251
|
Rohwedel J, Guan K, Hegert C, Wobus AM. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol In Vitro 2001; 15:741-53. [PMID: 11698176 DOI: 10.1016/s0887-2333(01)00074-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Primary cultures or established cell lines of vertebrates are commonly used to analyse the mutagenic, embryotoxic or teratogenic potential of environmental factors, drugs and xenobiotics in vitro. However, these cellular systems do not include developmental processes from early embryonic stages up to terminally differentiated cell types. An alternative approach has been offered by permanent lines of pluripotent stem cells of embryonic origin, such as embryonic carcinoma (EC), embryonic stem (ES) and embryonic germ (EG) cells. The undifferentiated stem cell lines are characterized by nearly unlimited self-renewal capacity and have been shown to differentiate in vitro into cells of all three primary germ layers. Pluripotent embryonic stem cell lines recapitulate cellular developmental processes and gene expression patterns of early embryogenesis during in vitro differentiation, data which are summarized in this review. In addition, recent studies are presented which investigated mutagenic, cytotoxic and embryotoxic effects of chemical substances using in vitro systems of pluripotent embryonic stem cells. Furthermore, an outlook is given on future molecular technologies using embryonic stem cells in developmental toxicology and embryotoxicology.
Collapse
Affiliation(s)
- J Rohwedel
- Dept of Medical Molecular Biology, University of Lübeck, D-23538, Lübeck, Germany
| | | | | | | |
Collapse
|
252
|
Abstract
Embryonic stem cells are derived from the inner cell mass of the pre-implantation blastocyst, and can both self-renew and differentiate into all the cells and tissues of the body. The embryonic stem cell is an unsurpassed starting material to begin to understand a critical, largely inaccessible, period of development, as well as an important source of cells for transplantation and gene therapy. Despite their potential, attempts to obtain specific cell types from embryonic stem cells have been only partially successful because many of the growth factor combinations and developmental control genes involved in cell type restricted differentiation are unknown. This article summarizes some of the recent advances in promoting lineage restricted differentiation of embryonic stem cells, focusing on growth factor manipulation, or genetically altering embryonic stem cells to produce a desired phenotype. The two approaches epitomize current scientific concerns regarding the therapeutic use of these cells; genetic alterations will produce more pure cells with the risk of increasing the likelihood of malignant transformation; epigenetic methods for the manipulation of stem cell phenotype are often incomplete and remaining pluripotent cells are likely to form teratomas. As more is known about lineage specification during development, it will be possible to more precisely control cell type specification.
Collapse
Affiliation(s)
- K S O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0616, USA.
| |
Collapse
|
253
|
Kim J, Choi SC, Kim TH, Kim KD, Cho SY, Park SS, Lee SH. Isolation of neuronal precursors from differentiating P19 embryonal carcinoma cells by neuronal T alpha 1-promoter-driven GFP. Int J Dev Neurosci 2001; 19:631-8. [PMID: 11705667 DOI: 10.1016/s0736-5748(01)00049-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The induction of pluripotent P19 embryonal carcinoma (EC) cells with retinoic acid results in their differentiation into cells that resemble neurons, glia, and fibroblasts. To isolate and enrich the developing neurons from heterogeneously differentiating P19 EC cells, we used a recently introduced protocol combining the expression of green fluorescent protein (GFP) driven by a tissue-specific promoter and fluorescence-activated cell sorting. Cells were transfected with the gene for GFP, which is under the control of the neuronal T alpha 1 tubulin promoter. After four days of retinoic acid treatment, GFP was specifically detected in cells undergoing neuronal differentiation. Sorting of fluorescent differentiating P19 EC transfectants yielded populations highly enriched in neuronal precursors and neurons. Immunoreactivity for nestin and neurofilament was observed in 80 and 25% of the sorted cell population, respectively. These results demonstrate that differentiated neuronal precursor cells can be efficiently isolated from differentiating pluripotent embryonic cells in vitro, suggesting that this method can reproducibly provide homogeneous materials for further studies on neurogenesis.
Collapse
Affiliation(s)
- J Kim
- Division of Life Sciences, Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
254
|
Turksen K, Troy TC. Claudin-6: a novel tight junction molecule is developmentally regulated in mouse embryonic epithelium. Dev Dyn 2001; 222:292-300. [PMID: 11668606 DOI: 10.1002/dvdy.1174] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem (ES) cells differentiating into embryoid bodies (EBs) have been shown to mimic events of very early development and have become a convenient system in which to identify and study early epithelial specific genes. We describe here the primary structure of a mouse epithelial-specific tight junction gene and its expression patterns in differentiating ES cell-derived EBs in vitro. Sequencing of a clone identified by differential display of 4- vs. 6-day-old EB cells revealed it to overlap exactly with a larger cDNA clone (20M24) that had been isolated, but not characterised, in a screen of an ectodermal library. Complete sequencing and analysis of 20M24 revealed an open reading frame for a 219-amino acid protein with structural features of a transmembrane protein. In cell-free reticulocyte lysates, a 20M24 cDNA corresponding to the open reading frame (660 bp) directed the synthesis of a approximately 23-kDa protein that was localized to cell membranes at cell-cell junctions in transfected HEK-293 cells. Database searches indicated that the cDNA was identical to a recently identified member of the Claudin tight junction family, namely Claudin-6. ES cell cultures were used to further examine the expression pattern of Claudin-6 by whole mount in situ hybridisation during aggregation-induced commitment to epithelial differentiation in vitro. The results indicate that Claudin-6 is one of the earliest molecules to be expressed in ES cells committed to the epithelial fate, and the onset of its expression coincides with the expression of the early epithelial marker, keratin 8 (K8). The initiation of expression of Claudin-6 in vitro is dependent upon plating density as well as serum components. In addition, it was found that Claudin-6 expression is inhibited by Noggin, the Bone Morphogenic Protein (BMP)-signalling pathway inhibitor, suggesting that BMPs may be involved in Claudin-6 expression and epithelialization. These studies establish Claudin-6 as a very early marker of epithelialization and provide evidence that the BMP signalling pathway may be one of the ways that its expression is regulated. These studies also support the power of in vitro ES cell technology to identify and screen novel molecules involved in the early epithelialization of the mouse embryo.
Collapse
Affiliation(s)
- K Turksen
- Ottawa Health Research Institute, Division of Hormones, Growth and Development, 725 Parkdale Ave., Ottawa, Ontario K1Y 4E9, Canada.
| | | |
Collapse
|
255
|
Xu X, Cong X, Zhang S, Yan Y. Effect of kinase-negativeEGFR gene on differentiation of embryonic germ cell line EG4. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf03183390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
256
|
Göllner H, Dani C, Phillips B, Philipsen S, Suske G. Impaired ossification in mice lacking the transcription factor Sp3. Mech Dev 2001; 106:77-83. [PMID: 11472836 DOI: 10.1016/s0925-4773(01)00420-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sp3 is a ubiquitously expressed member of the Sp family of transcription factors. Recently, the mouse Sp3 gene has been disrupted by homologous recombination. Sp3 null mice die immediately after birth due to respiratory failure. In addition, these mice show a pronounced defect in late tooth formation. Here we show that Sp3 is also required for proper skeletal ossification. Both endochondral and intramembranous ossification are impaired in E18.5 Sp3-/- embryos. The delay in ossification is reflected by reduced expression of the osteoblast-specific marker gene osteocalcin. The transcription factor - core binding factor 1 (Cbfa1)--that is essential for bone formation, however, is expressed at normal levels. In vitro differentiation studies using Sp3-/- ES cells further support the conclusion that Sp3 is needed for correct bone formation. The capacity of Sp3-/- cells to undergo osteogenic differentiation in vitro is reduced and osteocalcin expression is significantly diminished. Our studies establish Sp3 as an essential transcription factor for late bone development.
Collapse
Affiliation(s)
- H Göllner
- Institut für Molekularbiologie und Tumorforschung, Emil-Mannkopff-Strasse 2, 35037, Marburg, Germany
| | | | | | | | | |
Collapse
|
257
|
Phillips BW, Belmonte N, Vernochet C, Ailhaud G, Dani C. Compactin enhances osteogenesis in murine embryonic stem cells. Biochem Biophys Res Commun 2001; 284:478-84. [PMID: 11394905 DOI: 10.1006/bbrc.2001.4987] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic stem (ES) cells have the capacity to differentiate into various cell types in vitro. In this study, we show that retinoic acid is important for the commitment of ES cells into osteoblasts. Culturing retinoic acid treated ES cells in the presence of the osteogenic supplements ascorbic acid and beta-glycerophosphate resulted in the expression of several osteoblast marker genes, osteocalcin, alkaline phosphatase, and osteopontin. However, there was only a slight amount of mineralized matrix secretion. Addition of bone morphogenic protein-2 or compactin, a drug of the statin family of HMG-CoA reductase inhibitors, resulted in a greatly enhanced formation of bone nodules. Compactin did not modify the expression of osteogenic markers, but at the late stage of differentiation promoted an increase in BMP-2 expression. These results establish ES-cell derived osteogenesis as an effective model system to study the molecular mechanisms by which the statin compactin promotes osteoblastic differentiation and bone nodule formation.
Collapse
Affiliation(s)
- B W Phillips
- Centre de Biochimie (UMR 6543 CNRS), Faculté de Sciences, Université de Nice-Sophia Antipolis, Parc Valrose, Nice, 06108, France
| | | | | | | | | |
Collapse
|
258
|
Abstract
Embryonic stem (ES) cells are pluripotent cell lines established from undifferentiated embryonic cells characterized by nearly unlimited self-renewal and differentiation capacity. During differentiation in vitro, ES cells were found to be able to develop into specialized somatic cells types and to recapitulate processes of early embryonic development. These properties allow to use ES cells as model system for studying early embryonic development by gain- or loss-of-function approaches, or to investigate the effects of drugs and environmental factors on differentiation and cell function in embryotoxicity and pharmacology. Now, ES cells derived of human blastocysts may be used for the generation of somatic precursor or differentiated cells in cell and tissue therapy. The review presents data of mouse ES cell differentiation and gives an outlook on future perspectives and problems of using human ES cells in regenerative medicine.
Collapse
Affiliation(s)
- A M Wobus
- In Vitro Differentiation Group, Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466, Gatersleben, Germany.
| |
Collapse
|
259
|
Labat ML. Stem cells and the promise of eternal youth: embryonic versus adult stem cells. Biomed Pharmacother 2001; 55:179-85. [PMID: 11393803 DOI: 10.1016/s0753-3322(01)00057-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
260
|
Lako M, Lindsay S, Lincoln J, Cairns PM, Armstrong L, Hole N. Characterisation of Wnt gene expression during the differentiation of murine embryonic stem cells in vitro: role of Wnt3 in enhancing haematopoietic differentiation. Mech Dev 2001; 103:49-59. [PMID: 11335111 DOI: 10.1016/s0925-4773(01)00331-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first haematopoietic stem cells in mammalian and non-mammalian vertebrates are derived from mesoderm, therefore genes that are important in mesoderm patterning and formation might also play an essential role in haematopoietic stem cell commitment and differentiation. Several members of the Wnt gene family are expressed in very specific patterns in embryonic mesoderm and have previously been shown to act as haematopoietic growth factors. In order to investigate in detail the role that such secreted proteins play in the biology of early haematopoietic commitment we have used in vitro differentiation of murine embryonal stem (ES) as a model system. Using reverse-transcriptase polymerase chain reaction analysis we identified several candidate Wnt genes whose expression pattern was consistent with a role in generation, maintenance and/or differentiation of early haematopoietic progenitor cells including three genes previously shown to have a role in haematopoiesis (Wnt5a, Wnt2b and Wnt10b). The most interesting candidate was Wnt3, because of its strong and regulated expression during in vitro differentiation of murine ES cells as well as its early embryonic expression in mesoderm. Overexpression of Wnt3 was sufficient to cause a consistent increase in the number of embryoid bodies committing to haematopoiesis further strengthening the evidence that this protein can enhance haematopoietic commitment during in vitro differentiation of ES cells. In addition, overexpression of Wnt3 caused a marked upregulation of Brachyury expression, thus providing some evidence that Brachyury may be one of the target genes for the Wnt3 signalling pathway.
Collapse
Affiliation(s)
- M Lako
- Department of Biological Sciences, South Road, University of Durham, Durham DH1 3LE, UK.
| | | | | | | | | | | |
Collapse
|
261
|
Abstract
The major transcriptional factors involved in the adipogenic process include proteins belonging to the CCAAT/enhancer binding protein family, peroxisome proliferator-activated receptor gamma, and adipocyte determination and differentiation dependent factor 1, also known as sterol regulatory element-binding protein 1. This process has been characterized with the aid of cell lines that represent various stages in the path of adipocyte commitment, ranging from pluripotent mesodermal fibroblasts to preadipocytes. Molecular analyses have led to a cascade model for adipogenesis based on timed expression of CCAAT/enhancer-binding proteins and peroxisome proliferator-activated receptor gamma. Gene targeting and transgenic-mouse technologies, which allow the manipulation of endogenous genes for these transcription factors, have also contributed to the understanding of adipogenesis. This review aims to integrate this information to gain an understanding of the transcriptional regulation of fat cell formation.
Collapse
Affiliation(s)
- S M Rangwala
- Departments of Medicine and Genetics and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
262
|
Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. TISSUE ENGINEERING 2001; 7:89-99. [PMID: 11224927 DOI: 10.1089/107632700300003323] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pluripotent embryonic stem (ES) cells have the potential to differentiate to all fetal and adult cell types and might represent a useful cell source for tissue engineering and repair. Here we show that differentiation of ES cells toward the osteoblast lineage can be enhanced by supplementing serum-containing media with ascorbic acid, beta-glycerophosphate, and/or dexamethasone/retinoic acid or by co-culture with fetal murine osteoblasts. ES cell differentiation into osteoblasts was characterized by the formation of discrete mineralized bone nodules that consisted of 50-100 cells within an extracellular matrix of collagen-1 and osteocalcin. Dexamethasone in combination with ascorbic acid and beta-glycerophosphate induced the greatest number of bone nodules and was dependent on time of stimulation with a sevenfold increase when added to ES cultures after, but not before, 14 days. Co-culture with fetal osteoblasts also provided a potent stimulus for osteogenic differentiation inducing a fivefold increase in nodule number relative to ES cells cultured alone. These data demonstrate the application of a quantitative assay for the derivation of osteoblast lineage progenitors from pluripotent ES cells. This could be applied to obtain purified osteoblasts to analyze mechanisms of osteogenesis and for use of ES cells in skeletal tissue repair.
Collapse
Affiliation(s)
- L D Buttery
- Tissue Engineering Centre, Imperial College School of Medicine, London SW10 9NH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000; 290:134-8. [PMID: 11021798 DOI: 10.1126/science.290.5489.134] [Citation(s) in RCA: 388] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genes that control the early stages of adipogenesis remain largely unknown. Here, we show that murine GATA-2 and GATA-3 are specifically expressed in white adipocyte precursors and that their down-regulation sets the stage for terminal differentiation. Constitutive GATA-2 and GATA-3 expression suppressed adipocyte differentiation and trapped cells at the preadipocyte stage. This effect is mediated, at least in part, through the direct suppression of peroxisome proliferator-activated receptor gamma. GATA-3-deficient embryonic stem cells exhibit an enhanced capacity to differentiate into adipocytes, and defective GATA-2 and GATA-3 expression is associated with obesity. Thus, GATA-2 and GATA-3 regulate adipocyte differentiation through molecular control of the preadipocyte-adipocyte transition.
Collapse
Affiliation(s)
- Q Tong
- Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
264
|
Kramer J, Hegert C, Guan K, Wobus AM, Müller PK, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 2000; 92:193-205. [PMID: 10727858 DOI: 10.1016/s0925-4773(99)00339-1] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differentiation of mouse embryonic stem (ES) cells via embryoid bodies was established as a suitable model to study development in vitro. Here, we show that differentiation of ES cells in vitro into chondrocytes can be modulated by members of the transforming growth factor-beta family (TGF-beta(1), BMP-2 and -4). ES cell differentiation into chondrocytes was characterized by the appearance of Alcian blue-stained areas and the expression of cartilage-associated genes and proteins. Different stages of cartilage differentiation could be distinguished according to the expression pattern of the transcription factor scleraxis, and the cartilage matrix protein collagen II. The number of Alcian-blue-stained areas decreased slightly after application of TGF-beta(1), whereas BMP-2 or -4 induced chondrogenic differentiation. The inducing effect of BMP-2 was found to be dependent on the time of application, consistent with its role to recruit precursor cells to the chondrogenic fate.
Collapse
Affiliation(s)
- J Kramer
- Department of Medical Molecular Biology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
265
|
Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 2000; 275:9645-52. [PMID: 10734116 DOI: 10.1074/jbc.275.13.9645] [Citation(s) in RCA: 582] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult human mesenchymal stem cells are primary, multipotent cells capable of differentiating to osteocytic, chondrocytic, and adipocytic lineages when stimulated under appropriate conditions. To characterize the molecular mechanisms that regulate osteogenic differentiation, we examined the contribution of mitogen-activated protein kinase family members, ERK, JNK, and p38. Treatment of these stem cells with osteogenic supplements resulted in a sustained phase of ERK activation from day 7 to day 11 that coincided with differentiation, before decreasing to basal levels. Activation of JNK occurred much later (day 13 to day 17) in the osteogenic differentiation process. This JNK activation was associated with extracellular matrix synthesis and increased calcium deposition, the two hallmarks of bone formation. Inhibition of ERK activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked the osteogenic differentiation in a dose-dependent manner, as did transfection with a dominant negative form of MAP kinase kinase (MEK-1). Significantly, the blockage of osteogenic differentiation resulted in the adipogenic differentiation of the stem cells and the expression of adipose-specific mRNAs peroxisome proliferator-activated receptor gamma2, aP2, and lipoprotein lipase. These observations provide a potential mechanism involving MAP kinase activation in osteogenic differentiation of adult stem cells and suggest that commitment of hMSCs into osteogenic or adipogenic lineages is governed by activation or inhibition of ERK, respectively.
Collapse
Affiliation(s)
- R K Jaiswal
- Osiris Therapeutics Inc., Baltimore, Maryland 21231, USA
| | | | | | | | | | | |
Collapse
|
266
|
Prichett WP, Patton AJ, Field JA, Brun KA, Emery JG, Tan KB, Rieman DJ, McClung HA, Nadeau DP, Mooney JL, Suva LJ, Gowen M, Nuttall ME. Identification and cloning of a human urea transporter HUT11, which is downregulated during adipogenesis of explant cultures of human bone. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<639::aid-jcb12>3.0.co;2-i] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
267
|
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
268
|
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999; 4:611-7. [PMID: 10549292 DOI: 10.1016/s1097-2765(00)80211-7] [Citation(s) in RCA: 1556] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of adipogenesis is known to involve the interplay of several transcription factors. Activation of one of these factors, the nuclear hormone receptor PPAR gamma, is known to promote fat cell differentiation in vitro. Whether PPAR gamma is required for this process in vivo has remained an open question because a viable loss-of-function model for PPAR gamma has been lacking. We demonstrate here that mice chimeric for wild-type and PPAR gamma null cells show little or no contribution of null cells to adipose tissue, whereas most other organs examined do not require PPAR gamma for proper development. In vitro, the differentiation of ES cells into fat is shown to be dependent on PPAR gamma gene dosage. These data provide direct evidence that PPAR gamma is essential for the formation of fat.
Collapse
Affiliation(s)
- E D Rosen
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
269
|
Affiliation(s)
- B Desvergne
- Institute of Animal Biology, University of Lausanne, Switzerland
| | | |
Collapse
|
270
|
Aubert J, Dessolin S, Belmonte N, Li M, McKenzie FR, Staccini L, Villageois P, Barhanin B, Vernallis A, Smith AG, Ailhaud G, Dani C. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. J Biol Chem 1999; 274:24965-72. [PMID: 10455174 DOI: 10.1074/jbc.274.35.24965] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular factors and intracellular signaling pathways involved in early events of adipocyte differentiation are poorly defined. It is shown herein that expression of leukemia inhibitory factor (LIF) and LIF receptor is developmentally regulated during adipocyte differentiation. Preadipocytes secrete bioactive LIF, and an antagonist of LIF receptor inhibits adipogenesis. Genetically modified embryonic stem (ES) cells combined with culture conditions to commit stem cells into the adipocyte lineage were used to examine the requirement of LIF receptor during in vitro development of adipose cells. The capacity of embryoid bodies derived from lifr(-/-) ES cells to undergo adipocyte differentiation is dramatically reduced. LIF addition stimulates adipocyte differentiation of Ob1771 and 3T3-F442A preadipocytes and that of peroxisome proliferator-activated receptor gamma2 ligand-treated mouse embryonic fibroblasts. Expression of the early adipogenic transcription factors C/EBPbeta and C/EBPdelta is rapidly stimulated following exposure of preadipose cells to LIF. The selective inhibitors of mitogen-activated protein kinase kinase, i.e. PD98059 and U0126, inhibit LIF-induced C/EBP gene expression and prevent adipocyte differentiation induced by LIF. These results are in favor of a model that implicates stimulation of LIF receptor in the commitment of preadipocytes to undergo terminal differentiation by controlling the early expression of C/EBPbeta and C/EBPdelta genes via the mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- J Aubert
- Centre de Biochimie (IFR349 and UMR6543 CNRS) Université de Nice-Sophia Antipolis, Faculté des Sciences, Parc Valrose, 06108 Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Abstract
Pluripotent mouse embryonic stem (ES) cell lines have provided a means to analyze gene function in development via gene targeting. At the same time, they provide an opportunity to directly probe gene function by assessing the in vitro differentiation capacity of the ES cells themselves. In addition to providing direct data on lineage decisions not accessible in the complex three-dimensional milieu of the early mouse embryo, controlled differentiation of ES into specific lineages may provide a source of cells for transplantation and gene therapy.
Collapse
Affiliation(s)
- K S O'Shea
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616, USA.
| |
Collapse
|
272
|
Sorisky A. From preadipocyte to adipocyte: differentiation-directed signals of insulin from the cell surface to the nucleus. Crit Rev Clin Lab Sci 1999; 36:1-34. [PMID: 10094092 DOI: 10.1080/10408369991239169] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An alarming rise in obesity, and the accompanying threat of type 2 diabetes mellitus and cardiovascular disease, have attracted worldwide attention. The pathogenic mechanism(s) underlying obesity remains obscure. However, new cellular and molecular insights about the development of adipose tissue, with respect to adipocyte number (hyperplasia) and size (hypertrophy), are occurring at a rapid pace. Specialized fibroblasts (preadipocytes) committed to the adipocyte lineage are present throughout life. Primary cell culture systems and immortalized cell line models of preadipocytes have advanced the study of adipocyte differentiation (adipogenesis). Differentiation-inducing cues are able to trigger a complex network of intracellular signaling pathways in the preadipocyte, allowing signals from cell-surface receptors to reach nuclear transcription factors that regulate the genetic program of adipocyte differentiation. The extracellular matrix environment of the preadipocyte, known to modulate adipogenesis, may act by altering some of these signaling events.
Collapse
Affiliation(s)
- A Sorisky
- Department of Medicine and Biochemistry, Loeb Research Institute, Ottawa Civic Hospital, University of Ottawa, Ontario, Canada
| |
Collapse
|
273
|
Rohwedel J, Guan K, Zuschratter W, Jin S, Ahnert-Hilger G, Fürst D, Fässler R, Wobus AM. Loss of beta1 integrin function results in a retardation of myogenic, but an acceleration of neuronal, differentiation of embryonic stem cells in vitro. Dev Biol 1998; 201:167-84. [PMID: 9740657 DOI: 10.1006/dbio.1998.9002] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin cell surface receptors play an important role for cell adhesion, migration, and differentiation during embryonic development by mediating cell-cell and cell-matrix interactions. Less is known about the function of integrins during commitment and lineage determination of early embryogenesis. Homozygous inactivation of the beta1 integrin gene results in embryonal death in mice around the time of implantation. In vitro, differentiation of embryonic stem (ES) cells which lack beta1 integrin (beta1-/-) into the cardiogenic lineage is delayed and results in a disordered cellular specification (Fässler et al., J. Cell Sci. 109, 2989-2999, 1996). To analyze beta1 integrin function during myogenesis and neurogenesis we studied differentiation of beta1-/- ES cells via embryoid bodies into skeletal muscle and neuronal cells in vitro. beta1-/- cells showed delayed and reduced myogenic differentiation compared to wildtype and heterozygous (beta1+/-) ES cells. RT-PCR analysis demonstrated delayed expression of skeletal muscle-specific genes in the absence of beta1 integrin. Immunofluorescence studies with antibodies against the sarcomeric proteins myosin heavy chain, titin, nebulin, and slow C-protein showed that myotubes formed, but their number was reduced and the assembly of sarcomeric structures was retarded. In contrast, neuronal cells differentiating from beta1-/- ES cells appeared earlier than wildtype and heterozygous (beta1+/-) ES cells. This was shown by the accelerated expression of neuron-specific genes and an increased number of neuronal cells in beta1-/- embryoid bodies. However, neuronal outgrowth was retarded in the absence of beta1 integrin. No functional difference between wildtype and beta1-/- cells was found with respect to secretion of gamma-aminobutyric acid, the main neurotransmitter of ES cell-derived neuronal cells. The lineage-specific effects of loss of beta1 integrin function, that is the inhibition of mesodermal and acceleration of neuroectodermal differentiation, were supported by differential expression of genes encoding lineage-specific transcription factors (Brachyury, Pax-6, Mash1) and signaling molecules (BMP-4 and Wnt-1). Because of the reduced and delayed expression of the BMP-4 encoding gene in beta1-/- cells, we analyzed in wildtype and beta1-/- cells the regulatory role of exogenously added BMP-4 on the expression of the mesodermal and neuronal marker genes, Brachyury and wnt-1, respectively. The data suggest that BMP-4 plays a regulatory role during differentiation of wildtype and beta1-/- cells by modifying mesodermal and neuronal pathways. The reduced expression of BMP-4 in beta1-/- cells may account for the accelerated neuronal differentiation in beta1-/- ES cells.
Collapse
Affiliation(s)
- J Rohwedel
- IPK Gatersleben, Gatersleben, D-06466, Germany
| | | | | | | | | | | | | | | |
Collapse
|
274
|
Jackson SN, Pinkney J, Bargiotta A, Veal CD, Howlett TA, McNally PG, Corral R, Johnson A, Trembath RC. A defect in the regional deposition of adipose tissue (partial lipodystrophy) is encoded by a gene at chromosome 1q. Am J Hum Genet 1998; 63:534-40. [PMID: 9683602 PMCID: PMC1377312 DOI: 10.1086/301971] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Partial lipodystrophy (PLD), also known as "Dunnigan-Kobberling syndrome," is transmitted as a highly penetrant autosomal dominant disorder that is characterized by a dramatic absence of adipose tissue in the limbs and trunk, more evident in females than in males. In contrast, fat is retained on the face, in retro-orbital space, and at periserous sites. Associated metabolic abnormalities, including insulin resistance, hyperinsulinemia, and dyslipidemia, are referred to as "metabolic syndrome X" (Reaven 1988). Despite the intense interest in the genetic determinants underlying fat deposition, the genes involved in the lipodystrophic syndromes have not been identified. We ascertained two multigeneration families, with a combined total of 18 individuals with PLD, and performed a genomewide search. We obtained conclusive evidence for linkage of the PLD locus to microsatellite markers on chromosome 1q21 (D1S498, maximum LOD score 6.89 at recombination fraction .00), with no evidence of heterogeneity. Haplotype and multipoint analysis support the location of the PLD locus within a 21.2-cM chromosomal region that is flanked by the markers D1S2881 and D1S484. These data represent an important step in the effort to isolate and characterize the PLD gene. The identification of the gene will have important implications for the understanding of both developmental and metabolic aspects of the adipocyte and may prove useful as a single-gene model for the common metabolic disorder known as "syndrome X."
Collapse
Affiliation(s)
- S N Jackson
- Department of Genetics and Department of Medicine and Therapeutics, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Abstract
The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent terminal differentiation into adipocytes. This is accompanied by a dramatic increase in expression of adipocyte genes including adipocyte fatty acid binding protein and lipid-metabolizing enzymes. Characterization of regulatory regions of adipose-specific genes has led to the identification of the transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein (C/EBP), which play a key role in the complex transcriptional cascade during adipocyte differentiation. Growth and differentiation of preadipocytes is controlled by communication between individual cells or between cells and the extracellular environment. Various hormones and growth factors that affect adipocyte differentiation in a positive or negative manner have been identified. In addition, components involved in cell-cell or cell-matrix interactions such as preadipocyte factor-1 and extracellular matrix proteins are also pivotal in regulating the differentiation process. Identification of these molecules has yielded clues to the biochemical pathways that ultimately result in transcriptional activation via PPAR-gamma and C/EBP. Studies on the regulation of the these transcription factors and the mode of action of various agents that influence adipocyte differentiation will reveal the physiological and pathophysiological mechanisms underlying adipose tissue development.
Collapse
Affiliation(s)
- F M Gregoire
- Department of Nutritional Sciences, University of California, Berkeley, USA
| | | | | |
Collapse
|