251
|
Physical exertion exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2019; 116:3508-3517. [PMID: 30755520 DOI: 10.1073/pnas.1811379116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. It remains unresolved whether increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle's disrupted contractile machinery. This knowledge has important implications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here, we report that dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g., mitochondrial, and contractile machinery damage) and can be mitigated by reducing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivated dys-1 animals in environments requiring high intensity or high frequency of muscle exertion during locomotion. We find that several muscular parameters (e.g., size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of effort duration. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insight into the pathology of the disease as well as the initial assessment of potential treatment strategies.
Collapse
|
252
|
Gordish-Dressman H, Willmann R, Dalle Pazze L, Kreibich A, van Putten M, Heydemann A, Bogdanik L, Lutz C, Davies K, Demonbreun AR, Duan D, Elsey D, Fukada SI, Girgenrath M, Patrick Gonzalez J, Grounds MD, Nichols A, Partridge T, Passini M, Sanarica F, Schnell FJ, Wells DJ, Yokota T, Young CS, Zhong Z, Spurney C, Spencer M, De Luca A, Nagaraju K, Aartsma-Rus A. "Of Mice and Measures": A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic. J Neuromuscul Dis 2019; 5:407-417. [PMID: 30198876 PMCID: PMC6218134 DOI: 10.3233/jnd-180324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new line of dystrophic mdx mice on the DBA/2J (D2) background has emerged as a candidate to study the efficacy of therapeutic approaches for Duchenne muscular dystrophy (DMD). These mice harbor genetic polymorphisms that appear to increase the severity of the dystropathology, with disease modifiers that also occur in DMD patients, making them attractive for efficacy studies and drug development. This workshop aimed at collecting and consolidating available data on the pathological features and the natural history of these new D2/mdx mice, for comparison with classic mdx mice and controls, and to identify gaps in information and their potential value. The overall aim is to establish guidance on how to best use the D2/mdx mouse model in preclinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, the Netherlands
| | - Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Kay Davies
- Department of Physiology, University of Oxford, Anatomy and Genetics, Oxford, UK
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, Department of Neurology, Department of Biomedical Sciences and Department of Bioengineering, University of Missouri, Columbia, MO, USA
| | - David Elsey
- Summit Therapeutics, Abingdon, Oxfordshire, UK
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | - Miranda D Grounds
- School of Human Science, the University of Western Australia, Perth, Australia
| | | | | | | | - Francesca Sanarica
- Department of Pharmacy and Drug Sciences, Unit of Pharmacology, University of Bari "Aldo Moro", Italy
| | | | - Dominic J Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - Courtney S Young
- Department of Neurology, Molecular Biology Institute, Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, CA, USA
| | | | | | - Melissa Spencer
- Department of Neurology, Molecular Biology Institute, Center for Duchenne Muscular Dystrophy at UCLA, University of California, Los Angeles, CA, USA
| | - Annamaria De Luca
- Department of Pharmacy and Drug Sciences, Unit of Pharmacology, University of Bari "Aldo Moro", Italy
| | - Kanneboyina Nagaraju
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | | |
Collapse
|
253
|
Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2019; 14:e0211384. [PMID: 30699165 PMCID: PMC6353192 DOI: 10.1371/journal.pone.0211384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
The mdx mouse is the most widely-used animal model of the human disease Duchenne muscular dystrophy, and quantitative PCR analysis of gene expression in the muscles of this animal plays a key role in the study of pathogenesis and disease progression and in evaluation of potential therapeutic interventions. Normalization to appropriate stably-expressed reference genes is essential for accurate quantitative measurement, but determination of such genes is challenging: healthy and dystrophic muscles present very different transcriptional environments, further altering with disease progression and muscle use, raising the possibility that no single gene or combination of genes may be stable under all experimental comparative scenarios. Despite the pedigree of this animal model, this problem remains unaddressed. The aim of this work was therefore to comprehensively assess reference gene suitability in the muscles of healthy and dystrophic mice, identifying reference genes appropriate for specific experimental comparisons, and determining whether an essentially universally-applicable set of genes exists. Using a large sample collection comprising multiple muscles (including the tibialis anterior, diaphragm and heart muscles) taken from healthy and mdx mice at three disease-relevant ages, and a panel of sixteen candidate reference genes (FBXO38, FBXW2, MON2, ZFP91, HTATSF1, GAPDH, ACTB, 18S, CDC40, SDHA, RPL13a, CSNK2A2, AP3D1, PAK1IP1, B2M and HPRT1), we used the geNorm, BestKeeper and Normfinder algorithms to identify genes that were stable under multiple possible comparative scenarios. We reveal that no single gene is stable under all conditions, but a normalization factor derived from multiple genes (RPL13a, CSNK2A2, AP3D1 and the widely-used ACTB) appears suitable for normalizing gene expression in both healthy and dystrophic mouse muscle regardless of muscle type or animal age. We further show that other popular reference genes, including GAPDH, are markedly disease- or muscle-type correlated. This study demonstrates the importance of empirical reference gene identification, and should serve as a valuable resource for investigators wishing to study gene expression in mdx mice.
Collapse
|
254
|
Meyers TA, Heitzman JA, Krebsbach AM, Aufdembrink LM, Hughes R, Bartolomucci A, Townsend D. Acute AT 1R blockade prevents isoproterenol-induced injury in mdx hearts. J Mol Cell Cardiol 2019; 128:51-61. [PMID: 30664850 DOI: 10.1016/j.yjmcc.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/31/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked disease characterized by skeletal muscle degeneration and a significant cardiomyopathy secondary to cardiomyocyte damage and myocardial loss. The molecular basis of DMD lies in the absence of the protein dystrophin, which plays critical roles in mechanical membrane integrity and protein localization at the sarcolemma. A popular mouse model of DMD is the mdx mouse, which lacks dystrophin and displays mild cardiac and skeletal pathology that can be exacerbated to advance the disease state. In clinical and pre-clinical studies of DMD, angiotensin signaling pathways have emerged as therapeutic targets due to their adverse influence on muscle remodeling and oxidative stress. Here we aim to establish a physiologically relevant cardiac injury model in the mdx mouse, and determine whether acute blockade of the angiotensin II type 1 receptor (AT1R) may be utilized for prevention of dystrophic injury. METHODS AND RESULTS A single IP injection of isoproterenol (Iso, 10 mg/kg) was used to induce cardiac stress and injury in mdx and wild type (C57Bl/10) mice. Mice were euthanized 8 h, 30 h, 1 week, or 1 month following the injection, and hearts were harvested for injury evaluation. At 8 and 30 h post-injury, mdx hearts showed 2.2-fold greater serum cTnI content and 3-fold more extensive injury than wild type hearts. Analysis of hearts 1 week and 1 month after injury revealed significantly higher fibrosis in mdx hearts, with a more robust and longer-lasting immune response compared to wild type hearts. In the 30-hour group, losartan treatment initiated 1 h before Iso injection protected dystrophic hearts from cardiac damage, reducing mdx acute injury area by 2.8-fold, without any significant effect on injury in wild type hearts. However, both wild type and dystrophic hearts showed a 2-fold reduction in the magnitude of the macrophage response to injury 30 h after Iso with losartan. CONCLUSIONS This work demonstrates that acute blockade of AT1R has the potential for robust injury prevention in a model of Iso-induced dystrophic heart injury. In addition to selectively limiting dystrophic cardiac damage, blocking AT1R may serve to limit the inflammatory nature of the immune response to injury in all hearts. Our findings strongly suggest that earlier adoption of angiotensin receptor blockers in DMD patients could limit myocardial damage and subsequent cardiomyopathy.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Cardiomyopathies/drug therapy
- Cardiomyopathies/genetics
- Cardiomyopathies/pathology
- Dystrophin/genetics
- Heart/drug effects
- Heart/physiopathology
- Humans
- Isoproterenol/pharmacology
- Losartan/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Receptor, Angiotensin, Type 1/genetics
- Sarcolemma/metabolism
- Sarcolemma/pathology
Collapse
Affiliation(s)
- Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jackie A Heitzman
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aimee M Krebsbach
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lauren M Aufdembrink
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Robert Hughes
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
255
|
Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 2019; 8:cells8010053. [PMID: 30650618 PMCID: PMC6356905 DOI: 10.3390/cells8010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Aneta Kohutova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lenka Marková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
- 1st department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic.
| | - Tereza Jurakova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miriama Kruta
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Vrbsky
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Renata Gaillyova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Iveta Valášková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Ivan Frák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Giancarlo Forte
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| |
Collapse
|
256
|
Montes M, Sanford BL, Comiskey DF, Chandler DS. RNA Splicing and Disease: Animal Models to Therapies. Trends Genet 2019; 35:68-87. [PMID: 30466729 PMCID: PMC6339821 DOI: 10.1016/j.tig.2018.10.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing of pre-mRNA increases genetic diversity, and recent studies estimate that most human multiexon genes are alternatively spliced. If this process is not highly regulated and accurate, it leads to mis-splicing events, which may result in proteins with altered function. A growing body of work has implicated mis-splicing events in a range of diseases, including cancer, neurodegenerative diseases, and muscular dystrophies. Understanding the mechanisms that cause aberrant splicing events and how this leads to disease is vital for designing effective therapeutic strategies. In this review, we focus on advances in therapies targeting splicing, and highlight the animal models developed to recapitulate disease phenotypes as a model for testing these therapies.
Collapse
Affiliation(s)
- Matías Montes
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brianne L Sanford
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel F Comiskey
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular, and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA; Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
257
|
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis Model Mech 2018; 11:dmm036137. [PMID: 30396907 PMCID: PMC6307913 DOI: 10.1242/dmm.036137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Amelia K Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Christopher J Gaffney
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
- Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG, UK
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
258
|
González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018; 9:1063-1078. [PMID: 30216693 PMCID: PMC6240759 DOI: 10.1002/jcsm.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, β-dystroglycan, and α7β1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.
Collapse
Affiliation(s)
- Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Agustín Sánchez-Temprano
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Regina Pabst-Fernández
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | | | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Jesús P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
259
|
Rice ML, Yang MB, Wong B. Reply. J AAPOS 2018; 22:484-485. [PMID: 30394341 DOI: 10.1016/j.jaapos.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Melissa L Rice
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Michael B Yang
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Brenda Wong
- Department of Pediatrics and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
260
|
Skeletal muscle fibrosis: an overview. Cell Tissue Res 2018; 375:575-588. [DOI: 10.1007/s00441-018-2955-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
|
261
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
262
|
Chick embryonic cells as a source for generating in vitro model of muscle cell dystrophy. In Vitro Cell Dev Biol Anim 2018; 54:756-769. [DOI: 10.1007/s11626-018-0297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
263
|
McAtee BB, Heseltine JC, Guo LT, Willard MD, Shelton GD. Dysphagia and esophageal dysfunction due to dystrophin deficient muscular dystrophy in a male Spanish water spaniel. Vet Q 2018; 38:28-32. [PMID: 29384432 PMCID: PMC6831012 DOI: 10.1080/01652176.2018.1435939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Brigitte B McAtee
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - Johanna C Heseltine
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - Ling T Guo
- b Comparative Neuromuscular Laboratory , University of California San Diego , La Jolla , CA , USA
| | - Michael D Willard
- a Department of Small Animal Clinical Sciences , Texas A&M University , College Station , TX , USA
| | - G Diane Shelton
- b Comparative Neuromuscular Laboratory , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
264
|
Metabolomic Analyses Reveal Extensive Progenitor Cell Deficiencies in a Mouse Model of Duchenne Muscular Dystrophy. Metabolites 2018; 8:metabo8040061. [PMID: 30282911 PMCID: PMC6315702 DOI: 10.3390/metabo8040061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/19/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a musculoskeletal disorder that causes severe morbidity and reduced lifespan. Individuals with DMD have an X-linked mutation that impairs their ability to produce functional dystrophin protein in muscle. No cure exists for this disease and the few therapies that are available do not dramatically delay disease progression. Thus, there is a need to better understand the mechanisms underlying DMD which may ultimately lead to improved treatment options. The muscular dystrophy (MDX) mouse model is frequently used to explore DMD disease traits. Though some studies of metabolism in dystrophic mice exist, few have characterized metabolic profiles of supporting cells in the diseased environment. Using nontargeted metabolomics we characterized metabolic alterations in muscle satellite cells (SCs) and serum of MDX mice. Additionally, live-cell imaging revealed MDX-derived adipose progenitor cell (APC) defects. Finally, metabolomic studies revealed a striking elevation of acylcarnitines in MDX APCs, which we show can inhibit APC proliferation. Together, these studies highlight widespread metabolic alterations in multiple progenitor cell types and serum from MDX mice and implicate dystrophy-associated metabolite imbalances in APCs as a potential contributor to adipose tissue disequilibrium in DMD.
Collapse
|
265
|
Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat Commun 2018; 9:3950. [PMID: 30262909 PMCID: PMC6160489 DOI: 10.1038/s41467-018-06267-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne's muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies.
Collapse
|
266
|
Kodippili K, Hakim CH, Yang HT, Pan X, Yang NN, Laughlin MH, Terjung RL, Duan D. Nitric oxide-dependent attenuation of noradrenaline-induced vasoconstriction is impaired in the canine model of Duchenne muscular dystrophy. J Physiol 2018; 596:5199-5216. [PMID: 30152022 DOI: 10.1113/jp275672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS We developed a novel method to study sympatholysis in dogs. We showed abolishment of sarcolemmal nNOS, and reduction of total nNOS and total eNOS in the canine Duchenne muscular dystrophy (DMD) model. We showed sympatholysis in dogs involving both nNOS-derived NO-dependent and NO-independent mechanisms. We showed that the loss of sarcolemmal nNOS compromised sympatholysis in the canine DMD model. We showed that NO-independent sympatholysis was not affected in the canine DMD model. ABSTRACT The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to the delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma. Sarcolemmal nNOS plays an important role in sympatholysis, a process of attenuating reflex sympathetic vasoconstriction during exercise to ensure blood perfusion in working muscle. Delocalization of nNOS compromises sympatholysis resulting in functional ischaemia and muscle damage in DMD patients and mouse models. Little is known about the contribution of membrane-associated nNOS to blood flow regulation in dystrophin-deficient DMD dogs. We tested the hypothesis that the loss of sarcolemmal nNOS abolishes protective sympatholysis in contracting muscle of affected dogs. Haemodynamic responses to noradrenaline in the brachial artery were evaluated at rest and during contraction in the absence and presence of NOS inhibitors. We found sympatholysis was significantly compromised in DMD dogs, as well as in normal dogs treated with a selective nNOS inhibitor, suggesting that the absence of sarcolemmal nNOS underlies defective sympatholysis in the canine DMD model. Surprisingly, inhibition of all NOS isoforms did not completely abolish sympatholysis in normal dogs, suggesting sympatholysis in canine muscle also involves NO-independent mechanism(s). Our study established a foundation for using the dog model to test therapies aimed at restoring nNOS homeostasis in DMD.
Collapse
Affiliation(s)
- Kasun Kodippili
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Hsiao T Yang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Maurice H Laughlin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ronald L Terjung
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
267
|
Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol 2018; 176:1568-1584. [PMID: 30074247 DOI: 10.1111/bph.14460] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | | | | | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| |
Collapse
|
268
|
Feder D, Ierardi M, Covre AL, Petri G, Carvalho AADS, Fonseca FLA, Bertassoli BM. Evaluation of the gastrointestinal tract in mdx mice: an experimental model of Duchenne muscular dystrophy. APMIS 2018; 126:693-699. [PMID: 30168625 DOI: 10.1111/apm.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
This study describes the functional and morphological alterations in the intestines of mdx mice (n = 4) compared with the intestinal features of C57BL/10 mice (n = 7) at 2 months of age. The whole gut transit time (carmine red) and the upper gut transit time (activated charcoal) were measured, and light microscopy was utilized to view stained sections (H&E and picrosirius red) for histological analysis. No significant difference in mean evacuation time for the whole gut was observed between the two groups, but a significant delay in activated charcoal passage was observed in the mdx mice. Visually, a higher concentration of collagen fibers in the submucosal region was apparent in the mdx mice. The concentration of collagen fibers in the stomach and small intestine suggests a direct relationship with the decrease in motility of the upper gastrointestinal tract in the mdx mice. Further experimental studies should be conducted to develop therapeutic alternatives to collagen inhibition to control these manifestations.
Collapse
Affiliation(s)
- David Feder
- Pharmacology Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Mariana Ierardi
- Pharmacology Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Ana Laura Covre
- Pharmacology Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Giuliana Petri
- Pharmacology Department, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | | | | | |
Collapse
|
269
|
Shahnoor N, Siebers EM, Brown KJ, Lawlor MW. Pathological Issues in Dystrophinopathy in the Age of Genetic Therapies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:105-126. [PMID: 30148687 DOI: 10.1146/annurev-pathmechdis-012418-012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophinopathy is a class of genetic skeletal muscle disease characterized by myofiber degeneration and regeneration due to insufficient levels or functioning of dystrophin. Pathological evaluation for dystrophinopathy includes the identification of dystrophic skeletal muscle pathology and the immunohistochemical evaluation of dystrophin epitopes, but biopsies have become rare in recent years. However, the evaluation of dystrophin expression in the research setting has become critically important due to recent advances in genetic therapies, including exon skipping and gene therapy. Given the number of these therapies under evaluation in patients, it is likely that the traditional methods of evaluating dystrophinopathy will need to evolve in the near future. This review discusses current muscle biopsy diagnostic practices in dystrophinopathy and further focuses on how these practices have evolved in the context of therapeutic interventions for dystrophinopathy.
Collapse
Affiliation(s)
- Nazima Shahnoor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Emily M Siebers
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Kristy J Brown
- Solid Biosciences, Inc., Cambridge, Massachusetts 02139, USA;
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| |
Collapse
|
270
|
Maleiner B, Tomasch J, Heher P, Spadiut O, Rünzler D, Fuchs C. The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Front Physiol 2018; 9:1130. [PMID: 30246791 PMCID: PMC6113794 DOI: 10.3389/fphys.2018.01130] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Classical approaches to engineer skeletal muscle tissue based on current regenerative and surgical procedures still do not meet the desired outcome for patient applications. Besides the evident need to create functional skeletal muscle tissue for the repair of volumetric muscle defects, there is also growing demand for platforms to study muscle-related diseases, such as muscular dystrophies or sarcopenia. Currently, numerous studies exist that have employed a variety of biomaterials, cell types and strategies for maturation of skeletal muscle tissue in 2D and 3D environments. However, researchers are just at the beginning of understanding the impact of different culture settings and their biochemical (growth factors and chemical changes) and biophysical cues (mechanical properties) on myogenesis. With this review we intend to emphasize the need for new in vitro skeletal muscle (disease) models to better recapitulate important structural and functional aspects of muscle development. We highlight the importance of choosing appropriate system components, e.g., cell and biomaterial type, structural and mechanical matrix properties or culture format, and how understanding their interplay will enable researchers to create optimized platforms to investigate myogenesis in healthy and diseased tissue. Thus, we aim to deliver guidelines for experimental designs to allow estimation of the potential influence of the selected skeletal muscle tissue engineering setup on the myogenic outcome prior to their implementation. Moreover, we offer a workflow to facilitate identifying and selecting different analytical tools to demonstrate the successful creation of functional skeletal muscle tissue. Ultimately, a refinement of existing strategies will lead to further progression in understanding important aspects of muscle diseases, muscle aging and muscle regeneration to improve quality of life of patients and enable the establishment of new treatment options.
Collapse
Affiliation(s)
- Babette Maleiner
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Janine Tomasch
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Philipp Heher
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Trauma Care Consult GmbH, Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Dominik Rünzler
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christiane Fuchs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria.,The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
271
|
Vellecco V, Armogida C, Bucci M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 2018; 175:3090-3099. [PMID: 29767441 PMCID: PMC6031874 DOI: 10.1111/bph.14358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of the H2 S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive H2 S-generating enzymes in animals and humans, and it actively produces H2 S. The main, recognized molecular targets of H2 S, that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2 S signalling. SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which the H2 S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of the molecular mechanisms involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2 S pathway in E-C coupling and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM diseases.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| |
Collapse
|
272
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
273
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
274
|
Brody MJ, Vanhoutte D, Schips TG, Boyer JG, Bakshi CV, Sargent MA, York AJ, Molkentin JD. Defective Flux of Thrombospondin-4 through the Secretory Pathway Impairs Cardiomyocyte Membrane Stability and Causes Cardiomyopathy. Mol Cell Biol 2018; 38:e00114-18. [PMID: 29712757 PMCID: PMC6024163 DOI: 10.1128/mcb.00114-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/30/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
Thrombospondins are stress-inducible secreted glycoproteins with critical functions in tissue injury and healing. Thrombospondin-4 (Thbs4) is protective in cardiac and skeletal muscle, where it activates an adaptive endoplasmic reticulum (ER) stress response, induces expansion of the ER, and enhances sarcolemmal stability. However, it is unclear if Thbs4 has these protective functions from within the cell, from the extracellular matrix, or from the secretion process itself. In this study, we generated transgenic mice with cardiac cell-specific overexpression of a secretion-defective mutant of Thbs4 to evaluate its exclusive intracellular and secretion-dependent functions. Like wild-type Thbs4, the secretion-defective mutant upregulates the adaptive ER stress response and expands the ER and intracellular vesicles in cardiomyocytes. However, only the secretion-defective Thbs4 mutant produces cardiomyopathy with sarcolemmal weakness and rupture that is associated with reduced adhesion-forming glycoproteins in the membrane. Similarly, deletion of Thbs4 in the mdx mouse model of Duchenne muscular dystrophy enhances cardiomyocyte membrane instability and cardiomyopathy. Finally, overexpression of the secretion-defective Thbs4 mutant in Drosophila, but not wild-type Thbs4, impaired muscle function and sarcomere alignment. These results suggest that transit through the secretory pathway is required for Thbs4 to augment sarcolemmal stability, while ER stress induction and vesicular expansion mediated by Thbs4 are exclusively intracellular processes.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathies/etiology
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cells, Cultured
- Drosophila melanogaster/genetics
- Endoplasmic Reticulum Stress
- Humans
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Mice, Transgenic
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Sarcolemma/metabolism
- Sarcolemma/pathology
- Secretory Pathway
- Thrombospondins/deficiency
- Thrombospondins/genetics
- Thrombospondins/metabolism
Collapse
Affiliation(s)
- Matthew J Brody
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Davy Vanhoutte
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tobias G Schips
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| | - Chinmay V Bakshi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Howard Hughes Medical Institute, Cincinnati, Ohio, USA
| |
Collapse
|
275
|
Pietraszek-Gremplewicz K, Kozakowska M, Bronisz-Budzynska I, Ciesla M, Mucha O, Podkalicka P, Madej M, Glowniak U, Szade K, Stepniewski J, Jez M, Andrysiak K, Bukowska-Strakova K, Kaminska A, Kostera-Pruszczyk A, Jozkowicz A, Loboda A, Dulak J. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Antioxid Redox Signal 2018; 29:128-148. [PMID: 29669436 DOI: 10.1089/ars.2017.7435] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Muscle damage in Duchenne muscular dystrophy (DMD) caused by the lack of dystrophin is strongly linked to inflammation. Heme oxygenase-1 (HO-1; Hmox1) is an anti-inflammatory and cytoprotective enzyme affecting myoblast differentiation by inhibiting myomiRs. The role of HO-1 has not been so far well addressed in DMD. RESULTS In dystrophin-deficient mdx mice, expression of Hmox1 in limb skeletal muscles and diaphragm is higher than in wild-type animals, being consistently elevated from 8 up to 52 weeks, both in myofibers and inflammatory leukocytes. Accordingly, HO-1 expression is induced in muscles of DMD patients. Pharmacological inhibition of HO-1 activity or genetic ablation of Hmox1 aggravates muscle damage and inflammation in mdx mice. Double knockout animals (Hmox1-/-mdx) demonstrate impaired exercise capacity in comparison with mdx mice. Interestingly, in contrast to the effect observed in muscle fibers, in dystrophin-deficient muscle satellite cells (SCs) expression of Hmox1 is decreased, while MyoD, myogenin, and miR-206 are upregulated compared with wild-type counterparts. Mdx SCs demonstrate disturbed and enhanced differentiation, which is further intensified by Hmox1 deficiency. RNA sequencing revealed downregulation of Atf3, MafK, Foxo1, and Klf2 transcription factors, known to activate Hmox1 expression, as well as attenuation of nitric oxide-mediated cGMP-dependent signaling in mdx SCs. Accordingly, treatment with NO-donor induces Hmox1 expression and inhibits differentiation. Finally, differentiation of mdx SCs was normalized by CO, a product of HO-1 activity. Innovation and Conclusions: HO-1 is induced in DMD, and HO-1 inhibition aggravates DMD pathology. Therefore, HO-1 can be considered a therapeutic target to alleviate this disease. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Katarzyna Pietraszek-Gremplewicz
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Magdalena Kozakowska
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Iwona Bronisz-Budzynska
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Maciej Ciesla
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Olga Mucha
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Paulina Podkalicka
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Magdalena Madej
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Urszula Glowniak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Krzysztof Szade
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Jacek Stepniewski
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Mateusz Jez
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Kalina Andrysiak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Karolina Bukowska-Strakova
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland .,2 Department of Clinical Immunology and Transplantology, Institute of Paediatrics, Medical College, Jagiellonian University , Krakow, Poland
| | - Anna Kaminska
- 3 Department of Neurology, Medical University of Warsaw , Warsaw, Poland
| | | | - Alicja Jozkowicz
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Agnieszka Loboda
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| | - Jozef Dulak
- 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Jagiellonian University , Krakow, Poland
| |
Collapse
|
276
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
277
|
Rancourt A, Dufresne SS, St-Pierre G, Lévesque JC, Nakamura H, Kikuchi Y, Satoh MS, Frenette J, Sato S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy. FASEB J 2018; 32:fj201701151RRR. [PMID: 29894670 PMCID: PMC6219824 DOI: 10.1096/fj.201701151rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/21/2018] [Indexed: 01/12/2023]
Abstract
The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Ann Rancourt
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Sébastien S. Dufresne
- Department of Rehabilitation, Research Centre of Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | | - Haruka Nakamura
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Yodai Kikuchi
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Masahiko S. Satoh
- Laboratory of DNA Damage Responses and Bioimaging, Research Centre Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Jérôme Frenette
- Department of Rehabilitation, Research Centre of Centre Hospitalier Universitaire (CHU) de Québec, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
- Bioimaging Platform, Research Centre of CHU de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
278
|
Fabrication of Micromolded Gelatin Hydrogels for Long-Term Culture of Aligned Skeletal Myotubes. Methods Mol Biol 2018; 1668:147-163. [PMID: 28842908 DOI: 10.1007/978-1-4939-7283-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cultured skeletal myotubes are a powerful in vitro system for identifying mechanisms of skeletal muscle development and disease. However, skeletal myotubes routinely delaminate from conventional culture substrates after approximately 1 week, which significantly hampers their utility for in vitro disease modeling and drug screening. To address this problem, we fabricated micromolded gelatin hydrogels as culture substrates that are more biomimetic than conventional substrates. On micromolded gelatin hydrogels, C2C12 skeletal myoblasts align and differentiate into skeletal myotubes that are stable in culture for multiple weeks. With this protocol, we detail three key steps: (1) Fabrication of micromolded gelatin hydrogels; (2) Culture of mouse C2C12 myoblasts and differentiation into myotubes; and (3) Quantification of myotube morphology. These substrates have many applications for skeletal muscle disease modeling and drug screening over longer time scales.
Collapse
|
279
|
Hildyard JC, Taylor-Brown F, Massey C, Wells DJ, Piercy RJ. Determination of qPCR Reference Genes Suitable for Normalizing Gene Expression in a Canine Model of Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 5:177-191. [DOI: 10.3233/jnd-170267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- John C.W. Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Frances Taylor-Brown
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Claire Massey
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, UK
| |
Collapse
|
280
|
Supplementation with IL-6 and Muscle Cell Culture Conditioned Media Enhances Myogenic Differentiation of Adipose Tissue-Derived Stem Cells through STAT3 Activation. Int J Mol Sci 2018; 19:ijms19061557. [PMID: 29882916 PMCID: PMC6032255 DOI: 10.3390/ijms19061557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v/v). The expression of MyoD and myogenine mRNA was significantly higher at 5⁻6 days after differentiation using the modified protocol than with the conventional protocol. mRNA and protein expression of myosin heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation using the modified protocol, and the level achieved after a 4-week differentiation period was similar to that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified protocol improved differentiation efficiency and reduced the time required for differentiation of myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and drug discovery.
Collapse
|
281
|
Catarinella G, Latella L. Bet on autophagy in the race against muscular dystrophies. Muscle Nerve 2018; 58:332-334. [PMID: 29742807 DOI: 10.1002/mus.26164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Giorgia Catarinella
- Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucia Latella
- Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology, National Research Council of Italy, Via Fosso del Cavaliere 100 Rome, Italy
| |
Collapse
|
282
|
Wang Y, Ravanfar M, Zhang K, Duan D, Yao G. Automatic quantification of microscopic heart damage in a mouse model of Duchenne muscular dystrophy using optical polarization tractography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700284. [PMID: 29314725 DOI: 10.1002/jbio.201700284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Quantification of microscopic myocardium damage in a diseased heart is important in studying disease progression and evaluating treatment outcome. However, it is challenging to use traditional histology and existing medical imaging modalities to quantify all microscopic damages in a small animal heart. Here, a method was developed for fast visualization and quantification of focal tissue damage in the mouse heart based on the fiber alignment index of the local myofiber organization obtained in optical polarization tractography (OPT). This method was tested in freshly excised hearts of the mdx4cv mouse, a commonly used mouse model for studying Duchenne cardiomyopathy. The hearts of age-matched C57BL/6 mice were also imaged as the normal controls. The results revealed a significant amount of damage in the mdx4cv hearts. Histology comparisons confirmed the damage identified by OPT. This fast and automatic method may greatly enhance preclinical studies in murine models of heart diseases.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Bioengineering, University of Missouri, Columbia, Missouri
| | | | - Keqing Zhang
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Bioengineering, University of Missouri, Columbia, Missouri
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, Missouri
| | - Gang Yao
- Department of Bioengineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
283
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
284
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
285
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
286
|
Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs. PLoS One 2018; 13:e0193372. [PMID: 29474464 PMCID: PMC5825102 DOI: 10.1371/journal.pone.0193372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.
Collapse
|
287
|
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle 2018; 8:5. [PMID: 29463296 PMCID: PMC5819301 DOI: 10.1186/s13395-018-0150-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. Methods We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. Results We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. Conclusions Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0150-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
288
|
Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med 2018; 3:4. [PMID: 29479480 PMCID: PMC5816599 DOI: 10.1038/s41536-018-0045-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.
Collapse
|
289
|
Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, Nesaei A, Mojarrad M. Duchenne muscular dystrophy: an updated review of common available therapies. Int J Neurosci 2018; 128:854-864. [PMID: 29351004 DOI: 10.1080/00207454.2018.1430694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a lethal progressive pediatric muscle disorder and genetically inherited as an X-linked disease that caused by mutations in the dystrophin gene. DMD leads to progressive muscle weakness, degeneration, and wasting; finally, follows with the premature demise in affected individuals due to respiratory and/or cardiac failure typically by age of 30. For decades, scientists tried massively to find an effective therapy method, but there is no absolute cure currently for patients with DMD, nevertheless, recent advanced progressions on the treatment of DMD will be hopeful in the future. Several promising gene therapies are currently under investigation. These include gene replacement, exon skipping, suppression of stop codons. More recently, a promising gene editing tool referred to as CRISPR/Cas9 offers exciting perspectives for restoring dystrophin expression in patients with DMD. This review intents to briefly describe these methods and comment on their advances. Since DMD is a genetic disorder, it should be treated by replacing the deficient DMD copy with a functional one. However, there are different types of mutations in this gene, so such therapeutic approaches are highly mutation specific and thus are personalized. Therefore, DMD has arisen as a model of genetic disorder for understanding and overcoming of the challenges of developing personalized genetic medicines, consequently, the lessons learned from these approaches will be applicable to many other disorders. CONCLUSIONS This review provides an update on the recent gene therapies for DMD that aim to compensate for dystrophin deficiency and the related clinical trials.
Collapse
Affiliation(s)
- Arash Salmaninejad
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Saeed Farajzadeh Valilou
- d Medical Genetics Network (MeGeNe) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hadi Bayat
- e Department of Tissue Engineering, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Nader Ebadi
- f Department of Medical Genetics, Faculty of Medicine , Tehran University of Medical Science , Tehran , Iran
| | - Abdolreza Daraei
- g Genetic Department, Faculty of Medicine , Babol University of Medical Sciences , Babol , Iran
| | - Meysam Yousefi
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Abolfazl Nesaei
- h Department of Basic Sciences, Faculty of Medicine , Gonabad University of Medical Sciences , Gonabad , Iran
| | - Majid Mojarrad
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
290
|
Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J 2018; 94:296-304. [DOI: 10.1136/postgradmedj-2017-135377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.
Collapse
|
291
|
Jeandel A, Garosi LS, Davies L, Guo LT, Salgüero R, Shelton GD. Late-onset Becker-type muscular dystrophy in a Border terrier dog. J Small Anim Pract 2018; 60:514-517. [PMID: 29377139 DOI: 10.1111/jsap.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/02/2017] [Accepted: 09/19/2017] [Indexed: 11/27/2022]
Abstract
A 9-year-old Border terrier was presented to a referral hospital after a 1-year history of progressive stiffness and exercise intolerance. Neurological examination was consistent with a neuromuscular disorder. Serum creatine kinase activity was mildly elevated. A myopathy was suspected based on MRI findings and electrophysiological examination. Muscle histopathology was consistent with a severe non-inflammatory myopathy of a dystrophic type. Immunofluorescence and western blotting confirmed a dystrophinopathy with an 80-kDa truncated dystrophin fragment similar to Becker muscular dystrophy in people. To our knowledge, this is the first description of a late-onset Becker-type muscular dystrophy in a dog, and the first description of a dystrophinopathy in a Border terrier. Muscular dystrophy in dogs should not be ruled out based on late onset clinical signs and only mildly elevated creatine kinase.
Collapse
Affiliation(s)
- A Jeandel
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - L S Garosi
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - L Davies
- Smart Veterinary Clinic, Swansea, Wales SA7 9LH, UK
| | - L T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - R Salgüero
- Davies Veterinary Specialists, Hitchin, Hertfordshire SG5 3HR, UK
| | - G D Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
292
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
293
|
Modulation of Protein Quality Control and Proteasome to Autophagy Switch in Immortalized Myoblasts from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2018; 19:ijms19010178. [PMID: 29316663 PMCID: PMC5796127 DOI: 10.3390/ijms19010178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
The maintenance of proteome integrity is of primary importance in post-mitotic tissues such as muscle cells; thus, protein quality control mechanisms must be carefully regulated to ensure their optimal efficiency, a failure of these processes being associated with various muscular disorders. Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophies and is caused by mutations in the dystrophin gene. Protein quality control modulations have been diversely observed in degenerating muscles of patients suffering from DMD or in animal models of the disease. In this study, we investigated whether modulations of protein quality control mechanisms already pre-exist in undifferentiated myoblasts originating from DMD patients. We report for the first time that the absence of dystrophin in human myoblasts is associated with protein aggregation stress characterized by an increase of protein aggregates. This stress is combined with BAG1 to BAG3 switch, NFκB activation and up-regulation of BAG3/HSPB8 complexes that ensure preferential routing of misfolded/aggregated proteins to autophagy rather than to deficient 26S proteasome. In this context, restoration of pre-existing alterations of protein quality control processes might represent an alternative strategy for DMD therapies.
Collapse
|
294
|
Hightower RM, Alexander MS. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies. Muscle Nerve 2018; 57:6-15. [PMID: 28877560 PMCID: PMC5759757 DOI: 10.1002/mus.25953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 01/05/2023]
Abstract
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018.
Collapse
Affiliation(s)
- Rylie M. Hightower
- University of Alabama at Birmingham Graduate School of Biomedical Sciences, Birmingham, AL 35294
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at Children’s of Alabama and the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
295
|
Abstract
Duchenne muscular dystrophy is a highly progressive neuromuscular disorder caused by primary abnormalities in the Dmd gene encoding the membrane cytoskeletal protein dystrophin. Dystrophinopathies are multi-systems disorders that are characterized by severe skeletal muscle wasting, with loss of independent ambulation in the early teenage years, followed by cardio-respiratory complications and premature death. Nonprogressive cognitive impairments are estimated to affect approximately one-third of dystrophic children. To identify the molecular mechanisms behind the impaired brain function in dystrophinopathy, liquid chromatography-based mass spectrometry offers an unbiased and technology-driven approach. In this chapter, we give a detailed description of a label-free mass spectrometric method to investigate proteome-wide changes in the dystrophin-deficient brain from a genetic mouse model of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
296
|
Morrison-Nozik A, Haldar SM. Probing the Pathogenesis of Duchenne Muscular Dystrophy Using Mouse Models. Methods Mol Biol 2018; 1687:107-119. [PMID: 29067659 PMCID: PMC5805135 DOI: 10.1007/978-1-4939-7374-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Investigations using mouse models have provided seminal insights into the pathogenesis of Duchenne muscular dystrophy and the development of novel therapeutics. Several important methods have been considered standard-in-the-field for analyses of skeletal muscle weakness, strength, endurance, and histopathology, as well as responses to therapeutics such as glucocorticoids, disease modifying drugs which are part of the current standard of care for patients with this disease. Here we describe optimized genetic, genomic, and physiologic assays to probe dystrophic pathobiology in the mdx mouse and related strains.
Collapse
Affiliation(s)
- Alexander Morrison-Nozik
- Ohio University Heritage College of Osteopathic Medicine at Cleveland Clinic, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
297
|
Savino W, Pinto-Mariz F, Mouly V. Flow Cytometry-Defined CD49d Expression in Circulating T-Lymphocytes Is a Biomarker for Disease Progression in Duchenne Muscular Dystrophy. Methods Mol Biol 2018; 1687:219-227. [PMID: 29067667 DOI: 10.1007/978-1-4939-7374-3_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects 1:3500-1:5000 male births, and is caused by X-linked mutations in the dystrophin gene, manifested by progressive muscle weakness and wasting due to the absence of dystrophin protein, leading to degeneration of skeletal muscle. DMD patients are clinically heterogeneous and the functional phenotype often cannot be correlated with the genotype. Therefore, defined reliable noninvasive biomarkers aiming at predicting if a given DMD child will progress more or less rapidly will be instrumental to better design inclusion of defined patients for future therapeutic assays. We recently showed that CD49d expression levels in blood-derived T-cell subsets can predict disease progression in DMD patients. Herein we describe in detail the methodology to be applied for defining, through four-color flow cytometry, the membrane expression levels of the CD49d (the α4 chain of the integrins α4β1 and α4β7) in circulating CD4+ and CD8+ T cell subsets. Since we have also shown that this molecule can also be placed as a potential target for therapeutics in DMD, we also describe the cell migration functional assay that can be applied to test potential CD49d inhibitors that can modulate their ability to cross endothelial or extracellular matrix (ECM) barriers.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. .,Fiocruz-Inserm-UPMC Franco-Brazilian International Laboratory on Cell Therapy and Immunotherapy, Pierre and Marie Curie University, Sorbonne Universities, Paris, France. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| | - Fernanda Pinto-Mariz
- Institute of Pediatrics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Fiocruz-Inserm-UPMC Franco-Brazilian International Laboratory on Cell Therapy and Immunotherapy, Pierre and Marie Curie University, Sorbonne Universities, Paris, France.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.,Center for Research in Myology, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, 47 Boulevard de l'hôpital, 75013, Paris, France
| |
Collapse
|
298
|
Albuquerque-Pontes GM, Casalechi HL, Tomazoni SS, Serra AJ, Ferreira CDSB, Brito RBDO, de Melo BL, Vanin AA, Monteiro KKDS, Dellê H, Frigo L, Marcos RL, de Carvalho PDTC, Leal-Junior ECP. Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin. Lasers Med Sci 2017; 33:755-764. [PMID: 29209866 DOI: 10.1007/s10103-017-2405-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023]
Abstract
This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMD mdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMD mdx ), PBMT with doses of 1 J (DMD mdx ), 3 J (DMD mdx ), and 10 J (DMD mdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle-bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne's muscular dystrophy.
Collapse
Affiliation(s)
- Gianna Móes Albuquerque-Pontes
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Heliodora Leão Casalechi
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Shaiane Silva Tomazoni
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | | | - Brunno Lemes de Melo
- Postgraduate Program in Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Adriane Aver Vanin
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Kadma Karênina Damasceno Soares Monteiro
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Humberto Dellê
- Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Lucio Frigo
- Biological Sciences and Health Center, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy in Sports and Exercise, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil. .,Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil.
| |
Collapse
|
299
|
Nagata Y, Kiyono T, Okamura K, Goto YI, Matsuo M, Ikemoto-Uezumi M, Hashimoto N. Interleukin-1beta (IL-1β)-induced Notch ligand Jagged1 suppresses mitogenic action of IL-1β on human dystrophic myogenic cells. PLoS One 2017; 12:e0188821. [PMID: 29194448 PMCID: PMC5711031 DOI: 10.1371/journal.pone.0188821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive muscle disorder caused by mutations in the dystrophin gene. Nonetheless, secondary processes involving perturbation of muscle regeneration probably exacerbate disease progression, resulting in the fatal loss of muscle in DMD patients. A dysfunction of undifferentiated myogenic cells is the most likely cause for the reduction of regenerative capacity of muscle. To clarify molecular mechanisms in perturbation of the regenerative capacity of DMD muscle, we have established several NCAM (CD56)-positive immortalized human dystrophic and non-dystrophic myogenic cell lines from DMD and healthy muscles. A pro-inflammatory cytokine, IL-1β, promoted cell cycle progression of non-dystrophic myogenic cells but not DMD myogenic cells. In contrast, IL-1β upregulated the Notch ligand Jagged1 gene in DMD myogenic cells but not in non-dystrophic myogenic cells. Knockdown of Jagged1 in DMD myogenic cells restored the IL-1β-promoted cell cycle progression. Conversely, enforced expression of Jagged1-blocked IL-1β promoted proliferation of non-dystrophic myogenic cells. In addition, IL-1β prevented myogenic differentiation of DMD myogenic cells depending on Jagged1 but not of non-dystrophic myogenic cells. These results demonstrate that Jagged1 induced by IL-1β in DMD myogenic cells modified the action of IL-1β and reduced the ability to proliferate and differentiate. IL-1β induced Jagged1 gene expression may be a feedback response to excess stimulation with this cytokine because high IL-1β (200-1000 pg/ml) induced Jagged1 gene expression even in non-dystrophic myogenic cells. DMD myogenic cells are likely to acquire the susceptibility of the Jagged1 gene to IL-1β under the microcircumstances in DMD muscles. The present results suggest that Jagged1 induced by IL-1β plays a crucial role in the loss of muscle regeneration capacity of DMD muscles. The IL-1β/Jagged1 pathway may be a new therapeutic target to ameliorate exacerbation of muscular dystrophy in a dystrophin-independent manner.
Collapse
Affiliation(s)
- Yuki Nagata
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kikuo Okamura
- Department of Urology, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry,Ogawahigashi, Kodaira, Tokyo, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Ikawadani-cho, Nishi-ku, Kobe Japan
| | - Madoka Ikemoto-Uezumi
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Morioka, Oobu, Aichi, Japan
- * E-mail:
| |
Collapse
|
300
|
Hu X, Charles JP, Akay T, Hutchinson JR, Blemker SS. Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans. Skelet Muscle 2017; 7:26. [PMID: 29145886 PMCID: PMC5689180 DOI: 10.1186/s13395-017-0143-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022] Open
Abstract
Background The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans. Methods Recently published musculoskeletal models of the mouse hindlimb and human lower limb were used to simulate muscle-tendon dynamics during mouse and human walking, a key daily activity. Muscle fiber length changes (fiber excursions) of 25 muscle homologs in the two species were calculated from these simulations and then compared. To understand potential causes of differences in fiber excursions in walking, joint excursions and muscle moment arms were also compared across one gait cycle. Results Most muscles (19 out of 25 muscles) of the mouse hindlimb had much smaller fiber excursions as compared to human lower limb muscles during walking. For these muscles, fiber excursions in mice were only 48 ± 19% of those in humans. The differences in fiber excursion between the two species were primarily due to the reduced joint excursions and smaller muscle moment arms in mice as compared to humans. Conclusions Since progressive neuromuscular diseases, such as Duchenne muscular dystrophy, are known to be accelerated by damage accumulated from active muscle lengthening, these results suggest that biomechanical differences in muscle function during walking between mice and humans may impede the translations of knowledge gained from mouse models to humans. This knowledge would add a fresh perspective on how pre-clinical studies on mice might be better designed to improve translation to human clinical trials. Electronic supplementary material The online version of this article (10.1186/s13395-017-0143-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA
| | - James P Charles
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Turgay Akay
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - John R Hutchinson
- Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA. .,Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22903, USA. .,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|