251
|
Bhowmik T, Gomes A. Down–regulation of cyclin–dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem Biol Interact 2017; 268:119-128. [DOI: 10.1016/j.cbi.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
|
252
|
Wirshing ACE, Cram EJ. Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca. Mol Biol Cell 2017; 28:1937-1949. [PMID: 28331075 PMCID: PMC5541844 DOI: 10.1091/mbc.e17-01-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The contractile myoepithelial cells of the Caenorhabditis elegans somatic gonad are stretched by oocyte entry and subsequently contract to expel the fertilized embryo into the uterus. Formation of aligned, parallel actomyosin bundles during the first ovulation is triggered by oocyte entry and regulated by myosin contractility. Stress fibers—contractile actomyosin bundles—are important for cellular force production and adaptation to physical stress and have been well studied within the context of cell migration. However, less is known about actomyosin bundle formation and organization in vivo and in specialized contractile cells, such as smooth muscle and myoepithelial cells. The Caenorhabditis elegans spermatheca is a bag-like organ of 24 myoepithelial cells that houses the sperm and is the site of fertilization. During ovulation, spermathecal cells are stretched by oocyte entry and then coordinately contract to expel the fertilized embryo into the uterus. Here we use four-dimensional confocal microscopy of live animals to observe changes to spermathecal actomyosin network organization during cell stretch and contraction. Oocyte entry is required to trigger cell contraction and concomitant production of parallel actomyosin bundles. Actomyosin bundle size, connectivity, spacing, and orientation are regulated by myosin activity. We conclude that myosin drives actomyosin bundle production and that myosin activity is tightly regulated during ovulation to produce an optimally organized actomyosin network in C. elegans spermathecae.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
253
|
Zhao B, Hu M, Wu H, Ren C, Wang J, Cui S. Tenascin-C expression and its associated pathway in BMSCs following co-culture with mechanically stretched ligament fibroblasts. Mol Med Rep 2017; 15:2465-2472. [PMID: 28447748 PMCID: PMC5428738 DOI: 10.3892/mmr.2017.6329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
The occurrence of pelvic organ prolapse (POP) is closely associated with alterations in the extracellular matrix proteins of the supporting ligament. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into a variety of cell types, including osteoblasts, chondroblasts and adipocytes. Therefore, BMSCs have the potential to improve the clinical outcomes of POP. Tenascin-C is a large glycoprotein that is present in the ECM and is involved in morphogenetic movements, and tissue patterning and repair. The aim of the present study was to investigate the effect of mechanical stretching on tenascin-C expression during the differentiation of BMSCs induced by pelvic ligament fibroblasts. BMSCs were isolated from 7-day-old Sprague Dawley rats. Fibroblasts were obtained from rat pelvic ligaments and, at the fourth passage, were subjected to 10% deformation with 1 Hz, periodic one-way mechanical stretch stimulation, followed by co-culture with BMSCs. The co-culture with stretched fibroblasts increased tenascin-C and transforming growth factor (TGF)-β expression levels, compared with groups without mechanical stimulation. Neutralizing anti-TGF-β1 antibodies, and inhibitors of TGF-β receptor, mitogen-activated protein kinase (MAPK) kinase and MAPK, decreased tenascin-C expression levels induced by TGF-β and mechanical stretching. The results of the present study suggested that the regulation of tenascin-C expression levels in BMSCs co-cultured with mechanically stretched pelvic ligament fibroblasts is mediated via the soluble growth factor TGF-β and the MAPK signaling pathway. In addition, these results indicated that in an indirect co-culture system, pelvic ligament fibroblasts with mechanical stretch stimulation may promote the synthesis of tenascin-C and BMSC differentiation into pelvic ligament fibroblasts.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mengcai Hu
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiyan Wu
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenchen Ren
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianshe Wang
- Department of Clinical Medicine, Hebi Polytechnic College, Hebi, Henan 458030, P.R. China
| | - Shihong Cui
- Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
254
|
Fan X, Zhu L, Wang K, Wang B, Wu Y, Xie W, Huang C, Chan BP, Du Y. Stiffness-Controlled Thermoresponsive Hydrogels for Cell Harvesting with Sustained Mechanical Memory. Adv Healthc Mater 2017; 6. [PMID: 28105774 DOI: 10.1002/adhm.201601152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/23/2016] [Indexed: 01/17/2023]
Abstract
Most mechanobiological investigations focused on in situ mechanical regulation of cells on stiffness-controlled substrates with few downstream applications, as it is still challenging to harvest and expand mechanically primed cells by enzymatic digestion (e.g., trypsin) without interrupting cellular mechanical memory between passages. This study develops thermoresponsive hydrogels with controllable stiffness to generate mechanically primed cells with intact mechanical memory for augmented wound healing. No significant cellular property alteration of the fibroblasts primed on thermoresponsive hydrogels with varied stiffness has been observed through thermoresponsive harvesting. When reseeding the harvested cells for further evaluation, softer hydrogels are proven to better sustain the mechanical priming effects compared to rigid tissue culture plate, which indicates that both the stiffness-controlled substrate and thermoresponsive harvesting are required to sustain cellular mechanical memory between passages. Moreover, epigenetics analysis reveals that thermoresponsive harvesting could reduce the rearrangement and loss of chromatin proteins compared to that of trypsinization. In vivo wound healing using mechanically primed fibroblasts shows featured epithelium and sebaceous glands, which indicates augmented skin recovery compared with trypsinized fibroblasts. Thus, the thermoresponsive hydrogel-based cell harvesting system offers a powerful tool to investigate mechanobiology between cell passages and produces abundant cells with tailored mechanical priming properties for cell-based applications.
Collapse
Affiliation(s)
- Xingliang Fan
- Department of Biomedical Engineering; School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Tsinghua University; Beijing 100084 China
- Joint Center for Life Sciences; Tsinghua University-Peking University; Beijing 100084 China
| | - Lu Zhu
- Department of Biomedical Engineering; School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Tsinghua University; Beijing 100084 China
- Institute of Medical Equipment; Academy of Military Medical Sciences; Tianjin 300161 China
| | - Ke Wang
- Department of Chemistry; School of Science; Tsinghua University; Beijing 100084 China
| | - Bingjie Wang
- Department of Biomedical Engineering; School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Tsinghua University; Beijing 100084 China
- School of Life Science; Tsinghua University; Beijing 100084 China
| | - Yaozu Wu
- Department of Biomedical Engineering; School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Tsinghua University; Beijing 100084 China
| | - Wei Xie
- Joint Center for Life Sciences; Tsinghua University-Peking University; Beijing 100084 China
- School of Life Science; Tsinghua University; Beijing 100084 China
| | - Chengyu Huang
- Department of Plastic; Reconstructive and Aesthetic Surgery; Beijing Tsinghua Changgung Hospital; Tsinghua University; Beijing 102218 China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Yanan Du
- Department of Biomedical Engineering; School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Tsinghua University; Beijing 100084 China
| |
Collapse
|
255
|
Tam SN, Smith ML, Stamenović D. Modeling tensional homeostasis in multicellular clusters. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 27163337 DOI: 10.1002/cnm.2801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sze Nok Tam
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Dimitrije Stamenović
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Division of Material Science and Engineering, Boston University, Brookline, MA 02446, USA
| |
Collapse
|
256
|
Choi MY, Kim JT, Lee WJ, Lee Y, Park KM, Yang YI, Park KD. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomater 2017; 50:234-248. [PMID: 28063988 DOI: 10.1016/j.actbio.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/26/2016] [Accepted: 01/01/2017] [Indexed: 12/12/2022]
Abstract
Endogenous cardiac stem cells (CSCs) are known to play a certain role in the myocardial homeostasis of the adult heart. The extracellular matrix (ECM) surrounding CSCs provides mechanical signals to regulate a variety of cell behaviors, yet the impact in the adult heart of these mechanical properties of ECM on CSC renewal and fate decisions is mostly unknown. To elucidate CSC mechanoresponses at the individual cell and myocardial level, we used the sol-to-gel transitional gelatin-poly(ethylene glycol)-tyramine (GPT) hydrogel with a tunable mechanical property to construct a three-dimensional (3D) matrix for culturing native myocardium and CSCs. The elastic modulus of the GPT hydrogel was controlled by adjusting cross-linking density using hydrogen peroxide. The GPT hydrogel showed an ability to transduce integrin-mediated signals into the myocardium and to permit myocardial homeostatic processes in vitro, including CSC migration and proliferation into the hydrogel from the myocardium. Decreasing the elastic modulus of the hydrogel resulted in upregulation of phosphorylated integrin-mediated signaling molecules in CSCs, which were associated with significant increases in cell spreading, migration, and proliferation of CSCs in a modulus-dependent manner. However, increasing the elastic modulus of hydrogel induced the arrest of cell growth but led to upregulation of cardiomyocyte-associated mRNAs in CSCs. This work demonstrates that tunable 3D-engineered microenvironments created by GPT hydrogel are able to control CSC behavior and to direct cardiomyogenic fate. Our system may also be appropriate for studying the mechanoresponse of CSCs in a 3D context as well as for developing therapeutic strategies for in situ myocardial regeneration. STATEMENT OF SIGNIFICANCE The extracellular matrix (ECM) provides a physical framework of myocardial niches in which endogenous cardiac stem cells (CSCs) reside, renew, differentiate, and replace cardiac cells. Interactions between ECM and CSCs might be critical for the maintenance of myocardial homeostasis in the adult heart. Yet most studies done so far have used irrelevant cell types and have been performed at the individual cell level, none able to reflect the in vivo situation. By the use of a chemically defined hydrogel to create a tunable 3D microenvironment, we succeeded in controlling CSC behavior at the myocardial and individual cell level and directing the cardiomyogenic fate. Our work may provide insight into the design of biomaterials for in situ myocardial regeneration as well as for tissue engineering.
Collapse
|
257
|
Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater 2017; 50:41-55. [PMID: 28011142 DOI: 10.1016/j.actbio.2016.12.034] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development.
Collapse
|
258
|
Ahmadzadeh H, Webster MR, Behera R, Jimenez Valencia AM, Wirtz D, Weeraratna AT, Shenoy VB. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci U S A 2017; 114:E1617-E1626. [PMID: 28196892 PMCID: PMC5338523 DOI: 10.1073/pnas.1617037114] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy-based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Reeti Behera
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
259
|
Carey SP, Martin KE, Reinhart-King CA. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep 2017; 7:42088. [PMID: 28186196 PMCID: PMC5301232 DOI: 10.1038/srep42088] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/04/2017] [Indexed: 11/28/2022] Open
Abstract
A critical step in breast cancer progression is local tissue invasion, during which cells pass from the epithelial compartment to the stromal compartment. We recently showed that malignant leader cells can promote the invasion of otherwise non-invasive epithelial follower cells, but the effects of this induced-invasion phenomenon on follower cell phenotype remain unclear. Notably, this process can expose epithelial cells to the stromal extracellular matrix (ECM), which is distinct from the ECM within the normal epithelial microenvironment. Here, we used a 3D epithelial morphogenesis model in which cells were cultured in biochemically and mechanically defined matrices to examine matrix-mediated gene expression and the associated phenotypic response. We found that 3D collagen matrix promoted expression of mesenchymal genes including MT1-MMP, which was required for collagen-stimulated invasive behavior. Epithelial invasion required matrix anchorage as well as signaling through Src, PI3K, and Rac1, and increasingly stiff collagen promoted dispersive epithelial cell invasion. These results suggest that leader cell-facilitated access to the stromal ECM may trigger an invasive phenotype in follower epithelial cells that could enable them to actively participate in local tissue invasion.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Karen E Martin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
260
|
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering (Basel) 2017; 4:E12. [PMID: 28952491 PMCID: PMC5590431 DOI: 10.3390/bioengineering4010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023] Open
Abstract
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na⁺, Ca2+, K⁺ channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
261
|
Lebya K, Garcia‐Smith R, Swaminathan R, Jones A, Russell J, Joste N, Bisoffi M, Trujillo K. Towards a personalized surgical margin for breast conserving surgery—Implications of field cancerization in local recurrence. J Surg Oncol 2017; 115:109-115. [DOI: 10.1002/jso.24469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Katarina Lebya
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| | - Randi Garcia‐Smith
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| | | | - Anna Jones
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - John Russell
- Department of SurgeryUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - Nancy Joste
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - Marco Bisoffi
- Biochemistry and Molecular BiologySchmid College of Science and Technology Chapman UniversityOrangeCalifornia
| | - Kristina Trujillo
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| |
Collapse
|
262
|
Toutounchian JJ, Pagadala J, Miller DD, Baudry J, Park F, Chaum E, Morales-Tirado V, Yates CR. Novel Small Molecule JP-153 Targets the Src-FAK-Paxillin Signaling Complex to Inhibit VEGF-Induced Retinal Angiogenesis. Mol Pharmacol 2017; 91:1-13. [PMID: 27913654 DOI: 10.1124/mol.116.105031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting vascular endothelial growth factor (VEGF) is a common treatment strategy for neovascular eye disease, a major cause of vision loss in diabetic retinopathy and age-related macular degeneration. However, the decline in clinical efficacy over time in many patients suggests that monotherapy of anti-VEGF protein therapeutics may benefit from adjunctive treatments. Our previous work has shown that through decreased activation of the cytoskeletal protein paxillin, growth factor-induced ischemic retinopathy in the murine oxygen-induced retinopathy model could be inhibited. In this study, we demonstrated that VEGF-dependent activation of the Src/FAK/paxillin signalsome is required for human retinal endothelial cell migration and proliferation. Specifically, the disruption of focal adhesion kinase (FAK) and paxillin interactions using the small molecule JP-153 inhibited Src-dependent phosphorylation of paxillin (Y118) and downstream activation of Akt (S473), resulting in reduced migration and proliferation of retinal endothelial cells stimulated with VEGF. However, this effect did not prevent the initial activation of either Src or FAK. Furthermore, topical application of a JP-153-loaded microemulsion affected the hallmark features of pathologic retinal angiogenesis, reducing neovascular tuft formation and increased avascular area, in a dose-dependent manner. In conclusion, our results suggest that using small molecules to modulate the focal adhesion protein paxillin is an effective strategy for treating pathologic retinal neovascularization. To our knowledge, this is the first paradigm validating modulation of paxillin to inhibit angiogenesis. As such, we have identified and developed a novel class of small molecules aimed at targeting focal adhesion protein interactions that are essential for pathologic neovascularization in the eye.
Collapse
Affiliation(s)
- Jordan J Toutounchian
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Jayaprakash Pagadala
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Duane D Miller
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Jerome Baudry
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Frank Park
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Edward Chaum
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | | | - Charles R Yates
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| |
Collapse
|
263
|
Kung ML, Hsieh CW, Tai MH, Weng CH, Wu DC, Wu WJ, Yeh BW, Hsieh SL, Kuo CH, Hung HS, Hsieh S. Nanoscale characterization illustrates the cisplatin-mediated biomechanical changes of B16-F10 melanoma cells. Phys Chem Chem Phys 2016; 18:7124-31. [PMID: 26886764 DOI: 10.1039/c5cp07971c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cells reorganize their membrane biomechanical dynamics in response to environmental stimuli or inhibitors associated with their physiological/pathological processes, and disease therapeutics. To validate the biophysical dynamics during cell exposure to anti-cancer drugs, we investigate the nanoscale biological characterization in melanoma cells undergoing cisplatin treatment. Using atomic force microscopy, we demonstrate that the cellular morphology and membrane ultrastructure are altered after exposure to cisplatin. In contrast to their normal spindle-like shape, cisplatin causes cell deformation rendering cells flat and enlarged, which increases the cell area by 3-4 fold. Additionally, cisplatin decreases the topography height values for both the cytoplasmic and nuclear regions (by 40-80% and 60%, respectively). Furthermore, cisplatin increases the cytoplasmic root mean square roughness by 110-240% in correlation with the drug concentration and attenuates the nuclear RMS by 60%. Moreover, the cellular adhesion force was enhanced, while the Young's modulus elasticity was attenuated by ∼2 and ∼2.3 fold, respectively. F-actin phalloidin staining revealed that cisplatin enlarges the cell size through enhanced stress fiber formation and promotes cytoskeletal reorganization. Immunoblot analyses further revealed that the activities of focal adhesion proteins, such as FAK and c-Src, are upregulated by cisplatin through phosphorylation at tyrosine 397 and 530, respectively. Collectively, these results show that cisplatin-treated melanoma cells not only exhibit the upregulation of FAK-mediated signaling to enhance the cytoskeleton mechanical stretch, but also promote the cytoskeletal rearrangement resulting in 43% decrease in the cell modulus. These mechanisms thus promote the malignancy and invasiveness of the melanoma cells.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Chiung-Wen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan and Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Wen-Jeng Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bi-Wen Yeh
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 80811, Taiwan
| | - Chao-Hung Kuo
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan and Center for Neuropsychiatry, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan. and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
264
|
Thrombomodulin regulates monocye differentiation via PKCδ and ERK1/2 pathway in vitro and in atherosclerotic artery. Sci Rep 2016; 6:38421. [PMID: 27910925 PMCID: PMC5133669 DOI: 10.1038/srep38421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023] Open
Abstract
Thrombomodulin (TM) modulates the activation of protein C and coagulation. Additionally, TM regulates monocyte migration and inflammation. However, its role on monocyte differentiation is still unknown. We investigated the effects of TM on monocyte differentiation. First, we found that TM was increased when THP-1 cells were treated with phorbol-12-myristate-13-acetate (PMA). Overexpression of TM enhanced the macrophage markers, CD14 and CD68 expression in PMA-induced THP-1. TM siRNA depressed the PMA-induced increase of p21Cip1/WAF1 via ERK1/2-NF-kB p65 signaling. TM regulated cytoskeletal reorganization via its interaction with paxillin, cofilin, LIMK1, and PYK2. In addition, PMA-induced p21Cip1/WAF1 expression, CD14-positive cell labeling intensity and ERK1/2 phosphorylation were markedly inhibited when protein kinase C-δ (PKCδ) was knocked down. We identified that TM directly interacts with PKCδ. PKCδ was highly expressed in human atherosclerotic arteries and colocalized with TM in CD68-positive infiltrated macrophages of plaques, indicating that the coordination between TM and PKCδ in macrophages participated in atherogenesis. TM may act as a scaffold for PKCδ docking, which keeps PKCδ in the region close to the monocyte membrane to promote the activation of ERK1/2. Taken together, our findings suggest that TM-PKCδ interaction may contribute to cardiovascular disorders by affecting monocye differentiation, which may develop future therapeutic applications.
Collapse
|
265
|
Majeski HE, Yang J. The 2016 John J. Abel Award Lecture: Targeting the Mechanical Microenvironment in Cancer. Mol Pharmacol 2016; 90:744-754. [PMID: 27742780 PMCID: PMC5118638 DOI: 10.1124/mol.116.106765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Past decades of cancer research have mainly focused on the role of various extracellular and intracellular biochemical signals on cancer progression and metastasis. Recent studies suggest an important role of mechanical forces in regulating cellular behaviors. This review first provides an overview of the mechanobiology research field. Then we specially focus on mechanotransduction pathways in cancer progression and describe in detail the key signaling components of such mechanotransduction pathways and extracellular matrix components that are altered in cancer. Although our understanding of mechanoregulation in cancer is still in its infancy, some agents against key mechanoregulators have been developed and will be discussed to explore the potential of pharmacologically targeting mechanotransduction in cancer.
Collapse
Affiliation(s)
- Hannah E Majeski
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jing Yang
- Department of Pharmacology (H.E.M., J.Y.), Department of Pediatrics (J.Y.), and Biomedical Sciences Graduate Program (H.E.M., J.Y.), Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
266
|
Li GY, Wang YJ, Zhao TJ, Peng Y. Signaling pathways related to role of hepatic sinusoidal endothelial cells in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2016; 24:3933-3939. [DOI: 10.11569/wcjd.v24.i28.3933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the pathological preprocess of liver cirrhosis or liver cancer progressing from chronic liver disease. Hepatic sinusoidal endothelial cells (HSECs) are involved in the formation and development of liver fibrosis through multiple signaling pathways. In this paper, we summarize and elaborate these signaling pathways including Rho-GTPase, CXCR7-Id1/FGFR1-CXCR4, VEGFR-2/p38 mitogen-activated protein kinases (MAPK), MAPK, and TLRs. Based on these signaling pathways, we put forward new ideas for the prevention and treatment of liver fibrosis.
Collapse
|
267
|
Wang B, Qin P, Zhao H, Xia T, Wang J, Liu L, Zhu L, Xu J, Huang C, Shi Y, Du Y. Substrate stiffness orchestrates epithelial cellular heterogeneity with controlled proliferative pattern via E-cadherin/β-catenin mechanotransduction. Acta Biomater 2016; 41:169-80. [PMID: 27208640 DOI: 10.1016/j.actbio.2016.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Epithelial cellular heterogeneity has been observed in pathological tissues with abnormal matrix stiffness and cells cultured on rigid substrates. However, it remains unclear how matrix stiffness influences cellular heterogeneity formation in multi-cellular population. Here, we demonstrated that cellular heterogeneity regulated by substrate stiffness is evident starting from the initial single-cell stage (indicated by cellular Young's modulus and morphology) until the resulting multi-cellular stage (indicated by cellular functions) through distinguished proliferative patterns. Epithelial cells on soft substrate proliferated in a neighbor-dependent manner with stronger E-cadherin expression and more homogeneous E-cadherin/β-catenin localization compared to those on coverslips, which resulted in reduced heterogeneity in downstream cellular functions of the multi-cellular population. In particular, decreased heterogeneity in human embryonic stem cells upon expansion and endodermal induction was achieved on soft substrate. Overall, our work provides new insights on mechanotransduction during epithelial proliferation which regulates the formation of cellular heterogeneity and potentially provides a highly efficient approach to regulate stem cell fate by fine-tuning substrate stiffness. STATEMENT OF SIGNIFICANCE This study demonstrates that cellular heterogeneity regulated by substrate stiffness is evident starting from the initial single-cell stage until the resulting multi-cellular stage through distinguished proliferative patterns. During this process, E-cadherin/β-catenin mechanotransduction is found to play important role in substrate stiffness-regulated epithelial cellular heterogeneity formation. In particular, decreased heterogeneity in human embryonic stem cells upon expansion and endodermal induction is achieved on soft substrate. Hence, we believe that this work not only provides new insights on mechanotransduction of E-cadherin/β-catenin which regulates the formation of cellular heterogeneity during proliferation, but also potentially provides a highly efficient approach to regulate stem cell fate by fine-tuning substrate stiffness.
Collapse
|
268
|
Subbiah R, Hwang MP, Du P, Suhaeri M, Hwang JH, Hong JH, Park K. Tunable Crosslinked Cell-Derived Extracellular Matrix Guides Cell Fate. Macromol Biosci 2016; 16:1723-1734. [DOI: 10.1002/mabi.201600280] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/02/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ramesh Subbiah
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); Daejon 34113 Republic of Korea
| | - Mintai P. Hwang
- Department of Bioengineering; Swanson School of Engineering; University of Pittsburgh; Pittsburgh PA 15261 USA
| | - Ping Du
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); Daejon 34113 Republic of Korea
| | - Muhammad Suhaeri
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); Daejon 34113 Republic of Korea
| | - Jun-Ha Hwang
- School of Life Sciences and Biotechnology; Korea University; Seoul 02841 Republic of Korea
| | - Jeong-Ho Hong
- School of Life Sciences and Biotechnology; Korea University; Seoul 02841 Republic of Korea
| | - Kwideok Park
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); Daejon 34113 Republic of Korea
| |
Collapse
|
269
|
Canović EP, Zollinger AJ, Tam SN, Smith ML, Stamenović D. Tensional homeostasis in endothelial cells is a multicellular phenomenon. Am J Physiol Cell Physiol 2016; 311:C528-35. [PMID: 27488661 DOI: 10.1152/ajpcell.00037.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/28/2016] [Indexed: 01/19/2023]
Abstract
Mammalian cells of various types exhibit the remarkable ability to adapt to externally applied mechanical stresses and strains. Because of this adaptation, cells can maintain their endogenous mechanical tension at a preferred (homeostatic) level, which is essential for normal physiological functions of cells and tissues and provides protection against various diseases, including atherosclerosis and cancer. Conventional wisdom is that the cell possesses the ability to maintain tensional homeostasis on its own. Recent findings showed, however, that isolated cells cannot maintain tensional homeostasis. Here we studied the effect of multicellular interactions on tensional homeostasis by measuring traction forces in isolated bovine aortic endothelial cells and in confluent and nonconfluent cell clusters of different sizes. We found that, in isolated cells, the traction field exhibited a highly dynamic and erratic behavior. However, in cell clusters, dynamic fluctuations of the traction field became attenuated with increasing cluster size, at a rate that was faster in nonconfluent than confluent clusters. The driving mechanism of attenuation of traction field fluctuations was statistical averaging of the noise, and the impeding mechanism was nonuniform stress distribution in the clusters, which resulted from intercellular force transmission, known as a "global tug-of-war." These results show that isolated cells could not maintain tensional homeostasis, which confirms previous findings, and that tensional homeostasis is a multicellular phenomenon, which is a novel finding.
Collapse
Affiliation(s)
- Elizabeth P Canović
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and
| | - Alicia J Zollinger
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and
| | - Sze Nok Tam
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and
| | - Dimitrije Stamenović
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; and Division of Material Science and Engineering, Boston University, Brookline, Massachusetts
| |
Collapse
|
270
|
Pearson YE, Lund AW, Lin AWH, Ng CP, Alsuwaidi A, Azzeh S, Gater DL, Teo JCM. Non-invasive single-cell biomechanical analysis using live-imaging datasets. J Cell Sci 2016; 129:3351-64. [PMID: 27422102 DOI: 10.1242/jcs.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization.
Collapse
Affiliation(s)
- Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alex W H Lin
- Endothelix, Inc., 2500 West Loop, South Houston, TX 77027, USA
| | - Chee P Ng
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 Mimetas BV, JH Oortweg 19, Leiden 2333 CH, The Netherlands
| | - Aysha Alsuwaidi
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Sara Azzeh
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Deborah L Gater
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| |
Collapse
|
271
|
Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 2016; 130:152-163. [PMID: 27199371 DOI: 10.1242/jcs.180612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although it is known that a stiffening of the stroma and the rearrangement of collagen fibers within the extracellular matrix facilitate the movement of tumor cells away from the primary lesion, the underlying mechanisms responsible are not fully understood. We now show that this invasion, which can be initiated by applying tensional loads to a three-dimensional collagen gel matrix in culture, is dependent on the Rap1 GTPases (Rap1a and Rap1b, referred to collectively as Rap1). Under these conditions Rap1 activity stimulates the formation of focal adhesion structures that align with the tensional axis as single tumor cells move into the matrix. These effects are mediated by the ability of Rap1 to induce the polarized polymerization and retrograde flow of actin, which stabilizes integrins and recruits vinculin to preformed adhesions, particularly those near the leading edge of invasive cells. Rap1 activity also contributes to the tension-induced collective invasive elongation of tumor cell clusters and it enhances tumor cell growth in vivo Thus, Rap1 mediates the effects of increased extracellular tension in multiple ways that are capable of contributing to tumor progression when dysregulated.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sonja Christian
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Pamela Austin
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Irene Iu
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Marcia L Graves
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Lin Huang
- Department of Electrical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Shuo Tang
- Department of Electrical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Daniel Coombs
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Calvin D Roskelley
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Road, Vancouver, British Columbia, V6T 1Z3, Canada .,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
272
|
Aligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells. Sci Rep 2016; 6:26143. [PMID: 27189099 PMCID: PMC4870554 DOI: 10.1038/srep26143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/27/2016] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cells have an innate propensity to migrate, we believe this capability is enhanced due to the influence of nanotopography on the tumor cells’ biomechanical properties. In this study, we used an aligned nanofiber film that mimics the nanotopography in the tumor microenvironment to investigate the mechanical properties of GBM tumor cells in vitro. The data demonstrate that the cytoskeletal stiffness, cell traction stress, and focal adhesion area were significantly lower in the GBM tumor cells compared to healthy astrocytes. Moreover, the cytoskeletal stiffness was significantly reduced when cultured on aligned nanofiber films compared to smooth and randomly aligned nanofiber films. Gene expression analysis showed that tumor cells cultured on the aligned nanotopography upregulated key migratory genes and downregulated key proliferative genes. Therefore, our data suggest that the migratory potential is elevated when GBM tumor cells are migrating along aligned nanotopographical substrates.
Collapse
|
273
|
Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, Mohanan S, Morris PG, Du B, Zhou XK, Vahdat LT, Verma A, Elemento O, Hudis CA, Williams RM, Gourdon D, Dannenberg AJ, Fischbach C. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 2016; 7:301ra130. [PMID: 26290412 DOI: 10.1126/scitranslmed.3010467] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies.
Collapse
Affiliation(s)
- Bo Ri Seo
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Siyoung Choi
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jacqueline Gonzalez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Karin Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sunish Mohanan
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Patrick G Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Baoheng Du
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xi K Zhou
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY 10065, USA
| | - Linda T Vahdat
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Clifford A Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rebecca M Williams
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Andrew J Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
274
|
Mechanotransduction: Relevance to Physical Therapist Practice-Understanding Our Ability to Affect Genetic Expression Through Mechanical Forces. Phys Ther 2016; 96:712-21. [PMID: 26700270 DOI: 10.2522/ptj.20150073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022]
Abstract
Mechanotransduction, the mechanism by which mechanical perturbation influences genetic expression and cellular behavior, is an area of molecular biology undergoing rapid exploration and discovery. Cells are sensitive to forces such as shear, tension, and compression, and they respond accordingly through cellular proliferation, migration, tissue repair, altered metabolism, and even stem cell differentiation and maturation. The study of how cells sense and respond to mechanical stimulation is under robust expansion, with new scientific methods and technologies at our disposal. The application of these technologies to physical therapist practice may hold answers to some of our age-old questions while creating new avenues for our profession to optimize movement for societal health. Embracing this science as foundational to our profession will allow us to be valuable scientific collaborators with distinctive knowledge of the effects of loading. These partnerships will be key to augmenting the clinical utility of emerging therapies such as regenerative medicine, tissue engineering, and gene therapy. Collaboration with other scientific disciplines in these endeavors, along with the inclusion and application of these discoveries in our academic programs, will enhance the understanding of the impact of our practice on biologic and genetic processes. A basic understanding of mechanotransduction and its relevance to physical therapist practice is warranted to begin the conversation.
Collapse
|
275
|
Rodriguez-Hernandez I, Cantelli G, Bruce F, Sanz-Moreno V. Rho, ROCK and actomyosin contractility in metastasis as drug targets. F1000Res 2016; 5. [PMID: 27158478 PMCID: PMC4856114 DOI: 10.12688/f1000research.7909.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the spread of cancer cells around the body and the cause of the majority of cancer deaths. Metastasis is a very complex process in which cancer cells need to dramatically modify their cytoskeleton and cope with different environments to successfully colonize a secondary organ. In this review, we discuss recent findings pointing at Rho-ROCK or actomyosin force (or both) as major drivers of many of the steps required for metastatic success. We propose that these are important drug targets that need to be considered in the clinic to palliate metastatic disease.
Collapse
Affiliation(s)
- Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Gaia Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Fanshawe Bruce
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK.,Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, St. Thomas Hospital, King's College London, London, SE1 7EH, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| |
Collapse
|
276
|
Strzyz PJ, Matejcic M, Norden C. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:89-118. [PMID: 27241219 DOI: 10.1016/bs.ircmb.2016.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.
Collapse
Affiliation(s)
- P J Strzyz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - M Matejcic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
277
|
Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016; 5:cells5020017. [PMID: 27058559 PMCID: PMC4931666 DOI: 10.3390/cells5020017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli.
Collapse
Affiliation(s)
- Jing Ling Hoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Mei Hua Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Mechanobiology Institute, Singapore 117411, Singapore.
| |
Collapse
|
278
|
Manukyan G, Aminov R. Update on Pyrin Functions and Mechanisms of Familial Mediterranean Fever. Front Microbiol 2016; 7:456. [PMID: 27066000 PMCID: PMC4815028 DOI: 10.3389/fmicb.2016.00456] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Mutations in the MEFV gene, which encodes the protein named pyrin (also called marenostrin or TRIM20), are associated with the autoinflammatory disease familial Mediterranean fever (FMF). Recent genetic and immunologic studies uncovered novel functions of pyrin and raised several new questions in relation to FMF pathogenesis. The disease is clinically heterogeneous reflecting the complexity and multiplicity of pyrin functions. The main functions uncovered so far include its involvement in innate immune response such as the inflammasome assemblage and, as a part of the inflammasome, sensing intracellular danger signals, activation of mediators of inflammation, and resolution of inflammation by the autophagy of regulators of innate immunity. Based on these functions, the FMF-associated versions of pyrin confer a heightened sensitivity to a variety of intracellular danger signals and postpone the resolution of innate immune responses. It remains to be demonstrated, however, what kind of selective advantage the heterozygous carriage conferred in the past to be positively selected and maintained in populations from the Mediterranean basin.
Collapse
Affiliation(s)
- Gayane Manukyan
- Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences Yerevan, Armenia
| | - Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen Aberdeen, UK
| |
Collapse
|
279
|
Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction. Gels 2016; 2:gels2010012. [PMID: 30674144 PMCID: PMC6318664 DOI: 10.3390/gels2010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.
Collapse
|
280
|
Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Tissue Eng Part C Methods 2016; 22:189-98. [DOI: 10.1089/ten.tec.2015.0281] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Shangwu Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Qin Zhang
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Nakamoto
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
281
|
Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. TECHNOLOGY 2016; 4:1-8. [PMID: 27785459 PMCID: PMC5077250 DOI: 10.1142/s2339547816400070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Neural differentiation is largely dependent on extracellular signals within the cell microenvironment. These extracellular signals are mainly in the form of soluble factors that activate intracellular signaling cascades that drive changes in the cell nucleus. However, it is becoming increasingly apparent that the physical microenvironment provides signals that can also influence lineage commitment and very low modulus surfaces has been repeatedly demonstrated to promote neurogenesis. The molecular mechanisms governing mechano-induced neural differentiation are still largely uncharacterized; however, a growing body of evidence indicates that physical stimuli can regulate known signaling cascades and transcription factors involved in neural differentiation. Understanding how the physical environment affects neural differentiation at the molecular level will enable research and design of materials that will eventually enhance neural stem cell (NSC) differentiation, homogeneity and specificity.
Collapse
Affiliation(s)
- Ryan Thompson
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA
| | - Christina Chan
- Cell and Molecular Biology Program, East Lansing, Michigan 48824, USA; Department of Chemical Engineering and Materials Science, East Lansing, Michigan 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
282
|
Wu SM, Shih LH, Lee JY, Shen YJ, Lee HH. Estrogen enhances activity of Wnt signaling during osteogenesis by inducing Fhl1 expression. J Cell Biochem 2016; 116:1419-30. [PMID: 25676585 DOI: 10.1002/jcb.25102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023]
Abstract
Estrogen is a crucial hormone for osteoclast inhibition and for preventing osteoporosis. However, the hormone's role in osteoblast growth and differentiation remains unclear. The complexity of estrogen's role in guiding osteoblast behavior arises partly from crosstalk with other signaling pathways, including Wnt signaling. In this study, we show that the Wnt agonist, LiCl, induced Fhl1 gene expression, which substantially enhanced osteoblast differentiation. Staining with alizarin red revealed that MC3T3-E1 mineralization was enhanced by overexpression of Fhl1. In addition, Fhl1 promoted the expression of the osteogenic markers, Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and osteopontin (OPN), whereas MC3T3-E1 cells with gene knockdown of Fhl1 exhibited limited mineralization and expression of Runx2, OCN, and OPN. We further demonstrate evidences from quantitative reverse transcription real-time polymerase chain reaction and reporter assay that Fhl1 expression was synergistically stimulated by estrogen (E2) and LiCl, but reduced by the estrogen-receptor inhibitor fulvestrant (ICI 182,780). However, estrogen could not enhance osteogenesis while Fhl1 expression was knocked down. Because estrogen and Wnt signaling frequently interact in developmental processes, we propose that Fhl1 can be an acting molecule mediating both signaling pathways during osteogenesis.
Collapse
Affiliation(s)
- Shao-Min Wu
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Lan-Hsin Shih
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Jing-Yu Lee
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Yi-Jun Shen
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Hu-Hui Lee
- Department of Bio-Agricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| |
Collapse
|
283
|
Gao Y, Zhou B, Wu X, Gao X, Zeng X, Xie J, Wang C, Ye Z, Wan J, Wen W. Three Dimensional and Homogenous Single Cell Cyclic Stretch within a Magnetic Micropillar Array (mMPA) for a Cell Proliferation Study. ACS Biomater Sci Eng 2016; 2:65-72. [PMID: 33418644 DOI: 10.1021/acsbiomaterials.5b00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The physical properties of the extracellular matrix (ECM) are a key aspect of the cell microenvironment. A biological system is a highly dynamic organization. In our study, we designed and prepared a large area of magnetic PDMS elastomer micropillar array (mMPA) with robust and tunable movement for cell mechanics study. The rotational movement frequency of the micropillars could be precisely controlled by a home-built magnetic actuation apparatus. Cells cultured in the mMPA could be suspended in between two micropillars in a single level and exhibited a 3D structure. With the rotational movement of the micropillar, a homogeneous stretchable force could be applied to a single cell along it long axis with various frequencies. We exclusively studied the influence of dynamic properties of the micropillar movement on cell behaviors. We found that, by fixing the amplitude of the stretchable force, the frequency-based properties of the cell microenvironment could significantly change cell functions. The cell behaviors are dependent on the micropillar movement frequency and a transition from proliferation to apoptosis/death exhibited with the increment of the force application frequency.
Collapse
Affiliation(s)
- Yibo Gao
- Environmental Science Programs, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bingpu Zhou
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoxiao Wu
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinghua Gao
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiping Zeng
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiao Xie
- Soft Matter and Interdisciplinary Research Institute, College of Physics, Chongqing University, Chongqing, China
| | - Cong Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziran Ye
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Wan
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Weijia Wen
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
284
|
La WG, Jang J, Kim BS, Lee MS, Cho DW, Yang HS. Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Adv 2016. [DOI: 10.1039/c5ra20218c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3D-printed bioimplants for enhanced bone defect healing using decellularized and demineralized ECM coating.
Collapse
Affiliation(s)
- Wan-Gun La
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Byoung Soo Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
- Dankook University
- Cheonan 330-714
- Republic of Korea
| |
Collapse
|
285
|
He X, Lee B, Jiang Y. Cell-ECM Interactions in Tumor Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 936:73-91. [PMID: 27739043 DOI: 10.1007/978-3-319-42023-3_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.
Collapse
Affiliation(s)
- Xiuxiu He
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
286
|
Gupta P, Hari Narayana S. N. G, Kasiviswanathan U, Agarwal T, K. S, Mukhopadhyay D, Pal K, Giri S, Maiti TK, Banerjee I. Substrate stiffness does affect the fate of human keratinocytes. RSC Adv 2016. [DOI: 10.1039/c5ra19947f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epithelial cells response to the varying stiffness of polydimethyl siloxane (PDMS) substrate.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | | | - Uvanesh Kasiviswanathan
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - Tarun Agarwal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
- Department of Biotechnology
| | - Senthilguru K.
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - Devdeep Mukhopadhyay
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Kunal Pal
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| | - Supratim Giri
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| | - Tapas K. Maiti
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Indranil Banerjee
- Department of Biotechnology & Medical Engineering
- National Institute of Technology
- Rourkela-769008
- India
| |
Collapse
|
287
|
Albert PJ, Schwarz US. Optimizing micropattern geometries for cell shape and migration with genetic algorithms. Integr Biol (Camb) 2016; 8:741-50. [DOI: 10.1039/c6ib00061d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
288
|
Zhang H, Cooper LF, Zhang X, Zhang Y, Deng F, Song J, Yang S. Titanium nanotubes induce osteogenic differentiation through the FAK/RhoA/YAP cascade. RSC Adv 2016. [DOI: 10.1039/c6ra04002k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TNT topography restricts cell spreading, impairs the FAK recruitment in FAs, and thereby attenuates RhoA activity as well as cytoskeleton formation, which in turn expels YAP from that cell nucleus to the cytoplasm and initiates osteodifferentiation.
Collapse
Affiliation(s)
- He Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Lyndon F. Cooper
- Department Head
- Oral Biology
- University of Illinois at Chicago
- College of Dentistry
- Chicago
| | - Xiaonan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Yi Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Feng Deng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Sheng Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| |
Collapse
|
289
|
Li Y, Kilian KA. Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Adv Healthc Mater 2015; 4:2780-96. [PMID: 26592366 PMCID: PMC4780579 DOI: 10.1002/adhm.201500427] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Indexed: 12/20/2022]
Abstract
Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Materials Science and Engineering, Department of Bioengineering, Institute for Genomic Biology, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana IL, 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, Department of Bioengineering, Institute for Genomic Biology, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana IL, 61801
| |
Collapse
|
290
|
Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 2015; 7:044106. [DOI: 10.1088/1758-5090/7/4/044106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
291
|
Singh SP, Schwartz MP, Tokuda EY, Luo Y, Rogers RE, Fujita M, Ahn NG, Anseth KS. A synthetic modular approach for modeling the role of the 3D microenvironment in tumor progression. Sci Rep 2015; 5:17814. [PMID: 26638791 PMCID: PMC4671067 DOI: 10.1038/srep17814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Here, we demonstrate the flexibility of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels for modeling tumor progression. The PEG hydrogels were formed using thiol-ene chemistry to incorporate a matrix metalloproteinase-degradable peptide crosslinker (KKCGGPQG↓IWGQGCKK) permissive to proteolytic remodeling and the adhesive CRGDS peptide ligand. Tumor cell function was investigated by culturing WM239A melanoma cells on PEG hydrogel surfaces or encapsulating cells within the hydrogels, and either as monocultures or indirect (non-contact) cocultures with primary human dermal fibroblasts (hDFs). WM239A cluster size and proliferation rate depended on the shear elastic modulus for cells cultured on PEG hydrogels, while growth was inhibited by coculture with hDFs regardless of hydrogel stiffness. Cluster size was also suppressed by hDFs for WM239A cells encapsulated in PEG hydrogels, which is consistent with cells seeded on top of hydrogels. Notably, encapsulated WM239A clusters and single cells adopted invasive phenotypes in the hDF coculture model, which included single cell and collective migration modes that resembled invasion from human melanoma patient-derived xenograft tumors encapsulated in equivalent PEG hydrogels. Our combined results demonstrate that peptide-functionalized PEG hydrogels provide a useful platform for investigating aspects of tumor progression in 2D and 3D microenvironments, including single cell migration, cluster growth and invasion.
Collapse
Affiliation(s)
- S P Singh
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - M P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - E Y Tokuda
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Y Luo
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - R E Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - M Fujita
- Department of Dermatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America.,Denver Veterans Affairs Medical Center, Denver, Colorado, United States of America
| | - N G Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - K S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America.,Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
292
|
Venoji R, Amirtharaj GJ, Kini A, Vanaparthi S, Venkatraman A, Ramachandran A. Enteral glutamine differentially regulates Nrf 2 along the villus-crypt axis of the intestine to enhance glutathione levels. J Gastroenterol Hepatol 2015; 30:1740-7. [PMID: 26095579 DOI: 10.1111/jgh.13019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/23/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Glutamine is an important energy source for the intestinal epithelium, and its supplementation protects intestinal epithelial cells by induction of glutathione. However, mechanisms of glutathione induction in cells at various stages of differentiation along the crypt to villus axis are not well understood. This study examined induction of glutathione in response to glutamine along the intestinal villus-crypt axis and evaluated regulatory mediators involved in the process. METHODS Animals were administered 4% glutamine in feed for 7 days, following which enterocytes at various stages of differentiation were isolated and glutathione levels and signaling mediators involved in its regulation were studied. RESULTS In control animals, glutathione levels were higher in the intestinal crypt than in the villus or middle region. This was accompanied by elevated expression of the modifier subunit of glutathione synthetase (GCLM) and the transcription factor Nrf2 when compared with cells from the villus and middle regions. These levels were further enhanced by glutamine throughout the intestine, although the effects were more dramatic in the crypt. In parallel to glutathione induction, glutamine supplementation also altered actin dynamics and proliferation in cells of the crypt. CONCLUSIONS These results suggest that the variation of glutathione levels along the villus-crypt axis in the intestine is due to gradients in expression of mediators such as glutamate cysteine ligase modifier subunit and Nrf2. The protective effects of glutamine supplementation seem to be most pronounced in the crypt, where it upregulates proliferation, glutathione levels and alters actin dynamics.
Collapse
Affiliation(s)
- Raghupathy Venoji
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Gnanaraj Jayakumar Amirtharaj
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Archana Kini
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Sivakumar Vanaparthi
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Aparna Venkatraman
- Center for Stem Cell Research, Christian Medical College, Vellore, India
| | - Anup Ramachandran
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
293
|
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2015; 18:539-553. [PMID: 28458612 PMCID: PMC5407188 DOI: 10.1016/j.mattod.2015.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell-cell, cell-matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.
Collapse
Affiliation(s)
- Waseem Asghar
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rami El Assal
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hadi Shafiee
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
294
|
Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL. Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells. Sci Rep 2015; 5:16895. [PMID: 26592929 PMCID: PMC4655352 DOI: 10.1038/srep16895] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Mechanical cues direct the lineage commitment of mesenchymal stem cells (MSCs). In this study, we identified the operative molecular mechanisms through which dynamic tensile loading (DL) regulates changes in chromatin organization and nuclear mechanics in MSCs. Our data show that, in the absence of exogenous differentiation factors, short term DL elicits a rapid increase in chromatin condensation, mediated by acto-myosin based cellular contractility and the activity of the histone-lysine N-methyltransferase EZH2. The resulting change in chromatin condensation stiffened the MSC nucleus, making it less deformable when stretch was applied to the cell. We also identified stretch induced ATP release and purinergic calcium signaling as a central mediator of this chromatin condensation process. Further, we showed that DL, through differential stabilization of the condensed chromatin state, established a ‘mechanical memory’ in these cells. That is, increasing strain levels and number of loading events led to a greater degree of chromatin condensation that persisted for longer periods of time after the cessation of loading. These data indicate that, with mechanical perturbation, MSCs develop a mechanical memory encoded in structural changes in the nucleus which may sensitize them to future mechanical loading events and define the trajectory and persistence of their lineage specification.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen D Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - David A Lee
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| |
Collapse
|
295
|
Shemesh J, Jalilian I, Shi A, Heng Yeoh G, Knothe Tate ML, Ebrahimi Warkiani M. Flow-induced stress on adherent cells in microfluidic devices. LAB ON A CHIP 2015; 15:4114-27. [PMID: 26334370 DOI: 10.1039/c5lc00633c] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transduction of mechanical forces and chemical signals affect every cell in the human body. Fluid flow in systems such as the lymphatic or circulatory systems modulates not only cell morphology, but also gene expression patterns, extracellular matrix protein secretion and cell-cell and cell-matrix adhesions. Similar to the role of mechanical forces in adaptation of tissues, shear fluid flow orchestrates collective behaviours of adherent cells found at the interface between tissues and their fluidic environments. These behaviours range from alignment of endothelial cells in the direction of flow to stem cell lineage commitment. Therefore, it is important to characterize quantitatively fluid interface-dependent cell activity. Common macro-scale techniques, such as the parallel plate flow chamber and vertical-step flow methods that apply fluid-induced stress on adherent cells, offer standardization, repeatability and ease of operation. However, in order to achieve improved control over a cell's microenvironment, additional microscale-based techniques are needed. The use of microfluidics for this has been recognized, but its true potential has emerged only recently with the advent of hybrid systems, offering increased throughput, multicellular interactions, substrate functionalization on 3D geometries, and simultaneous control over chemical and mechanical stimulation. In this review, we discuss recent advances in microfluidic flow systems for adherent cells and elaborate on their suitability to mimic physiologic micromechanical environments subjected to fluid flow. We describe device design considerations in light of ongoing discoveries in mechanobiology and point to future trends of this promising technology.
Collapse
Affiliation(s)
- Jonathan Shemesh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
296
|
Chong Seow Khoon M. Experimental models of bone metastasis: Opportunities for the study of cancer dormancy. Adv Drug Deliv Rev 2015; 94:141-50. [PMID: 25572003 DOI: 10.1016/j.addr.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/19/2023]
Abstract
Skeletal metastasis is prevalent in many cancers, and has been the subject of intense research, yielding innovative models to study the multiple stages of metastasis. It is now evident that, in the early stages of metastatic spread, disseminated tumour cells in the bone undergo an extended period of growth arrest in response to the microenvironment, a phenomenon known as "dormancy". Dormancy has been implicated with drug resistance, while enforced dormancy has also been seen as a radical method to control cancer, and engineering of dormant states has emerged as a novel clinical strategy. Understanding of the subject, however, is limited by the availability of models to describe early stages of metastatic spread. This mini-review provides a summary of experimental models currently being used in the study of bone metastasis and the applications of these models in the study of dormancy. Current research in developing improved models is described, leading to a discussion of challenges involved in future developments.
Collapse
|
297
|
Drifka CR, Tod J, Loeffler AG, Liu Y, Thomas GJ, Eliceiri KW, Kao WJ. Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Mod Pathol 2015; 28:1470-80. [PMID: 26336888 DOI: 10.1038/modpathol.2015.97] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be one of the most difficult diseases to manage with one of the highest cancer mortality rates. This is due to several factors including nonspecific symptomatology and subsequent diagnosis at an advanced stage, aggressive metastatic behavior that is incompletely understood, and limited response to current therapeutic regimens. As in other cancers, there is great interest in studying the role of the tumor microenvironment in pancreatic ductal adenocarcinoma and whether components of this environment could serve as research and therapeutic targets. In particular, attention has turned toward the desmoplastic collagen-rich pancreatic ductal adenocarcinoma stroma for both biological and clinical insight. In this study, we used quantitative second harmonic generation microscopy to investigate stromal collagen organization and structure in human pancreatic ductal adenocarcinoma pathology tissues compared with non-neoplastic tissues. Collagen topology was characterized in whole-tissue microarray cores and at specific pathology-annotated epithelial-stroma interfaces representing 241 and 117 patients, respectively. We quantitatively demonstrate that a unique collagen topology exists in the periductal pancreatic ductal adenocarcinoma stroma. Specifically, collagen around malignant ducts shows increased alignment, length, and width compared with normal ducts and benign ducts in a chronic pancreatitis background. These findings indicate that second harmonic generation imaging can provide quantitative information about fibrosis that complements traditional histopathologic insights and can serve as a rich field for investigation into pathogenic and clinical implications of reorganized collagen as a pancreatic ductal adenocarcinoma disease marker.
Collapse
Affiliation(s)
- Cole R Drifka
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Jo Tod
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Agnes G Loeffler
- Department of Pathology, University of Wisconsin, Madison, WI, USA.,Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Gareth J Thomas
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA.,Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA.,Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Surgery, University of Wisconsin, Madison, WI, USA.,School of Pharmacy, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
298
|
Chin VT, Nagrial AM, Chou A, Biankin AV, Gill AJ, Timpson P, Pajic M. Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 2015; 17:e17. [PMID: 26507949 PMCID: PMC4836205 DOI: 10.1017/erm.2015.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer.
Collapse
Affiliation(s)
- Venessa T. Chin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Adnan M. Nagrial
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- The Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Anatomical Pathology, Sydpath, St Vincent's Hospital, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW 2200, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, UK
| | - Anthony J. Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
- University of Sydney, Sydney, NSW 2006, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Australia
| |
Collapse
|
299
|
Ford AJ, Jain G, Rajagopalan P. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater 2015; 24:220-7. [PMID: 26117313 DOI: 10.1016/j.actbio.2015.06.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/08/2015] [Accepted: 06/23/2015] [Indexed: 02/08/2023]
Abstract
The deposition of extracellular matrix (ECM) proteins by hepatic cells during fibrosis leads to the stiffening of the organ and perturbed cellular functions. Changes in the elasticity of liver tissue are manifested by altered phenotype in hepatic cells. We have investigated changes in human liver sinusoidal endothelial cells (hLSECs) that occur as the elastic modulus of their matrix transitions from healthy (6kPa) to fibrotic (36kPa) conditions. We have also investigated the role played by Kupffer cells in the dedifferentiation of hLSECs. We report the complete loss of fenestrae and the expression of CD31 at the surface as a result of increasing elastic moduli. LSECs exhibited a greater number of actin stress fibers and vinculin focal adhesion on the stiffer substrate, as well. A novel finding is that these identical trends can be obtained on soft (6kPa) substrates by introducing an inflamed microenvironment through the addition of Kupffer cells. hLSEC monocultures on 6kPa gels exhibited fenestrae that were 140.7±52.6nm in diameter as well as a lack of surface CD31 expression. Co-culturing hLSECs with rat Kupffer cells (rKCs) on 6kPa substrates, resulted in the complete loss of fenestrae, an increase in CD31 expression and in a well-organized cytoskeleton. These results demonstrate that the increasing stiffness of liver matrices does not solely result in changes in hLSEC phenotype. Even on soft substrates, culturing hLSECs in an inflamed microenvironment can result in their dedifferentiation. Our findings demonstrate the interplay between matrix elasticity and inflammation in the progression of hepatic fibrosis.
Collapse
|
300
|
Goreczny GJ, Wormer DB, Turner CE. A Simplified System for Evaluating Cell Mechanosensing and Durotaxis In Vitro. J Vis Exp 2015:e52949. [PMID: 26381826 DOI: 10.3791/52949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The composition and mechanical properties of the extracellular matrix are highly variable between tissue types. This connective tissue stroma diversity greatly impacts cell behavior to regulate normal and pathologic processes including cell proliferation, differentiation, adhesion signaling and directional migration. In this regard, the innate ability of certain cell types to migrate towards a stiffer, or less compliant matrix substrate is referred to as durotaxis. This phenomenon plays an important role during embryonic development, wound repair and cancer cell invasion. Here, we describe a straightforward assay to study durotaxis, in vitro, using polydimethylsiloxane (PDMS) substrates. Preparation of the described durotaxis chambers creates a rigidity interface between the relatively soft PDMS gel and a rigid glass coverslip. In the example provided, we have used these durotaxis chambers to demonstrate a role for the cdc42/Rac1 GTPase activating protein, cdGAP, in mechanosensing and durotaxis regulation in human U2OS osteosarcoma cells. This assay is readily adaptable to other cell types and/or knockdown of other proteins of interests to explore their respective roles in mechanosignaling and durotaxis.
Collapse
Affiliation(s)
- Gregory J Goreczny
- Department of Cell & Developmental Biology, SUNY Upstate Medical University
| | - Duncan B Wormer
- Department of Cell & Developmental Biology, SUNY Upstate Medical University
| | | |
Collapse
|