251
|
Zhang W, Zhang K, Zhang P, Zheng J, Min C, Li X. Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Front Oncol 2021; 10:604531. [PMID: 33520714 PMCID: PMC7841623 DOI: 10.3389/fonc.2020.604531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and chronic pancreatitis have been proven to be associated with the occurrence of pancreatic cancer. In recent years, a large number of studies have clarified that a variety of microorganisms colonized in pancreatic cancer tissues are also closely related to the occurrence and development of pancreatic cancer, and the specific mechanisms include inflammatory induction, immune regulation, metabolism, and microenvironment changes caused by microorganism. The mechanism of action of the pancreatic colonized microbiome in the tumor microenvironment, as well as immunotherapy approaches require further study in order to find more evidence to explain the complex relationship between the pancreatic colonized microbiome and PDAC. Relevant studies targeting the microbiome may provide insight into the mechanisms of PDAC development and progression, improving treatment effectiveness and overall patient prognosis. In this article, we focus on the research relating to the microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis, treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need to be improved in clinical practice. The elimination or increase in diversity of the pancreatic microbiome is beneficial for prolonging the survival of PDAC patients, improving the response to chemotherapy drugs, and reducing tumor burden. The colonization of microorganisms in the pancreas may become a new hotspot in the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
252
|
Cai R, Lu Q, Wang D. Construction and prognostic analysis of miRNA-mRNA regulatory network in liver metastasis from colorectal cancer. World J Surg Oncol 2021; 19:7. [PMID: 33397428 PMCID: PMC7784011 DOI: 10.1186/s12957-020-02107-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC has not been clearly elucidated. Methods Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed, and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of growth arrest specific 1 (GAS1)-associated immune cells. Results We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions In summary, DEGs, DEMs, and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.
Collapse
Affiliation(s)
- Ruyun Cai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qian Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
253
|
Li Q, Yang W, Lu M, Zhang R. Identification of a 6-Gene Signature Associated with Resistance to Tyrosine Kinase Inhibitors: Prognosis for Clear Cell Renal Cell Carcinoma. Med Sci Monit 2020; 26:e927078. [PMID: 33296352 PMCID: PMC7734882 DOI: 10.12659/msm.927078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are used to treat metastatic disease associated with clear cell renal cell carcinoma (ccRCC); however, most patients develop resistance after 6 to 15 months. As such, identifying biomarkers of TKI resistance may be useful for prognosis. Material/Methods We analyzed ChIP-seq data related to TKI resistance from the Gene Expression Omnibus and RNA-Seq and clinical data from The Cancer Genome Atlas database. We used univariate Cox analysis and Cox regression/Lasso analysis to determine a risk score. The Kaplan-Meier estimate and receiver operating characteristic curve verified the risk score’s sensitivity and specificity. The stratified analysis and the univariate and multivariate analyses revealed its predictive power. We predicted survival time by constructing a nomogram. Results Of the 32 differentially expressed genes (DEGs) related to TKI resistance, 6 (ACE2, MMP24, SLC44A4, C1R, C1ORF194, ADAMTS15) were used to establish a risk score. Kaplan-Meier analysis showed that high-risk patients had shorter median survival times than low-risk patients, notably among those with metastatic disease (1.51 vs. 4.55 years). The stratified analysis revealed that patients with advanced disease had relatively higher risk scores than patients at early stages (P<0.001). Univariate analysis independently associated the 6-DEGs signature with the prognosis of metastatic ccRCC (hazard ratio, 1.217; 95% confidence interval, 1.090–1.358). The nomogram we constructed based on 6-DEGs signature and clinical parameters predicted survival time accurately. Conclusions We identified a 6-DEGs signature that permitted us to establish a risk score related to TKI resistance that can serve as a reliable biomarker for predicting the survival of patients with ccRCC.
Collapse
Affiliation(s)
- Qinke Li
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Wenbo Yang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Maoqing Lu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
254
|
Wang H, Ding T, Guan J, Liu X, Wang J, Jin P, Hou S, Lu W, Qian J, Wang W, Zhan C. Interrogation of Folic Acid-Functionalized Nanomedicines: The Regulatory Roles of Plasma Proteins Reexamined. ACS NANO 2020; 14:14779-14789. [PMID: 33084315 DOI: 10.1021/acsnano.0c02821] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Folic acid (FA) has been extensively exploited to facilitate targeted delivery of nanomedicines by recognizing the folate receptor-α (FR-α) overexpressed in many human cancers. Unfortunately, none have been approved for clinical use yet. Here we reveal that FA functionalization induces heavy natural IgM absorption on the liposomal surface, depriving FA of receptor recognition and accelerating complement activation in vivo. FA functionalization does not enhance distribution of liposomes in FR-α-overexpressed tumors in comparison to plain liposomes (without FA), but leads to aggravated capture of liposomes by macrophages in the tumor, liver, and spleen. In addition, FA-functionalized polymeric nanoparticles are also vulnerable to natural IgM absorption. This work highlights the pivotal roles of natural IgM in regulating in vivo delivery of FA-functionalized nanomedicines. Due to the prevalent association of immune disorders and varying levels of immunoglobulins with cancer patients, extraordinary cautiousness is urged for clinical translation of FA-enabled targeted delivery systems.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
| | - Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Xia Liu
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Pengpeng Jin
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Weiyue Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Jun Qian
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
| | - Weiping Wang
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, People's Republic of China
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, People's Republic of China
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| |
Collapse
|
255
|
Li J, Cao Z, Mi L, Xu Z, Wu X. Complement sC5b-9 and CH50 increase the risk of cancer-related mortality in patients with non-small cell lung cancer. J Cancer 2020; 11:7157-7165. [PMID: 33193878 PMCID: PMC7646172 DOI: 10.7150/jca.46721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives: Immunologic dysfunction occurred in most of patients with non-small cell lung cancer (NSCLC), which worsened the overall survival (OS) of patients. Complement activation plays a significant role in abnormal activation of immune system. However, the prognostic value of complement components such as CH50 and sC5b-9 in NSCLC patients remains unclear. This study evaluated the risk factors of NSCLC and created a prediction model. Methods: A real-world study was conducted including data from 928 patients with NSCLC between April 1, 2005 and June 1, 2015. CH50 and sC5b-9 were recorded during the admission. Cox proportional hazard model was applied for survival analyses and for assessing risk factors of cancer-related mortality and to create a nomogram for prediction. The accuracy of the model was evaluated by C-index and calibration curve. Results: In this study, the mortality in group with high CH50 level (≥ 480.56 umol/L) was 92.0%. Based on univariate analysis, we put factors (P <0.05) into a multivariate regression model, patients with high CH50 level (P <0.001, HR=1.59) and sC5b-9 >1422.18 μmol/L (P <0.001, HR=2.28) remained statistically factors for worsened OS and regarded as independent risk factors. These independently associated risk factors were applied to establish an OS estimation nomogram. Nomogram revealed good accuracy in estimating the risk, with a bootstrap-corrected C index of 0.741. Conclusion: sC5b-9 and CH50 increased the risk of cancer-related mortality in patients with NSCLC. Nomogram based on multivariate analysis demonstrated good accuracy in estimating the risk of overall mortality.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Zhijun Cao
- Department of Urology, The Ninth People's Hospital of Suzhou, Suzhou, China
| | - Lijie Mi
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangmei Wu
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| |
Collapse
|
256
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
257
|
Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, Paterson Y, Woolford L, Christie A, Elias R, Brugarolas J, Wang T, Karbowniczek M, Markiewski MM. Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 205:3218-3229. [PMID: 33158953 DOI: 10.4049/jimmunol.2000511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.
Collapse
Affiliation(s)
- Britney Reese
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Ashok Silwal
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Elizabeth Daugherity
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Michael Daugherity
- Department of Engineering and Physics, Abilene Christian University, Abilene, TX 79601
| | - Mahshid Arabi
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Pierce Daly
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Yvonne Paterson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Layton Woolford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Alana Christie
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Roy Elias
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - James Brugarolas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,The Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601;
| |
Collapse
|
258
|
Complement System: Promoter or Suppressor of Cancer Progression? Antibodies (Basel) 2020; 9:antib9040057. [PMID: 33113844 PMCID: PMC7709131 DOI: 10.3390/antib9040057] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Constituent of innate immunity, complement is present in the tumor microenvironment. The functions of complement include clearance of pathogens and maintenance of homeostasis, and as such could contribute to an anti-tumoral role in the context of certain cancers. However, multiple lines of evidence show that in many cancers, complement has pro-tumoral actions. The large number of complement molecules (over 30), the diversity of their functions (related or not to the complement cascade), and the variety of cancer types make the complement-cancer topic a very complex matter that has just started to be unraveled. With this review we highlight the context-dependent role of complement in cancer. Recent studies revealed that depending of the cancer type, complement can be pro or anti-tumoral and, even for the same type of cancer, different models presented opposite effects. We aim to clarify the current knowledge of the role of complement in human cancers and the insights from mouse models. Using our classification of human cancers based on the prognostic impact of the overexpression of complement genes, we emphasize the strong potential for therapeutic targeting the complement system in selected subgroups of cancer patients.
Collapse
|
259
|
Pan BH, Kong YL, Wang L, Zhu HY, Li XT, Liang JH, Xia Y, Wu JZ, Fan L, Li JY, Xu W. The prognostic roles of hypogammaglobulinemia and hypocomplementemia in newly diagnosed diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 62:291-299. [PMID: 33063579 DOI: 10.1080/10428194.2020.1832673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent type of lymphoma. Our retrospective study included 553 newly diagnosed DLBCL patients from May 2009 to October 2019. The relationships between hypogammaglobulinemia, hypocomplementemia and progression-free survival (PFS) and overall survival (OS) were assessed. In our center, 19.0% of patients had hypogammaglobulinemia, and 7.7% had hypocomplementemia at diagnosis. Immunoglobulin and complement deficiencies were associated with advanced disease and displayed inferior PFS and OS. Then, we designed a new immunization cumulative prognostic score (ICPS) model to comprehensively clarify the effect of these two variables on prognosis. Multivariate analysis showed that ICPS was an independent prognostic indicator for inferior clinical outcomes (PFS: p = 0.007, OS: p = 0.003). Furthermore, the predictive effect of ICPS combined with the International Prognostic Index (IPI) was superior to that of IPI alone (PFS: p = 0.016, OS: p = 0.037). In conclusion, hypogammaglobulinemia and hypocomplementemia could be regarded as adverse prognostic indicators in DLBCL.
Collapse
Affiliation(s)
- Bi-Hui Pan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yi-Lin Kong
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Xiao-Tong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| |
Collapse
|
260
|
Nguyen HD, Allaire A, Diamandis P, Bisaillon M, Scott MS, Richer M. A machine learning analysis of a "normal-like" IDH-WT diffuse glioma transcriptomic subgroup associated with prolonged survival reveals novel immune and neurotransmitter-related actionable targets. BMC Med 2020; 18:280. [PMID: 33059718 PMCID: PMC7565364 DOI: 10.1186/s12916-020-01748-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Classification of primary central nervous system tumors according to the World Health Organization guidelines follows the integration of histologic interpretation with molecular information and aims at providing the most precise prognosis and optimal patient management. According to the cIMPACT-NOW update 3, diffuse isocitrate dehydrogenase-wild type (IDH-WT) gliomas should be graded as grade IV glioblastomas (GBM) if they possess one or more of the following molecular markers that predict aggressive clinical course: EGFR amplification, TERT promoter mutation, and whole-chromosome 7 gain combined with chromosome 10 loss. METHODS The Cancer Genome Atlas (TCGA) glioma expression datasets were reanalyzed in order to identify novel tumor subcategories which would be considered as GBM-equivalents with the current diagnostic algorithm. Unsupervised clustering allowed the identification of previously unrecognized transcriptomic subcategories. A supervised machine learning algorithm (k-nearest neighbor model) was also used to identify gene signatures specific to some of these subcategories. RESULTS We identified 14 IDH-WT infiltrating gliomas displaying a "normal-like" (NL) transcriptomic profile associated with a longer survival. Genes such as C5AR1 (complement receptor), SLC32A1 (vesicular gamma-aminobutyric acid transporter), MSR1 (or CD204, scavenger receptor A), and SYT5 (synaptotagmin 5) were differentially expressed and comprised in gene signatures specific to NL IDH-WT gliomas which were validated further using the Chinese Glioma Genome Atlas datasets. These gene signatures showed high discriminative power and correlation with survival. CONCLUSION NL IDH-WT gliomas represent an infiltrating glioma subcategory with a superior prognosis which can only be detected using genome-wide analysis. Differential expression of genes potentially involved in immune checkpoint and amino acid signaling pathways is providing insight into mechanisms of gliomagenesis and could pave the way to novel treatment targets for infiltrating gliomas.
Collapse
Affiliation(s)
- H. D. Nguyen
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - A. Allaire
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - P. Diamandis
- Department of Laboratory Medicine and Pathobiology and Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario Canada
| | - M. Bisaillon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - M. S. Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec Canada
| | - M. Richer
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Québec Canada
| |
Collapse
|
261
|
Chang JC. Disseminated intravascular coagulation: new identity as endotheliopathy-associated vascular microthrombotic disease based on in vivo hemostasis and endothelial molecular pathogenesis. Thromb J 2020; 18:25. [PMID: 33061857 PMCID: PMC7553785 DOI: 10.1186/s12959-020-00231-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) can be correctly redefined as disseminated intravascular microthrombosis based on "two-path unifying theory" of in vivo hemostasis. "DIC" is a form of vascular microthrombotic disease characterized by "microthrombi" composed of platelets and unusually large von Willebrand factor multimers (ULVWF). Microthrombotic disease includes not only "DIC", but also microthrombosis occurring in thrombotic thrombocytopenic purpura (TTP), TTP-like syndrome, and focal, multifocal and localized microthrombosis. Being a hemostatic disease, microthrombotic disease occurs as a result of lone activation of ULVWF path via partial in vivo hemostasis. In endothelial injury associated with critical illnesses such as sepsis, the vascular damage is limited to the endothelial cell and activates ULVWF path. In contrast, in intravascular traumatic injury, the local damage may extend from the endothelial cell to subendothelial tissue and sometimes beyond, and activates both ULVWF and tissue factor (TF) paths. When endotheliopathy triggers exocytosis of ULVWF and recruits platelets, ULVWF path is activated and promotes microthrombogenesis to produce microthrombi composed of microthrombi strings, but when localized vascular damage causes endothelial and subendothelial tissue damage, both ULVWF and TF paths are activated and promote macrothrombogenesis to produce macrothrombus made of complete "blood clots". Currently, "DIC" concept is ascribed to activated TF path leading to fibrin clots. Instead, it should be correctly redefined as microthrombosis caused by activation of ULVWF path, leading to endotheliopathy-associated microthrombosis. The correct term for acute "DIC" is disseminated microthrombosis-associated hepatic coagulopathy, and that for chronic "DIC" is disseminated microthrombosis without hepatic coagulopathy. TTP-like syndrome is hematologic phenotype of endotheliopathy-associated microthrombosis. This correct concept of "DIC" is identified from novel theory of "in vivo hemostasis", which now can solve every mystery associated with "DIC" and other associated thrombotic disorders. Thus, sepsis-associated coagulopathy is not "DIC", but is endotheliopathy-associated vascular microthrombotic disease.
Collapse
Affiliation(s)
- Jae C. Chang
- Department of Medicine, University of California School of Medicine, Irvine, CA 92603 USA
| |
Collapse
|
262
|
Xiong D, Wang Y, You M. A gene expression signature of TREM2 hi macrophages and γδ T cells predicts immunotherapy response. Nat Commun 2020; 11:5084. [PMID: 33033253 PMCID: PMC7545100 DOI: 10.1038/s41467-020-18546-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Identifying factors underlying resistance to immune checkpoint therapy (ICT) is still challenging. Most cancer patients do not respond to ICT and the availability of the predictive biomarkers is limited. Here, we re-analyze a publicly available single-cell RNA sequencing (scRNA-seq) dataset of melanoma samples of patients subjected to ICT and identify a subset of macrophages overexpressing TREM2 and a subset of gammadelta T cells that are both overrepresented in the non-responding tumors. In addition, the percentage of a B cell subset is significantly lower in the non-responders. The presence of these immune cell subtypes is corroborated in other publicly available scRNA-seq datasets. The analyses of bulk RNA-seq datasets of the melanoma samples identify and validate a signature - ImmuneCells.Sig - enriched with the genes characteristic of the above immune cell subsets to predict response to immunotherapy. ImmuneCells.Sig could represent a valuable tool for clinical decision making in patients receiving immunotherapy.
Collapse
Affiliation(s)
- Donghai Xiong
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yian Wang
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ming You
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
263
|
Yi S, Zhou W. Tumorigenesis-related key genes in adolescents and young adults with HR(+)/HER2(-) breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2701-2709. [PMID: 33165441 PMCID: PMC7642711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Breast cancer (BC) in adolescents and young adults (AYAs) accounts for 5.6% of BC in all women. BC in this population is often characterized as aggressive. Two-thirds of BC in AYAs belong to the hormone-receptor positive (HR(+))/human epidermal growth factor receptor 2 negative (HER2(-)) subtype. However, the underlying pathogenesis of this subtype has not been fully elucidated. To study HR(+)/HER2(-) BC in AYAs, we downloaded the available RNA-seq data from The Cancer Genome Atlas (TCGA) database and then performed differential expression gene screening and constructed a protein-protein interaction (PPI) network, identified the key genes, and did gene set enrichment analysis (GSEA). Based on the analyses, 32.26% of patients were in stage III. Additionally, we identified 1671 differentially expressed genes (DEGs) and 35 key genes. In addition, GSEA showed that ether lipid metabolism and complement and coagulation cascades were significantly enriched in the GNAI1 high expression phenotype. The key genes CXCL2, CXCL5, CXCL3, GPR37L1, NPY2R, OXGR1, NPW, CCL21, GNAI1, SAA1, GRM4, HCAR2, CX3CL1, GRM8, CCL28, SSTR1, PENK, P2RY12, NMUR1, NMU, ADCY5, TAS1R1, OXER1, GNG13, CCL16, CCR8, NPY5R, CXCL11, CXCL10, CXCL9, CXCL1, CXCL6, CCR4, and ANXA1 may be molecular markers of tumorigenesis of HR(+)/HER2(-) BC in AYAs. In addition, ether lipid metabolism and complement and coagulation cascades may be key pathways for GNAI1 regulation in HR(+)/HER2(-) BC in AYAs.
Collapse
Affiliation(s)
- Shun Yi
- Department of Breast Surgery, The Affiliated Zhuzhou Hospital, Xiangya Medical College CSU Zhuzhou, Hunan, PR China
| | - Wei Zhou
- Department of Breast Surgery, The Affiliated Zhuzhou Hospital, Xiangya Medical College CSU Zhuzhou, Hunan, PR China
| |
Collapse
|
264
|
Jin W, Fang Q, Jiang D, Li T, Wei B, Sun J, Zhang W, Zhang Z, Zhang F, Linhardt RJ, Wang H, Zhong W. Structural characteristics and anti-complement activities of polysaccharides from Sargassum hemiphyllum. Glycoconj J 2020; 37:553-563. [PMID: 32617856 DOI: 10.1007/s10719-020-09928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022]
Abstract
Three polysaccharides (SH-1, SH-2 and SH-3) were purified from a brown macroalgea, Sargassum hemiphyllum. The autohydrolysis products from each polysaccharide were separated to three fractions (S fractions as oligomers, L fractions as low molecular weight polysaccharides and H fractions as high molecular weight polysaccharides). Mass spectroscopy of S fractions (SH-1-S, SH-2-S and SH-3-S) showed that these three polymers all contained short stretches of sulfated fucose. The structures of L fractions (SH-1-L, SH-2-L and SH-3-L) were determined by nuclear magnetic resonance (NMR). SH-1-L was composed of two units, unit A (sulfated galactofucan) and unit B (sulfated xylo-glucuronomannan). Unit A contained a backbone of (1, 6-linked β-D-Gal) n1, (1, 3-linked 4-sulfated α-L-Fuc) n2, (1, 3-linked 2, 4-di-sulfated α-L-Fuc) n3, (1, 4-linked α-L-Fuc) n4 and (1, 3-linked β-D-Gal) n5, accompanied by some branches, such as sulfated fuco-oligomers, sulfated galacto-oligomers or sulfated galacto-fuco-oligomers. And unit B consisted of alternating 1, 4-linked β-D-glucuronic acid (GlcA) and 1, 2-linked α-D-mannose (Man) with the Man residues randomly sulfated at C6 or branched with xylose (Xyl) at C3. Both SH-2-L and SH-3-L were composed of unit A and their difference was attributed to the ratio of n1: n2: n3: n4: n5. Based on monosaccharide analysis, we hypothesize that both SH-1-H and SH-2-H contained unit A and unit B while SH-3-H had a structure similar to SH-3-L. An assessment of anti-complement activities showed that the sulfated galactofucan had higher activities than sulfated galacto-fuco-xylo-glucuronomannan. These results suggest that the sulfated galactofucans might be a good candidate for anti-complement drugs.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Tongtong Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 02881, Kingston, RI, USA
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 20878, Bethesda, MD, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, 313000, Huzhou, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China.
| |
Collapse
|
265
|
Fletcher-Sandersjöö A, Bellander BM. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res 2020; 194:36-41. [PMID: 32569879 PMCID: PMC7301826 DOI: 10.1016/j.thromres.2020.06.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for the current COVID-19 pandemic resulting in an escalating number of cases and fatalities worldwide. Preliminary evidence from these patients, as well as past coronavirus epidemics, indicates that those infected suffer from disproportionate complement activation as well as excessive coagulation, leading to thrombotic complications and poor outcome. In non-coronavirus cohorts, evidence has accumulated of an interaction between the complement and coagulation systems, with one amplifying activation of the other. A pressing question is therefore if COVID-19 associated thrombosis could be caused by overactivation of the complement cascade? In this review, we summarize the literature on thrombotic complications in COVID-19, complement activation in coronavirus infections, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system is able to activate the coagulation cascade and platelets, inhibit fibrinolysis and stimulate endothelial cells. We also describe how these interactions see clinical relevance in several disorders where overactive complement results in a prothrombotic clinical presentation, and how it could be clinically relevant in COVID-19.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
266
|
Zengin T, Önal-Süzek T. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma. BMC Bioinformatics 2020; 21:368. [PMID: 32998690 PMCID: PMC7526001 DOI: 10.1186/s12859-020-03691-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lung cancer is the leading cause of the largest number of deaths worldwide and lung adenocarcinoma is the most common form of lung cancer. In order to understand the molecular basis of lung adenocarcinoma, integrative analysis have been performed by using genomics, transcriptomics, epigenomics, proteomics and clinical data. Besides, molecular prognostic signatures have been generated for lung adenocarcinoma by using gene expression levels in tumor samples. However, we need signatures including different types of molecular data, even cohort or patient-based biomarkers which are the candidates of molecular targeting. Results We built an R pipeline to carry out an integrated meta-analysis of the genomic alterations including single-nucleotide variations and the copy number variations, transcriptomics variations through RNA-seq and clinical data of patients with lung adenocarcinoma in The Cancer Genome Atlas project. We integrated significant genes including single-nucleotide variations or the copy number variations, differentially expressed genes and those in active subnetworks to construct a prognosis signature. Cox proportional hazards model with Lasso penalty and LOOCV was used to identify best gene signature among different gene categories. We determined a 12-gene signature (BCHE, CCNA1, CYP24A1, DEPTOR, MASP2, MGLL, MYO1A, PODXL2, RAPGEF3, SGK2, TNNI2, ZBTB16) for prognostic risk prediction based on overall survival time of the patients with lung adenocarcinoma. The patients in both training and test data were clustered into high-risk and low-risk groups by using risk scores of the patients calculated based on selected gene signature. The overall survival probability of these risk groups was highly significantly different for both training and test datasets. Conclusions This 12-gene signature could predict the prognostic risk of the patients with lung adenocarcinoma in TCGA and they are potential predictors for the survival-based risk clustering of the patients with lung adenocarcinoma. These genes can be used to cluster patients based on molecular nature and the best candidates of drugs for the patient clusters can be proposed. These genes also have a high potential for targeted cancer therapy of patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Talip Zengin
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey.,Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuğba Önal-Süzek
- Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey. .,Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
267
|
Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou GY. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J 2020; 288:1871-1886. [PMID: 32865335 DOI: 10.1111/febs.15541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
The risk factors for prostate cancer include a high-fat diet and obesity, both of which are associated with an altered cell environment including increased inflammation. It has been shown that chronic inflammation due to a high-fat diet or bacterial infection has the potential to accelerate prostate cancer as well as its precursor, prostatic intraepithelial neoplasia (PIN), development. However, the underlying mechanism of how chronic inflammation promotes prostate cancer development, especially PIN, remains unclear. In this study, we showed that more macrophages were present in PIN areas as compared to the normal areas of human prostate. When co-culturing PIN cells with macrophages in 3D, more PIN cells had nuclear localized cyclin D1, indicating that macrophages enhanced PIN cell proliferation. We identified ICAM-1 and CCL2 as chemoattractants expressed by PIN cells to recruit macrophages. Furthermore, we discovered that macrophage-secreted cytokines including C5a, CXCL1, and CCL2 were responsible for increased PIN cell proliferation. These three cytokines activated ERK and JNK signaling in PIN cells through a ligand-receptor interaction. However, only blockade of ERK abolished macrophage cytokines-induced cell proliferation of PIN. Overall, our results provide a mechanistic view on how macrophages activated through chronic inflammation can expedite PIN progression during prostate cancer development. The information from our work can facilitate a comprehensive understanding of prostate cancer development, which is required for improvement of current strategies for prostate cancer therapy.
Collapse
Affiliation(s)
- Mikalah U Thomas
- Department of Biological Sciences, Clark Atlanta University, GA, USA
| | - Justin K Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Tu Dang
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Chicago, IL, USA.,Department of Pathology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Cheryl L Jorcyk
- Department of Biological Science, Boise State University, ID, USA
| | - Geou-Yarh Liou
- Department of Biological Sciences, Clark Atlanta University, GA, USA.,Center for Cancer Research and Therapeutic Development, Clark Atlanta University, GA, USA
| |
Collapse
|
268
|
Glycoproteomic Analysis Reveals Aberrant Expression of Complement C9 and Fibronectin in the Plasma of Patients with Colorectal Cancer. Proteomes 2020; 8:proteomes8030026. [PMID: 32971853 PMCID: PMC7564939 DOI: 10.3390/proteomes8030026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality. Currently used CRC biomarkers provide insufficient sensitivity and specificity; therefore, novel biomarkers are needed to improve the CRC detection. Label-free quantitative proteomics were used to identify and compare glycoproteins, enriched by wheat germ agglutinin, from plasma of CRC patients and age-matched healthy controls. Among 189 identified glycoproteins, the levels of 7 and 15 glycoproteins were significantly altered in the non-metastatic and metastatic CRC groups, respectively. Protein-protein interaction analysis revealed that they were predominantly involved in immune responses, complement pathways, wound healing and coagulation. Of these, the levels of complement C9 (C9) was increased and fibronectin (FN1) was decreased in both CRC states in comparison to those of the healthy controls. Moreover, their levels detected by immunoblotting were validated in another independent cohort and the results were consistent with in the study cohort. Combination of CEA, a commercial CRC biomarker, with C9 and FN1 showed better diagnostic performance. Interestingly, predominant glycoforms associated with acetylneuraminic acid were obviously detected in alpha-2 macroglobulin, haptoglobin, alpha-1-acid glycoprotein 1, and complement C4-A of CRC patient groups. This glycoproteomic approach provides invaluable information of plasma proteome profiles of CRC patients and identification of CRC biomarker candidates.
Collapse
|
269
|
Kavvadas E. Autoantibodies specific for C1q, C3b, β2-glycoprotein 1 and annexins may amplify complement activity and reduce apoptosis-mediated immune suppression. Med Hypotheses 2020; 144:110286. [PMID: 33254588 DOI: 10.1016/j.mehy.2020.110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Neoplastic cells hijack cell death pathways to evade the immune response. Phosphatidylserine, a marker of apoptotic cells, and its highly conserved bridging proteins, annexins and β2-glycoprotein I, facilitate the efficient removal of apoptotic and necrotic cells via tumor-associated phagocytes in a process called efferocytosis. Efferocytosis results in the clearance of dead and dying cells and local immune suppression. Neoplastic cells also have an increased capacity to activate complement. Complement may facilitate the silent removal of tumor cells and has a dual role in promoting and inhibiting tumor growth. Here I hypothesize that immune response-generating IgG autoantibodies that recognize opsonizing fragments C1q, C3b, and phosphatidylserine-binding proteins (annexins, β2-glycoprotein I) may reduce tumor growth. I propose that these autoantibodies induce a pro-inflammatory, cytotoxic tumor microenvironment. Further, I predict that autoantibodies can drive neoplastic cell phagocytosis in an Fc receptor-dependent manner and recruit additional complement, resulting in immune-stimulatory effects. Excessive complement activation and antibody-dependent cytotoxicity may stimulate anti-tumor responses, including damage to tumor vasculature. Here I provide insights that may aid the development of more effective therapeutic modalities to control cancer. Such therapeutic approaches should kill neoplastic cells and target their interaction with host immune cells. Thereby the pro-tumorigenic effect of dead cancer cells could be limited while inducing the anti-tumor potential of tumor-associated phagocytes.
Collapse
Affiliation(s)
- Efstathios Kavvadas
- 417 General Military Hospital NIMTS - Pathology Department, Monis Petraki 12, Postal Code: 11521, Athens, Greece.
| |
Collapse
|
270
|
Definition and Independent Validation of a Proteomic-Classifier in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092519. [PMID: 32899818 PMCID: PMC7564837 DOI: 10.3390/cancers12092519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The heterogeneity of epithelial ovarian cancer and its associated molecular biological characteristics are continuously integrated in the development of therapy guidelines. In a next step, future therapy recommendations might also be able to focus on the patient’s systemic status, not only the tumor’s molecular pattern. Therefore, new methods to identify and validate host-related biomarkers need to be established. Using mass spectrometry, we developed and independently validated a blood-based proteomic classifier, stratifying epithelial ovarian cancer patients into good and poor survival groups. We also determined an age dependence of the prognostic performance of this classifier and its association with important biological processes. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response and could therefore be integrated into future processes of therapy planning. Abstract Mass-spectrometry-based analyses have identified a variety of candidate protein biomarkers that might be crucial for epithelial ovarian cancer (EOC) development and therapy response. Comprehensive validation studies of the biological and clinical implications of proteomics are needed to advance them toward clinical use. Using the Deep MALDI method of mass spectrometry, we developed and independently validated (development cohort: n = 199, validation cohort: n = 135) a blood-based proteomic classifier, stratifying EOC patients into good and poor survival groups. We also determined an age dependency of the prognostic performance of this classifier, and our protein set enrichment analysis showed that the good and poor proteomic phenotypes were associated with, respectively, lower and higher levels of complement activation, inflammatory response, and acute phase reactants. This work highlights that, just like molecular markers of the tumor itself, the systemic condition of a patient (partly reflected in proteomic patterns) also influences survival and therapy response in a subset of ovarian cancer patients and could therefore be integrated into future processes of therapy planning.
Collapse
|
271
|
Sathe G, George IA, Deb B, Jain AP, Patel K, Nayak B, Karmakar S, Seth A, Pandey A, Kumar P. Urinary glycoproteomic profiling of non-muscle invasive and muscle invasive bladder carcinoma patients reveals distinct N-glycosylation pattern of CD44, MGAM, and GINM1. Oncotarget 2020; 11:3244-3255. [PMID: 32922663 PMCID: PMC7456616 DOI: 10.18632/oncotarget.27696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Clinical management of bladder carcinomas (BC) remains a major challenge and demands comprehensive multi-omics analysis for better stratification of the disease. Identification of patients on risk requires identification of signatures predicting prognosis risk of the patients. Understanding the molecular alterations associated with the disease onset and progression could improve the routinely used diagnostic and therapy procedures. In this study, we investigated the aberrant changes in N-glycosylation pattern of proteins associated with tumorigenesis as well as disease progression in bladder cancer. We integrated and compared global N-glycoproteomic and proteomic profile of urine samples from bladder cancer patients at different clinicopathological stages (non-muscle invasive and muscle-invasive patients [n = 5 and 4 in each cohort]) with healthy subjects (n = 5) using SPEG method. We identified 635 N-glycopeptides corresponding to 381 proteins and 543 N-glycopeptides corresponding to 326 proteins in NMIBC and MIBC patients respectively. Moreover, we identified altered glycosylation in 41 NMIBC and 21 MIBC proteins without any significant change in protein abundance levels. In concordance with the previously published bladder cancer cell line N-glycoproteomic data, we also observed dysregulated glycosylation in ECM related proteins. Further, we identified distinct N-glycosylation pattern of CD44, MGAM, and GINM1 between NMIBC and MIBC patients, which may be associated with disease progression in bladder cancer. These aberrant protein glycosylation events would provide a novel approach for bladder carcinoma diagnosis and further define novel mechanisms of tumor initiation and progression.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,These authors contributed equally to this work and share the first authorship
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the first authorship
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the second authorship
| | - Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,These authors contributed equally to this work and share the second authorship
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
272
|
Marker Identification of the Grade of Dysplasia of Intraductal Papillary Mucinous Neoplasm in Pancreatic Cyst Fluid by Quantitative Proteomic Profiling. Cancers (Basel) 2020; 12:cancers12092383. [PMID: 32842508 PMCID: PMC7565268 DOI: 10.3390/cancers12092383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
The incidence of patients with pancreatic cystic lesions, particularly intraductal papillary mucinous neoplasm (IPMN), is increasing. Current guidelines, which primarily consider radiological features and laboratory data, have had limited success in predicting malignant IPMN. The lack of a definitive diagnostic method has led to low-risk IPMN patients undergoing unnecessary surgeries. To address this issue, we discovered IPMN marker candidates by analyzing pancreatic cystic fluid by mass spectrometry. A total of 30 cyst fluid samples, comprising IPMN dysplasia and other cystic lesions, were evaluated. Mucus was removed by brief sonication, and the resulting supernatant was subjected to filter-aided sample preparation and high-pH peptide fractionation. Subsequently, the samples were analyzed by LC-MS/MS. Using several bioinformatics tools, such as gene ontology and ingenuity pathway analysis, we detailed IPMNs at the molecular level. Among the 5834 proteins identified in our dataset, 364 proteins were differentially expressed between IPMN dysplasia. The 19 final candidates consistently increased or decreased with greater IPMN malignancy. CD55 was validated in an independent cohort by ELISA, Western blot, and IHC, and the results were consistent with the MS data. In summary, we have determined the characteristics of pancreatic cyst fluid proteins and discovered potential biomarkers for IPMN dysplasia.
Collapse
|
273
|
Bou-Dargham MJ, Sang QXA. Secretome analysis reveals upregulated granzyme B in human androgen-repressed prostate cancer cells with mesenchymal and invasive phenotype. PLoS One 2020; 15:e0237222. [PMID: 32764784 PMCID: PMC7413421 DOI: 10.1371/journal.pone.0237222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical early step in cancer metastasis and a complex process that involves multiple factors. In this study, we used proteomics approaches to investigate the secreted proteins (secretome) of paired human androgen-repressed prostate cancer (ARCaP) cell lines, representing the epithelial (ARCaP-E) and mesenchymal (ARCaP-M) phenotypes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed high levels of proteins involved in bone remodeling and extracellular matrix degradation in the ARCaP-M cells, consistent with the bone metastasis phenotype. Furthermore, LC-MS/MS showed a significantly higher level of the serine protease granzyme B (GZMB) in ARCaP-M conditioned media (CM) compared to that of ARCaP-E. Using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect mRNA and Western blot to detect protein expression, we further demonstrated that the GZMB gene was expressed by ARCaP-M and the protein was secreted extracellularly. ARCaP-M cells with GZMB gene knockdown using small interfering RNA (siRNA) have markedly reduced invasiveness as demonstrated by the Matrigel invasion assay in comparison with the scrambled siRNA negative control. This study reports that GZMB secretion by mesenchymal-like androgen-repressed human prostate cancer cells promotes invasion, suggesting a possible extracellular role for GZMB in addition to its classic role in immune cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Mayassa J. Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
274
|
Ji Y, Yin Y, Zhang W. Integrated Bioinformatic Analysis Identifies Networks and Promising Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Genomics 2020; 2020:2061024. [PMID: 32775402 PMCID: PMC7407030 DOI: 10.1155/2020/2061024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) has long been recognized as a dominant hazard factor for hepatocellular carcinoma (HCC) and accounts for at least half of HCC instances globally. However, the underlying molecular mechanism of HBV-linked HCC has not been completely elucidated. Here, three microarray datasets, totally containing 170 tumoral samples and 181 adjacent normal tissues from the liver of patients suffering from HBV-related HCC assembled from the Gene Expression Omnibus (GEO) database, were subjected to integrated analysis of differentially expressed genes (DEGs). Subsequently, the analysis of function and pathway enrichment as well as the protein-protein interaction network (PPI) was performed. The ten hub genes screened out from the PPI network were further subjected to expression profile and survival analysis. Overall, 329 DEGs (67 upregulated and 262 downregulated) were identified. Ten DEGs with the highest degree of connectivity included cyclin-dependent kinase 1 (CDK1), cyclin B1 (CCNB1), cyclin B2 (CCNB2), PDZ-binding kinase (PBK), abnormal spindle microtubule assembly (ASPM), nuclear division cycle 80 (NDC80), aurora kinase A (AURKA), targeting protein for xenopus kinesin-like protein 2 (TPX2), kinesin family member 2C (KIF2C), and centromere protein F (CENPF). Kaplan-Meier analysis unveiled that overexpression levels of KIF2C and TPX2 were relevant to both the poor overall survival and relapse-free survival. In summary, the hub genes validated in the present study may provide promising targets for the diagnosis, prognosis, and therapy of HBV-associated HCC. Additionally, our work uncovers various crucial biological components (e.g., extracellular exosome) and signaling pathways that participate in the progression of HCC induced by HBV, serving comprehensive knowledge of the mechanisms regarding HBV-related HCC.
Collapse
Affiliation(s)
- Yun Ji
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
275
|
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, Kishore U. Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma. Front Immunol 2020; 11:1402. [PMID: 32765498 PMCID: PMC7379131 DOI: 10.3389/fimmu.2020.01402] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a poor prognosis, despite surgical resection combined with radio- and chemotherapy. The major clinical obstacles contributing to poor GBM prognosis are late diagnosis, diffuse infiltration, pseudo-palisading necrosis, microvascular proliferation, and resistance to conventional therapy. These challenges are further compounded by extensive inter- and intra-tumor heterogeneity and the dynamic plasticity of GBM cells. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumor microenvironment, which mostly induces tumor aggressiveness and drug resistance. An immunosuppressive tumor microenvironment of GBM provides multiple pathways for tumor immune evasion. Infiltrating immune cells, mostly tumor-associated macrophages, comprise much of the non-neoplastic population in GBM. Further understanding of the immune microenvironment of GBM is essential to make advances in the development of immunotherapeutics. Recently, whole-genome sequencing, epigenomics and transcriptional profiling have significantly helped improve the prognostic and therapeutic outcomes of GBM patients. Here, we discuss recent genomic advances, the role of innate and adaptive immune mechanisms, and the presence of an established immunosuppressive GBM microenvironment that suppresses and/or prevents the anti-tumor host response.
Collapse
Affiliation(s)
- Syreeta DeCordova
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, India
| | - Lukas Klein
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology and Gastroenterology Oncology, University Medical Centre, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
276
|
Ding P, Li L, Li L, Lv X, Zhou D, Wang Q, Chen J, Yang C, Xu E, Dai W, Zhang X, Wang N, Wang Q, Zhang W, Zhang L, Zhou Y, Gu H, Lei Q, Zhou X, Hu W. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation. Theranostics 2020; 10:8619-8632. [PMID: 32754267 PMCID: PMC7392014 DOI: 10.7150/thno.45058] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous factors have been claimed to play important roles in colorectal cancer (CRC) tumorigenesis, including myeloid-derived suppressor cells (MDSCs) and other immune cells, cytokines, and chemokines; however, the precise mechanisms of colorectal tumorigenesis remain elusive, and there is a lack of effective preventive treatments. Here, we investigated the role of complement system, a key regulator of immune surveillance and homeostasis, in colorectal tumorigenesis. Methods: The prototypical CRC model was induced by combined administration of azoxymethane (AOM)/ dextran sulfate sodium (DSS) in Wild-type (WT), C3-, C5-, C5ar1-, and C5ar2-deficient mice. Using flow cytometry, immunohistochemical staining and multiplex bead assay, we profiled the immune cells, cytokines and chemokines. Bone marrow transplantation was employed to determine the contribution of immune cells in colorectal tumorigenesis. Further, we used C5aR1 antagonist PMX205 to investigate the protective role in colorectal tumorigenesis. Results: Complement was extensively activated in inflamed tissues of AOM/DSS-induced murine CRC model, leading to multifaceted consequences. The deficiency of complement C5 or especially C5ar1, but not C3 almost completely prevented CRC tumorigenesis. C5a/C5aR1 signaling recruited MDSCs into the inflamed colorectum to impair CD8+ T cells, and modulated the production of critical cytokines and chemokines, thus initiating CRC. Moreover, the C5aR1 antagonist PMX205 strongly impeded colorectal tumorigenesis. Bone marrow transplantation further revealed that C5aR1 expression by immune cells was critical for colorectal tumorigenesis. Conclusion: Our study identifies C5a/C5aR1 signaling as a vital immunomodulatory program in CRC tumorigenesis and suggests a feasible preventive strategy.
Collapse
|
277
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
278
|
Nedjadi T, Benabdelkamal H, Albarakati N, Masood A, Al-Sayyad A, Alfadda AA, Alanazi IO, Al-Ammari A, Al-Maghrabi J. Circulating proteomic signature for detection of biomarkers in bladder cancer patients. Sci Rep 2020; 10:10999. [PMID: 32620920 PMCID: PMC7335182 DOI: 10.1038/s41598-020-67929-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of clinically-relevant early diagnostic and prognostic protein biomarkers is essential to maximize therapeutic efficacy and prevent cancer progression. The aim of the current study is to determine whether aberrant plasma protein profile can be applied as a surrogate tool for early diagnosis of bladder carcinoma. Plasma samples from patients with low grade non-muscle invasive bladder cancer and healthy controls were analyzed using combined 2D-DIGE and mass-spectrometry to identify differentially expressed proteins. Validation was performed using western blotting analysis in an independent cohort of cancer patients and controls. Fifteen differentially-expressed proteins were identified of which 12 were significantly up-regulated and three were significantly down-regulated in tumors compared to controls. The Ingenuity Pathways Analysis revealed functional connection between the differentially-expressed proteins and immunological disease, inflammatory disease and cancer mediated through chemokine and cytokine signaling pathway and NF-kB transcription factor. Among the three validated proteins, haptoglobin was able to distinguish between patients with low grade bladder cancer and the controls with high sensitivity and specificity (AUC > 0.87). In conclusion, several biomarker proteins were identified in bladder cancer. Haptoglobin is a potential candidate that merit further investigation to validate its usefulness and functional significance as potential biomarkers for early detection of bladder cancer.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, PO Box 9515, Jeddah, 21423, Saudi Arabia.
| | - Hicham Benabdelkamal
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nada Albarakati
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, PO Box 9515, Jeddah, 21423, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Sayyad
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim O Alanazi
- National Center for Biotechnology (NCBT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Adel Al-Ammari
- Department of Urology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Jaudah Al-Maghrabi
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
279
|
Holm M, Saraswat M, Joenväärä S, Seppänen H, Renkonen R, Haglund C. Label-free proteomics reveals serum proteins whose levels differ between pancreatic ductal adenocarcinoma patients with short or long survival. Tumour Biol 2020; 42:1010428320936410. [PMID: 32586207 DOI: 10.1177/1010428320936410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is the most common and aggressive type of pancreatic cancer, with a 5-year survival rate that is less than 10%. New biomarkers to aid in predicting the prognosis of pancreatic ductal adenocarcinoma patients are needed. Previous proteomic studies have to a great extent focused on finding proteins of value for the diagnosis of pancreatic ductal adenocarcinoma. There is a lack of studies that have profiled the serum or plasma proteome in order to discover candidates for new prognostic biomarkers. In this study, we have used ultra-performance liquid chromatography-ultra-definition mass spectrometry to analyze the serum samples of 21 pancreatic ductal adenocarcinoma patients with short or long survival. Statistical analysis discovered 31 proteins whose expression differed significantly between pancreatic ductal adenocarcinoma patients with short or long survival. Pathway analysis discovered multiple canonical pathways enriched in this data set, with several pathways having roles in inflammation and lipid metabolism. The serum proteins identified here, which include complement components and several enzymes, could be of value as candidates for new noninvasive prognostic markers.
Collapse
Affiliation(s)
- Matilda Holm
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
280
|
Weinberger JF, Lo YC, Vargas SO, Cagnina RE. An Unusual Cause of Mosaic Attenuation. Am J Respir Crit Care Med 2020; 202:128-129. [PMID: 32160011 PMCID: PMC7328322 DOI: 10.1164/rccm.201908-1618im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Ying-Chun Lo
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sara O Vargas
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
281
|
Liu Z, Grant CN, Sun L, Miller BA, Spiegelman VS, Wang HG. Expression Patterns of Immune Genes Reveal Heterogeneous Subtypes of High-Risk Neuroblastoma. Cancers (Basel) 2020; 12:cancers12071739. [PMID: 32629858 PMCID: PMC7408437 DOI: 10.3390/cancers12071739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
High risk neuroblastoma (HR-NB) remains difficult to treat, and its overall survival (OS) is still below 50%. Although HR-NB is a heterogeneous disease, HR-NB patients are currently treated in a similar fashion. Through unsupervised biclustering, we further stratified HR-NB patients into two reproducible and clinically distinct subtypes, including an ultra-high risk neuroblastoma (UHR-NB) and high risk neuroblastoma (HR-NB). The UHR-NB subtype consistently had the worst OS in multiple independent cohorts ( P < 0 . 008 ). Out of 283 neuroblastoma-specific immune genes that were used for stratification, 39 of them were differentiated in UHR-NB, including four upregulated and 35 downregulated, as compared to HR-NB. The four UHR-NB upregulated genes (ADAM22, GAL, KLHL13 and TWIST1) were all upregulated in MYCN amplified neuroblastoma in 5 additional cohorts. TWIST1 and ADAM22 were also positively correlated with cancer stage, while GAL was an independent OS predictor in addition to MYCN and age. Furthermore, we identified 26 commonly upregulated and 311 downregulated genes in UHR-NB from all 4723 immune-related genes. While 43 KEGG pathways with molecular functions were enriched in the downregulated immune-related genes, only the P53 signaling pathway was enriched in the upregulated ones, which suggested that UHR-NB was a TP53 related subtype with reduced immune activities.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
- Correspondence:
| | - Christa N. Grant
- Division of Pediatric Surgery, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Lidan Sun
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA;
| | - Barbara A. Miller
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (B.A.M.); (V.S.S.); (H.-G.W)
| |
Collapse
|
282
|
Holm M, Joenväärä S, Saraswat M, Tohmola T, Ristimäki A, Renkonen R, Haglund C. Plasma protein expression differs between colorectal cancer patients depending on primary tumor location. Cancer Med 2020; 9:5221-5234. [PMID: 32452655 PMCID: PMC7367633 DOI: 10.1002/cam4.3178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) includes tumors in the right colon, left colon, and rectum, although they differ significantly from each other in aspects such as prognosis and treatment. Few previous mass spectrometry-based studies have analyzed differences in protein expression depending on the tumor location. In this study, we have used mass spectrometry-based proteomics to analyze plasma samples from 83 CRC patients to study if differences in plasma protein expression can be seen depending on primary tumor location (right colon, left colon, or rectum). Differences were studied between the groups both regardless of and according to tumor stage (II or III). Large differences in plasma protein expression were seen, and we found that plasma samples from patients with rectal cancer separated from samples from patients with colon cancer when analyzed by principal component analysis and hierarchical clustering. Samples from patients with cancer in the right and left colon also tended to separate from each other. Pathway analysis discovered canonical pathways involved in lipid metabolism and inflammation to be enriched. This study will help to further define CRC as distinct entities depending on tumor location, as shown by the widespread differences in plasma protein profile and dysregulated pathways.
Collapse
Affiliation(s)
- Matilda Holm
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
283
|
Inhibition of human lung adenocarcinoma growth and metastasis by JC polyomavirus-like particles packaged with an SP-B promoter-driven CD59-specific shRNA. Clin Sci (Lond) 2020; 133:2159-2169. [PMID: 31693732 DOI: 10.1042/cs20190395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Lung cancer ranks first in both incidence and mortality and is a major health concern worldwide. Upon recognition of specific antigens on tumor cells, complement-dependent cytotoxicity (CDC) is activated, arresting cell growth or inducing apoptosis. However, by overexpressing CD59, a membrane complement regulatory protein (mCRP), lung cancer cells develop resistance to CDC. We previously showed that virus-like particles (VLPs) of human JC polyomavirus (JCPyV) could be used as a gene therapy vector to carry a suicide gene expression plasmid with a lung-specific promoter (SP-B (surfactant protein B)) for lung adenocarcinomas. Herein, we designed a CD59-specific short hairpin RNA (shRNA) expression plasmid driven by SP-B (pSPB-shCD59) to effectively and specifically inhibit CD59 overexpression in lung cancer cells. Treatment of lung cancer cells in vitro with JCPyV VLPs containing pSPB-shCD59 (pSPB-shCD59/VLPs) induces CDC and death of cancer cells. Mice that were subcutaneously injected with human lung cancer cells showed an 87% inhibition in tumor growth after tail vein injection of pSPB-shCD59/VLPs. Moreover, in a mouse model of lung cancer metastasis, a reduction in the lung weight by 39%, compared with the control group, was observed in mice treated with pSPB-shCD59/VLPs after tail vein injection of human lung cancer cells. Furthermore, tissue sectioning showed that the number and size of tumors produced was significantly reduced in the lungs of mice in the treatment group than those of the untreated group, indicating inhibition of metastasis by pSPB-shCD59/VLPs. Together, these results demonstrate the potential of pSPB-shCD59/VLPs as a therapeutic agent for CD59 overexpressed lung cancer.
Collapse
|
284
|
Zhang J, Chen M, Zhao Y, Xiong H, Sneh T, Fan Y, Wang J, Zhou X, Gong C. Complement and coagulation cascades pathway correlates with chemosensitivity and overall survival in patients with soft tissue sarcoma. Eur J Pharmacol 2020; 879:173121. [PMID: 32339514 DOI: 10.1016/j.ejphar.2020.173121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Chemotherapy is an indispensable method in treatment of Soft tissue sarcomas (STS), but variability in sensitivity as a result of tumor heterogeneity is a key factor in determining patient outcome. Several studies have investigated the phenomenon of chemotherapy resistance in STS, while its precise complex mechanism is still unknown. This study aims to identify potential biomarkers for predicting the STS chemosensitivity, with the goal of both aiding patient treatment determination in the clinic and providing insight into key parts of the underlying mechanism. Gene expression profiles of 265 patients were obtained from The Cancer Genome Atlas dataset and differentially expressed genes (DEGs) associated with chemosensitivity were identified in groups of varying chemosensitivity, including 177 upregulated and 21 downregulated genes (P < 0.05). Then, DEGs were found to be enriched in complement and coagulation cascades and the osteoclast differentiation pathway. Protein-protein interaction analysis showed 15 genes (52 edges) enriched in the complement and coagulation cascades while 11 genes (28 edges) enriched in the osteoclast differentiation pathway. Notably, all the genes that significantly correlated to disease-free survival (DFS) and overall survival (OS), such as C1QC, C3AR1, C7, CFI and SERPINE1, are enriched in complement and coagulation cascades pathway. The differential expression of these genes was further verified by using the GSE database. Our findings support that C1QC, C3AR1, C7, CFI and SERPINE1 in the complement and coagulation cascade pathway are potential biomarkers for chemotherapy resistance and survival of STS patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne, 3004, Australia
| | - Yuanyuan Zhao
- Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Tal Sneh
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Yang Fan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
285
|
Sinha A, Singh V, Tandon R, Mohan Srivastava L. Dichotomy of complement system: Tumorigenesis or destruction. Immunol Lett 2020; 223:89-96. [PMID: 32333965 DOI: 10.1016/j.imlet.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Complement system proteins, their regulators and endpoint effector complex significantly promote tumor growth by upregulation of oncogenic growth factors, activation of mitogenic signalling pathways and breakage of normal cell cycle. Contrastingly, complement cascades, initiated by anti-tumor therapeutic antibodies, also play a pivotal role in therapy response. This contradictory role of complement system possibly be a very crucial factor for the outcomes of antibody mediated immunotherapies. Herein, we reviewed the twin role of the complement system in cancer and also the genetic variations in complement system genes. Future studies should be focused on the biomarker discovery for the personalised cancer immunotherapies.
Collapse
Affiliation(s)
- Ashima Sinha
- Department of BiochemIstry, Sir Ganga Ram Hospital, New Delhi-110060, India; SAGE Publications India Pvt Ltd., New Delhi-110044, India
| | - Virendra Singh
- Laboratory of Precision Medicine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravi Tandon
- Laboratory of AIDS research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Lalit Mohan Srivastava
- Department of Biochemistry and Lab Medicine, Sir Ganga Ram Kolmet Hospital, New Delhi-110005, India.
| |
Collapse
|
286
|
Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth Coating of Nanoparticles in Drug-Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E787. [PMID: 32325941 PMCID: PMC7221919 DOI: 10.3390/nano10040787] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
Nanoparticles (NPs) have emerged as a powerful drug-delivery tool for cancer therapies to enhance the specificity of drug actions, while reducing the systemic side effects. Nonetheless, NPs interact massively with the surrounding physiological environments including plasma proteins upon administration into the bloodstream. Consequently, they are rapidly cleared from the blood circulation by the mononuclear phagocyte system (MPS) or complement system, resulting in a premature elimination that will cause the drug release at off-target sites. By grafting a stealth coating layer onto the surface of NPs, the blood circulation half-life of nanomaterials can be improved by escaping the recognition and clearance of the immune system. This review focuses on the basic concept underlying the stealth behavior of NPs by polymer coating, whereby the fundamental surface coating characteristics such as molecular weight, surface chain density as well as conformations of polymer chains are of utmost importance for efficient protection of NPs. In addition, the most commonly used stealth polymers such as poly(ethylene glycol) (PEG), poly(2-oxazoline) (POx), and poly(zwitterions) in developing long-circulating NPs for drug delivery are also thoroughly discussed. The biomimetic strategies, including the cell-membrane camouflaging technique and CD47 functionalization for the development of stealth nano-delivery systems, are highlighted in this review as well.
Collapse
Affiliation(s)
- See Yee Fam
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.Y.F.); (C.Y.Y.)
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.Y.F.); (C.Y.Y.)
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Razak Mariatulqabtiah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.Y.F.); (C.Y.Y.)
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
287
|
Su KM, Lin TW, Liu LC, Yang YP, Wang ML, Tsai PH, Wang PH, Yu MH, Chang CM, Chang CC. The Potential Role of Complement System in the Progression of Ovarian Clear Cell Carcinoma Inferred from the Gene Ontology-Based Immunofunctionome Analysis. Int J Mol Sci 2020; 21:E2824. [PMID: 32316695 PMCID: PMC7216156 DOI: 10.3390/ijms21082824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is the second most common epithelial ovarian carcinoma (EOC). It is refractory to chemotherapy with a worse prognosis after the preliminary optimal debulking operation, such that the treatment of OCCC remains a challenge. OCCC is believed to evolve from endometriosis, a chronic immune/inflammation-related disease, so that immunotherapy may be a potential alternative treatment. Here, gene set-based analysis was used to investigate the immunofunctionomes of OCCC in early and advanced stages. Quantified biological functions defined by 5917 Gene Ontology (GO) terms downloaded from the Gene Expression Omnibus (GEO) database were used. DNA microarray gene expression profiles were used to convert 85 OCCCs and 136 normal controls into to the functionome. Relevant offspring were as extracted and the immunofunctionomes were rebuilt at different stages by machine learning. Several dysregulated pathogenic functions were found to coexist in the immunopathogenesis of early and advanced OCCC, wherein the complement-activation-alternative-pathway may be the headmost dysfunctional immunological pathway in duality for carcinogenesis at all OCCC stages. Several immunological genes involved in the complement system had dual influences on patients' survival, and immunohistochemistrical analysis implied the higher expression of C3a receptor (C3aR) and C5a receptor (C5aR) levels in OCCC than in controls.
Collapse
Affiliation(s)
- Kuo-Min Su
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Yi-Pin Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Peng-Hui Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Ming Chang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
288
|
Li X, Larsson P, Ljuslinder I, Öhlund D, Myte R, Löfgren-Burström A, Zingmark C, Ling A, Edin S, Palmqvist R. Ex Vivo Organoid Cultures Reveal the Importance of the Tumor Microenvironment for Maintenance of Colorectal Cancer Stem Cells. Cancers (Basel) 2020; 12:E923. [PMID: 32290033 PMCID: PMC7226030 DOI: 10.3390/cancers12040923] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, with varying clinical presentations and patient prognosis. Different molecular subgroups of CRC should be treated differently and therefore, must be better characterized. Organoid culture has recently been suggested as a good model to reflect the heterogeneous nature of CRC. However, organoid cultures cannot be established from all CRC tumors. The study examines which CRC tumors are more likely to generate organoids and thus benefit from ex vivo organoid drug testing. Long-term organoid cultures from 22 out of 40 CRC tumor specimens were established. It was found that organoid cultures were more difficult to establish from tumors characterized as microsatellite instable (MSI), BRAF-mutated, poorly differentiated and/or of a mucinous type. This suggests that patients with such tumors are less likely to benefit from ex vivo organoid drug testing, but it may also suggest biological difference in tumor growth. RNA sequencing analysis of tumor sections revealed that the in vivo maintenance of these non-organoid-forming tumors depends on factors related to inflammation and pathogen exposure. Furthermore, using TCGA data we could show a trend towards a worse prognosis for patients with organoid-forming tumors, suggesting also clinical differences. Results suggest that organoids are more difficult to establish from tumors characterized as MSI, BRAF-mutated, poorly differentiated and/or of a mucinous type. We further suggest that the maintenance of cell growth of these tumors in vivo may be promoted by immune-related factors and other stromal components within the tumor microenvironment.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Daniel Öhlund
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
- Wallenberg Center for Molecular Medicine, Umeå University, 90185 Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden; (I.L.); (D.O.); (R.M.)
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (P.L.); (A.L.-B.); (C.Z.); (A.L.); (S.E.)
| |
Collapse
|
289
|
Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol 2020; 98:305-317. [PMID: 32142167 DOI: 10.1111/imcb.12324] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023]
Abstract
Antibody-dependent complement activity is associated not only with autoimmune morbidity, but also with antitumor efficacy. In infectious disease, both recombinant monoclonal antibodies and polyclonal antibodies generated in natural adaptive responses can mediate complement activity to protective, therapeutic or disease-enhancing effect. Recent advances have contributed to the structural resolution of molecular complexes involved in antibody-mediated complement activation, defining the avid nature of participating interactions and pointing to how antibody isotype, subclass, hinge flexibility, glycosylation state, amino acid sequence and the contextual nature of the cognate antigen/epitope are all factors that can determine complement activity through impact on antibody multimerization and subsequent recruitment of complement component 1q. Beyond the efficiency of activation, complement activation products interact with various cell types that mediate immune adherence, trafficking, immune education and innate functions. Similarly, depending on the anatomical location and extent of activation, complement can support homeostatic restoration or be leveraged by pathogens or neoplasms to enhance infection or promote tumorigenic microenvironments, respectively. Advances in means to suppress complement activation by intravenous immunoglobulin (IVIG), IVIG mimetics and complement-intervening antibodies represent proven and promising exploratory therapeutic strategies, while antibody engineering has likewise offered frameworks to enhance, eliminate or isolate complement activation to interrogate in vivo mechanisms of action. Such strategies promise to support the optimization of antibody-based drugs that are able to tackle emerging and difficult-to-treat diseases by improving our understanding of the synergistic and antagonistic relationships between antibody mechanisms mediated by Fc receptors, direct binding and the products of complement activation.
Collapse
Affiliation(s)
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
290
|
Kaposi's Sarcoma-Associated Herpesvirus and Host Interaction by the Complement System. Pathogens 2020; 9:pathogens9040260. [PMID: 32260199 PMCID: PMC7237997 DOI: 10.3390/pathogens9040260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates the immune response to allow the virus to establish persistent infection in the host and facilitate the development of KSHV-associated cancer. The complement system has a central role in the defense against pathogens. Hence, KSHV has adopted an evasion strategy for complement attack using the viral protein encoded by KSHV open reading frame 4. However, despite this defense mechanism, the complement system appears to become activated in KSHV-infected cells as well as in the region surrounding Kaposi’s sarcoma tumors. Given that the complement system can affect cell fate as well as the inflammatory microenvironment, complement activation is likely associated with KSHV pathogenesis. A better understanding of the interplay between KSHV and the complement system may, therefore, translate into the development of novel therapeutic interventions for KSHV-associated tumors. In this review, the mechanisms and functions of complement activation in KSHV-infected cells are discussed.
Collapse
|
291
|
Amini P, Nassiri S, Malbon A, Markkanen E. Differential stromal reprogramming in benign and malignant naturally occurring canine mammary tumours identifies disease-modulating stromal components. Sci Rep 2020; 10:5506. [PMID: 32218455 PMCID: PMC7099087 DOI: 10.1038/s41598-020-62354-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
While cancer-associated stroma (CAS) in malignant tumours is well described, stromal changes in benign forms of naturally occurring tumours remain poorly characterized. Spontaneous canine mammary carcinomas (mCA) are viewed as excellent models of human mCA. We have recently reported highly conserved stromal reprogramming between canine and human mCA based on transcriptome analysis of laser-capture-microdissected FFPE specimen. To identify stromal changes between benign and malignant mammary tumours, we have analysed matched normal and adenoma-associated stroma (AAS) from 13 canine mammary adenomas and compared them to previous data from 15 canine mCA. Our analyses reveal distinct stromal reprogramming even in small benign tumours. While similarities between AAS and CAS exist, the stromal signature clearly distinguished adenomas from mCA. The distinction between AAS and CAS is further substantiated by differential enrichment in several hallmark signalling pathways as well as differential abundance in cellular composition. Finally, we identify COL11A1, VIT, CD74, HLA-DRA, STRA6, IGFBP4, PIGR, and TNIP1 as strongly discriminatory stromal genes between adenoma and mCA, and demonstrate their prognostic value for human breast cancer. Given the relevance of canine CAS as a model for the human disease, our approach identifies disease-modulating stromal components with implications for both human and canine breast cancer.
Collapse
Affiliation(s)
- Parisa Amini
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.,The Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
292
|
Wang L, Liang TT. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express 2020; 10:54. [PMID: 32185543 PMCID: PMC7078418 DOI: 10.1186/s13568-020-00990-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023] Open
Abstract
Co-delivery of two different therapeutics (miRNA-1284 and cisplatin (CDDP)) into the cancer cells in a single nanocarrier provides new dimension to the cancer treatment. In this study, we have designed the CD59sp-conjugated miRNA-1284/cisplatin(CDDP)-loaded liposomes for the enhanced therapeutic effect against cervical cancers. Compared with miRNA-1284/CDDP-loaded liposomes (LP-miCDDP), CD59 antibody-conjugated LP-miCDDP (CD/LP-miCDDP) showed a significantly higher cytotoxicity in HeLa cells. Notably, MiR-1284 showed a typical concentration-dependent cell killing effect in the cervical cancer cells owing to the downregulation of HMGB1. Flow cytometer analysis showed that CD/LP-miCDDP resulted in maximum apoptosis effect (~ 60%) compared to CDDP (~ 20%) or miR-1284 (~ 12%) treated cells indicating the superior anticancer effect in the cancer cells. Importantly, CD/LP-miCDDP significantly prolonged the blood circulation of encapsulated drug in rats with AUC(o-t) of CD/LP-miCDDP showed a 6.9 fold higher value than that of free CDDP. Similarly, CD/LP-miCDDP showed an eightfold decrease in the clearance (CL) and 3.6-fold higher t1/2 compared to that of free CDDP. Overall, results demonstrated that targeted and synergistic co-delivery of therapeutic components could be promising in cervical cancer therapy.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacy, Jining No. 1, People's Hospital, Jining, 272011, Shandong, China
| | - Ting-Ting Liang
- Department of Obstetrics and Gynecology, Weifang No. 2 People's Hospital, No. 7 Yuanxiao Street, Kuiwen District, Weifang, 261041, Shandong, China.
| |
Collapse
|
293
|
Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol 2020; 108:339-351. [PMID: 32182389 DOI: 10.1002/jlb.3mir0220-270r] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The complement system is a collection of soluble and membrane-bound proteins that together act as a powerful amplifier of the innate and adaptive immune systems. Although its role in infection is well established, complement is becoming increasingly recognized as a key contributor to sterile inflammation, a chronic inflammatory process often associated with noncommunicable diseases. In this context, damaged tissues release danger signals and trigger complement, which acts on a range of leukocytes to augment and bridge the innate and adaptive immune systems. Given the detrimental effect of chronic inflammation, the complement system is therefore well placed as an anti-inflammatory drug target. In this review, we provide a general outline of the sterile activators, effectors, and targets of the complement system and a series of examples (i.e., hypertension, cancer, allograft transplant rejection, and neuroinflammation) that highlight complement's ability to bridge the 2 arms of the immune system.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
294
|
Riihilä P, Viiklepp K, Nissinen L, Farshchian M, Kallajoki M, Kivisaari A, Meri S, Peltonen J, Peltonen S, Kähäri V. Tumour-cell-derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. Br J Dermatol 2020; 182:658-670. [PMID: 31049937 PMCID: PMC7065064 DOI: 10.1111/bjd.18095] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is increasing worldwide. OBJECTIVES To study the role of the complement classical pathway components C1q, C1r and C1s in the progression of cSCC. METHODS The mRNA levels of C1Q subunits and C1R and C1S in cSCC cell lines, normal human epidermal keratinocytes, cSCC tumours in vivo and normal skin were analysed with quantitative real-time polymerase chain reaction. The production of C1r and C1s was determined with Western blotting. The expression of C1r and C1s in tissue samples in vivo was analysed with immunohistochemistry and further investigated in human cSCC xenografts by knocking down C1r and C1s. RESULTS Significantly elevated C1R and C1S mRNA levels and production of C1r and C1s were detected in cSCC cells, compared with normal human epidermal keratinocytes. The mRNA levels of C1R and C1S were markedly elevated in cSCC tumours in vivo compared with normal skin. Abundant expression of C1r and C1s by tumour cells was detected in invasive sporadic cSCCs and recessive dystrophic epidermolysis bullosa-associated cSCCs, whereas the expression of C1r and C1s was lower in cSCC in situ, actinic keratosis and normal skin. Knockdown of C1r and C1s expression in cSCC cells inhibited activation of extracellular signal-related kinase 1/2 and Akt, promoted apoptosis of cSCC cells and significantly suppressed growth and vascularization of human cSCC xenograft tumours in vivo. CONCLUSIONS These results provide evidence for the role of tumour-cell-derived C1r and C1s in the progression of cSCC and identify them as biomarkers and putative therapeutic targets in cSCC. What's already known about this topic? The incidences of actinic keratosis, cutaneous squamous cell carcinoma (cSCC) in situ and invasive cSCC are increasing globally. Few specific biomarkers for progression of cSCC have been identified, and no biological markers are in clinical use to predict the aggressiveness of actinic keratosis, cSCC in situ and invasive cSCC. What does this study add? Our results provide novel evidence for the role of complement classical pathway components C1r and C1s in the progression of cSCC. What is the translational message? Our results identify complement classical pathway components C1r and C1s as biomarkers and putative therapeutic targets in cSCC.
Collapse
Affiliation(s)
- P. Riihilä
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - K. Viiklepp
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - L. Nissinen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - M. Farshchian
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - M. Kallajoki
- Department of PathologyTurku University HospitalTurkuFinland
| | - A. Kivisaari
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
| | - S. Meri
- Haartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - J. Peltonen
- Department of Anatomy and Cell BiologyUniversity of TurkuTurkuFinland
| | - S. Peltonen
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| | - V.‐M. Kähäri
- Department of DermatologyUniversity of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
- MediCity Research LaboratoryUniversity of TurkuTurkuFinland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West)University of Turku and Turku University HospitalHämeentie 11 TE6FI‐20520TurkuFinland
| |
Collapse
|
295
|
Fletcher-Sandersjöö A, Maegele M, Bellander BM. Does Complement-Mediated Hemostatic Disturbance Occur in Traumatic Brain Injury? A Literature Review and Observational Study Protocol. Int J Mol Sci 2020; 21:E1596. [PMID: 32111078 PMCID: PMC7084711 DOI: 10.3390/ijms21051596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in medical triage and tertiary care, traumatic brain injury (TBI) remains associated with significant morbidity and mortality. Almost two-thirds of patients with severe TBI develop some form of hemostatic disturbance, which contributes to poor outcome. In addition, the complement system, which is abundant in the healthy brain, undergoes significant intra- and extracranial amplification following TBI. Previously considered to be structurally similar but separate systems, evidence of an interaction between the complement and coagulation systems in non-TBI cohorts has accumulated, with the activation of one system amplifying the activation of the other, independent of their established pathways. However, it is not known whether this interaction exists in TBI. In this review we summarize the available literature on complement activation following TBI, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system interacts with the coagulation cascade by activating the intrinsic coagulation pathway and by bypassing the initial cascade and directly producing thrombin as well. This crosstalk also effects platelets, where evidence points to a relationship with the complement system on multiple levels, with complement anaphylatoxins being able to induce disproportionate platelet activation and adhesion. The complement system also stimulates thrombosis by inhibiting fibrinolysis and stimulating endothelial cells to release prothrombotic microparticles. These interactions see clinical relevance in several disorders where a deficiency in complement regulation seems to result in a prothrombotic clinical presentation. Finally, based on these observations, we present the outline of an observational cohort study that is currently under preparation and aimed at assessing how complement influences coagulation in patients with isolated TBI.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marc Maegele
- Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke, 58455 Cologne, Germany;
- Institute for Research in Operative Medicine, University Witten/Herdecke, 58455 Cologne, Germany
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
296
|
d'Avanzo N, Celia C, Barone A, Carafa M, Di Marzio L, Santos HA, Fresta M. Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicola d'Avanzo
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Christian Celia
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Antonella Barone
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Maria Carafa
- Department of Drug Chemistry and TechnologyUniversity of Rome “Sapienza” 00185 Rome Italy
| | - Luisa Di Marzio
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; and Helsinki Institute of Life Science (HiLIFE)University of Helsinki FI‐00014 Helsinki Finland
| | - Massimo Fresta
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| |
Collapse
|
297
|
The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients. Cancer Immunol Immunother 2020; 69:703-716. [DOI: 10.1007/s00262-020-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 01/25/2023]
|
298
|
Loveridge CJ, Slater S, Campbell KJ, Nam NA, Knight J, Ahmad I, Hedley A, Lilla S, Repiscak P, Patel R, Salji M, Fleming J, Mitchell L, Nixon C, Strathdee D, Neilson M, Ntala C, Bryson S, Zanivan S, Edwards J, Robson CN, Goodyear CS, Blyth K, Leung HY. BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene 2020; 39:1797-1806. [PMID: 31740786 PMCID: PMC7033044 DOI: 10.1038/s41388-019-1106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023]
Abstract
BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (PtenΔ/Δ BRF1Tg) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In PtenΔ/Δ BRF1Tg tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sarah Slater
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Noor A Nam
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - John Knight
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sergio Lilla
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Janis Fleming
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Chara Ntala
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
299
|
Abdel-Latif M, Saidan S, Morsy BM. Coenzyme Q10 attenuates rat hepatocarcinogenesis via the reduction of CD59 expression and phospholipase D activity. Cell Biochem Funct 2020; 38:490-499. [PMID: 31989689 DOI: 10.1002/cbf.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022]
Abstract
The current study aimed to test the profile of serum lipids, phospholipase D (PLD) activity, and CD59 expression pattern in rat hepatocellular carcinoma (HCC) after therapeutic treatment with Coenzyme Q10 (CoQ10). Three rat groups were allocated as normal control, untreated HCC, and treated HCC (HCC + CoQ10). The levels of serum α-fetoprotein (AFP) and tumour necrosis factor (TNF)-α were assessed using enzyme-linked immunosorbent assay (ELISA), while proliferating cell nuclear antigen (PCNA) was detected using immunohistochemistry (IHC). Serum lipids, classical (CH50), and alternative (APH50) pathways of complement activation, the liver cell HMG-CoA reductase (HMGCR), and PLD activities were assayed colorimetrically. The protein expression of CD59, scavenger receptor class B type 1 (SRB1), B cell lymphoma-2 (Bcl2), and cleaved Caspase-3 (Casp-3) were detected using western blotting, while the level of serum CD59 (sCD59) was assessed using dot-blot. CoQ10 reduced the cell proliferation, histological alterations, and the levels of AFP and TNF-α but increased lipids, CH50, and sCD59 in serum. In the liver cell, CoQ10 decreased and increased PLD and HMGCR enzyme activities, respectively. In addition, reduction of liver CD59, Bcl2, and SRB1 vs increased cleaved Casp-3 expressions was observed. Statistical correlation indicated an inverse relationship between CH50 and each of CD59 expression and PLD activity after treatment with CoQ10. In conclusion, CoQ10 could protect against rat HCC through increased lipids and the reduction of CD59 expression and PLD activity. SIGNIFICANCE OF THE STUDY: To our knowledge, this study is the first to describe the attenuating effect of antitumour natural product like Coenzyme Q10 (CoQ10) via the reduction of CD59 expression and phospholipase D (PLD) activity. This illustrates the important role of CD59 and PLD in relation to lipids in cancer prevention.
Collapse
Affiliation(s)
- Mahmoud Abdel-Latif
- Immunity Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Suzan Saidan
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant M Morsy
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
300
|
Wang J, Zhang C, He W, Gou X. Effect of m 6A RNA Methylation Regulators on Malignant Progression and Prognosis in Renal Clear Cell Carcinoma. Front Oncol 2020; 10:3. [PMID: 32038982 PMCID: PMC6992564 DOI: 10.3389/fonc.2020.00003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives: This study aims to explore the roles of 13 m6A RNA methylation regulators in clear cell renal cell carcinoma (ccRCC), and identify a risk signature and prognostic values of m6A RNA methylation regulators in ccRCC. Materials and Methods: RNA sequence data of ccRCC was obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed of 13 m6A RNA methylation regulators in ccRCC stratified by different clinicopathological characteristics were unveiled using "limma" package in R version 3.6.0. Cox regression and LASSO analyses were conducted to identify the powerful independent prognostic factors in ccRCC associated with overall survival (OS). Protein-protein interaction (PPI) network and correlation analyses of the 13 m6A RNA methylation regulators were performed using "STRING" and R package, respectively. Principal component analysis (PCA) was also done using R. In addition, gene ontology (GO), GSEA and Kyoto Encyclopedia of Genes and Genomes pathways were used to functionally annotate the differentially expressed genes in different subgroups. Results: Most of the 13 m6A RNA methylation regulators are differentially expressed in ccRCC tissue samples stratified by different clinicopathological characteristics in 537 patients. Next, a risk signature for predicting prognosis of ccRCC patients, was established based on two powerful independent prognostic m6A RNA methylation regulators (METTL14 and METTL3). Then, two subgroups (cluster1 and 2) were identified by consensus clustering to the two powerful independent factors and the cluster1 had a poorer prognosis than cluster2. Furthermore, the genes in cluster1 were significantly enriched in cancer-related pathways, biological process, and hallmarks, including "cell adhesion molecules (CAMs)," "leukocyte migration," "Wnt/β-catenin signaling," and so on. Conclusion: M6A RNA methylation regulators play important roles in the initiation and progression of ccRCC and provide a novel sight to understand m6A RNA modification in ccRCC.
Collapse
Affiliation(s)
- Jiawu Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengyao Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|