251
|
Sykes AM, Huttner WB. Prominin-1 (CD133) and the Cell Biology of Neural Progenitors and Their Progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:89-98. [PMID: 23161077 DOI: 10.1007/978-1-4614-5894-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our group discovered prominin-1 in search for markers to study the cell polarity of neural stem and progenitor cells in the developing brain. Over the past 15 years, prominin-1, also called CD133, has not only become a frequently used marker of neural stem cells and neural cancer stem cells, as is in fact the case of somatic (cancer) stem cells in general, but has also been used to understand the symmetric versus asymmetric division of the neural stem cells in the context of their apical-basal polarity. Moreover, studying prominin-1 on neural stem cells has revealed a novel fate of the midbody, that is, midbody release, and key differences in this release between normal stem cells and cancer-derived cells. Other subcellular aspects of neural stem cells, the understanding of which has been promoted by studying prominin-1, pertain to the organization of plasma membrane protrusions and the membrane microdomains they contain. Of particular relevance in this context is the primary cilium of neuroepithelial cells and its transformation into the outer segment of retinal photoreceptor cells, a process in which prominin-1 exerts a vital role.
Collapse
Affiliation(s)
- Alex M Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | |
Collapse
|
252
|
Corbeil D, Karbanová J, Fargeas CA, Jászai J. Prominin-1 (CD133): Molecular and Cellular Features Across Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:3-24. [DOI: 10.1007/978-1-4614-5894-4_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
253
|
Chen CT, Ettinger AW, Huttner WB, Doxsey SJ. Resurrecting remnants: the lives of post-mitotic midbodies. Trends Cell Biol 2012; 23:118-28. [PMID: 23245592 DOI: 10.1016/j.tcb.2012.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 02/01/2023]
Abstract
Around a century ago, the midbody (MB) was described as a structural assembly within the intercellular bridge during cytokinesis that served to connect the two future daughter cells. The MB has become the focus of intense investigation through the identification of a growing number of diverse cellular and molecular pathways that localize to the MB and contribute to its cytokinetic functions, ranging from selective vesicle trafficking and regulated microtubule (MT), actin, and endosomal sorting complex required for transport (ESCRT) filament assembly and disassembly to post-translational modification, such as ubiquitination. More recent studies have revealed new and unexpected functions of MBs in post-mitotic cells. In this review, we provide a historical perspective, discuss exciting new roles for MBs beyond their cytokinetic function, and speculate on their potential contributions to pluripotency.
Collapse
Affiliation(s)
- Chun-Ting Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
254
|
Zandberga E, Kozirovskis V, Ābols A, Andrējeva D, Purkalne G, Linē A. Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer 2012; 52:356-69. [PMID: 23404859 DOI: 10.1002/gcc.22032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/17/2012] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for over 1.37 million deaths annually. The clinical outcome and management of lung cancer patients could be substantially improved by the implementation of non-invasive biomarker assays for the early detection, prognosis as well as prediction and monitoring of treatment response. MicroRNAs (miRNAs) have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Recently, miRNAs were found to be released into the circulation and to exist there in a remarkably stable form. Furthermore, various cancers were shown to leave specific miRNA fingerprints in the blood of patients suggesting that cell-free miRNAs could serve as non-invasive biomarkers for the detection or monitoring of cancer and putative therapeutic targets. Since that, a considerable effort has been devoted to decode the information carried by circulating miRNAs. In the current review, we give an insight into the mechanisms of miRNA release into the bloodstream, their putative functional significance and systematically review the studies focused on the identification of cell-free miRNAs with the diagnostic, prognostic, and predictive significance in lung cancer and discuss their potential clinical utility.
Collapse
|
255
|
Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 2012; 229:355-78. [DOI: 10.1002/path.4086] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Philipp Grosse-Gehling
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Claudia Dittfeld
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Yvette Garbe
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Malcolm R Alison
- Blizard Institute; Barts and The London School of Medicine and Dentistry; London; UK
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Leoni A Kunz-Schughart
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| |
Collapse
|
256
|
Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D'Amato RJ. The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 2012; 16:405-16. [PMID: 23150059 DOI: 10.1007/s10456-012-9323-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 11/05/2012] [Indexed: 12/12/2022]
Abstract
Prominin-1, a pentaspan transmembrane protein, is a unique cell surface marker commonly used to identify stem cells, including endothelial progenitor cells and cancer stem cells. However, recent studies have shown that prominin-1 expression is not restricted to stem cells but also occurs in modified forms in many mature adult human cells. Although prominin-1 has been studied extensively as a stem cell marker, its physiological function of the protein has not been elucidated. We investigated prominin-1 function in two cell lines, primary human endothelial cells and B16-F10 melanoma cells, both of which express high levels of prominin-1. We found that prominin-1 directly interacts with the angiogenic and tumor survival factor vascular endothelial growth factor (VEGF) in both the primary endothelial cells and the melanoma cells. Knocking down prominin-1 in the endothelial cells disrupted capillary formation in vitro and decreased angiogenesis in vivo. Similarly, tumors derived from prominin-1 knockdown melanoma cells had a reduced growth rate in vivo. Further, melanoma cells with knocked down prominin-1 had diminished ability to interact with VEGF, which was associated with decreased bcl-2 protein levels and increased apoptosis. In vitro studies with soluble prominin-1 showed that it stabilized dimer formation of VEGF164, but not VEGF121. Taken together, our findings support the notion that prominin-1 plays an active role in cell growth through its ability to interact and potentiate the anti-apoptotic and pro-angiogenic activities of VEGF. Additionally, prominin-1 promotes tumor growth by supporting angiogenesis and inhibiting tumor cell apoptosis.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Chojnacki A, Cusulin C, Weiss S. Adult periventricular neural stem cells: outstanding progress and outstanding issues. Dev Neurobiol 2012; 72:972-89. [PMID: 22539410 DOI: 10.1002/dneu.22029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Twenty years have past since the existence of neural stem cells (NSCs) within the walls of the adult lateral ventricles was discovered. During this period of time, great strides have been made in every facet of our understanding of this adult periventricular NSC population. In this review, some of the fields' major advancements regarding the nature and function of adult periventricular NSCs are examined. We bring attention to issues related to NSC identity, potential, and the role of Notch signaling in regulating quiescence and activation that warrant further investigation. Progress in the understanding of human adult NSCs will aid in the development of tools required to advance therapies not only for brain repair after injury or disease but may also lead to novel therapeutics for brain tumors.
Collapse
Affiliation(s)
- Andrew Chojnacki
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
258
|
D’Asti E, Garnier D, Lee TH, Montermini L, Meehan B, Rak J. Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 2012; 3:294. [PMID: 22934045 PMCID: PMC3429065 DOI: 10.3389/fphys.2012.00294] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | - Janusz Rak
- Pediatrics, Cancer and Angiogenesis Laboratory, RI MUHC, Montreal Children’s Hospital, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
259
|
van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64:676-705. [PMID: 22722893 DOI: 10.1124/pr.112.005983] [Citation(s) in RCA: 1340] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both eukaryotic and prokaryotic cells release small, phospholipid-enclosed vesicles into their environment. Why do cells release vesicles? Initial studies showed that eukaryotic vesicles are used to remove obsolete cellular molecules. Although this release of vesicles is beneficial to the cell, the vesicles can also be a danger to their environment, for instance in blood, where vesicles can provide a surface supporting coagulation. Evidence is accumulating that vesicles are cargo containers used by eukaryotic cells to exchange biomolecules as transmembrane receptors and genetic information. Because also bacteria communicate to each other via extracellular vesicles, the intercellular communication via extracellular cargo carriers seems to be conserved throughout evolution, and therefore vesicles are likely to be a highly efficient, robust, and economic manner of exchanging information between cells. Furthermore, vesicles protect cells from accumulation of waste or drugs, they contribute to physiology and pathology, and they have a myriad of potential clinical applications, ranging from biomarkers to anticancer therapy. Because vesicles may pass the blood-brain barrier, they can perhaps even be considered naturally occurring liposomes. Unfortunately, pathways of vesicle release and vesicles themselves are also being used by tumors and infectious diseases to facilitate spreading, and to escape from immune surveillance. In this review, the different types, nomenclature, functions, and clinical relevance of vesicles will be discussed.
Collapse
Affiliation(s)
- Edwin van der Pol
- Department of Clinical Chemistry, Academic Medical Centre of the University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
260
|
Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function. Exp Neurol 2012; 236:161-70. [DOI: 10.1016/j.expneurol.2012.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 03/12/2012] [Accepted: 04/15/2012] [Indexed: 01/01/2023]
|
261
|
Lai CPK, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012; 3:228. [PMID: 22754538 PMCID: PMC3384085 DOI: 10.3389/fphys.2012.00228] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs, proteins, and lipids among cells without direct cell-to-cell contact, thereby representing a novel form of intercellular communication. Many cells in the nervous system have been shown to release EMVs, implicating their active roles in development, function, and pathologies of this system. While substantial progress has been made in understanding the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less information is known about their biological function in the normal nervous system. In addition, since EMVs are endogenous vehicles with low immunogenicity, they have also been actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer and neurological diseases. The present review summarizes current knowledge about EMV functions in the nervous system under both physiological and pathological conditions, as well as emerging EMV-based therapies that could be applied to the nervous system in the foreseeable future.
Collapse
Affiliation(s)
- Charles Pin-Kuang Lai
- Department of Neurology, Neuroscience Center, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
262
|
Cossetti C, Smith JA, Iraci N, Leonardi T, Alfaro-Cervello C, Pluchino S. Extracellular membrane vesicles and immune regulation in the brain. Front Physiol 2012; 3:117. [PMID: 22557978 PMCID: PMC3340916 DOI: 10.3389/fphys.2012.00117] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023] Open
Abstract
The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs) has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s) within the brain under physiological and pathological circumstances.
Collapse
Affiliation(s)
- Chiara Cossetti
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, Stem Cell Institute, University of Cambridge Cambridge, UK
| | | | | | | | | | | |
Collapse
|
263
|
Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 2012; 23:320-32. [PMID: 22430756 PMCID: PMC3345076 DOI: 10.1016/j.semcdb.2012.03.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/14/2012] [Accepted: 03/01/2012] [Indexed: 11/18/2022]
Abstract
Although the epithelial to mesenchymal transition (EMT) is famous for its role in cancer metastasis, it also is a normal developmental event in which epithelial cells are converted into migratory mesenchymal cells. A prime example of EMT during development occurs when neural crest (NC) cells emigrate from the neural tube thus providing an excellent model to study the principles of EMT in a nonmalignant environment. NC cells start life as neuroepithelial cells intermixed with precursors of the central nervous system. After EMT, they delaminate and begin migrating, often to distant sites in the embryo. While proliferating and maintaining multipotency and cell survival the transitioning neural crest cells lose apicobasal polarity and the basement membrane is broken down. This review discusses how these events are coordinated and regulated, by series of events involving signaling factors, gene regulatory interactions, as well as epigenetic and post-transcriptional modifications. Even though the series of events involved in NC EMT are well known, the sequence in which these steps take place remains a subject of debate, raising the intriguing possibility that, rather than being a single event, neural crest EMT may involve multiple parallel mechanisms.
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | | |
Collapse
|
264
|
Increased membrane shedding – indicated by an elevation of CD133-enriched membrane particles – into the CSF in partial epilepsy. Epilepsy Res 2012; 99:101-6. [DOI: 10.1016/j.eplepsyres.2011.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/16/2011] [Accepted: 10/24/2011] [Indexed: 01/14/2023]
|
265
|
Huang DTN, Chi N, Chen SC, Lee TY, Hsu K. Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 2012; 61:585-94. [PMID: 21761257 PMCID: PMC7090673 DOI: 10.1007/s12013-011-9241-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The main function of background two-pore potassium (K2P) channels KCNK3/9/15 is to stabilize the cell membrane potential. We previously observed that membrane potential depolarization enhances the release of HIV-1 viruses. Because membrane polarization affects the biomembrane directly, here we examined the effects of KCNK3/9/15 on the budding of nonviral vesicles. We found that depolarization by knocking down endogenous KCNK3/9/15 promoted secretion of cell-derived vesicles. We further used Vpu (an antagonist of KCNK3) as a model for the in vivo study of depolarization-stimulated secretion. Vpu is a HIV-1-encoded, ion channel-like protein (viroporin) capable of enhancing virus release and depolarizing the cell membrane potential. We found that Vpu could also promote nonviral vesicle release, perhaps through a similar mechanism that Vpu utilizes to promote viral particle release. Notably, T cells expressing Vpu alone became pathologically low in intracellular K+ and insensitive to extracellular K+ or membrane potential stimulation. In contrast, heterologous expression of KCNK3 in T cells stabilized the cell potentials by maintaining intracellular K+. We thus concluded that KCNK3/9/15 expression limits membrane depolarization and depolarization-induced secretion at least in part by maintaining intracellular K+.
Collapse
Affiliation(s)
| | - Naiwen Chi
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
- Present Address: Bertec Enterprise Co., Ltd, Taipei, Taiwan
| | - Shiou-Ching Chen
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Ting-Ying Lee
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| | - Kate Hsu
- Department of Medical Research, Mackay Memorial Hospital, 45 Min-Sheng Road, Research Building 616, Tamsui, 251 Taiwan
| |
Collapse
|
266
|
hESC derived neuro-epithelial rosettes recapitulate early mammalian neurulation events; an in vitro model. Stem Cell Res 2012; 8:239-46. [DOI: 10.1016/j.scr.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 01/12/2023] Open
|
267
|
Belizaire RM, Prakash PS, Richter JR, Robinson BR, Edwards MJ, Caldwell CC, Lentsch AB, Pritts TA. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg 2012; 214:648-55; discussion 656-7. [PMID: 22342784 DOI: 10.1016/j.jamcollsurg.2011.12.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND Transfusion of stored blood is associated with increased complications. Microparticles (MPs) are small vesicles released from RBCs that can induce cellular dysfunction, but the role of RBC-derived MPs in resuscitation from hemorrhagic shock is unknown. In the current study, we examined the effects of RBC-derived MPs on the host response to hemorrhage and resuscitation. STUDY DESIGN MPs were isolated from murine packed RBC units, quantified using flow cytometry, and injected into healthy mice. Separate groups of mice underwent hemorrhage and resuscitation with and without packed RBC-derived MPs. Lungs were harvested for histology and neutrophil accumulation and assessed by myeloperoxidase content. Human neutrophils were treated with human RBC-derived MPs and CD11b expression, superoxide production, and phagocytic activity were determined. RESULTS Stored murine packed RBC units contained increased numbers of RBC-derived MPs compared with fresh units. Hemorrhaged mice resuscitated with MPs demonstrated substantially increased pulmonary neutrophil accumulation and altered lung histology compared with mice resuscitated without MPs. Intravenous injection of MPs into normal mice resulted in neutrophil priming, evidenced by increased neutrophil CD11b expression. Human neutrophils treated with RBC-derived MPs demonstrated increased CD11b expression, increased superoxide production, and enhanced phagocytic ability compared with untreated neutrophils. CONCLUSIONS Stored packed RBC units contain increased numbers of RBC-derived MPs. These MPs appear to contribute to neutrophil priming and activation. The presence of MPs in stored units can be associated with adverse effects, including lung injury, after transfusion.
Collapse
Affiliation(s)
- Ritha M Belizaire
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Greve B, Kelsch R, Spaniol K, Eich HT, Götte M. Flow cytometry in cancer stem cell analysis and separation. Cytometry A 2012; 81:284-93. [PMID: 22311742 DOI: 10.1002/cyto.a.22022] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 12/21/2011] [Accepted: 01/07/2012] [Indexed: 12/19/2022]
Abstract
In recent years, a special type of cancer cell--the cancer stem cell (CSC)--has been identified and characterized for different tumors. CSCs may be responsible for the recurrence of a tumor following a primarily successful therapy and are thought to bear a high metastatic potential. For the development of efficient treatment strategies, the establishment of reliable methods for the identification and effective isolation of CSCs is imperative. Similar to their stem cell counterparts in bone marrow or small intestine, different cluster of differentiation surface antigens have been characterized, thus enabling researchers to identify them within the tumor bulk and to determine their degree of differentiation. In addition, functional properties characteristic of stem cells can be measured. Side population analysis is based on the stem cell-specific activity of certain ATP-binding cassette transporter proteins, which are able to transport fluorescent dyes out of the cells. Furthermore, the stem cell-specific presence of aldehyde dehydrogenase isoform 1 can be used for CSC labeling. However, the flow cytometric analysis of these CSC functional features requires specific technical adjustments. This review focuses on the principles and strategies of the flow cytometric analysis of CSCs and provides an overview of current protocols as well as technical requirements and pitfalls. A special focus is set on side population analysis and analysis of ALDH activity. Flow cytometry-based sorting principles and future flow cytometric applications for CSC analysis are also discussed.
Collapse
Affiliation(s)
- Burkhard Greve
- Department of Radiotherapy, University Hospital, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
269
|
Boroviak T, Rashbass P. The apical polarity determinant Crumbs 2 is a novel regulator of ESC-derived neural progenitors. Stem Cells 2011; 29:193-205. [PMID: 21732478 DOI: 10.1002/stem.567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ESCs undergoing neural differentiation in vitro display an intrinsic heterogeneity with a large subset of the cells forming polarized neural rosettes that maintain the neural progenitor microenvironment. This heterogeneity is not only necessary for normal development but also causes substantial technical challenges for practical applications. Here, we report a novel regulator of early neural progenitors, the apical polarity protein Crb2 (Crumbs homologue 2). Employing monolayer differentiation of mouse ESCs to model neurogenesis in vitro, we find that Crb2 is upregulated with Sox1 and Musashi at the onset of neuroepithelial specification and localizes to the apical side of neural rosettes. Stable Crb2-knockdown (KD) lines die at the onset of neural specification and fail to stabilize several apical polarity proteins. However, these cells are able to proliferate under self-renewing conditions and can be differentiated into mesodermal and endodermal lineages. Conversely, Crb2 overexpression during neural differentiation results in elevated levels of other apical polarity proteins and increases proliferation. Additionally, sustained overexpression of Crb2 reduces terminal differentiation into TuJ1-positive neurons. Furthermore, we demonstrate that Crb2 overexpression under self-renewing conditions increases glycogen synthase kinase (GSK)-3β inhibition, correlating with an increase in clonogenicity. To confirm the importance of GSK-3β inhibition downstream of Crb2, we show that Crb2-KD cells can be forced into neural lineages by blocking GSK-3β function and supplementing Epidermal Growth Factor (EGF) and basic Fibroblast Growth Factor (bFGF). Thus, this is the first demonstration that a member of the Crumbs family is essential for survival and differentiation of ESC-derived neural progenitors.
Collapse
Affiliation(s)
- Thorsten Boroviak
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN United Kingdom
| | | |
Collapse
|
270
|
Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, Hwang D, Kim KP, Kim DW. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 2011; 11:839-49. [PMID: 22148876 DOI: 10.1021/pr200682z] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising means for treating degenerative or incurable diseases. Recent studies have shown that microvesicles (MVs) from MSCs (MSC-MVs) contribute to recovery of damaged tissues in animal disease models. Here, we profiled the MSC-MV proteome to investigate their therapeutic effects. LC-MS/MS analysis of MSC-MVs identified 730 MV proteins. The MSC-MV proteome included five positive and two variable known markers of MSCs, but no negative marker, as well as 43 surface receptors and signaling molecules controlling self-renewal and differentiation of MSCs. Functional enrichment analysis showed that cellular processes represented by the MSC-MV proteins include cell proliferation, adhesion, migration, and morphogenesis. Integration of MSC's self-renewal and differentiation-related genes and the proteome of MSC-conditioned media (MSC-CM) with the MSC-MV proteome revealed potential MV protein candidates that can be associated with the therapeutic effects of MSC-MVs: (1) surface receptors (PDGFRB, EGFR, and PLAUR); (2) signaling molecules (RRAS/NRAS, MAPK1, GNA13/GNG12, CDC42, and VAV2); (3) cell adhesion (FN1, EZR, IQGAP1, CD47, integrins, and LGALS1/LGALS3); and (4) MSC-associated antigens (CD9, CD63, CD81, CD109, CD151, CD248, and CD276). Therefore, the MSC-MV proteome provides a comprehensive basis for understanding the potential of MSC-MVs to affect tissue repair and regeneration.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine , 50 Yonsei-ro, Seodaemoon-gu, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Shen C, Hao SG, Zhao CX, Zhu J, Wang C. Antileukaemia immunity: effect of exosomes against NB4 acute promyelocytic leukaemia cells. J Int Med Res 2011; 39:740-7. [PMID: 21819704 DOI: 10.1177/147323001103900305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Exosomes are a family of bioactive vesicles and play important roles in antigen presentation. A recent phase I clinical trial with an exosome vaccine derived from colorectal cancer has shown minor clinical benefit. Exosomes derived from leukaemia cell lines have been little studied so, in the present study, the immunoprotective effect of exosomes secreted by NB4 cells, a human acute promyelocytic leukaemia cell line, was investigated. NB4-derived exosomes expressed the proteins retinoic acid receptor α and interstitial cell adhesion molecule 1 and contained heat shock protein 70, as demonstrated by transmission electron microscopy and Western blotting. Cytotoxicity assay demonstrated that cytotoxic T lymphocytes (CTLs) induced by dendritic cells (DCs) pulsed with exosomes were significantly more effective in killing target NB4 cells than CTLs induced by DCs alone. Exosome-based vaccines may be a promising means of prolonging disease-free survival in acute promyelocytic leukaemia patients after induction therapy.
Collapse
Affiliation(s)
- C Shen
- Department of Haematology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
272
|
Chiaretti A, Narducci A, Novegno F, Antonelli A, Pierri F, Fantacci C, Di Rocco C, Tamburrini G. Effects of nerve growth factor in experimental model of focal microgyria. Childs Nerv Syst 2011; 27:2117-22. [PMID: 21720818 DOI: 10.1007/s00381-011-1516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 06/16/2011] [Indexed: 11/30/2022]
Abstract
AIM The effects on neural repair of intraparenchymal nerve growth factor (NGF) administration were evaluated in neonate Wistar rats with experimentally induced focal microgyria. METHODS A freezing focal polymicrogyric lesion was induced on the frontal cortex in 35 newborn Wistar rats on postnatal day 1. NGF was administered in 15 cases, with 20 pups as controls. Animals were sacrificed at 72 h and 7 days after NGF administration. Real-time PCR was used for the quantification of the expression of TrkA, p75, and doublecortin (DCX) at the level of the cortical lesion in seven different groups of animals: control 72 h (n = 5), control 7 days (n = 5), microgyria 72 h (n = 5), microgyria 7 days (n = 5), microgyria + NGF 72 h (n = 5), microgyria + NGF 7 days (n = 5), and control + NGF (n = 5). RESULTS A significant increase in TrkA expression was found in the microgyria + NGF 7 days group compared to the others. TrkA upregulation was already visible 72 h after NGF administration. Unlike TrkA, p75 expression increased in animals subjected to the experimental focal microgyria and decreased markedly after NGF administration. DCX expression in injured animals was observed to increase strongly 7 days after NGF administration compared with other groups. CONCLUSIONS NGF administration interferes with neural repair mechanisms at the polymicrogyric lesion site by means of TrkA and DCX upregulation which possibly counteracts the process of apoptosis caused by the brain injury.
Collapse
Affiliation(s)
- Antonio Chiaretti
- Department of Pediatric Neurosciences, Gemelli Hospital, Catholic University Medical School, Largo F. Vito, 1-00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Gires O. Lessons from common markers of tumor-initiating cells in solid cancers. Cell Mol Life Sci 2011; 68:4009-22. [PMID: 21786143 PMCID: PMC11114982 DOI: 10.1007/s00018-011-0772-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
Abstract
Tumor-initiating cells (TICs) have emerged as the driving force of carcinomas, which appear as hierarchically structured. TICs as opposed to the tumor bulk display tumor forming potential, which is linked to a certain degree of self-renewal and differentiation, both major features of stem cells. Markers such as CD44, CD133, CD24, EpCAM, CD166, Lgr5, CD47, and ALDH have been described, which allow for the prospective enrichment of TICs. It is conspicuous that the same markers allow for an enrichment of TICs in various entities and, on the other hand, that different combinations of these markers were independently reported for the same tumor entity. Potential functions of these markers in the regulation of TIC phenotypes remained somewhat neglected although they might give insights in common molecular themes of TICs. The present review discusses major TIC markers with respect to their function and potential contributions to the tumorigenic phenotype of TICs.
Collapse
MESH Headings
- AC133 Antigen
- Aldehyde Dehydrogenase/metabolism
- Aldehyde Dehydrogenase/physiology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/physiology
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/physiology
- CD24 Antigen/metabolism
- CD24 Antigen/physiology
- CD47 Antigen/metabolism
- CD47 Antigen/physiology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Adhesion Molecules, Neuronal/physiology
- Epithelial Cell Adhesion Molecule
- Fetal Proteins/metabolism
- Fetal Proteins/physiology
- Glycoproteins/metabolism
- Glycoproteins/physiology
- Humans
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/physiology
- Models, Biological
- Neoplasms/metabolism
- Neoplasms/pathology
- Peptides/metabolism
- Peptides/physiology
- Phenotype
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377 Munich, Germany.
| |
Collapse
|
274
|
Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun 2011; 2:503. [PMID: 22009035 PMCID: PMC3207209 DOI: 10.1038/ncomms1511] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/14/2011] [Indexed: 12/13/2022] Open
Abstract
The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation. During cell division, a cytoplasmic bridge—the midbody—forms between the nascent daughter cells, but it has been unclear under which conditions this is retained by a daughter cell or released. Now, Ettinger and colleagues show that midbody-release occurs more frequently in stem cells compared with cancer cells.
Collapse
|
275
|
Radtke S, Horn PA. Cells, Niche, Fate: Meeting Report on the 6th International Meeting of the Stem Cell Network North Rhine Westphalia. Cell Reprogram 2011; 13:381-4. [DOI: 10.1089/cell.2011.0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Stefan Radtke
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
276
|
Fargeas CA, Karbanová J, Jászai J, Corbeil D. CD133 and membrane microdomains: Old facets for future hypotheses. World J Gastroenterol 2011; 17:4149-52. [PMID: 22039332 PMCID: PMC3203369 DOI: 10.3748/wjg.v17.i36.4149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 02/06/2023] Open
Abstract
Understanding all facets of membrane microdomains in normal and cancerous cells within the digestive tract is highly important, not only from a clinical point of view, but also in terms of our basic knowledge of cellular transformation. By studying the normal and cancer stem cell-associated molecule CD133 (prominin-1), novel aspects of the organization and dynamics of polarized epithelial cells have been revealed during the last decade. Its association with particular membrane microdomains is highly relevant in these contexts and might also offer new avenues in diagnosis and/or targeting of cancer stem cells.
Collapse
|
277
|
Bourseau-Guilmain E, Griveau A, Benoit JP, Garcion E. The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells. PLoS One 2011; 6:e25515. [PMID: 21966538 PMCID: PMC3180456 DOI: 10.1371/journal.pone.0025515] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 09/07/2011] [Indexed: 12/22/2022] Open
Abstract
As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network.
Collapse
Affiliation(s)
- Erika Bourseau-Guilmain
- Laboratoire d'Ingénierie de la Vectorisation Particulaire, Inserm, UMR-S 646, Université d'Angers, Angers, France
| | - Audrey Griveau
- Laboratoire d'Ingénierie de la Vectorisation Particulaire, Inserm, UMR-S 646, Université d'Angers, Angers, France
| | - Jean-Pierre Benoit
- Laboratoire d'Ingénierie de la Vectorisation Particulaire, Inserm, UMR-S 646, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- Laboratoire d'Ingénierie de la Vectorisation Particulaire, Inserm, UMR-S 646, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
278
|
Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 2011; 13:1214-23. [PMID: 21909099 DOI: 10.1038/ncb2332] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/03/2011] [Indexed: 02/07/2023]
Abstract
The midbody is a singular organelle formed between daughter cells during cytokinesis and required for their final separation. Midbodies persist in cells long after division as midbody derivatives (MB(d)s), but their fate is unclear. Here we show that MB(d)s are inherited asymmetrically by the daughter cell with the older centrosome. They selectively accumulate in stem cells, induced pluripotent stem cells and potential cancer 'stem cells' in vivo and in vitro. MB(d) loss accompanies stem-cell differentiation, and involves autophagic degradation mediated by binding of the autophagic receptor NBR1 to the midbody protein CEP55. Differentiating cells and normal dividing cells do not accumulate MB(d)s and possess high autophagic activity. Stem cells and cancer cells accumulate MB(d)s by evading autophagosome encapsulation and exhibit low autophagic activity. MB(d) enrichment enhances reprogramming to induced pluripotent stem cells and increases the in vitro tumorigenicity of cancer cells. These results indicate unexpected roles for MB(d)s in stem cells and cancer 'stem cells'.
Collapse
Affiliation(s)
- Tse-Chun Kuo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Campos B, Zeng L, Daotrong PH, Eckstein V, Unterberg A, Mairbäurl H, Herold-Mende C. Expression and regulation of AC133 and CD133 in glioblastoma. Glia 2011; 59:1974-86. [PMID: 21901757 DOI: 10.1002/glia.21239] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
The biological significance of CD133 in glioblastoma is controversial. Above all, there is disagreement concerning the proper approach, the appropriate (cell) model and the suitable microenvironment to study this molecule, often leading to inconsistent experimental results among studies. In consideration of a primary need to dissect and to understand the CD133 phenotype in glioblastoma we performed a comprehensive analysis of CD133 expression and regulation in a large set of glioblastoma cell lines (n = 20) as well as in tumor xenografts. Our analysis considered alternatively spliced mRNA transcripts, different protein epitopes as well as varying sub-cellular localizations of CD133 and explored its regulation under pertinent micro-environmental conditions. CD133 mRNA and CD133 protein could be detected in all relevant types of glioblastoma cell lines. In addition, we detected frequent intracellular CD133 protein accumulations located to the ER and/or Golgi apparatus but seemingly unrelated to particular CD133 splice variants or protein epitopes. In contrast, membrane-bound expression of CD133 was restricted to tumor cells bearing the extracellular CD133 epitope AC133. Only in these cells, differentiation and oxygen levels clearly impacted on AC133 expression and to some extent also influenced CD133 mRNA and protein expression. Most importantly, however, modulation of AC133 levels could occur independently of changes in CD133 mRNA transcription, CD133 protein translation, protein retention or protein shedding. Our results suggest that the AC133 epitope, rather than CD133 mRNA or protein, mirrors malignancy-related tumor traits such as tumor differentiation and local oxygen tension levels, and thus corroborate its role as a biologically relevant cancer marker.
Collapse
Affiliation(s)
- Benito Campos
- Department of Neurosurgery, Division of Neurosurgical Research, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
280
|
Therapeutic approaches to target cancer stem cells. Cancers (Basel) 2011; 3:3331-52. [PMID: 24212957 PMCID: PMC3759198 DOI: 10.3390/cancers3033331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/27/2011] [Accepted: 08/07/2011] [Indexed: 12/18/2022] Open
Abstract
The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.
Collapse
|
281
|
Fan L, He F, Liu H, Zhu J, Liu Y, Yin Z, Wang L, Guo Y, Wang Z, Yan Q, Huang G. CD133: a potential indicator for differentiation and prognosis of human cholangiocarcinoma. BMC Cancer 2011; 11:320. [PMID: 21798073 PMCID: PMC3161038 DOI: 10.1186/1471-2407-11-320] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 07/29/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND CD133 is known to be a cancer stem cell (CSC) marker. However, recent studies have revealed that CD133 is not restricted to CSC but to be expressed not only in human normal tissues but also in some cancers and could serve as a prognostic factor for the patients. Nevertheless, the expression of CD133 in human cholangiocarcinoma (CC) is rare and our study is to detect the expression and explore the potential functions of CD133 in human CC. METHODS Fifty-nine cases, comprised of 5 normal liver tissues and 54 consecutive CC specimens (21 well-differentiated, 12 moderately-differentiated and 21 poorly-differentiated), were included in the study. Immunohistochemical stainning with CD133 protein was carried out, and statistical analyses were performed. RESULTS CD133 was found to express in all 5 normal livers and 40 out of 54 (74%) CC tissues with different subcellular localization. In the well, moderately and poorly differentiated cases, the numbers of CD133 positive cases were 19 (19 of 21, 90%), 10 (10 of 12, 83%) and 11 (11 of 21, 52%) respectively. Further statistical analyses indicated that the expression and different subcellular localization of CD133 were significantly correlated with the differentiation status of tumors (P = 0.004, P = 0.009). Among 23 patients followed up for survival, the median survival was 4 months for fourteen CD133 negative patients but 14 months for nine CD133 positive ones. In univariate survival analysis, CD133 negative expression correlated with poor prognosis while CD133 positive expression predicted a favorable outcome of CC patients (P = 0.001). CONCLUSIONS Our study demonstrates that CD133 expression correlates with the differentiation of CC and indicates that CD133 is a potential indicator for differentiation and prognosis of human CC.
Collapse
Affiliation(s)
- Linni Fan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
|
283
|
Bauer N, Wilsch-Bräuninger M, Karbanová J, Fonseca AV, Strauss D, Freund D, Thiele C, Huttner WB, Bornhäuser M, Corbeil D. Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles--a role of the endocytic-exocytic pathway. EMBO Mol Med 2011; 3:398-409. [PMID: 21591261 PMCID: PMC3210830 DOI: 10.1002/emmm.201100147] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/25/2011] [Accepted: 04/11/2011] [Indexed: 01/12/2023] Open
Abstract
The differentiation of stem cells is a fundamental process in cell biology and understanding its mechanism might open a new avenue for therapeutic strategies. Using an ex vivo co-culture system consisting of human primary haematopoietic stem and progenitor cells growing on multipotent mesenchymal stromal cells as a feeder cell layer, we describe here the exosome-mediated release of small membrane vesicles containing the stem and cancer stem cell marker prominin-1 (CD133) during haematopoietic cell differentiation. Surprisingly, this contrasts with the budding mechanism underlying the release of this cholesterol-binding protein from plasma membrane protrusions of neural progenitors. Nevertheless, in both progenitor cell types, protein–lipid assemblies might be the essential structural determinant in the release process of prominin-1. Collectively, these data support the concept that prominin-1-containing lipid rafts may host key determinants necessary to maintain stem cell properties and their quantitative reduction or loss may result in cellular differentiation.
Collapse
Affiliation(s)
- Nicola Bauer
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68:2667-88. [PMID: 21560073 PMCID: PMC3142546 DOI: 10.1007/s00018-011-0689-3] [Citation(s) in RCA: 1622] [Impact Index Per Article: 115.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/30/2011] [Accepted: 04/12/2011] [Indexed: 02/06/2023]
Abstract
Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.
Collapse
Affiliation(s)
- Bence György
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Nagyvárad tér, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 2011; 31:949-59. [PMID: 21553248 DOI: 10.1007/s10571-011-9697-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/12/2011] [Indexed: 02/03/2023]
Abstract
Brain tumors are heterogeneous tumors composed of differentiated tumor cells that resemble various neural cells and a small number of multipotent cancer stem cells. These tumors modify normal cells in their environment to promote tumor growth, invasion and metastases by various ways. Recent publications show that glioblastoma cells release microvesicles that contain a select subset of cellular proteins and RNAs. These microvesicles are avidly taken up by normal cells in cell culture and can change the translational profile of these cells through delivery of tumor-derived mRNAs, which are translated into functional proteins. In addition to mRNA and proteins, microvesicles have been shown to contain microRNAs, non-coding RNAs and DNA. This commentary explores the recent advances in this novel intercellular communication route and discusses the potential physiological role of microvesicles in brain tumorigenesis.
Collapse
|
286
|
Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 2011; 108:8299-304. [PMID: 21525408 DOI: 10.1073/pnas.1014041108] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human embryonic stem cells (hESCs) hold enormous promise for regenerative medicine. Typically, hESC-based applications would require their in vitro differentiation into a desirable homogenous cell population. A major challenge of the current hESC differentiation paradigm is the inability to effectively capture and, in the long-term, stably expand primitive lineage-specific stem/precursor cells that retain broad differentiation potential and, more importantly, developmental stage-specific differentiation propensity. Here, we report synergistic inhibition of glycogen synthase kinase 3 (GSK3), transforming growth factor β (TGF-β), and Notch signaling pathways by small molecules can efficiently convert monolayer cultured hESCs into homogenous primitive neuroepithelium within 1 wk under chemically defined condition. These primitive neuroepithelia can stably self-renew in the presence of leukemia inhibitory factor, GSK3 inhibitor (CHIR99021), and TGF-β receptor inhibitor (SB431542); retain high neurogenic potential and responsiveness to instructive neural patterning cues toward midbrain and hindbrain neuronal subtypes; and exhibit in vivo integration. Our work uniformly captures and maintains primitive neural stem cells from hESCs.
Collapse
|
287
|
Abstract
Abstract
On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.
Collapse
|
288
|
Ostrakhovitch EA, Semenikhin OA. p53-mediated regulation of neuronal differentiation via regulation of dual oxidase maturation factor 1. Neurosci Lett 2011; 494:80-5. [PMID: 21362455 DOI: 10.1016/j.neulet.2011.02.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 12/20/2022]
Abstract
The p53 transcription factor is involved in cell cycle, apoptosis and differentiation. However, the mechanism of p53 mediated differentiation is not fully understood. Here, we show that recently discovered dual oxidase maturation factor 1 (DUOXA1), which was implicated in neuronal differentiation, is regulated by p53 and may be an important factor in neuronal differentiation. We show that DUOXA1 is highly expressed in mouse neuronal stem cells with intensive nuclear localization. A strong interaction between DUOXA1 and p53 is observed in undifferentiated cells and declines in terminally differentiated neurons. Overexpressed p53 induces marked DUOXA1 expression in P19 cells and intensifies neuronal differentiation in the presence of retinoic acid, which suggests that p53 and DUOXA1 possess a neural differentiation potential. At day 3 of retinoic acid induced differentiation when cells showed a typical morphology of neuronal progenies, CD133 expression was down-regulated. The expression level of CD133 was significantly decreased in p53 over-expressing cells and was accompanied by a substantial increase in the expression level of neurofilament. In conclusion, DUOXA1 is a novel p53-regulated neurogenic factor involved in p53 dependent neuronal differentiation.
Collapse
|
289
|
Barreto A, Rodríguez LS, Rojas OL, Wolf M, Greenberg HB, Franco MA, Angel J. Membrane vesicles released by intestinal epithelial cells infected with rotavirus inhibit T-cell function. Viral Immunol 2011; 23:595-608. [PMID: 21142445 DOI: 10.1089/vim.2009.0113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rotavirus (RV) predominantly replicates in intestinal epithelial cells (IEC), and "danger signals" released by these cells may modulate viral immunity. We have recently shown that human model IEC (Caco-2 cells) infected with rhesus-RV release a non-inflammatory group of immunomodulators that includes heat shock proteins (HSPs) and TGF-β1. Here we show that both proteins are released in part in association with membrane vesicles (MV) obtained from filtrated Caco-2 supernatants concentrated by ultracentrifugation. These MV express markers of exosomes (CD63 and others), but not of the endoplasmic reticulum (ER) or nuclei. Larger quantities of proteins associated with MV were released by RV-infected cells than by non-infected cells. VP6 co-immunoprecipitated with CD63 present in these MV, and VP6 co-localized with CD63 in RV-infected cells, suggesting that this viral protein is associated with the MV, and that this association occurs intracellularly. CD63 present in MV preparations from stool samples from 36 children with gastroenteritis due or not due to RV were analyzed. VP6 co-immunoprecipitated with CD63 in 3/8 stool samples from RV-infected children, suggesting that these MV are released by RV-infected cells in vivo. Moreover, fractions that contained MV from RV-infected cells induced death and inhibited proliferation of CD4(+) T cells to a greater extent than fractions from non-infected cells. These effects were in part due to TGF-β, because they were reversed by treatment of the T cells with the TGF-β-receptor inhibitor ALK5i. MV from RV-infected and non-infected cells were heterogeneous, with morphologies and typical flotation densities described for exosomes (between 1.10 and 1.18 g/mL), and denser vesicles (>1.24 g/mL). Both types of MV from RV-infected cells were more efficient at inhibiting T-cell function than were those from non-infected cells. We propose that RV infection of IEC releases MV that modulate viral immunity.
Collapse
Affiliation(s)
- Alfonso Barreto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
290
|
Zöller M, Jung T. The Colorectal Cancer Initiating Cell: Markers and Their Role in Liver Metastasis. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0292-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
291
|
Missol-Kolka E, Karbanová J, Janich P, Haase M, Fargeas CA, Huttner WB, Corbeil D. Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate 2011; 71:254-67. [PMID: 20717901 DOI: 10.1002/pros.21239] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/23/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rodent and human prominin-1 are expressed in numerous adult epithelia and somatic stem cells. A report has shown that human PROMININ-1 carrying the AC133 epitope can be used to identify rare prostate basal stem cells (Richardson et al., J Cell Sci 2004; 117:3539–3545). Here we re-investigated its general expression in male reproductive tract including mouse and human prostate and in prostate cancer samples using various anti-prominin-1 antibodies. METHODS The expression was monitored by immunohistochemistry and blotting. Murine tissues were stained with 13A4 monoclonal antibody (mAb) whereas human samples were examined either with the AC133 mAb recognizing the AC133 glycosylation-dependent epitope or 80B258 mAb directed against the PROMININ-1 polypeptide. RESULTS Mouse prominin-1 was detected at the apical domain of epithelial cells of ductus deferens, seminal vesicles, ampullary glands, and all prostatic lobes. In human prostate, immunoreactivity for 80B258, but not AC133 was revealed at the apical side of some epithelial (luminal) cells, in addition to the minute population of AC133/80B258-positive cells found in basal compartment. Examination of prostate adenocarcinoma revealed the absence of 80B258 immunoreactivity in the tumor regions. However, it was found to be up-regulated in luminal cells in the vicinity of the cancer areas. CONCLUSIONS Mouse prominin-1 is widely expressed in prostate whereas in human only some luminal cells express it, demonstrating nevertheless that its expression is not solely associated with basal stem cells. In pathological samples, our pilot evaluation shows that PROMININ-1 is down-regulated in the cancer tissues and up-regulated in inflammatory regions.
Collapse
Affiliation(s)
- Ewa Missol-Kolka
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
292
|
Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'. Semin Immunopathol 2011; 33:455-67. [PMID: 21318413 DOI: 10.1007/s00281-011-0250-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 01/01/2023]
Abstract
Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.
Collapse
|
293
|
Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 2010; 46:409-18. [PMID: 21111824 DOI: 10.1016/j.mcn.2010.11.004] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/15/2010] [Accepted: 11/12/2010] [Indexed: 12/21/2022] Open
Abstract
Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane of endosomal intermediates called multivesicular bodies. They represent ways for discarding proteins and metabolites and also for intercellular transfer of proteins and RNAs. In the nervous system, it has been hypothesized that exosomes might be involved in the normal physiology of the synapse and possibly allow the trans-synaptic propagation of pathogenic proteins throughout the tissue. As a first step to validate this concept, we used biochemical and morphological approaches to demonstrate that mature cortical neurons in culture do indeed secrete exosomes. Using electron microscopy, we observed exosomes being released from somato-dendritic compartments. The endosomal origin of exosomes was demonstrated by showing that the C-terminal domain of tetanus toxin specifically endocytosed by neurons and accumulating inside multivesicular bodies, is released in the extracellular medium in association with exosomes. Finally, we found that exosomal release is modulated by glutamatergic synaptic activity, suggesting that this process might be part of normal synaptic physiology. Thus, our study paves the way towards the demonstration that exosomes take part in the physiology of the normal and pathological nervous system.
Collapse
|
294
|
Abstract
Interkinetic nuclear migration (INM), the movement of neuroepithelial and radial glial cell nuclei along the apical-basal axis in concert with the cell cycle, underlies the pseudostratification of the ventricular zone (VZ). Recent studies provide insight into the molecular mechanisms of INM and its effects on neural progenitor cell fate determination. Moreover, INM not only has a key role in increasing the VZ progenitor pool, but also may have set the stage for the evolution of subventricular zone progenitors implicated in cortical expansion.
Collapse
|
295
|
Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 2010; 62:1141-8. [PMID: 20558219 DOI: 10.1016/j.addr.2010.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.
Collapse
|
296
|
Wan F, Zhang S, Xie R, Gao B, Campos B, Herold-Mende C, Lei T. The utility and limitations of neurosphere assay, CD133 immunophenotyping and side population assay in glioma stem cell research. Brain Pathol 2010; 20:877-89. [PMID: 20331619 PMCID: PMC8094830 DOI: 10.1111/j.1750-3639.2010.00379.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/01/2010] [Indexed: 01/07/2023] Open
Abstract
The newly proposed glioma stem cell (GSC) hypothesis may re-model the way we diagnose and treat the tumor, which highlights the need for a complete knowledge on the genetic and epigenetic "blueprints" of GSCs. To identify the true "stemness" signatures, pure GSC populations are primarily needed. Reliable in vitro methods enriching for GSCs and thereby identifying the key stem-like characteristics constitute the preliminary step forward. We discuss in this review the current widely used methods for enriching and isolating GSCs, namely neurosphere assay, CD133 Immunophenotyping and side population assay, and detail their limitations and potential pitfalls that could complicate interpretation of corresponding results.
Collapse
Affiliation(s)
- Feng Wan
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
297
|
Elmi M, Matsumoto Y, Zeng ZJ, Lakshminarasimhan P, Yang W, Uemura A, Nishikawa SI, Moshiri A, Tajima N, Agren H, Funa K. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci 2010; 45:121-31. [PMID: 20599619 DOI: 10.1016/j.mcn.2010.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 06/01/2010] [Accepted: 06/09/2010] [Indexed: 02/06/2023] Open
Abstract
The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived progenitors (AHPs) cultured in the presence of FGF express a high level of TLX and a fraction of these cells also express the proneural gene MASH1. Upon FGF withdrawal, TLX rapidly decreased, while MASH1 was intensely expressed within 1h, decreasing gradually to disappear at 24h. Adenoviral transduction of TLX in AHP cells in the absence of FGF transiently increased cell proliferation, however, later resulted in neuronal differentiation by inducing MASH1, Neurogenin1, DCX, and MAP2ab. Furthermore, TLX directly targets and activates the MASH1 promoter through interaction with Sp1, recruiting co-activators whereas dismissing the co-repressor HDAC4. Conversely, silencing of TLX in AHPs decreased beta-III tubulin and DCX expression and promoted glial differentiation. Our results thus suggest that TLX not only acts as a repressor of cell cycle and glial differentiation but also activates neuronal lineage commitment in AHPs.
Collapse
Affiliation(s)
- Muna Elmi
- Institute of Biomedicine, Department of Medical Chemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, Brown D, Russo LM. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010; 78:191-9. [PMID: 20428099 DOI: 10.1038/ki.2010.106] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Urinary exosomes or microvesicles are being studied intensively to identify potential new biomarkers for renal disease. We sought to identify whether these microvesicles contain nucleic acids. We isolated microvesicles from human urine in the same density range as that previously described for urinary exosomes and found them to have an RNA integrity profile similar to that of kidney tissue, including 18S and 28S rRNA. This profile was better preserved in urinary microvesicles compared with whole cells isolated from urine, suggesting that microvesicles may protect RNA during urine passage. We were able to detect mRNA in the human urinary microvesicles encoding proteins from all regions of the nephron and the collecting duct. Further, to provide a proof of principle, we found that microvesicles isolated from the urine of the V-ATPase B1 subunit knockout mice lacked mRNA of this subunit while containing a normal amount of the B2 subunit and aquaporin 2. The microvesicles were found to be contaminated with extraneous DNA potentially on their surface; therefore, we developed a rapid and reliable means to isolate nucleic acids from within urine microvesicles devoid of this extraneous contamination. Our study provides an experimental strategy for the routine isolation and use of urinary microvesicles as a novel and non-invasive source of nucleic acids to further renal disease biomarker discovery.
Collapse
Affiliation(s)
- Kevin C Miranda
- Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Kozubenko N, Turnovcova K, Kapcalova M, Butenko O, Anderova M, Rusnakova V, Kubista M, Hampl A, Jendelova P, Sykova E. Analysis of in Vitro and in Vivo Characteristics of Human Embryonic Stem Cell-Derived Neural Precursors. Cell Transplant 2010. [DOI: 10.3727/096368909x484707b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During the last decade, much progress has been made in developing protocols for the differentiation of human embryonic stem cells (hESCs) into a neural phenotype. The appropriate agent for cell therapy is neural precursors (NPs). Here, we demonstrate the derivation of highly enriched and expandable populations of proliferating NPs from the CCTL14 line of hESCs. These NPs could differentiate in vitro into functionally active neurons, as confirmed by immunohistochemical staining and electrophysiological analysis. Neural cells differentiated in vitro from hESCs exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. To analyze the population of the derived NPs, we used fluorescence-activated cell sorting (FACS) and characterized the expression of several pluripotent and neural markers, such as Nanog, SSEA-4, SSEA-1, TRA-1-60, CD24, CD133, CD56 (NCAM), β-III-tubulin, NF70, nestin, CD271 (NGFR), CD29, CD73, and CD105 during long-term propagation. The analyzed cells were used for transplantation into the injured rodent brain; the tumorigenicity of the transplanted cells was apparently eliminated following long-term culture. These results complete the characterization of the CCTL14 line of hESCs and provide a framework for developing cell selection strategies for neural cell-based therapies.
Collapse
Affiliation(s)
- Nataliya Kozubenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Miroslava Kapcalova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Olena Butenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Vendula Rusnakova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Lundberg Laboratory, Goteborg, Sweden
| | - Ales Hampl
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| | - Eva Sykova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Neuroscience and Center for Cell Therapy and Tissue Repair, Charles University, Second Medical Faculty, Prague, Czech Republic
| |
Collapse
|
300
|
Understanding wiring and volume transmission. ACTA ACUST UNITED AC 2010; 64:137-59. [PMID: 20347870 DOI: 10.1016/j.brainresrev.2010.03.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
The proposal on the existence of two main modes of intercellular communication in the central nervous system (CNS) was introduced in 1986 and called wiring transmission (WT) and volume transmission (VT). The major criterion for this classification was the different characteristics of the communication channel with physical boundaries well delimited in the case of WT (axons and their synapses; gap junctions) but not in the case of VT (the extracellular fluid filled tortuous channels of the extracellular space and the cerebrospinal fluid filled ventricular space and sub-arachnoidal space). The basic dichotomic classification of intercellular communication in the brain is still considered valid, but recent evidence on the existence of unsuspected specialized structures for intercellular communication, such as microvesicles (exosomes and shedding vesicles) and tunnelling nanotubes, calls for a refinement of the original classification model. The proposed updating is based on criteria which are deduced not only from these new findings but also from concepts offered by informatics to classify the communication networks in the CNS. These criteria allowed the identification also of new sub-classes of WT and VT, namely the "tunnelling nanotube type of WT" and the "Roamer type of VT." In this novel type of VT microvesicles are safe vesicular carriers for targeted intercellular communication of proteins, mtDNA and RNA in the CNS flowing in the extracellular fluid along energy gradients to reach target cells. In the tunnelling nanotubes proteins, mtDNA and RNA can migrate as well as entire organelles such as mitochondria. Although the existence and the role of these new types of intercellular communication in the CNS are still a matter of investigation and remain to be fully demonstrated, the potential importance of these novel types of WT and VT for brain function in health and disease is discussed.
Collapse
|