized. Little evidence of truly BP-independent renoprotection is observed in experimental animal models when ambient BP is assessed adequately by chronic continuous BP radiotelemetry. Although the clinical trial evidence is somewhat stronger, nevertheless, even when interpreted favorably, the absolute magnitude of the BP-independent component of the renoprotection that is observed with RAS blockade is much smaller than what is due to its antihypertensive effects.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
293
|
Kalk P, Godes M, Relle K, Rothkegel C, Hucke A, Stasch JP, Hocher B. NO-independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy. Br J Pharmacol 2006; 148:853-9. [PMID: 16770325 PMCID: PMC1617071 DOI: 10.1038/sj.bjp.0706792] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Chronic renal disease is associated with oxidative stress, reduced nitric oxide (NO) availability and soluble guanylate cyclase (sGC) dysfunction. Recently, we discovered BAY 58-2667, a compound activating heme-deficient or oxidized sGC in a NO-independent manner. 2. We assessed potential of BAY 58-2667 in preventing cardiac and renal target organ damage in rats with 5/6 nephrectomy. 3. Male Wistar rats were allocated to three groups: 5/6 nephrectomy, 5/6 nephrectomy treated with BAY 58-2667 and sham operation. Study period was 18 weeks: blood pressure and creatinine clearance were assessed repeatedly. At study end blood samples were taken and hearts and kidneys harvested for histological studies. 4. BAY 58-2667 markedly lowered blood pressure in animals with 5/6 nephrectomy (untreated versus treated animals: 189+/-14 versus 146+/-11 mmHg, P<0.001). Left ventricular weight, cardiac myocyte diameter as well as cardiac arterial wall thickness significantly decreased in comparison to untreated animals with 5/6 nephrectomy. Natriuretic peptide plasma levels were also improved by BAY 58-2667. Kidney function and morphology as assessed by creatinine clearance, glomerulosclerosis, interstitial and perivascular fibrosis of intrarenal arteries were likewise significantly improved by BAY 58-2667. 5. This is the first study showing that BAY 58-2667 effectively lowers blood pressure, reduces left ventricular hypertrophy and slows renal disease progression in rats with 5/6 nephrectomy by targeting mainly oxidized sGC. Therefore, BAY 58-2667 represents a novel pharmacological principle with potential clinical value in treatment of chronic renal disease.
Collapse
Affiliation(s)
- Philipp Kalk
- Department of Pharmacology and Toxicology, Center for Cardiovascular Research, Charité, Campus Mitte, Hessische Str. 3-4, Berlin D-10115, Germany
- Institute of Vegetative Physiology, Charite, Campus Mitte, Berlin, Germany
| | - Michael Godes
- Department of Pharmacology and Toxicology, Center for Cardiovascular Research, Charité, Campus Mitte, Hessische Str. 3-4, Berlin D-10115, Germany
| | - Katharina Relle
- Department of Pharmacology and Toxicology, Center for Cardiovascular Research, Charité, Campus Mitte, Hessische Str. 3-4, Berlin D-10115, Germany
- Institute of Vegetative Physiology, Charite, Campus Mitte, Berlin, Germany
| | - Christiane Rothkegel
- Cardiovascular Research, Bayer Healthcare, Wuppertal, Germany
- Martin-Luther-University, School of Pharmacy, Halle, Germany
| | - Andreas Hucke
- Cardiovascular Research, Bayer Healthcare, Wuppertal, Germany
| | | | - Berthold Hocher
- Department of Pharmacology and Toxicology, Center for Cardiovascular Research, Charité, Campus Mitte, Hessische Str. 3-4, Berlin D-10115, Germany
- Author for correspondence:
| |
Collapse
|
294
|
Loutzenhiser R, Griffin K, Williamson G, Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1153-67. [PMID: 16603656 PMCID: PMC1578723 DOI: 10.1152/ajpregu.00402.2005] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
When the kidney is subjected to acute increases in blood pressure (BP), renal blood flow (RBF) and glomerular filtration rate (GFR) are observed to remain relatively constant. Two mechanisms, tubuloglomerular feedback (TGF) and the myogenic response, are thought to act in concert to achieve a precise moment-by-moment regulation of GFR and distal salt delivery. The current view is that this mechanism insulates renal excretory function from fluctuations in BP. Indeed, the concept that renal autoregulation is necessary for normal renal function and volume homeostasis has long been a cornerstone of renal physiology. This article presents a very different view, at least regarding the myogenic component of this response. We suggest that its primary purpose is to protect the kidney against the damaging effects of hypertension. The arguments advanced take into consideration the unique properties of the afferent arteriolar myogenic response that allow it to protect against the oscillating systolic pressure and the accruing evidence that when this response is impaired, the primary consequence is not a disturbed volume homeostasis but rather an increased susceptibility to hypertensive injury. It is suggested that redundant and compensatory mechanisms achieve volume regulation, despite considerable fluctuations in distal delivery, and the assumed moment-by-moment regulation of renal hemodynamics is questioned. Evidence is presented suggesting that additional mechanisms exist to maintain ambient levels of RBF and GFR within normal range, despite chronic alterations in BP and severely impaired acute responses to pressure. Finally, the implications of this new perspective on the divergent roles of the myogenic response to pressure vs. the TGF response to changes in distal delivery are considered, and it is proposed that in addition to TGF-induced vasoconstriction, vasodepressor responses to reduced distal delivery may play a critical role in modulating afferent arteriolar reactivity to integrate the regulatory and protective functions of the renal microvasculature.
Collapse
|
295
|
Hartner A, Porst M, Klanke B, Cordasic N, Veelken R, Hilgers KF. Angiotensin II formation in the kidney and nephrosclerosis in Ren-2 hypertensive rats. Nephrol Dial Transplant 2006; 21:1778-85. [PMID: 16522658 DOI: 10.1093/ndt/gfl065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ren-2 transgenic hypertensive rats develop malignant hypertensive nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin. We tested the hypothesis that local angiotensin II formation occurs at sites of renal vascular and interstitial injury in this model. METHODS Heterozygous Ren-2 transgenic rats were compared with normotensive Sprague-Dawley-Hannover control rats and Ren-2 transgenic rats treated with a very low dose of an angiotensin II type 1 (AT1) receptor antagonist, 1 mg/kg/day losartan, for 4 weeks. Blood pressure measurements, quantifications of urinary albumin, plasma and tissue angiotensin II as well as immunohistochemical analyses were performed. RESULTS Systolic blood pressure was not affected by losartan during the study but intra-arterial recordings revealed a decrease of blood pressure. Losartan reduced albumin excretion, cell proliferation, macrophage influx, collagen I and collagen IV deposition. Plasma angiotensin II was decreased, while kidney tissue angiotensin II content was increased in Ren-2 transgenic rats compared with control rats. In Ren-2 transgenic rats, juxtaglomerular renin and angiotensin II staining were reduced, but there was a marked angiotensin II staining at foci of tubulo-interstitial fibrosis and at proliferative malignant vascular lesions. CONCLUSION We conclude that local angiotensin II formation is increased in proliferative or fibrotic kidney lesions in the Ren-2 transgenic rat. Local angiotensin II formation may help to explain why the AT1 receptor antagonist prevents or ameliorates this transgenic model of malignant nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin.
Collapse
Affiliation(s)
- Andrea Hartner
- University Hospital for Children and Adolescents, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
296
|
Abstract
In subjects with renal disease, reduced renal function and increased arterial stiffness are significantly associated in cross-sectional studies. The relationship is independent of age, blood pressure (BP), and atherosclerosis. Because both variables are independent predictors of cardiovascular risk, time-dependent relationships between them are important to determine. Aortic pulse wave velocity was measured noninvasively by comparison with healthy volunteers in 101 living kidney donors and their 101 corresponding recipients. Healthy volunteers were divided into 2 groups: one was recipient related through familial links and the other was nonrecipient related. Independently of age, gender, and BP, pulse wave velocity was significantly elevated in donors and recipients by comparison with the 2 groups of healthy volunteers. Pulse wave velocity was significantly higher in the recipient-related than in the nonrecipient-related group. Whereas in healthy volunteers, pulse wave velocity was exclusively related to age, gender, and BP, in donors and recipients, it was rather associated with a cluster of cardiovascular risk factors, including smoking habits and plasma glucose. Major factors related to pulse wave velocity were renal: time since nephrectomy (donation date) in donors, in whom pulse pressure was specifically associated with proteinuria, and renal rejection in recipients. Plasma creatinine doubling secondary to chronic allograft nephropathy was significantly associated with renal rejection and donor pulse wave velocity, independent of age. Our findings strongly suggest consistent interactions (including familial factors) between kidney function and arterial stiffness. Assessment of cause–effect relationships and implication of biochemical and/or genetic factors warrant additional studies.
Collapse
Affiliation(s)
- Sola Aoun Bahous
- Nephrology and Transplantation Center, Rizk Hopsital, Beirut, Lebanon
| | | | | | | |
Collapse
|
297
|
Abstract
Hypertension is common in chronic renal disease and is a risk factor for the faster progression of renal damage, and reduction of blood pressure (BP) is an efficient way of preventing or slowing the progression of this damage. International guidelines recommend lowering BP to 140/90 mm Hg or less in patients with uncomplicated hypertension, and to 130/80 mm Hg or less for patients with diabetic or chronic renal disease. The attainment of these goals needs to be aggressively pursued with multidrug antihypertensive regimens, if needed. The pathogenesis of hypertensive renal damage involves mediators from various extracellular systems, including the renin-angiotensin system (RAS). Proteinuria, which occurs as a consequence of elevated intraglomerular pressure, is also directly nephrotoxic. As well as protecting the kidneys by reducing BP, antihypertensive drugs can also have direct effects on intrarenal mechanisms of damage, such as increased glomerular pressure and proteinuria. Antihypertensive drugs that have direct effects on intrarenal mechanisms may, therefore, have nephroprotective effects additional to those resulting from reductions in arterial BP. Whereas BP-lowering effects are common to all antihypertensive drugs, intrarenal effects differ between classes and between individual drugs within certain classes. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB) have beneficial effects on proteinuria and declining renal function that appear to be mediated by factors additional to their effects on BP. These RAS inhibitors are recommended as a first-line antihypertensive approach in patients with chronic kidney disease. The addition of diuretics and calcium channel antagonists to RAS inhibitor therapy is also considered to be a rational strategy to reduce BP and preserve renal function. Calcium channel antagonists are a highly heterogeneous class of compounds, and it appears that some agents are more suitable for use in patients with chronic renal disease than others. Manidipine is a third-generation dihydropyridine (DHP) calcium channel antagonist that blocks both L and T-type calcium channels. Unlike older-generation DHPs, which preferentially act on L-type channels, manidipine has been shown to have beneficial effects on intrarenal haemodynamics, proteinuria and other measures of renal functional decline in the first clinical trials involving hypertensive patients with chronic renal failure. Preliminary results from a trial in diabetic patients who had uncontrolled hypertension and microalbuminuria despite optimal therapy with an ACE inhibitor or an ARB suggest that manidipine may be an excellent antihypertensive drug in combination with RAS inhibitor treatment in order to normalise BP and albumin excretion in patients with diabetes.
Collapse
Affiliation(s)
- René R Wenzel
- Clinic of Internal Medicine, Cardiology, Nephrology and Hypertension, General Hospital Zell am See, Zell am See, Austria.
| |
Collapse
|
298
|
Loutzenhiser R, Griffin KA, Bidani AK. Systolic blood pressure as the trigger for the renal myogenic response: protective or autoregulatory? Curr Opin Nephrol Hypertens 2006; 15:41-9. [PMID: 16340665 DOI: 10.1097/01.mnh.0000199011.41552.de] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The ability of the kidney to autoregulate renal blood flow and glomerular filtration rate has long been viewed as existing to prevent fluctuations in blood pressure from causing parallel fluctuations in renal function and distal delivery of filtrate. This review, however, points out that the primary consequence of the loss of this autoregulatory capacity is not a disturbance in volume regulation, but rather an increased susceptibility to hypertensive injury. Moreover, the kinetic requirements for renal protection indicate that current views of dynamic autoregulation cannot explain how the kidney is normally protected against acute elevations in systolic blood pressure. RECENT FINDINGS Recent findings suggest that the kinetics of the myogenic mechanism of the afferent arteriole are uniquely suited to protect against acute elevations in the systolic blood pressure, in that this vessel not only senses this rapidly oscillating blood pressure component, but that its response is exclusively dependent on this signal. SUMMARY These new findings are consistent with recent data indicating that it is the systolic blood pressure elevations that most closely correlate with target organ damage. The fact that the myogenic mechanism is also a necessary component of renal autoregulation may explain the strong linkage between autoregulatory impairment and increased susceptibility to hypertensive injury.
Collapse
Affiliation(s)
- Rodger Loutzenhiser
- Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
299
|
Cohuet G, Struijker-Boudier H. Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther 2005; 111:81-98. [PMID: 16288809 DOI: 10.1016/j.pharmthera.2005.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 12/24/2022]
Abstract
Hypertension is a major risk factor for cardiovascular mortality and morbidity through its effects on target organs like the brain, heart, and kidney. Structural alterations in the microcirculation form a major link between hypertension and target organ damage. In this review, we describe damages related to hypertension in these target organs and the mechanisms involved in the pathogenesis of hypertension-induced cardiovascular diseases such as dementia, cardiac ischemia and remodeling, or nephropathy. We also focus on the therapeutical potential on the basis of such mechanisms. Several antihypertensive agents like diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin II (Ang II) receptor antagonists, beta-blockers, or calcium channel blockers (CCBs) have been shown to reduce effectively hypertension associated cardiovascular events and to improve end organ damage. More recently, aldosterone antagonism has also shown beneficial effects. Part of the favorable effects of these agents is due to blood pressure lowering as such. Other mechanisms such as oxidative stress, inflammation, or endothelial dysfunction have appeared to play a key role in the pathogenesis of target organ damage and therefore represent another important pathway for therapy. In this review, we discuss the different therapeutic approaches aiming at reducing cardiovascular events and damages induced by hypertension.
Collapse
Affiliation(s)
- G Cohuet
- Cardiovascular Research Institute of Maastricht, Pharmacology and Toxicology, Universiteitssingel 50, PO BOX 616, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
300
|
Takenaka T, Mimura T, Kanno Y, Suzuki H. Qualification of arterial stiffness as a risk factor to the progression of chronic kidney diseases. Am J Nephrol 2005; 25:417-24. [PMID: 16110203 DOI: 10.1159/000087605] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 07/11/2005] [Indexed: 01/09/2023]
Abstract
BACKGROUND Reflection pressure may influence the clinical course of chronic kidney diseases (CKDs). The relationship between the augmentation index (AI) and progression of non-diabetic CKDs was characterized. METHODS Ninety-nine patients were enrolled into the study. Pulse wave form analysis was performed to determine AI that assesses arterial stiffness. RESULTS In a cross-sectional study, a multiple regression analysis found that AI correlated positively to age and weight, and negatively to height and heart rate (R(2) = 0.50). Furthermore, echocardiography was performed in 51 patients who gave their consent. In male patients under angiotensin inhibition, left ventricular mass index increased as AI was elevated (r = 0.33, slope = 0.85 +/- 0.30 g/m(2)/%, p < 0.05, n = 23). A prospective study was performed in 41 patients who consented to having their creatinine clearance measured repeatedly. In the patients with angiotensin inhibition a higher basal AI resulted in a greater annual decrease in creatinine clearance (r = -0.52, slope = -0.43 +/- 0.14 ml/min/year/%, p < 0.01, n = 27). CONCLUSION The present data indicate that AI as well as angiotensin contribute to the development of left ventricular hypertrophy. Furthermore, our results suggest that in addition to angiotensin, AI is a risk factor of progression of non-diabetic CKDs.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology, Saitama Medical College, 38 Moro-hongo Moroyama, Iruma Saitama 350-0495, Japan
| | | | | | | |
Collapse
|