251
|
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Harrow J, Herrero J, Hubbard TJP, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SMJ. Ensembl 2012. Nucleic Acids Res 2011; 40:D84-90. [PMID: 22086963 PMCID: PMC3245178 DOI: 10.1093/nar/gkr991] [Citation(s) in RCA: 766] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.
Collapse
Affiliation(s)
- Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates. BMC Evol Biol 2011; 11:332. [PMID: 22085792 PMCID: PMC3280201 DOI: 10.1186/1471-2148-11-332] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023] Open
Abstract
Background The three vertebrate pituitary glycoprotein hormones (GPH) are heterodimers of a common α and a specific β subunit. In human, they are located on different chromosomes but in a similar genomic environment. We took advantage of the availability of genomic and EST data from two cartilaginous fish species as well as from two lamprey species to identify their repertoire of neurotrophin, lin7 and KCNA gene family members which are in the close environment of gphβ. Gphα and gphβ are absent outside vertebrates but are related to two genes present in both protostomes and deuterostomes that were named gpa2 and gpb5. Genomic organization and functional characteristics of their protein products suggested that gphα and gphβ might have been generated concomitantly by a duplication of gpa2 and gpb5 just prior to the radiation of vertebrates. To have a better insight into this process we used new genomic resources and tools to characterize the ancestral environment before the duplication occurred. Results An almost similar repertoire of genes was characterized in cartilaginous fishes as in tetrapods. Data in lampreys are either incomplete or the result of specific duplications and/or deletions but a scenario for the evolution of this genomic environment in vertebrates could be proposed. A number of genes were identified in the amphioxus genome that helped in reconstructing the ancestral environment of gpa2 and gpb5 and in describing the evolution of this environment in vertebrates. Conclusion Our model suggests that vertebrate gphα and gphβ were generated by a specific local duplication of the ancestral forms of gpa2 and gpb5, followed by a translocation of gphβ to a new environment whereas gphα was retained in the gpa2-gpb5 locus. The two rounds of whole genome duplication that occurred early in the evolution of vertebrates generated four paralogues of each gene but secondary gene losses or lineage specific duplications together with genomic rearrangements have resulted in the present organization of these genes, which differs between vertebrate lineages.
Collapse
|
253
|
Skinner BM, Griffin DK. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity (Edinb) 2011; 108:37-41. [PMID: 22045382 DOI: 10.1038/hdy.2011.99] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It is generally believed that the organization of avian genomes remains highly conserved in evolution as chromosome number is constant and comparative chromosome painting demonstrated there to be very few interchromosomal rearrangements. The recent sequencing of the zebra finch (Taeniopygia guttata) genome allowed an assessment of the number of intrachromosomal rearrangements between it and the chicken (Gallus gallus) genome, revealing a surprisingly high number of intrachromosomal rearrangements. With the publication of the turkey (Meleagris gallopavo) genome it has become possible to describe intrachromosomal rearrangements between these three important avian species, gain insight into the direction of evolutionary change and assess whether breakpoint regions are reused in birds. To this end, we aligned entire chromosomes between chicken, turkey and zebra finch, identifying syntenic blocks of at least 250 kb. Potential optimal pathways of rearrangements between each of the three genomes were determined, as was a potential Galliform ancestral organization. From this, our data suggest that around one-third of chromosomal breakpoint regions may recur during avian evolution, with 10% of breakpoints apparently recurring in different lineages. This agrees with our previous hypothesis that mechanisms of genome evolution are driven by hotspots of non-allelic homologous recombination.
Collapse
Affiliation(s)
- B M Skinner
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
254
|
Simsek D, Jasin M. DNA ligase III: a spotty presence in eukaryotes, but an essential function where tested. Cell Cycle 2011; 10:3636-44. [PMID: 22041657 DOI: 10.4161/cc.10.21.18094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA ligases are crucial for most DNA transactions, including DNA replication, repair, and recombination. Recently, DNA ligase III (Lig3) has been demonstrated to be crucial for cell survival due to its catalytic function in mitochondria. This review summarizes these recent results and reports on a hitherto unappreciated widespread phylogenetic presence of Lig3 in eukaryotes, including in some organisms before the divergence of metazoa. Analysis of these putative Lig3 homologs suggests that many of them are likely to be found in mitochondria and to be critical for mitochondrial function.
Collapse
Affiliation(s)
- Deniz Simsek
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | |
Collapse
|
255
|
Dufresne F, Jeffery N. A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res 2011; 19:925-38. [DOI: 10.1007/s10577-011-9248-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
256
|
Farnoushi Y, Cipok M, Kay S, Jan H, Ohana A, Naparstek E, Goldstein RS, Deutsch VR. Rapid in vivo testing of drug response in multiple myeloma made possible by xenograft to turkey embryos. Br J Cancer 2011; 105:1708-18. [PMID: 22045188 PMCID: PMC3242603 DOI: 10.1038/bjc.2011.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: The best current xenograft model of multiple myeloma (MM) in immune-deficient non-obese diabetic/severe-combined immunodeficient mice is costly, animal maintenance is complex and several weeks are required to establish engraftment and study drug efficacy. More practical in vivo models may reduce time and drug development cost. We recently described a rapid low-cost xenograft model of human blood malignancies in pre-immune turkey. Here, we report application of this system for studying MM growth and the preclinical assessment of anticancer therapies. Methods: Cell lines and MM patient cells were injected intravenously into embryonic veins on embryonic day 11 (E11). Engraftment of human cells in haematopoietic organs was detected by quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry and circulating free light chain. Results: Engraftment was detected after 1 week in all embryos injected with cell lines and in 50% of those injected with patient cells. Injection of bortezomib or lenalinomide 48 h after cell injection at therapeutic levels that were not toxic to the bone marrow dramatically reduced MM engraftment. Conclusion: The turkey embryo provides a practical, xenograft system to study MM and demonstrates the utility of this model for rapid and affordable testing therapeutics in vivo. With further development, this model may enable rapid, inexpensive personalised drug screening.
Collapse
Affiliation(s)
- Y Farnoushi
- Department of Hematology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, 6 Weizman Street, Tel Aviv Israel
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011; 52:413-35. [PMID: 21698376 PMCID: PMC3189340 DOI: 10.1007/s13353-011-0057-x] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 12/21/2022]
Abstract
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Laboratory of Functional Genomics, Institute of General and Molecular Biology, Nicolaus Copernicus University, Torun, Poland.
| | | | | |
Collapse
|
258
|
Kawahara-Miki R, Wada K, Azuma N, Chiba S. Expression profiling without genome sequence information in a non-model species, Pandalid shrimp (Pandalus latirostris), by next-generation sequencing. PLoS One 2011; 6:e26043. [PMID: 22016807 PMCID: PMC3189924 DOI: 10.1371/journal.pone.0026043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022] Open
Abstract
While the study of phenotypic variation is a central theme in evolutionary biology, the genetic approaches available to understanding this variation are usually limited because of a lack of genomic information in non-model organisms. This study explored the utility of next-generation sequencing (NGS) technologies for studying phenotypic variations between 2 populations of a non-model species, the Hokkai shrimp (Pandalus latirostris; Decapoda, Pandalidae). Before we performed transcriptome analyses using NGS, we examined the genetic and phenotypic differentiation between the populations. Analyses using microsatellite DNA markers suggested that these populations genetically differed from one another and that gene flow is restricted between them. Moreover, the results of our 4-year field observations indicated that the egg traits varied genetically between the populations. Using mRNA extracted from the ovaries of 5 females in each population of Hokkai shrimp, we then performed a transcriptome analysis of the 2 populations. A total of 13.66 gigabases (Gb) of 75-bp reads was obtained. Further, 58,804 and 33,548 contigs for the first and second population, respectively, and 47,467 contigs for both populations were produced by de novo assembly. We detected 552 sequences with the former approach and 702 sequences with the later one; both sets of sequences showed greater than twofold differences in the expression levels between the 2 populations. Twenty-nine sequences were found in both approaches and were considered to be differentially expressed genes. Among them, 9 sequences showed significant similarity to functional genes. The present study showed a de novo assembly approach for the transcriptome of a non-model species using only short-read sequence data, and provides a strategy for identifying sequences showing significantly different expression levels between populations.
Collapse
Affiliation(s)
- Ryouka Kawahara-Miki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kenta Wada
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Noriko Azuma
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Susumu Chiba
- Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
259
|
Onishi-Seebacher M, Korbel JO. Challenges in studying genomic structural variant formation mechanisms: The short-read dilemma and beyond. Bioessays 2011; 33:840-50. [DOI: 10.1002/bies.201100075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
260
|
Miller JM, Malenfant RM, Moore SS, Coltman DW. Short reads, circular genome: skimming solid sequence to construct the bighorn sheep mitochondrial genome. ACTA ACUST UNITED AC 2011; 103:140-6. [PMID: 21948953 DOI: 10.1093/jhered/esr104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As sequencing technology improves, an increasing number of projects aim to generate full genome sequence, even for nonmodel taxa. These projects may be feasibly conducted at lower read depths if the alignment can be aided by previously developed genomic resources from a closely related species. We investigated the feasibility of constructing a complete mitochondrial (mt) genome without preamplification or other targeting of the sequence. Here we present a full mt genome sequence (16,463 nucleotides) for the bighorn sheep (Ovis canadensis) generated though alignment of SOLiD short-read sequences to a reference genome. Average read depth was 1240, and each base was covered by at least 36 reads. We then conducted a phylogenomic analysis with 27 other bovid mitogenomes, which placed bighorn sheep firmly in the Ovis clade. These results show that it is possible to generate a complete mitogenome by skimming a low-coverage genomic sequencing library. This technique will become increasingly applicable as the number of taxa with some level of genome sequence rises.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | |
Collapse
|
261
|
Abstract
The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
Collapse
Affiliation(s)
- David W Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
262
|
Zhang Y, Zhang X, O'Hare TH, Payne WS, Dong JJ, Scheuring CF, Zhang M, Huang JJ, Lee MK, Delany ME, Zhang HB, Dodgson JB. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes. BMC Genomics 2011; 12:447. [PMID: 21906286 PMCID: PMC3189400 DOI: 10.1186/1471-2164-12-447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023] Open
Abstract
Background A robust bacterial artificial chromosome (BAC)-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage) from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and model species.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
263
|
|
264
|
The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011; 477:587-91. [PMID: 21881562 PMCID: PMC3184186 DOI: 10.1038/nature10390] [Citation(s) in RCA: 486] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/27/2011] [Indexed: 01/10/2023]
Abstract
The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments1. Among amniotes, genome sequences are available for mammals2 and birds3–5, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes3. Also, A. carolinensis mobile elements are very young and diverse – more so than in any other sequenced amniote genome. This lizard genome’s GC content is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds6. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.
Collapse
|
265
|
Ellegren H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res 2011; 21:2082-6. [PMID: 21868722 DOI: 10.1101/gr.119065.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been extensive traffic of male-biased genes out of the mammalian and Drosophila X-chromosomes, and there are also reports of an under-representation of male-biased genes on the X. This may reflect an adaptive process driven by natural selection where an autosomal location of male-biased genes is favored since male genes are only exposed to selection one-third of the time when X-linked. However, there are several alternative explanations to "out-of-the-X" gene movement, including mutational bias and a means for X-linked genes to escape meiotic sex chromosome inactivation (MSCI) during spermatogenesis. As a critical test of the hypothesis that genomic relocation of sex-biased genes is an adaptive process, I examined the emergence, and loss, of genes on the chicken Z-chromosome, i.e., a female heterogametic system (males ZZ, females ZW). Here, the analogous prediction would be an emergence of male-biased genes onto, not a loss from, the Z-chromosome because Z is found more often in males than autosomes are. I found that genes expressed in testis but not in ovary are highly over-represented among genes that have emerged on the Z-chromosome during avian evolution. Moreover, genes with male-biased expression are similarly over-represented among new Z-chromosomal genes. Interestingly, genes with female-biased expression have more often moved from than to the Z-chromosome. These observations show that male and female heterogametic organisms display opposing directionalities in the emergence and loss of sex-biased genes on sex chromosomes. This is consistent with theoretical models on the evolution of sexually antagonistic genes in which new mutations are at least partly dominant.
Collapse
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
266
|
Giacopuzzi E, Barlati S, Preti A, Venerando B, Monti E, Borsani G, Bresciani R. Gallus gallus NEU3 sialidase as model to study protein evolution mechanism based on rapid evolving loops. BMC BIOCHEMISTRY 2011; 12:45. [PMID: 21861893 PMCID: PMC3179935 DOI: 10.1186/1471-2091-12-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/23/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Large surface loops contained within compact protein structures and not involved in catalytic process have been proposed as preferred regions for protein family evolution. These loops are subjected to lower sequence constraints and can evolve rapidly in novel structural variants. A good model to study this hypothesis is represented by sialidase enzymes. Indeed, the structure of sialidases is a β-propeller composed by anti-parallel β-sheets connected by loops that suit well with the rapid evolving loop hypothesis. These features prompted us to extend our studies on this protein family in birds, to get insights on the evolution of this class of glycohydrolases. RESULTS Gallus gallus (Gg) genome contains one NEU3 gene encoding a protein with a unique 188 amino acid sequence mainly constituted by a peptide motif repeated six times in tandem with no homology with any other known protein sequence. The repeat region is located at the same position as the roughly 80 amino acid loop characteristic of mammalian NEU4. Based on molecular modeling, all these sequences represent a connecting loop between the first two highly conserved β-strands of the fifth blade of the sialidase β-propeller. Moreover this loop is highly variable in sequence and size in NEU3 sialidases from other vertebrates. Finally, we found that the general enzymatic properties and subcellular localization of Gg NEU3 are not influenced by the deletion of the repeat sequence. CONCLUSION In this study we demonstrated that sialidase protein structure contains a surface loop, highly variable both in sequence and size, connecting two conserved β-sheets and emerging on the opposite site of the catalytic crevice. These data confirm that sialidase family can serve as suitable model for the study of the evolutionary process based on rapid evolving loops, which may had occurred in sialidases. Giving the peculiar organization of the loop region identified in Gg NEU3, this protein can be considered of particular interest in such evolutionary studies and to get deeper insights in sialidase evolution.
Collapse
Affiliation(s)
- Edoardo Giacopuzzi
- Department of Biomedical Sciences and Biotechnology, Unit of Biology and Genetics, University of Brescia, viale Europa 11, Brescia 25123, Italy
| | - Sergio Barlati
- Department of Biomedical Sciences and Biotechnology, Unit of Biology and Genetics, University of Brescia, viale Europa 11, Brescia 25123, Italy
| | - Augusto Preti
- Department of Biomedical Sciences and Biotechnology, Unit of Biochemistry and Clinical Chemistry, University of Brescia, viale Europa 11, Brescia 25123, Italy
| | - Bruno Venerando
- Department of Medical Chemistry, Biochemistry and Biotechnology, L.I.T.A., University of Milano, Via F.lli Cervi 93, Segrate 20090, Italy
| | - Eugenio Monti
- Department of Biomedical Sciences and Biotechnology, Unit of Biochemistry and Clinical Chemistry, University of Brescia, viale Europa 11, Brescia 25123, Italy
| | - Giuseppe Borsani
- Department of Biomedical Sciences and Biotechnology, Unit of Biology and Genetics, University of Brescia, viale Europa 11, Brescia 25123, Italy
| | - Roberto Bresciani
- Department of Biomedical Sciences and Biotechnology, Unit of Biochemistry and Clinical Chemistry, University of Brescia, viale Europa 11, Brescia 25123, Italy
| |
Collapse
|
267
|
Kumar A, Bhandari A, Sinha R, Goyal P, Grapputo A. Spliceosomal intron insertions in genome compacted ray-finned fishes as evident from phylogeny of MC receptors, also supported by a few other GPCRs. PLoS One 2011; 6:e22046. [PMID: 21850219 PMCID: PMC3151243 DOI: 10.1371/journal.pone.0022046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Insertions of spliceosomal introns are very rare events during evolution of vertebrates and the mechanisms governing creation of novel intron(s) remain obscure. Largely, gene structures of melanocortin (MC) receptors are characterized by intron-less architecture. However, recently a few exceptions have been reported in some fishes. This warrants a systematic survey of MC receptors for understanding intron insertion events during vertebrate evolution. METHODOLOGY/PRINCIPAL FINDINGS We have compiled an extended list of MC receptors from different vertebrate genomes with variations in fishes. Notably, the closely linked MC2Rs and MC5Rs from a group of ray-finned fishes have three and one intron insertion(s), respectively, with conserved positions and intron phase. In both genes, one novel insertion was in the highly conserved DRY motif at the end of helix TM3. Further, the proto-splice site MAG↑R is maintained at intron insertion sites in these two genes. However, the orthologs of these receptors from zebrafish and tetrapods are intron-less, suggesting these introns are simultaneously created in selected fishes. Surprisingly, these novel introns are traceable only in four fish genomes. We found that these fish genomes are severely compacted after the separation from zebrafish. Furthermore, we also report novel intron insertions in P2Y receptors and in CHRM3. Finally, we report ultrasmall introns in MC2R genes from selected fishes. CONCLUSIONS/SIGNIFICANCE The current repository of MC receptors illustrates that fishes have no MC3R ortholog. MC2R, MC5R, P2Y receptors and CHRM3 have novel intron insertions only in ray-finned fishes that underwent genome compaction. These receptors share one intron at an identical position suggestive of being inserted contemporaneously. In addition to repetitive elements, genome compaction is now believed to be a new hallmark that promotes intron insertions, as it requires rapid DNA breakage and subsequent repair processes to gain back normal functionality.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biology, University of Padua, Padova, Italy.
| | | | | | | | | |
Collapse
|
268
|
Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M, Siedlecka E, Yagi K, Pląder W, Seroczyńska A, Śmiech M, Gutman W, Niemirowicz-Szczytt K, Bartoszewski G, Tagashira N, Hoshi Y, Borodovsky M, Karpiński S, Malepszy S, Przybecki Z. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 2011; 6:e22728. [PMID: 21829493 PMCID: PMC3145757 DOI: 10.1371/journal.pone.0022728] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/05/2011] [Indexed: 01/01/2023] Open
Abstract
Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar – Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in divergent conditions.
Collapse
MESH Headings
- Adaptation, Physiological
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Plant/genetics
- Cucumis sativus/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Rafał Wóycicki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| | - Justyna Witkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Joanna Dąbrowska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Alexandre Lomsadze
- Center for Bioinformatics and Computational Genomics, Joint Wallace H. Coulter Georgia Tech and Emory Department of Biomedical Engineering, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Kohei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Anna Seroczyńska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Mieczysław Śmiech
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Wojciech Gutman
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Katarzyna Niemirowicz-Szczytt
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Norikazu Tagashira
- Department of Living Design and Information Science, Faculty of Human Development, Hiroshima Jogakuin University, Higashi-ku, Japan
| | - Yoshikazu Hoshi
- Department of Plant Science, Tokai University, Minamiaso-mura, Kumamoto, Japan
| | - Mark Borodovsky
- Center for Bioinformatics and Computational Genomics, Joint Wallace H. Coulter Georgia Tech and Emory Department of Biomedical Engineering, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| | - Stefan Malepszy
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| |
Collapse
|
269
|
Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 2011; 29:503-15. [PMID: 21771716 DOI: 10.1093/molbev/msr181] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes.
Collapse
|
270
|
Aslam ML, Bastiaansen JWM, Crooijmans RPMA, Vereijken A, Groenen MAM. Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey. BMC Genet 2011; 12:61. [PMID: 21745371 PMCID: PMC3142527 DOI: 10.1186/1471-2156-12-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/11/2011] [Indexed: 12/02/2022] Open
Abstract
Background The turkey (Meleagris gallopavo) is an important agricultural species and is the second largest contributor to the world's poultry meat production. Demand of turkey meat is increasing very rapidly. Genetic markers linked to genes affecting quantitative traits can increase the selection response of animal breeding programs. The use of these molecular markers for the identification of quantitative trait loci, and subsequently fine-mapping of quantitative trait loci regions, allows for pinpointing of genes that underlie such economically important traits. Results The quantitative trait loci analyses of the growth curve, body weight, breast yield and the meat quality traits showed putative quantitative trait loci on 21 of the 27 turkey chromosomes covered by the linkage map. Forty-five quantitative trait loci were detected across all traits and these were found in 29 different regions on 21 chromosomes. Out of the 45 quantitative trait loci, twelve showed significant (p < 0.01) evidence of linkage while the remaining 33 showed suggestive evidence (p < 0.05) of linkage with different growth, growth curve, meat quality and breast yield traits. Conclusion A large number of quantitative trait loci were detected across the turkey genome, which affected growth, breast yield and meat quality traits. Pleiotropic effects or close linkages between quantitative trait loci were suggested for several of the chromosomal regions. The comparative analysis regarding the location of quantitative trait loci on different turkey, and on the syntenic chicken chromosomes, along with their phenotypic associations, revealed signs of functional conservation between these species.
Collapse
Affiliation(s)
- Muhammad L Aslam
- Animal Breeding and Genomics Centre, Wageningen University, 6709PG, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
271
|
Reed KM, Bauer MM, Monson MS, Benoit B, Chaves LD, O'Hare TH, Delany ME. Defining the turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 2011; 63:753-71. [PMID: 21710346 DOI: 10.1007/s00251-011-0549-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
The MHC of the turkey (Meleagris gallopavo) is divided into two genetically unlinked regions; the MHC-B and MHC-Y. Although previous studies found the turkey MHC-B to be highly similar to that of the chicken, little is known of the gene content and extent of the MHC-Y. This study describes two partially overlapping large-insert BAC clones that genetically and physically map to the turkey MHC chromosome (MGA18) but to a region that assorts independently of MHC-B. Within the sequence assembly, 14 genes were predicted including new class I- and class IIB-like loci. Additional unassembled sequences corresponded to multiple copies of the ribosomal RNA repeat unit (18S-5.8S-28S). Thus, this newly identified MHC region appears to represent a physical boundary of the turkey MHC-Y. High-resolution multi-color fluorescence in situ hybridization studies confirm rearrangement of MGA18 relative to the orthologous chicken chromosome (GGA16) in regard to chromosome architecture, but not gene order. The difference in centromere position between the species is indicative of multiple chromosome rearrangements or alternate events such as neocentromere formation/centromere inactivation in the evolution of the MHC chromosome. Comparative sequencing of commercial turkeys (six amplicons totaling 7.6 kb) identified 68 single nucleotide variants defining nine MHC-Y haplotypes. Sequences of the new class I- and class IIB-like genes are most similar to MHC-Y genes in the chicken. All three loci are expressed in the spleen. Differential transcription of the MHC-Y class IIB-like loci was evident as one class IIB-like locus was only expressed in some individuals.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA,
| | | | | | | | | | | | | |
Collapse
|
272
|
Romanov MN, Dodgson JB, Gonser RA, Tuttle EM. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization. BMC Res Notes 2011; 4:211. [PMID: 21693052 PMCID: PMC3155834 DOI: 10.1186/1756-0500-4-211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 06/21/2011] [Indexed: 12/23/2022] Open
Abstract
Background The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis), which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation. Findings We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo. Conclusions These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms.
Collapse
Affiliation(s)
- Michael N Romanov
- Dept, of Biology, Indiana State University, Terre Haute, Indiana 47809, USA.
| | | | | | | |
Collapse
|
273
|
Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 2011; 108:10249-54. [PMID: 21646520 DOI: 10.1073/pnas.1107739108] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present whole-genome assemblies of four divergent Arabidopsis thaliana strains that complement the 125-Mb reference genome sequence released a decade ago. Using a newly developed reference-guided approach, we assembled large contigs from 9 to 42 Gb of Illumina short-read data from the Landsberg erecta (Ler-1), C24, Bur-0, and Kro-0 strains, which have been sequenced as part of the 1,001 Genomes Project for this species. Using alignments against the reference sequence, we first reduced the complexity of the de novo assembly and later integrated reads without similarity to the reference sequence. As an example, half of the noncentromeric C24 genome was covered by scaffolds that are longer than 260 kb, with a maximum of 2.2 Mb. Moreover, over 96% of the reference genome was covered by the reference-guided assembly, compared with only 87% with a complete de novo assembly. Comparisons with 2 Mb of dideoxy sequence reveal that the per-base error rate of the reference-guided assemblies was below 1 in 10,000. Our assemblies provide a detailed, genomewide picture of large-scale differences between A. thaliana individuals, most of which are difficult to access with alignment-consensus methods only. We demonstrate their practical relevance in studying the expression differences of polymorphic genes and show how the analysis of sRNA sequencing data can lead to erroneous conclusions if aligned against the reference genome alone. Genome assemblies, raw reads, and further information are accessible through http://1001genomes.org/projects/assemblies.html.
Collapse
|
274
|
Groenen MAM, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RPMA, Vereijken A, Okimoto R, Muir WM, Cheng HH. The development and characterization of a 60K SNP chip for chicken. BMC Genomics 2011; 12:274. [PMID: 21627800 PMCID: PMC3117858 DOI: 10.1186/1471-2164-12-274] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/31/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP) genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection). To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF) of the SNPs used are extremely important. RESULTS We describe the design of a moderate density (60k) Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF) in the two major types of commercial chicken (broilers and layers). This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1). This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the current genome assembly. CONCLUSIONS The high success rate of the SNPs on the Illumina chicken 60K Beadchip emphasizes the power of Next generation sequence (NGS) technology for the SNP identification and selection step. The identification of SNPs from sequence contigs derived from NGS sequencing resulted in improved coverage of the chicken genome and the construction of two new linkage groups most likely representing two chicken micro-chromosomes.
Collapse
Affiliation(s)
- Martien AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Yalda Zare
- Animal Breeding and Genomics Centre, Wageningen University, The Netherlands
| | - Wesley C Warren
- The Genome Institute, Washington University, School of Medicine, St. Louis, USA
| | - LaDeana W Hillier
- The Genome Institute, Washington University, School of Medicine, St. Louis, USA
| | | | - Addie Vereijken
- Hendrix Genetics Research, Technology & Services B.V., Boxmeer, The Netherlands
| | - Ron Okimoto
- Cobb-Vantress Inc., Siloam Springs, AR, 72761, USA
| | - William M Muir
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| |
Collapse
|
275
|
Blank M, Kiger L, Thielebein A, Gerlach F, Hankeln T, Marden MC, Burmester T. Oxygen supply from the bird's eye perspective: globin E is a respiratory protein in the chicken retina. J Biol Chem 2011; 286:26507-15. [PMID: 21622558 DOI: 10.1074/jbc.m111.224634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The visual process in the vertebrate eye requires high amounts of metabolic energy and thus oxygen. Oxygen supply of the avian retina is a challenging task because birds have large eyes, thick retinae, and high metabolic rates but neither deep retinal nor superficial capillaries. Respiratory proteins such as myoglobin may enhance oxygen supply to certain tissues, and thus the mammalian retina harbors high amounts of neuroglobin. Globin E (GbE) was recently identified as an eye-specific globin of chicken (Gallus gallus). Orthologous GbE genes were found in zebra finch and turkey genomes but appear to be absent in non-avian vertebrate classes. Analyses of globin phylogeny and gene synteny showed an ancient origin of GbE but did not help to assign it to any specific globin type. We show that the photoreceptor cells of the chicken retina have a high level of GbE protein, which accumulates to ∼10 μM in the total eye. Quantitative real-time RT-PCR revealed an ∼50,000-fold higher level of GbE mRNA in the eye than in the brain. Spectroscopic analysis and ligand binding kinetics of recombinant chicken GbE reveal a penta-coordinated globin with an oxygen affinity of P(50) = 5.8 torrs at 25 °C and 15 torrs at 41 °C. Together these data suggest that GbE helps to sustain oxygen supply to the avian retina.
Collapse
Affiliation(s)
- Miriam Blank
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
276
|
Abstract
The diversity of available 2(nd) and 3(rd) generation DNA sequencing platforms is increasing rapidly. Costs for these systems range from < $100,000 to more than $1,000,000, with instrument run times ranging from minutes to weeks. Extensive trade-offs exist among these platforms. I summarize the major characteristics of each commercially available platform to enable direct comparisons. In terms of cost per megabase (Mb) of sequence, the Illumina and SOLiD platforms are clearly superior (≤ $0.10/Mb vs. > $10/Mb for 454 and some Ion Torrent chips). In terms of cost per nonmultiplexed sample and instrument run time, the Pacific Biosciences and Ion Torrent platforms excel, with the 454 GS Junior and Illumina MiSeq also notable in this regard. All platforms allow multiplexing of samples, but details of library preparation, experimental design and data analysis can constrain the options. The wide range of characteristics among available platforms provides opportunities both to conduct groundbreaking studies and to waste money on scales that were previously infeasible. Thus, careful thought about the desired characteristics of these systems is warranted before purchasing or using any of them. Updated information from this guide will be maintained at: http://dna.uga.edu/ and http://tomato.biol.trinity.edu/blog/.
Collapse
Affiliation(s)
- Travis C Glenn
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
277
|
Walenz B, Florea L. Sim4db and Leaff: utilities for fast batch spliced alignment and sequence indexing. ACTA ACUST UNITED AC 2011; 27:1869-70. [PMID: 21551146 DOI: 10.1093/bioinformatics/btr285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED The large number of genomes that will be sequenced will need to be annotated with genes and other functional features. Aligning gene sequences from a related species to the target genome is an economical and highly reliable method to identify genes; unfortunately, existing tools have been lacking in sensitivity and speed. A program we reported, sim4cc, was shown to be highly accurate but is limited to comparing one cDNA with one genomic sequence. We present here an optimization of the tool, implemented in the packages sim4db and leaff. The new tool performs batch alignments of cDNA and genomic sequences in a fraction of the time required by its predecessor, and thus is very well suited for genome-wide analyses. AVAILABILITY Sim4db and leaff are written in C, C++ and Perl for Linux and other Unix platforms. Source code is distributed free of charge from http://sourceforge.net/projects/kmer/. CONTACT florea@umiacs.umd.edu
Collapse
Affiliation(s)
- Brian Walenz
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | | |
Collapse
|
278
|
Kimball RT, Mary CMS, Braun EL. A macroevolutionary perspective on multiple sexual traits in the phasianidae (galliformes). INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:423938. [PMID: 21716735 PMCID: PMC3119463 DOI: 10.4061/2011/423938] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/26/2011] [Indexed: 11/20/2022]
Abstract
Traits involved in sexual signaling are ubiquitous among animals. Although a single trait appears sufficient to convey information, many sexually dimorphic species exhibit multiple sexual signals, which may be costly to signalers and receivers. Given that one signal may be enough, there are many microevolutionary hypotheses to explain the evolution of multiple signals. Here we extend these hypotheses to a macroevolutionary scale and compare those predictions to the patterns of gains and losses of sexual dimorphism in pheasants and partridges. Among nine dimorphic characters, including six intersexual signals and three indicators of competitive ability, all exhibited both gains and losses of dimorphism within the group. Although theories of intersexual selection emphasize gain and elaboration, those six characters exhibited greater rates of loss than gain; in contrast, the competitive traits showed a slight bias towards gains. The available models, when examined in a macroevolutionary framework, did not yield unique predictions, making it difficult to distinguish among them. Even with this limitation, when the predictions of these alternative models were compared with the heterogeneous patterns of evolution of dimorphism in phasianids, it is clear that many different selective processes have been involved in the evolution of sexual signals in this group.
Collapse
Affiliation(s)
- Rebecca T. Kimball
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| | - Colette M. St. Mary
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL 32611, USA
| |
Collapse
|
279
|
Xu P, Li J, Li Y, Cui R, Wang J, Wang J, Zhang Y, Zhao Z, Sun X. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 2011; 12:188. [PMID: 21492448 PMCID: PMC3083359 DOI: 10.1186/1471-2164-12-188] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/14/2011] [Indexed: 12/26/2022] Open
Abstract
Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.
Collapse
Affiliation(s)
- Peng Xu
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Voss SR, Kump DK, Putta S, Pauly N, Reynolds A, Henry RJ, Basa S, Walker JA, Smith JJ. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res 2011; 21:1306-12. [PMID: 21482624 DOI: 10.1101/gr.116491.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12-17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution.
Collapse
Affiliation(s)
- Stephen R Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Sánchez-Guardado LÓ, Irimia M, Sánchez-Arrones L, Burguera D, Rodríguez-Gallardo L, Garcia-Fernández J, Puelles L, Ferran JL, Hidalgo-Sánchez M. Distinct and redundant expression and transcriptional diversity of MEIS gene paralogs during chicken development. Dev Dyn 2011; 240:1475-92. [PMID: 21465619 DOI: 10.1002/dvdy.22621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 01/20/2023] Open
|
282
|
Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation. FEBS Lett 2011; 585:1158-62. [PMID: 21419127 DOI: 10.1016/j.febslet.2011.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/06/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023]
Abstract
Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes.
Collapse
|
283
|
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. BIOINFORMATICS (OXFORD, ENGLAND) 2011. [PMID: 21217122 DOI: 10.1093/bioinformatics/btroll] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
MOTIVATION Counting the number of occurrences of every k-mer (substring of length k) in a long string is a central subproblem in many applications, including genome assembly, error correction of sequencing reads, fast multiple sequence alignment and repeat detection. Recently, the deep sequence coverage generated by next-generation sequencing technologies has caused the amount of sequence to be processed during a genome project to grow rapidly, and has rendered current k-mer counting tools too slow and memory intensive. At the same time, large multicore computers have become commonplace in research facilities allowing for a new parallel computational paradigm. RESULTS We propose a new k-mer counting algorithm and associated implementation, called Jellyfish, which is fast and memory efficient. It is based on a multithreaded, lock-free hash table optimized for counting k-mers up to 31 bases in length. Due to their flexibility, suffix arrays have been the data structure of choice for solving many string problems. For the task of k-mer counting, important in many biological applications, Jellyfish offers a much faster and more memory-efficient solution. AVAILABILITY The Jellyfish software is written in C++ and is GPL licensed. It is available for download at http://www.cbcb.umd.edu/software/jellyfish.
Collapse
Affiliation(s)
- Guillaume Marçais
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
284
|
Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. Next generation sequence assembly with AMOS. CURRENT PROTOCOLS IN BIOINFORMATICS 2011; Chapter 11:Unit 11.8. [PMID: 21400694 PMCID: PMC3072823 DOI: 10.1002/0471250953.bi1108s33] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality.
Collapse
Affiliation(s)
- Todd J Treangen
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Dan D Sommer
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Florent E Angly
- Australian Centre for Ecogenomics, University of Queensland, Brisbane St Lucia, QLD 4101, Australia
- Advanced Water Management Centre, University of Queensland, Brisbane St Lucia, QLD 4101, Australia
| | - Sergey Koren
- Department of Computer Science, University of Maryland, College Park, MD 20742
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
- Department of Computer Science, University of Maryland, College Park, MD 20742
| |
Collapse
|
285
|
Dodgson JB, Delany ME, Cheng HH. Poultry genome sequences: progress and outstanding challenges. Cytogenet Genome Res 2011; 134:19-26. [PMID: 21335957 DOI: 10.1159/000324413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The first build of the chicken genome sequence appeared in March, 2004 - the first genome sequence of any animal agriculture species. That sequence was done primarily by whole genome shotgun Sanger sequencing, along with the use of an extensive BAC contig-based physical map to assemble the sequence contigs and scaffolds and align them to the known chicken chromosomes and linkage groups. Subsequent sequencing and mapping efforts have improved upon that first build, and efforts continue in search of missing and/or unassembled sequence, primarily on the smaller microchromosomes and the sex chromosomes. In the past year, a draft turkey genome sequence of similar quality has been obtained at a much lower cost primarily due to the development of 'next-generation' sequencing techniques. However, assembly and alignment of the sequence contigs and scaffolds still depended on a detailed BAC contig map of the turkey genome that also utilized comparison to the existing chicken sequence. These 2 land fowl (Galliformes) genomes show a remarkable level of similarity, despite an estimated 30-40 million years of separate evolution since their last common ancestor. Among the advantages offered by these sequences are routine re-sequencing of commercial and research lines to identify the genetic correlates of phenotypic change (for example, selective sweeps), a much improved understanding of poultry diversity and linkage disequilibrium, and access to high-density SNP typing and association analysis, detailed transcriptomic and proteomic studies, and the use of genome-wide marker- assisted selection to enhance genetic gain in commercial stocks.
Collapse
Affiliation(s)
- J B Dodgson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA.
| | | | | |
Collapse
|
286
|
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. ACTA ACUST UNITED AC 2011; 27:764-70. [PMID: 21217122 DOI: 10.1093/bioinformatics/btr011] [Citation(s) in RCA: 2733] [Impact Index Per Article: 195.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Counting the number of occurrences of every k-mer (substring of length k) in a long string is a central subproblem in many applications, including genome assembly, error correction of sequencing reads, fast multiple sequence alignment and repeat detection. Recently, the deep sequence coverage generated by next-generation sequencing technologies has caused the amount of sequence to be processed during a genome project to grow rapidly, and has rendered current k-mer counting tools too slow and memory intensive. At the same time, large multicore computers have become commonplace in research facilities allowing for a new parallel computational paradigm. RESULTS We propose a new k-mer counting algorithm and associated implementation, called Jellyfish, which is fast and memory efficient. It is based on a multithreaded, lock-free hash table optimized for counting k-mers up to 31 bases in length. Due to their flexibility, suffix arrays have been the data structure of choice for solving many string problems. For the task of k-mer counting, important in many biological applications, Jellyfish offers a much faster and more memory-efficient solution. AVAILABILITY The Jellyfish software is written in C++ and is GPL licensed. It is available for download at http://www.cbcb.umd.edu/software/jellyfish.
Collapse
Affiliation(s)
- Guillaume Marçais
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
287
|
Bauer MM, Reed KM. Extended sequence of the turkey MHC B-locus and sequence variation in the highly polymorphic B-G loci. Immunogenetics 2011; 63:209-21. [DOI: 10.1007/s00251-010-0501-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/01/2010] [Indexed: 11/25/2022]
|
288
|
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J, Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ. Ensembl 2011. Nucleic Acids Res 2011; 39:D800-6. [PMID: 21045057 PMCID: PMC3013672 DOI: 10.1093/nar/gkq1064] [Citation(s) in RCA: 566] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/13/2010] [Indexed: 11/13/2022] Open
Abstract
The Ensembl project (http://www.ensembl.org) seeks to enable genomic science by providing high quality, integrated annotation on chordate and selected eukaryotic genomes within a consistent and accessible infrastructure. All supported species include comprehensive, evidence-based gene annotations and a selected set of genomes includes additional data focused on variation, comparative, evolutionary, functional and regulatory annotation. The most advanced resources are provided for key species including human, mouse, rat and zebrafish reflecting the popularity and importance of these species in biomedical research. As of Ensembl release 59 (August 2010), 56 species are supported of which 5 have been added in the past year. Since our previous report, we have substantially improved the presentation and integration of both data of disease relevance and the regulatory state of different cell types.
Collapse
Affiliation(s)
- Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Te Pas M, Hoekman A, Smits M. Biomarkers as management tools for industries in the pork production chain. ACTA ACUST UNITED AC 2011. [DOI: 10.3920/jcns2011.qpork6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In livestock production, traits such as meat quantity and quality are mainly determined by biological processes. Knowing the biological background of traits makes it possible to identify relevant processes, genes or molecules that may be used as indicators to rapidly and easily detect the status and phase of biological processes. Such indicators are called biomarkers. Thus biomarkers provide information about the status and phase of biological processes underlying particular traits. This information can be used to modulate these processes and thereby optimize the economic value of these traits. To produce products from livestock, pork industries are organized in a production chain – from the breeding industry to the retail industry. Industries in a chain interact with each other to optimize economic value. (Automated) detection of biomarkers could activate processes throughout the chain that can be robotized and computerized, thereby creating economic benefit for all participants in the chain. Biomarkers may be used on individual animals and on pooled samples representing a whole herd for herd management. Here we describe how biomarkers can be developed and how they may be used to enhance value for the pork production chain industries.
Collapse
Affiliation(s)
- Marinus Te Pas
- Animal Breeding and Genetics Centre (ABGC), Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB, Lelystad, the Netherlands
| | - Arend Hoekman
- Animal Breeding and Genetics Centre (ABGC), Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB, Lelystad, the Netherlands
| | - Mari Smits
- Animal Breeding and Genetics Centre (ABGC), Livestock Research, Wageningen University and Research Centre, P.O. Box 65, 8200 AB, Lelystad, the Netherlands
| |
Collapse
|
290
|
Molecular Characterization of Coding Sequence and mRNA Expression Pattern of Toll-like Receptor 15 in Japanese Quail (Coturnix japonica) and Indigenous Chicken Breeds (Aseel and Kadaknath). J Poult Sci 2011. [DOI: 10.2141/jpsa.011008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
291
|
Organ CL, Canoville A, Reisz RR, Laurin M. Paleogenomic data suggest mammal-like genome size in the ancestral amniote and derived large genome size in amphibians. J Evol Biol 2010; 24:372-80. [PMID: 21091812 DOI: 10.1111/j.1420-9101.2010.02176.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An unsolved question in evolutionary genomics is whether amniote genomes have been expanding or contracting since the common ancestor of this diverse group. Here, we report on the polarity of amniote genome size evolution using genome size estimates for 14 extinct tetrapod genera from the Paleozoic and early Mesozoic Eras using osteocyte lacunae size as a correlate. We find substantial support for a phylogenetically controlled regression model relating genome size to osteocyte lacunae size (P of slopes <0.01, r²=0.65, phylogenetic signal λ=0.83). Genome size appears to have been homogeneous across Paleozoic crown-tetrapod lineages (average haploid genome size 2.9-3.7 pg) with values similar to those of extant mammals. The differentiation in genome size and underlying architecture among extant tetrapod lineages likely evolved in the Mesozoic and Cenozoic Eras, with expansion in amphibians, contractions along the diapsid lineage, and no directional change within the synapsid lineage leading to mammals.
Collapse
Affiliation(s)
- C L Organ
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
292
|
Aslam ML, Bastiaansen JWM, Crooijmans RPMA, Vereijken A, Megens HJ, Groenen MAM. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes. BMC Genomics 2010; 11:647. [PMID: 21092123 PMCID: PMC3091770 DOI: 10.1186/1471-2164-11-647] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/20/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The turkey (Meleagris gallopavo) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. RESULTS Eighteen full sib families, comprising 1008 (35 F1 and 973 F2) birds, were genotyped for 775 single nucleotide polymorphisms (SNPs). Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM) with the largest linkage group (81 loci) measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. CONCLUSION Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.
Collapse
Affiliation(s)
- Muhammad L Aslam
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - John WM Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Richard PMA Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Addie Vereijken
- Hendrix Genetics, Research & Technology Centre, 5830 AC, Boxmeer, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| | - Martien AM Groenen
- Animal Breeding and Genomics Centre, Wageningen University,6709PG, Wageningen, The Netherlands
| |
Collapse
|