251
|
Zhao C, Liu L, Liu Q, Li F, Zhang L, Zhu F, Shao T, Barve S, Chen Y, Li X, McClain CJ, Feng W. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Mol Metab 2019; 29:145-157. [PMID: 31668386 PMCID: PMC6812038 DOI: 10.1016/j.molmet.2019.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives High fructose feeding changes fibroblast growth factor 21 (FGF21) regulation. Lactobacillus rhamnosus GG (LGG) supplementation reduces fructose-induced non-alcoholic fatty liver disease (NAFLD). The aim of this study was to determine the role of FGF21 and underlying mechanisms in the protective effects of LGG. Methods FGF21 knockout (KO) mice and C57BL/6 wild type (WT) mice were fed 30% fructose for 12 weeks. LGG was administered to the mice in the last 4 weeks during fructose feeding. FGF21-adiponectin (ADPN)-mediated hepatic lipogenesis and inflammation were investigated. Results FGF21 expression was robustly increased after 5-weeks of feeding and significantly decreased after 12-weeks of feeding in fructose-induced NAFLD mice. LGG administration reversed the depressed FGF21 expression, increased adipose production of ADPN, and reduced hepatic fat accumulation and inflammation in the WT mice but not in the KO mice. Hepatic nuclear carbohydrate responsive-element binding protein (ChREBP) was increased by fructose and reduced by LGG, resulting in a reduction in the expression of lipogenic genes. The methylated form of protein phosphatase 2A (PP2A) C, which dephosphorylates and activates ChREBP, was upregulated by fructose and normalized by LGG. Leucine carboxyl methyltransferase-1, which methylates PP2AC, was also increased by fructose and decreased by LGG. However, those beneficial effects of LGG were blunted in the KO mice. Hepatic dihydrosphingosine-1-phosphate, which inhibits PP2A, was markedly increased by LGG in the WT mice but attenuated in the KO mice. LGG decreased adipose hypertrophy and increased serum levels of ADPN, which regulates sphingosine metabolism. This beneficial effect was decreased in the KO mice. Conclusion LGG administration increases hepatic FGF21 expression and serum ADPN concentration, resulting in a reduced ChREBP activation through dihydrosphingosine-1-phosphate-mediated PP2A deactivation, and subsequently reversed fructose-induced NAFLD. Thus, our data suggest that FGF21 is required for the beneficial effects of LGG in reversal of fructose-induced NAFLD. Lactobacillus rhamnosus GG (LGG) attenuates fructose-induced NAFLD. LGG increases FGF21 and adiponectin expression. LGG inhibits fructose-activated ChREBP and reduces hepatic lipogenesis. FGF21 is required for the therapeutic effects of LGG against fructose-induced NAFLD.
Collapse
Affiliation(s)
- Cuiqing Zhao
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Liming Liu
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fengyuan Li
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Fenxia Zhu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Robley Rex VA Medical Center, Louisville, KY 40206, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
252
|
Yang F, Wei JD, Lu YF, Sun YL, Wang Q, Zhang RL. Galacto-oligosaccharides modulate gut microbiota dysbiosis and intestinal permeability in rats with alcohol withdrawal syndrome. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
253
|
Meta-analysis of alcohol induced gut dysbiosis and the resulting behavioral impact. Behav Brain Res 2019; 376:112196. [PMID: 31476330 DOI: 10.1016/j.bbr.2019.112196] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
About 99% of the unique genes and almost half of the cells found in the human body come from microbes including bacteria, archaea, fungi, and viruses. Collectively these microorganisms contribute to the microbiome and often reside in the gut. The gut microbiome plays an important role in the body and contributes to digestive health, the immune system, and brain function. The gut microbiome interacts with the central nervous system through the vagal pathways as well as the endocrine or immune pathways. Changes in the proportion or diversity of the microbiota can have an impact on normal physiology and has been implicated in inflammation, depression, obesity, and addiction. Several animal studies suggest the involvement of gut microbiome in the regulation of pain, emotion, and cognition. Alcoholism has been linked with gut microbiome dysbiosis and thus can have deleterious effects on the gut-brain axis balance. Gut microbiome produces important metabolites such as gastrointestinal hormones, short chain fatty acids, precursors to the neuroactive compounds and neurotransmitters that impact the physiology and normal functioning of the body. The microbiome imbalance has been correlated with behavioral changes and alcohol dependence in the host. The objective of this study is to elucidate the link between alcohol induced gut microbiota dysbiosis and any behavioral impact that could incur. A thorough literature search of various databases was conducted to gather data for the alcohol prompted gut microbiome dysbiosis. Ingenuity Pathway Analysis (IPA1) software was then utilized to identify links between alcoholism, gut microbiome derived metabolites, and their role in behavior alterations. Overall, this meta-analysis reviews information available on the connection between alcohol induced gut microbiome dysbiosis and the resulting behavioral impact.
Collapse
|
254
|
Fan J, Wang Y, You Y, Ai Z, Dai W, Piao C, Liu J, Wang Y. Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice. Food Funct 2019; 10:5566-5573. [PMID: 31429848 DOI: 10.1039/c9fo01415b] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions among the liver, intestine and immune system play an important role in alcoholic liver injury. In this study, C57BL/6N mice with alcoholic injury were treated with unfermented and Lactobacillus fermentum KP-3-fermented ginseng. The indicators of hepatic steatosis, inflammation and injury were evaluated. The number of beneficial and harmful bacteria in the mice ileum and colon was counted by a traditional method; moreover, the diversity analysis of the cecum flora was performed. The alcohol exposure increased the levels of ALT, AST, TNF-α and IL-6 inflammatory factors and liver steatosis. In addition, the alcohol-fed miceexhibited a lower number of Lactobacilli and Bifidobacteria in the ileum and colon; the cecum flora diversity in the mice showed that alcohol obviously enhanced the abundance of the unclassified S24-7 of the Bacteroidetes phylum and the Proteobacteria genus of the Sutterella phylum and reduced the abundance of short-chain fatty acid-producing bacteria such as Akkermansia in the Verrucomicrobia phylum and those belonging to the Allobaculum genus, the Ruminococcus genus, and the Adlercreutzia genus in the Actinobacteria phylum. All these changes were improved by fermented ginseng. Conclusively, fermented ginseng could alleviate the alcoholic liver injury and disorder of the intestine by adjusting the intestinal flora.
Collapse
Affiliation(s)
- Jingjing Fan
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yushan Wang
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Ying You
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Weichang Dai
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China and National Processing Laboratory for Soybean Industry and technology, Changchun, China.
| | - Chunhong Piao
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China and National Processing Laboratory for Soybean Industry and technology, Changchun, China.
| | - Junmei Liu
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China and National Processing Laboratory for Soybean Industry and technology, Changchun, China.
| | - Yuhua Wang
- College of Food Science and Engineering, China and Jilin province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China and National Processing Laboratory for Soybean Industry and technology, Changchun, China.
| |
Collapse
|
255
|
Schwenger KJ, Clermont-Dejean N, Allard JP. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 2019; 1:214-226. [PMID: 32039372 PMCID: PMC7001555 DOI: 10.1016/j.jhepr.2019.04.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested a role for the intestinal microbiota in the pathogenesis and potential treatment of a wide range of liver diseases. The intestinal microbiota and bacterial products may contribute to the development of liver diseases through multiple mechanisms including increased intestinal permeability, chronic systemic inflammation, production of short-chain fatty acids and changes in metabolism. This suggests a potential role for pre-, pro- and synbiotic products in the prevention or treatment of some liver diseases. In addition, there is emerging evidence on the effects of faecal microbial transplant. Herein, we discuss the relationship between the intestinal microbiota and liver diseases, as well as reviewing intestinal microbiota-based treatment options that are currently being investigated.
Collapse
Affiliation(s)
- Katherine Jp Schwenger
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
256
|
Wong VWS, Singal AK. Emerging medical therapies for non-alcoholic fatty liver disease and for alcoholic hepatitis. Transl Gastroenterol Hepatol 2019; 4:53. [PMID: 31463412 PMCID: PMC6691078 DOI: 10.21037/tgh.2019.06.06] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are currently the two most common liver diseases in the world. Alcoholic hepatitis (AH), a unique clinical syndrome among ALD patients has high short-term mortality. Apart from controlling the risk factor for individual respective disease, there are no Food and Drug Administration (FDA) approved medical therapies for these diseases. Over the last 5-10 years, the field has extensively grown with many new targets being studied in randomized clinical trials for these diseases, with many of these drugs being tested in both the conditions. In this chapter, we will describe the novel therapeutic agents and current status of ongoing clinical trials with these agents for the treatment of NAFLD and/or AH.
Collapse
Affiliation(s)
- Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, the Chinese University of Hong Kong, Hong Kong, China
| | - Ashwani K. Singal
- Division of Gastroenterology and Hepatology, Avera Transplant Institute, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| |
Collapse
|
257
|
Zhang M, Cai D, Song Q, Wang Y, Sun H, Piao C, Yu H, Liu J, Liu J, Wang Y. Effect on Viability of Microencapsulated Lactobacillus rhamnosus with the Whey Protein-pullulan Gels in Simulated Gastrointestinal Conditions and Properties of Gels. Food Sci Anim Resour 2019; 39:459-473. [PMID: 31304474 PMCID: PMC6612782 DOI: 10.5851/kosfa.2019.e42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) has low resistance to low pH and bile salt in the gastrointestinal juice. In this study, the gel made from whey protein concentrate (WPC) and pullulan (PUL) was used as the wall material to prepare the microencapsulation for LGG protection. The gelation process was optimized and the properties of gel were also determined. The results showed the optimal gel was made from 10% WPC and 8.0% PUL at pH 7.5, which could get the best protective effect; the viable counts of LGG were 6.61 Log CFU/g after exposure to simulated gastric juice (SGJ) and 9.40 Log CFU/g to simulated intestinal juice (SIJ) for 4 h. Sodium dodecyl sulphite polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that the WPC-PUL gel had low solubility in SGJ, but dissolved well in SIJ, which suggested that the gel can protect LGG under SGJ condition and release probiotics in the SIJ. Moreover, when the gel has highest hardness and water-holding capacity, the viable counts of LGG were not the best, suggesting the relationship between the protection and the properties of the gel was non-linear.
Collapse
Affiliation(s)
- Minghao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Qiumei Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
258
|
Chopyk DM, Stuart JD, Zimmerman MG, Wen J, Gumber S, Suthar MS, Thapa M, Czaja MJ, Grakoui A. Acetaminophen Intoxication Rapidly Induces Apoptosis of Intestinal Crypt Stem Cells and Enhances Intestinal Permeability. Hepatol Commun 2019; 3:1435-1449. [PMID: 31701068 PMCID: PMC6824060 DOI: 10.1002/hep4.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Acetaminophen (APAP)‐induced liver injury is the most common cause of acute liver failure (ALF) in the Western world. APAP toxicity progresses to multiorgan dysfunction and thus has broader whole‐body implications. Importantly, greater 30‐day mortality has been observed in liver transplant recipients following ALF due to APAP‐related versus non‐APAP‐related causes. Reasons for this discrepancy have yet to be determined. Extrahepatic toxicities of APAP overdose may represent underappreciated and unaddressed comorbidities within this patient population. In the present study, rapid induction of apoptosis following APAP overdose was observed in the intestine, an organ that greatly influences the physiology of the liver. Strikingly, apoptotic cells appeared to be strictly restricted to the intestinal crypts. The use of leucine‐rich repeat‐containing G protein–coupled receptor 5 (LGR5) reporter mice confirmed that the LGR5‐positive (+) crypt base stem cells were disproportionately affected by APAP‐induced cell death. Although the apoptotic cells were cleared within 24 hours after APAP treatment, potentially long‐lived consequences on the intestine due to APAP exposure were indicated by prolonged deficits in gut barrier function. Moreover, small intestinal cell death was found to be independent of tumor necrosis factor receptor signaling and may represent a direct toxic insult to the intestine by exposure to high concentrations of APAP. Conclusion: APAP induces intestinal injury through a regulated process of apoptotic cell death that disproportionately affects LGR5+ stem cells. This work advances our understanding of the consequences of APAP toxicity in a novel organ that was not previously considered as a significant site of injury and thus presents potential new considerations for patient management.
Collapse
Affiliation(s)
- Daniel M Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Johnasha D Stuart
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Matthew G Zimmerman
- Division of Infectious Diseases, Department of Pediatrics Emory University School of Medicine Atlanta GA.,Emory Vaccine Center Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Jing Wen
- Division of Digestive Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| | - Sanjeev Gumber
- Division of Pathology and Laboratory Medicine Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Mehul S Suthar
- Division of Infectious Diseases, Department of Pediatrics Emory University School of Medicine Atlanta GA.,Emory Vaccine Center Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA
| | - Mark J Czaja
- Division of Digestive Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology Yerkes National Primate Research Center, Emory University School of Medicine Atlanta GA.,Division of Infectious Diseases, Department of Medicine Emory University School of Medicine Atlanta GA
| |
Collapse
|
259
|
Kosnicki KL, Penprase JC, Cintora P, Torres PJ, Harris GL, Brasser SM, Kelley ST. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome. Addict Biol 2019; 24:617-630. [PMID: 29750384 PMCID: PMC6230504 DOI: 10.1111/adb.12626] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease.
Collapse
Affiliation(s)
- Kassi L. Kosnicki
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Jerrold C. Penprase
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Patricia Cintora
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Pedro J. Torres
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Greg L. Harris
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| | - Susan M. Brasser
- Department of Psychology, San Diego State University, San Diego, CA, 92182 USA
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, CA, 92104 USA
| |
Collapse
|
260
|
Kong X, Wu G, Chen S, Zhang L, Li F, Shao T, Ren L, Chen SY, Zhang H, McClain CJ, Feng W. Chalcone Derivative L6H21 Reduces EtOH + LPS-Induced Liver Injury Through Inhibition of NLRP3 Inflammasome Activation. Alcohol Clin Exp Res 2019; 43:1662-1671. [PMID: 31162673 DOI: 10.1111/acer.14120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic alcohol intake increases circulating endotoxin levels causing excessive inflammation that aggravates the liver injury. (E)-2,3-dimethoxy-4'-methoxychalcone (L6H21), a derivative of chalcone, has been found to inhibit inflammation in cardiac diseases and nonalcoholic fatty liver disease. However, the use of L6H21 in alcoholic liver disease to inhibit exotoxin-associated inflammation has not been explored. In this study, we examined the effects of L6H21 on EtOH + LPS-induced hepatic inflammation, steatosis, and liver injury and investigated the underlying mechanisms. METHODS C57BL6 mice were treated with 5% EtOH for 10 days, and LPS was given to the mice 6 hours before sacrificing. One group of mice was supplemented with L6H21 with EtOH and LPS. RAW264.7 cells were used to analyze the effects of L6H21 on macrophage activation. RESULTS EtOH + LPS treatment significantly increased hepatic steatosis and serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), which were reduced by L6H21 treatment. EtOH + LPS treatment increased hepatic inflammation, as shown by the increased hepatic protein levels of Toll-like receptor-4, p65, and p-IκB, and increased oxidative stress, as shown by protein carbonyl levels and reactive oxygen species formation, which were reduced by L6H21 treatment. In addition, L6H21 treatment markedly inhibited EtOH + LPS-elevated hepatic protein levels of NLRP3, cleaved caspase-1, cleaved IL-1β, and caspase-1-associated apoptosis. CONCLUSIONS Our results demonstrate that L6H21 treatment inhibits EtOH + LPS-induced liver steatosis and injury through suppression of NLRP3 inflammasome activation. L6H21 may be used as an alternative strategy for ALD prevention/treatment.
Collapse
Affiliation(s)
- Xiaoxia Kong
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Guicheng Wu
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Department of Hepatology, Three Gorges Central Hospital, Chongqing, China
| | - Sha Chen
- School of Basic Medical Sciences, Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Fengyuan Li
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Tuo Shao
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Li Ren
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,First Affiliate Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Shao-Yu Chen
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Craig J McClain
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Robley Rex Louisville VAMC, Louisville, Kentucky
| | - Wenke Feng
- Hepatobiology and Toxicology Program, Department of Pharmacology and Toxicology, Alcohol Research Center, University of Louisville, Louisville, Kentucky.,Hepatobiology and Toxicology Program, Department of Medicine, Alcohol Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
261
|
Bruch-Bertani JP, Uribe-Cruz C, Pasqualotto A, Longo L, Ayres R, Beskow CB, Barth AL, Lima-Morales D, Meurer F, Tayguara Silveira Guerreiro G, da Silveira TR, Álvares-da-Silva MR, Dall'Alba V. Hepatoprotective Effect of Probiotic Lactobacillus rhamnosus GG Through the Modulation of Gut Permeability and Inflammasomes in a Model of Alcoholic Liver Disease in Zebrafish. J Am Coll Nutr 2019; 39:163-170. [PMID: 31241423 DOI: 10.1080/07315724.2019.1627955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Alcoholic liver disease (ALD) is among the leading causes of death from liver disease. Among the factors involved in its pathogenesis are inflammation and increased intestinal permeability. The aim of this study was to assess the effect of Lactobacillus rhamnosus GG (LGG) on hepatic lipid accumulation, activation of inflammasomes, and gut permeability markers in experimental model of ALD with zebrafish.Methods: An experiment was conducted to assess the effective LGG dose capable of promoting intestinal colonization. Animals were divided into three groups (n = 64/group): ethanol group (E), ethanol + probiotic group (EP), and control group (C). Groups E and EP were exposed to 0.5% ethanol concentration for 28 days. At the end of this period, animals were euthanized, and livers were collected for Oil Red staining and assessment of the inflammasome system. Intestines were collected for evaluation of gut permeability markers.Results: The dose of 1.55 × 106 UFC LGG/fish/d promoted intestinal colonization. Group EP presented lower hepatic lipid accumulation, lower il-1β expression, and higher cldn15a expression when compared to group E.Conclusions: Supplementation with LGG was protective for hepatic steatosis in ALD model. In addition, LGG influenced the modulation of the inflammatory response and markers of gut permeability, improving the gut barrier structure.
Collapse
Affiliation(s)
- Juliana Paula Bruch-Bertani
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Amanda Pasqualotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Ayres
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carolina Bortolin Beskow
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Afonso Luis Barth
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Daiana Lima-Morales
- Research Laboratory on Bacterial Resistance (LABRESIS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fábio Meurer
- Post Graduate Program in Sustainable Development of Aquaculture, Universidade Federal do Paraná, Campus de Palotina, Paraná, Brazil
| | | | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Internal Medicine, Gastroenterology and Hepatology Unit. School of Medicine, UFRGS. Gastroenterology and Hepatology Division, HCPA, Porto Alegre, Brazil
| | - Valesca Dall'Alba
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Post Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Nutrition. School of Medicine, UFRGS. Nutrition Division. Hospital de Clínicas de Porto Alegre, UFRGS. Porto Alegre, Brazil
| |
Collapse
|
262
|
Jiang X, Lin D, Shao H, Yang X. Antioxidant properties of Komagataeibacter hansenii CGMCC 3917 and its ameliorative effects on alcohol-induced liver injury in mice. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1584647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinxin Jiang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi‘an, China
| |
Collapse
|
263
|
Hong M, Han DH, Hong J, Kim DJ, Suk KT. Are Probiotics Effective in Targeting Alcoholic Liver Diseases? Probiotics Antimicrob Proteins 2019; 11:335-347. [PMID: 29687200 DOI: 10.1007/s12602-018-9419-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite intensive research in the last two decades, there is currently no Food and Drug Administration-approved therapy for treating ALD. Several studies have demonstrated the importance of the gut-liver axis and gut microbiome on the pathogenesis of ALD. Alcohol may induce intestinal dysbiosis and increased intestinal permeability, which in turn result in increased levels of pathogen-associated molecular patterns such as lipopolysaccharide (LPS) and translocation of microbial products from the gut to the liver (bacterial translocation). LPS is an inflammatory signal that activates toll-like receptor 4 on Kupffer cells, contributing to the inflammation observed in ALD. Recently, probiotics have been shown to be effective in reducing or preventing the progression of ALD. A potential mechanism is that the probiotics transforms the composition of intestinal microbiota, which leads to reductions in alcohol-induced dysbiosis, intestinal permeability, bacterial translocation, endotoxemia, and consequently, the development of ALD. While transformation of intestinal microbiota by probiotics appears to be a promising therapeutic strategy for the treatment of intestinal barrier dysfunction, there is a scarcity of research that studies probiotics in the context of ALD. In this review, we discuss the potential therapeutic applications of probiotics in the treatment of ALD.
Collapse
Affiliation(s)
- Meegun Hong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Dae Hee Han
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Jitaek Hong
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon, 24253, South Korea.
| |
Collapse
|
264
|
Probiotics for Alleviating Alcoholic Liver Injury. Gastroenterol Res Pract 2019; 2019:9097276. [PMID: 31263495 PMCID: PMC6556793 DOI: 10.1155/2019/9097276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Many animal experiments and clinical trials showed that probiotics are effective for the treatment of alcoholic liver disease. Alcohol disrupts the composition of intestinal flora; probiotics modulate the gut microbiota and reverse alcohol-associated intestinal barrier dysfunction by decreasing intestinal mucosal permeability and preventing intestinal bacteria from translocating. Probiotics enhance immune responses and reduce the levels of alcohol-induced inflammatory cytokines and reactive oxygen species (ROS) production in the liver and intestine. Probiotics also increase fatty acid β-oxidation and reduce lipogenesis, combating alcohol-induced hepatic steatosis. In this review, we summarize the current knowledge regarding the mechanism of action of probiotics for reducing the effects of alcoholic liver disease.
Collapse
|
265
|
Lou Z, Wang J, Chen Y, Xu C, Chen X, Shao T, Zhang K, Pan H. Linderae radix ethanol extract attenuates alcoholic liver injury via attenuating inflammation and regulating gut microbiota in rats. Braz J Med Biol Res 2019; 52:e7628. [PMID: 31116255 PMCID: PMC6526752 DOI: 10.1590/1414-431x20197628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the influence of gut microbiota alterations induced by Linderae radix ethanol extract (LREE) on alcoholic liver disease (ALD) in rats and to study the anti-inflammatory effect of LREE on ALD through the lipopolysaccharide (LPS) toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. ALD rat models were established by intragastric liquor [50% (v/v) ethanol] administration at 10 mL/kg body weight for 20 days. Rats were divided into six groups: normal group (no treatment), model group (ALD rats), Essentiale group (ALD rats fed with Essentiale, 137 mg/kg), and LREE high/moderate/low dose groups (ALD rats fed with 4, 2, or 1 g LREE/kg). NF-κB and LPS levels were evaluated. Liver pathological changes and intestinal ultrastructure were examined by hematoxylin and eosin staining and transmission electron microscopy. The gut microbiota composition was evaluated by 16S rDNA sequencing. Expression levels of TLR4 and CD68 in liver tissue, and occludin and claudin-1 in intestinal tissue were measured. LREE treatment significantly reduced NF-κB and LPS levels, improved liver pathological changes, and ameliorated intestinal ultrastructure injury. Meanwhile, LREE-fed groups showed a higher abundance of Firmicutes and a lower abundance of Bacteroidetes than the rats in the model group. Administration of LREE suppressed TLR4 overexpression and promoted the expression of occludin and claudin-1 in intestine tissue. Thus, LREE could partly ameliorate microflora dysbiosis, suppress the inflammatory response, and attenuate liver injury in ALD rats. The protective effect of LREE might be related to the LPS-TLR4-NF-κB pathway.
Collapse
Affiliation(s)
- Zhaohuan Lou
- Institute of Medical Material, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Junwei Wang
- Emergency Department, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Chandi Xu
- School of Clinical Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyi Chen
- Emergency Department, People's Hospital of Tiantai County, Tiantai, Zhejiang, China
| | - Tiejuan Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kena Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
266
|
Role of Gut Microbiota in Hepatocarcinogenesis. Microorganisms 2019; 7:microorganisms7050121. [PMID: 31060311 PMCID: PMC6560397 DOI: 10.3390/microorganisms7050121] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of death worldwide, has a causal nexus with liver injury, inflammation, and regeneration that accumulates over decades. Observations from recent studies have accounted for the involvement of the gut–liver axis in the pathophysiological mechanism responsible for HCC. The human intestine nurtures a diversified colony of microorganisms residing in the host ecosystem. The intestinal barrier is critical for conserving the normal physiology of the gut microbiome. Therefore, a rupture of this barrier or dysbiosis can cause the intestinal microbiome to serve as the main source of portal-vein endotoxins, such as lipopolysaccharide, in the progression of hepatic diseases. Indeed, increased bacterial translocation is a key sign of HCC. Considering the limited number of clinical studies on HCC with respect to the microbiome, we focus on clinical as well as animal studies involving the gut microbiota, with the current understandings of the mechanism by which the intestinal dysbiosis promotes hepatocarcinogenesis. Future research might offer mechanistic insights into the specific phyla targeting the leaky gut, as well as microbial dysbiosis, and their metabolites, which represent key pathways that drive HCC-promoting microbiome-mediated liver inflammation and fibrosis, thereby restoring the gut barrier function.
Collapse
|
267
|
A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236:1513-1530. [PMID: 30982128 PMCID: PMC6599482 DOI: 10.1007/s00213-019-05232-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.
Collapse
|
268
|
González-Arancibia C, Urrutia-Piñones J, Illanes-González J, Martinez-Pinto J, Sotomayor-Zárate R, Julio-Pieper M, Bravo JA. Do your gut microbes affect your brain dopamine? Psychopharmacology (Berl) 2019; 236:1611-1622. [PMID: 31098656 DOI: 10.1007/s00213-019-05265-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence shows changes in gut microbiota composition in association with psychiatric disorders, including anxiety and depression. Moreover, it has been reported that perturbations in gut microbe diversity and richness influence serotonergic, GABAergic, noradrenergic, and dopaminergic neurotransmission. Among these, dopamine is regarded as a main regulator of cognitive functions such as decision making, attention, memory, motivation, and reward. In this work, we will highlight findings that link alterations in intestinal microbiota and dopaminergic neurotransmission, with a particular emphasis on the mesocorticolimbic circuit, which is involved in reward to natural reinforcers, as well as abuse substances. For this, we reviewed evidence from studies carried out on germ-free animals, or in rodents subjected to intestinal dysbiosis using antibiotics, and also through the use of probiotics. All this evidence strongly supports that the microbiota-gut-brain axis is key to the physiopathology of several neuropsychiatric disorders involving those where dopaminergic neurotransmission is compromised. In addition, the gut microbiota appears as a key player when it comes to proposing novel strategies to the treatment of these psychiatric conditions.
Collapse
Affiliation(s)
- Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Javiera Illanes-González
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.,Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcela Julio-Pieper
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile
| | - Javier A Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Región de Valparaíso, Chile.
| |
Collapse
|
269
|
Alcohol-induced changes in the gut microbiome and metabolome of rhesus macaques. Psychopharmacology (Berl) 2019; 236:1531-1544. [PMID: 30903211 PMCID: PMC6613802 DOI: 10.1007/s00213-019-05217-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE Increasing evidence has demonstrated that changes in the gut microbiome, including those associated with dietary influences, are associated with alterations in many physiological processes. Alcohol consumption is common across human cultures and is likely to have a major effect on the gut microbiome, but there remains a paucity of information on its effects in primates. OBJECTIVES The effects of chronic alcohol consumption on the primate gut microbiome and metabolome were studied in rhesus macaques that were freely drinking alcohol. The objectives of the study were to determine what changes occurred in the gut microbiome following long-term exposure to alcohol and if these changes were reversible following a period of abstinence. METHODS Animals consuming alcohol were compared to age-matched controls without access to alcohol and were studied before and after a period of abstinence. Fecal samples from rhesus macaques were used for 16S rRNA sequencing to profile the gut microbiome and for metabolomic profiling using mass spectrometry. RESULTS Alcohol consumption resulted in a loss of alpha-diversity in rhesus macaques, though this was partially ameliorated by a period of abstinence. Higher levels of Firmicutes were observed in alcohol-drinking animals at the expense of a number of other microbial taxa, again normalizing in part with a period of abstinence. Metabolomic changes were primarily associated with differences in glycolysis when animals were consuming alcohol and differences in fatty acids when alcohol-drinking animals became abstinent. CONCLUSIONS The consumption of alcohol has specific effects on the microbiome and metabolome of rhesus macaques independent of secondary influences. Many of these changes are reversed by a relatively short period of abstinence.
Collapse
|
270
|
Chichetto NE, Plankey MW, Abraham AG, Sheps DS, Ennis N, Chen X, Weber KM, Shoptaw S, Kaplan RC, Post WS, Cook RL. The Impact of Past and Current Alcohol Consumption Patterns on Progression of Carotid Intima-Media Thickness Among Women and Men Living with HIV Infection. Alcohol Clin Exp Res 2019; 43:695-703. [PMID: 30735256 PMCID: PMC6443465 DOI: 10.1111/acer.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relationship between alcohol consumption and atherosclerosis has not been sufficiently examined among people living with HIV (PLWH). METHODS We analyzed data from PLWH in the Women's Interagency HIV Study (WIHS; n = 1,164) and the Multicenter AIDS Cohort Study (MACS; n = 387) with no history of cardiovascular disease (CVD). Repeated measures of intima-media thickness of the right common carotid artery (CCA-IMT) were assessed using B-mode ultrasound from 2004 to 2013. Current alcohol consumption was collected at time of CCA-IMT measurement and was categorized according to gender-specific weekly limits. Group-based trajectory models categorized participants into past 10-year consumption patterns (1994 to 2004). Multivariate generalized estimating equations were conducted to assess the association of past and current alcohol use patterns on change in CCA-IMT by cohort, controlling for age, race, cigarette and illicit drug use, probable depression, HIV RNA viral load, antiretroviral therapy exposure, and hepatitis C coinfection. RESULTS Among the WIHS, past heavy alcohol consumption was associated with increased CCA-IMT level over time (β = 8.08, CI 0.35, 15.8, p = 0.04), compared to abstinence. Among the MACS, compared to abstinence, all past consumption patterns were associated with increased CCA-IMT over time (past low: β = 15.3, 95% CI 6.46, 24.2, p < 0.001; past moderate: β = 14.3, CI 1.36, 27.2, p = 0.03; past heavy: β = 21.8, CI 4.63, 38.9, p = 0.01). Current heavy consumption was associated with decreased CCA-IMT among the WIHS (β = -11.4, 95% CI -20.2, -2.63, p = 0.01) and MACS (β = -15.4, 95% CI -30.7, -0.13, p = 0.04). No statistically significant time by consumption pattern effects were found. CONCLUSIONS In both cohorts, 10-year heavy consumption was associated with statistically significant increases in carotid artery thickness, compared to abstinence. Long-term patterns of drinking at any level above abstinence were particularly significant for increases in IMT among men, with heavy consumption presenting with the greatest increase. Our results suggest a potentially different window of risk among past and current heavy drinkers. Further studies are needed to determine whether alcohol consumption level is associated with intermediate measures of atherosclerosis. Alcohol screening and interventions to reduce heavy consumption may benefit PLWH who are at risk of CVD.
Collapse
Affiliation(s)
- Natalie E Chichetto
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael W Plankey
- Department of Medicine, Division of Infectious Diseases, Georgetown University Medical Center, Washington, District of Columbia
| | - Alison G Abraham
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David S Sheps
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, Florida
| | - Nicole Ennis
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Xinguang Chen
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, Florida
| | - Kathleen M Weber
- Cook County Health & Hospitals System/Hektoen Institute of Medicine, Chicago, Illinois
| | - Steven Shoptaw
- Department of Family Medicine, University of California, Los Angeles, California
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert L Cook
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
271
|
Abstract
Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut-liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.
Collapse
|
272
|
Bjørkhaug ST, Aanes H, Neupane SP, Bramness JG, Malvik S, Henriksen C, Skar V, Medhus AW, Valeur J. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes 2019; 10:663-675. [PMID: 30894059 PMCID: PMC6866679 DOI: 10.1080/19490976.2019.1580097] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Excessive alcohol intake can alter the gut microbiota, which may underlie the pathophysiology of alcohol-related diseases. We examined gut microbiota composition and functions in patients with alcohol overconsumption for >10 years, compared to a control group of patients with a history of no or low alcohol intake. Faecal microbiota composition was assessed by 16S rRNA sequencing. Gut microbiota functions were evaluated by quantification of short-chain fatty acids (SCFAs) and predictive metagenome profiling (PICRUSt). Twenty-four patients, mean age 64.8 years (19 males), with alcohol overconsumption, and 18 control patients, mean age 58.2 years (14 males) were included. The two groups were comparable regarding basic clinical variables. Nutritional assessment revealed lower total score on the screening tool Mini Nutritional Assessment, lower muscle mass as assessed by handgrip strength, and lower plasma vitamin C levels in the alcohol overconsumption group. Bacteria from phylum Proteobacteria were found in higher relative abundance, while bacteria from genus Faecalibacterium were found in lower relative abundance in the group of alcohol overconsumers. The group also had higher levels of the genera Sutterella, Holdemania and Clostridium, and lower concentration and percentage of butyric acid. When applying PICRUSt to predict the metagenomic composition, we found that genes related to invasion of epithelial cells were more common in the group of alcohol overconsumers. We conclude that gut microbiota composition and functions in patients with alcohol overconsumption differ from patients with low consumption of alcohol, and seem to be skewed into a putative pro-inflammatory direction.
Collapse
Affiliation(s)
| | | | - Sudan Prasad Neupane
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway
| | - Jørgen G. Bramness
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway,Institute of clinical medicine, UiT - Norway’s Arctic University, Tromsø, Norway
| | - Stine Malvik
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Viggo Skar
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Asle W. Medhus
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway,CONTACT Jørgen Valeur Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo NO-0440, Norway
| |
Collapse
|
273
|
Xu Z, Wang C, Dong X, Hu T, Wang L, Zhao W, Zhu S, Li G, Hu Y, Gao Q, Wan J, Liu Z, Sun J. Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice. Biofactors 2019; 45:187-199. [PMID: 30417952 DOI: 10.1002/biof.1469] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
Alcohol addiction can cause brain dysfunction and many other diseases. Recently, increasing evidences have suggested that gut microbiota plays a vital role in regulating alcohol addiction. However, the exact mechanism has not yet been elucidated. Here, our study focused on the intestinal bacteria alternations and their correlations with alcohol-induced neuropsychic behaviors. When consuming alcohol over 3-week period, animals gradually displayed anxiety/depression-like behaviors. Moreover, 16S rRNA sequencing showed significant intestinal microflora dysbiosis and distinct community composition. Actinobacteria and Cyanobacteria were both increased at the phylum level. At the genus level, Adlercreutzia spp., Allobaculum spp., and Turicibacter spp. were increased whereas Helicobacter spp. was decreased. We also found that the distances in inner zone measured by open field test and 4% (v/v) alcohol preference percentages were significantly correlated with Adlercreutzia spp. The possible mechanisms were explored and we found the expression of brain-derived neurotrophic factor (BDNF) and α1 subunit of γ-aminobutyric acid A receptor (Gabra1) were both decreased in prefrontal cortex (PFC). Especially, further correlation analyses demonstrated that decreased Adlercreutzia spp. was positively correlated with alcohol preference and negatively correlated with anxiety-like behavior and BDNF/Gabra1 changes in PFC. Similar relationships were observed between Allobaculum spp. and alcohol preference and BDNF changes. Helicobacter spp. and Turicibacter spp. were also correlated with PFC BDNF and hippocampus Gabra1 level. Taken together, our study showed that gut microbiota dysbiosis during chronic alcohol exposure was closely correlated with alcohol-induced neuropsychic behaviors and BDNF/Gabra1 expression, which provides a new perspective for understanding underlying mechanisms in alcohol addiction. © 2018 BioFactors, 45(2):187-199, 2019.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Can Wang
- School of Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoguang Dong
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Tao Hu
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Lingling Wang
- Department of Hematology, School of Nursing Shandong University, Jinan, Shandong, China
| | - Wenbo Zhao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Shaowei Zhu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Guibao Li
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Yanlai Hu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Qing Gao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jiale Wan
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jinhao Sun
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| |
Collapse
|
274
|
Wang H, Yan Y, Yi X, Duan Y, Wang J, Li S, Luo L, Huang T, Inglis B, Li X, Ji W, Tan T, Si W. Histopathological Features and Composition of Gut Microbiota in Rhesus Monkey of Alcoholic Liver Disease. Front Microbiol 2019; 10:165. [PMID: 30800107 PMCID: PMC6375900 DOI: 10.3389/fmicb.2019.00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
Alcohol-induced chronic liver disease (ALD) is becoming the most common liver disease in the world. However, there are no effective, universally accepted therapies for ALD. The etiology of ALD remains blurry so far. Historical evidence has demonstrated a link between the liver and gut microbiota. But it is difficult to distinguish the effect of gut microbiota changes caused by alcohol consumption in humans since the microbiota change detected in humans is complicated by diet and environmental factors. Due to the genetic, physiological, metabolic, and behavioral similarities to humans, the rhesus monkey provides excellent translational validity in preclinical studies, and the diet and environmental conditions can be controlled well in rhesus monkey. In our study, we explored the relationship between ALD and the gut microbiome in the rhesus monkeys with alcoholic liver steatosis. Our results showed that there was a change of the bacterial community structure in monkeys with ALD. Differences of the relative abundances of gut microbiota at phylum, order, family, genus, and species levels were observed between control monkeys and monkeys with ALD, and different pathways enriched in the monkeys with ALD were identified by metagenomic function analysis. Firmicutes, Proteobacteria, Verrucomicrobia tended to increase whereas Bacteroidetes and Actinobacteria decreased in the fecal microbiota of ALD group compared to the control group. Lactobacillales and Lactobacillus significantly decreased in ALD monkeys compared with normal monkeys, Streptococcus was lower in the ALD group compared with the control group. The non-human primate model of ALD will be useful for exploration of the microbiome markers as diagnosis and potentially prognosis for ALD. The ALD model will benefit the development of new therapeutic procedures for treating ALD and provide safety and efficacy evaluation for clinical application.
Collapse
Affiliation(s)
- Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Yi
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Junfeng Wang
- Department of Hepatic and Bile Duct Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Lilin Luo
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Tianzhuang Huang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xi Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
275
|
Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70:260-272. [PMID: 30658727 DOI: 10.1016/j.jhep.2018.10.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
Alcohol-related liver disease is associated with significant changes in gut microbial composition. The transmissibility of ethanol-induced liver disease has been demonstrated using faecal microbiota transfer in preclinical models. This technique has also led to improved survival in patients with severe alcoholic hepatitis, suggesting that changes in the composition and function of the gut microbiota are causatively linked to alcohol-related liver disease. A major mechanism by which gut microbiota influence the development of alcohol-related liver disease is through a leaky intestinal barrier. This permits translocation of viable bacteria and microbial products to the liver, where they induce and promote inflammation, as well as contribute to hepatocyte death and the fibrotic response. In addition, gut dysbiosis is associated with changes in the metabolic function of the intestinal microbiota, bile acid composition and circulation, immune dysregulation during onset and progression of alcohol-related liver disease. Findings from preclinical and human studies will be used to demonstrate how alcohol causes intestinal pathology and contributes to alcohol-related liver disease and how the latter is self-perpetuating. Additionally, we summarise the effects of untargeted treatment approaches on the gut microbiota, such as diet, probiotics, antibiotics and faecal microbial transplantation in alcohol-related liver disease. We further discuss how targeted approaches can restore intestinal homeostasis and improve alcohol-related liver disease. These approaches are likely to add to the therapeutic options for alcohol-related liver disease independently or in conjunction with steroids.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Apurva Pande
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
276
|
Abstract
Apart from the classic knowledge that ethanol mediates its hepatotoxicity through its metabolism to acetaldehyde, a well-known hepatotoxic molecule, recent research has elucidated several key mechanisms that potentiate ethanol's damage to the liver parenchyma, such as generation of free radicals, activation of Kupffer cells, and alterations to the human bacterial and fungal microbiome. Genetic studies have suggested the role of PNPLA3 and TM6SF2 gene mutations in the progression of alcoholic liver disease.
Collapse
Affiliation(s)
- Themistoklis Kourkoumpetis
- Department of Gastroenterology, Baylor College of Medicine, 6620 Main Street, Suite 1450, Houston, TX 77030, USA
| | - Gagan Sood
- Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, 6620 Main Street, Suite 1450, Houston, TX 77030, USA.
| |
Collapse
|
277
|
Singal AK, Shah VH. Current trials and novel therapeutic targets for alcoholic hepatitis. J Hepatol 2019; 70:305-313. [PMID: 30658731 DOI: 10.1016/j.jhep.2018.10.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Alcoholic hepatitis is a clinical syndrome in which patients present with acute-on-chronic liver failure and a high risk of short-term mortality. The current treatment of alcoholic hepatitis is suboptimal. Results recently published from the STOPAH study have improved our understanding of how best to design clinical trials for this condition. Although emerging data on liver transplantation for patients with alcoholic hepatitis are encouraging, less than 2% of these patients qualify. Clearly, there is an unmet need for novel treatments to improve the survival of these patients. Changes in the gut microbiota, inflammatory and cytokine signalling, oxidative stress and mitochondrial dysfunction, and abnormalities in the hepatic regenerative capacity alone or in combination contribute to the pathology of alcoholic hepatitis. In this chapter, we will describe the novel therapeutic agents targeting various pathways in the pathophysiology of alcoholic hepatitis. Specifically, we will describe the ongoing clinical trials in which some of these agents are being studied.
Collapse
Affiliation(s)
- Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
278
|
Tao J, Li S, Gan RY, Zhao CN, Meng X, Li HB. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr 2019; 60:1025-1037. [PMID: 30632784 DOI: 10.1080/10408398.2018.1555789] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancers are common chronic diseases worldwide and cause severe health burdens. There have been ongoing debates on the role of gut microbiota in the prevention and management of cancers, thus, it is worthwhile to pay high attention to the impacts of gut microbiota on several cancers, such as colon, liver, and breast cancers. In addition, it has been reported that gut microbiota may also affect the efficacy of cancer chemotherapy and immunotherapy. Among all the factors that influence gut microbiota, diet is the most influential and modifiable. The prebiotics, dietary fibers, short-chain fatty acids, and other bioactive compounds are all important dietary components to assist the growth of beneficial microbiota in the gut, which can protect against cancers and promote human health. Their beneficial effects can be due to the fermentation of dietary fibers, the metabolism of phytochemicals, the synthesis of estrogens, and interactions with chemotherapies and immunotherapies. In order to provide updated information of the relationships among dietary components, gut microbiota, and cancer, in this review, we summarize the reciprocal interactions between dietary components and gut microbiota, and highlight the impacts of dietary components on several common cancers by targeting gut microbiota, with the potential mechanisms of actions also intensively discussed. As a result, this review can be very helpful for healthy people as well as cancer patients to prevent or manage cancers via dietary factor-mediated regulation of gut microbiota.
Collapse
Affiliation(s)
- Jun Tao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
279
|
Yang Y, Ai G, Wang M. Alcoholic liver disease and intestinal microecology. Shijie Huaren Xiaohua Zazhi 2019; 27:43-49. [DOI: 10.11569/wcjd.v27.i1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is damage to the liver that occurs after excessive alcohol use over a long period of time, which is mainly characterized by hepatocyte steatosis and fat storage, and the disease spectrum includes steatosis, steatohepatitis, alcoholic fibrosis, and cirrhosis. Steatosis and early steatohepatitis are reversible after cessation of alcohol use. Although the pathogenesis of ALD is not yet fully understood, many studies have shown that the intestinal microecological dysbiosis is closely related to the occurrence and development of ALD. Chronic alcohol use may cause intestinal microecological dysbiosis by leading to increased intestinal mucosal permeability, intestinal flora imbalance, and bacterial translocation, which can then activate immune response, induce an inflammatory response in the liver, and thus lead to liver damage. Based on this situation, we can adjust the intestinal flora imbalance to achieve the goal of treating ALD by using various methods such as supplementing probiotics or prebiotics, properly using antibiotics, and performing fecal microbiota transplantation. In addition, targeted therapy for intestinal bacterial imbalance has also become a hotspot in current research.
Collapse
Affiliation(s)
- Ya Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ming Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
280
|
Song M, Chan AT. Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clin Gastroenterol Hepatol 2019; 17:275-289. [PMID: 30031175 PMCID: PMC6314893 DOI: 10.1016/j.cgh.2018.07.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The substantial burden of colorectal cancer and increasing trend in young adults highlight the importance of lifestyle modification as a complement to screening for colorectal cancer prevention. Several dietary and lifestyle factors have been implicated in the development of colorectal cancer, possibly through the intricate metabolic and inflammatory mechanisms. Likewise, as a key metabolic and immune regulator, the gut microbiota has been recognized to play an important role in colorectal tumorigenesis. Increasing data support that environmental factors are crucial determinants for the gut microbial composition and function, whose alterations induce changes in the host gene expression, metabolic regulation, and local and systemic immune response, thereby influencing cancer development. Here, we review the epidemiologic and mechanistic evidence regarding the links between diet and lifestyle and the gut microbiota in the development of colorectal cancer. We focus on factors for which substantial data support their importance for colorectal cancer and their potential role in the gut microbiota, including overweight and obesity, physical activity, dietary patterns, fiber, red and processed meat, marine omega-3 fatty acid, alcohol, and smoking. We also briefly describe other colorectal cancer-preventive factors for which the links with the gut microbiota have been suggested but remain to be mechanistically characterized, including vitamin D status, dairy consumption, and metformin use. Given limitations in available evidence, we highlight the need for further investigations in the relationship between environmental factors, gut microbiota, and colorectal cancer, which may lead to development and clinical translation of potential microbiota-based strategies for cancer prevention.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
281
|
Qiu P, Dong Y, Zhu T, Luo YY, Kang XJ, Pang MX, Li HZ, Xu H, Gu C, Pan SH, Du WF, Ge WH. Semen hoveniae extract ameliorates alcohol-induced chronic liver damage in rats via modulation of the abnormalities of gut-liver axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:40-50. [PMID: 30599911 DOI: 10.1016/j.phymed.2018.09.209] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hovenia dulcis Thunb. is considered as a traditional herbal medicine that has been used in the treatment for ethanol-induced liver disease for centuries. Recently, substantial studies demonstrated that Semen hoveniae extract (SHE) not only suppressed the hepatic steatosis caused by chronic ethanol exposure, but also inhibited lipopolysaccharide-stimulated inflammatory responses. Nevertheless, the underlying molecular mechanisms largely remained elusive. AIM To determine the hepatoprotective effects of SHE on ethanol-triggered liver damage and further elucidate its potential mechanisms. METHODS In the present study, the Sprague-Dawley rats were fed with the Lieber-DeCarli diet containing alcohol or isocaloric maltose dextrin as control diet with or without SHE (300 and 600 mg/kg/d bw) for 8 weeks. The levels of serum biomarkers (ALT, AST and LDH) and LPS were detected by biochemical assay kits and endotoxin detection LAL kit, respectively. The histopathological changes of liver and intestinal tissues were observed by hematoxylin and eosin (H&E) staining and Transmission electron microscope (TEM). The expressions of CD14, TLR4, MyD88, NF-κB, Iκ-B, P-Iκ-B and TNF-α in liver, and ZO-1 and occludin in intestine were determined by western blot. The faecal microbial composition was determined by16S rRNA Gene Sequencing Analysis. RESULTS Biochemical and histopathological analysis revealed that SHE significantly alleviated the lipid deposition and inflammation response in liver induced by ethanol. SHE remarkably inhibited the TLR4 pathway and its downstream inflammatory mediators, and up-regulated the expressions of ZO-1 and occludin in the intestine. The further investigations suggested SHE dramatically reversed ethanol-induced alterations in the intestinal microbial flora and decreased the generation of gut-derived endotoxin. CONCLUSION In summary, SHE probably modulated abnormalities of gut-liver axis and inhibited TLR4-associated inflammatory mediators activation to exert its hepatoprotective properties. These findings suggested that SHE as a traditional therapeutic options which may play an essential role in protecting against the chronic ethanol-triggered liver injury.
Collapse
Affiliation(s)
- Ping Qiu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Dong
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Tao Zhu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yun-Yun Luo
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xian-Jie Kang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Min-Xia Pang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang University of Technology, Hangzhou 310014, China
| | - Huan-Zhou Li
- Department of Traditional Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chao Gu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Su-Hua Pan
- Department of Traditional Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Feng Du
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Wei-Hong Ge
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
282
|
Zhang J, Lu Y, Yang X, Zhao Y. Supplementation of okra seed oil ameliorates ethanol-induced liver injury and modulates gut microbiota dysbiosis in mice. Food Funct 2019; 10:6385-6398. [DOI: 10.1039/c9fo00189a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study assesses the possible effects of dietary okra seed oil (OSO) consumption on attenuation of alcohol-induced liver damage and gut microbiota dysbiosis, and associated mechanisms in mice.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yalong Lu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| |
Collapse
|
283
|
Myers SA, Gobejishvili L, Saraswat Ohri S, Garrett Wilson C, Andres KR, Riegler AS, Donde H, Joshi-Barve S, Barve S, Whittemore SR. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis 2018; 124:353-363. [PMID: 30557659 DOI: 10.1016/j.nbd.2018.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence links changes in the gut microbiome and intestinal barrier function to alterations in CNS function. We examined the role of endotoxin-responsive, cAMP-specific, Pde4 subfamily b (Pde4b) enzyme in gut dysbiosis induced neuro-inflammation and white matter loss following spinal cord injury (SCI). Using a thoracic contusion model in C57Bl/6 wild type female mice, SCI led to significant shifts in the gut bacterial community including an increase in the phylum Proteobacteria, which consists of endotoxin-harboring, gram-negative bacteria. This was accompanied by increased systemic inflammatory marker, soluble CD14, along with markers of the endoplasmic reticulum stress response (ERSR) and inflammation in the SCI epicenter. Deletion of Pde4b reduced epicenter expression of markers for the ERSR and inflammation, at both acute and chronic time points post-SCI. Correspondingly, expression of oligodendrocyte mRNAs increased. Within the injury penumbra, inflammatory protein markers of activated astrocytes (GFAP), macrophage/microglia (CD11b, Iba1), and the proinflammatory mediator Cox2, were decreased in Pde4b-/- mice. The absence of Pde4b improved white matter sparing and recovery of hindlimb locomotion following injury. Importantly, SCI-induced gut dysbiosis, bacterial overgrowth and endotoxemia were also prevented in Pde4b-/- mice. Taken together, these findings indicate that PDE4B plays an important role in the development of acute and chronic inflammatory response and consequent recovery following SCI.
Collapse
Affiliation(s)
- Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Leila Gobejishvili
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - C Garrett Wilson
- UAB School of Medicine, University of Alabama at Birmingham, Bevill Biomedical Research Building, Birmingham, AL 35294, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Amberly S Riegler
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA
| | - Shirish Barve
- Departments of Internal Medicine and Pharmacology and Toxicology, and Alcohol Research Center, University of Louisville, School of Medicine, 505 South Hancock Street, CTR Building, Room 515, Louisville, KY 40202, USA.
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA; Department of Anatomical Science & Neurobiology, University of Louisville, School of Medicine, 511 S. Floyd St., MDR 616, Louisville, KY 40202, USA.
| |
Collapse
|
284
|
Zhou Y, Vatsalya V, Gobejishvili L, Lamont RJ, McClain CJ, Feng W. Porphyromonas gingivalis as a Possible Risk Factor in the Development/Severity of Acute Alcoholic Hepatitis. Hepatol Commun 2018; 3:293-304. [PMID: 30766965 PMCID: PMC6357836 DOI: 10.1002/hep4.1296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial infection is frequently observed in patients with alcoholic liver disease (ALD). We examined a possible role of Porphyromonas gingivalis in the development/progression and severity of disease in patients with acute alcoholic hepatitis (AAH). Plasma specimens from 47 patients with AAH (16 moderate, Model for End‐Stage Liver Disease [MELD] score <20]; 31 severe, MELD score >20) and 22 healthy controls (HCs) were collected. Clinical, drinking history (lifetime drinking history [LTDH]), and demographic data were collected. Antibody tests for immunoglobulin (Ig) G, IgM, and IgA against two P. gingivalis strains were performed. Between‐group comparisons and within‐group association analyses were carried out. Patients with severe AAH showed significantly higher plasma levels of IgG, IgA, and IgM against two P. gingivalis strains (W83 and 33277) compared to HCs. Patients with moderate AAH also had significantly elevated anti‐P. gingivalis IgA concentrations for both strains compared to HCs. Male patients with moderate AAH showed a significant inverse association in LTDH and anti‐P. gingivalis IgM. The aspartate aminotransferase:alanine aminotransferase ratio was positively associated with IgM of both strains in male patients with moderate AAH. Female patients with severe AAH showed a significant association between MELD scores and W83 IgM. Conclusion: Antibody response to P. gingivalis in AAH is elevated. Significantly elevated plasma anti‐P. gingivalis IgG, IgA, and IgM in severe AAH provide preliminary data that P. gingivalis could be a novel risk factor in the development/severity of AAH.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Medicine University of Louisville Louisville KY.,Alcohol Research Center University of Louisville Louisville KY
| | - Vatsalya Vatsalya
- Department of Medicine University of Louisville Louisville KY.,Alcohol Research Center University of Louisville Louisville KY.,Hepatobiology and Toxicology Center University of Louisville Louisville KY.,Robley Rex VA Medical Center Louisville KY
| | - Leila Gobejishvili
- Department of Medicine University of Louisville Louisville KY.,Alcohol Research Center University of Louisville Louisville KY.,Hepatobiology and Toxicology Center University of Louisville Louisville KY.,Department of Pharmacology and Toxicology University of Louisville Louisville KY
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases University of Louisville Louisville KY
| | - Craig J McClain
- Department of Medicine University of Louisville Louisville KY.,Alcohol Research Center University of Louisville Louisville KY.,Hepatobiology and Toxicology Center University of Louisville Louisville KY.,Robley Rex VA Medical Center Louisville KY.,Department of Pharmacology and Toxicology University of Louisville Louisville KY
| | - Wenke Feng
- Department of Medicine University of Louisville Louisville KY.,Alcohol Research Center University of Louisville Louisville KY.,Hepatobiology and Toxicology Center University of Louisville Louisville KY.,Department of Pharmacology and Toxicology University of Louisville Louisville KY
| |
Collapse
|
285
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
286
|
Posteraro B, Paroni Sterbini F, Petito V, Rocca S, Cubeddu T, Graziani C, Arena V, Vassallo GA, Mosoni C, Lopetuso L, Lorrai I, Maccioni P, Masucci L, Martini C, Gasbarrini A, Sanguinetti M, Colombo G, Addolorato G. Liver Injury, Endotoxemia, and Their Relationship to Intestinal Microbiota Composition in Alcohol-Preferring Rats. Alcohol Clin Exp Res 2018; 42:2313-2325. [PMID: 30320890 DOI: 10.1111/acer.13900] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is strong evidence that alcoholism leads to dysbiosis in both humans and animals. However, it is unclear how changes in the intestinal microbiota (IM) relate to ethanol (EtOH)-induced disruption of gut-liver homeostasis. We investigated this issue using selectively bred Sardinian alcohol-preferring (sP) rats, a validated animal model of excessive EtOH consumption. METHODS Independent groups of male adult sP rats were exposed to the standard, home-cage 2-bottle "EtOH (10% v/v) versus water" choice regimen with unlimited access for 24 h/d (Group Et) for 3 (T1), 6 (T2), and 12 (T3) consecutive months. Control groups (Group Ct) were composed of matched-age EtOH-naïve sP rats. We obtained samples from each rat at the end of each experimental time, and we used blood and colon tissues for intestinal barrier integrity and/or liver pathology assessments and used stool samples for IM analysis with 16S ribosomal RNA gene sequencing. RESULTS Rats in Group Et developed hepatic steatosis and elevated serum transaminases and endotoxin/lipopolysaccharide (LPS) levels but no other liver pathological changes (i.e., necrosis/inflammation) or systemic inflammation. While we did not find any apparent alteration of the intestinal colonic mucosa, we found that rats in Group Et exhibited significant changes in IM composition compared to the rats in Group Ct. These changes were sustained throughout T1, T2, and T3. In particular, Ruminococcus, Coprococcus, and Streptococcus were the differentially abundant microbial genera at T3. The KEGG Ortholog profile revealed that IM functional modules, such as biosynthesis, transport, and export of LPS, were also enriched in Group Et rats at T3. CONCLUSIONS We showed that chronic, voluntary EtOH consumption induced liver injury and endotoxemia together with dysbiotic changes in sP rats. This work sets the stage for improving our knowledge of the prevention and treatment of EtOH-related diseases.
Collapse
Affiliation(s)
- Brunella Posteraro
- Institute of Medical Pathology and Semeiotics , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Paroni Sterbini
- Institute of Microbiology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Rocca
- Department of Veterinary Medicine , Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Department of Veterinary Medicine , Università di Sassari, Sassari, Italy
| | - Cristina Graziani
- Alcohol Use Disorder Unit , Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Pathology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Arena
- Department of Pathology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele A Vassallo
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.,Alcohol Use Disorder Unit , Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carolina Mosoni
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Loris Lopetuso
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Irene Lorrai
- Neuroscience Institute , Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy
| | - Paola Maccioni
- Neuroscience Institute , Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy
| | - Luca Masucci
- Institute of Microbiology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cecilia Martini
- Institute of Microbiology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giancarlo Colombo
- Neuroscience Institute , Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy
| | - Giovanni Addolorato
- Division of Hepatology and Gastroenterology , Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.,Alcohol Use Disorder Unit , Department of Medical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
287
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, Wang Y, He L, Liu Y, Liu Q, Chen Y, Donde H, Wang R, Jala VR, Barve S, Chen SY, Zhang X, Chen Y, McClain CJ, Feng W. Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 2018; 69:886-895. [PMID: 29803899 PMCID: PMC6615474 DOI: 10.1016/j.jhep.2018.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Tuo Shao
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Cuiqing Zhao
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Fengyuan Li
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Zelin Gu
- Department of Medicine, University of Louisville, Louisville, KY, USA,College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Limimg Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yuhua Wang
- College of Food Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yunhuan Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY, USA,Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Hridgandh Donde
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Rui Wang
- First Affiliated Hospital, Wenzhou Medical Univesity, Wenzhou, Zhejiang, China
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Shirish Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Yongping Chen
- First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA,Department of Medicine, University of Louisville, Louisville, KY, USA,Robley Rex Louisville VAMC, Louisville, KY, USA,Corresponding authors: Department of Medicine, University of Louisville, 505 S. Hancock Street CTR517, Louisville, KY, United State, 40202. Tel.: +1 502 852 2912; fax: +1 502 852 8927; , or or
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA; First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
288
|
Jadhav KS, Peterson VL, Halfon O, Ahern G, Fouhy F, Stanton C, Dinan TG, Cryan JF, Boutrel B. Gut microbiome correlates with altered striatal dopamine receptor expression in a model of compulsive alcohol seeking. Neuropharmacology 2018; 141:249-259. [DOI: 10.1016/j.neuropharm.2018.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
|
289
|
Lu J, Lyu Y, Li M, Sun J, Huang Z, Lu F, Lu Z. Alleviating acute alcoholic liver injury in mice with Bacillus subtilis co-expressing alcohol dehydrogenase and acetaldehyde dehydrogenase. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
290
|
Alexander JL, Scott AJ, Pouncey AL, Marchesi J, Kinross J, Teare J. Colorectal carcinogenesis: an archetype of gut microbiota-host interaction. Ecancermedicalscience 2018; 12:865. [PMID: 30263056 PMCID: PMC6145524 DOI: 10.3332/ecancer.2018.865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Sporadic colorectal cancer (CRC) remains a major cause of worldwide mortality. Epidemiological evidence of markedly increased risk in populations that migrate to Western countries, or adopt their lifestyle, suggests that CRC is a disease whose aetiology is defined primarily by interactions between the host and his environment. The gut microbiome sits directly at this interface and is now increasingly recognised as a modulator of colorectal carcinogenesis. Bacteria such as Fusobacterium nucleatum and Escherichia coli (E. Coli) are found in abundance in patients with CRC and have been shown in experimental studies to promote neoplasia. A whole armamentarium of bacteria-derived oncogenic mechanisms has been defined, including the subversion of apoptosis and the production of genotoxins and pro-inflammatory factors. But the microbiota may also be protective: for example, they are implicated in the metabolism of dietary fibre to produce butyrate, a short chain fatty acid, which is anti-inflammatory and anti-carcinogenic. Indeed, although our understanding of this immensely complex, highly individualised and multi-faceted relationship is expanding rapidly, many questions remain: Can we define friends and foes, and drivers and passengers? What are the critical functions of the microbiota in the context of colorectal neoplasia?
Collapse
Affiliation(s)
- James L Alexander
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| | - Alasdair J Scott
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| | - Anna L Pouncey
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| | - Julian Marchesi
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| | - James Kinross
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| | - Julian Teare
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College London, 10th Floor QEQM Building, St Mary's Hospital, South Wharf Road, London W2 1NY, UK
| |
Collapse
|
291
|
Cho YE, Song BJ. Pomegranate prevents binge alcohol-induced gut leakiness and hepatic inflammation by suppressing oxidative and nitrative stress. Redox Biol 2018; 18:266-278. [PMID: 30071471 PMCID: PMC6080577 DOI: 10.1016/j.redox.2018.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major chronic liver disease worldwide and can range from simple steatosis, inflammation to fibrosis/cirrhosis possibly through leaky gut and systemic endotoxemia. We investigated whether pomegranate (POM) protects against binge alcohol-induced gut leakiness, endotoxemia, and inflammatory liver damage. After POM pretreatment for 10 days, rats were exposed to 3 oral doses of binge alcohol (5 g/kg/dose) or dextrose (as control) at 12-h intervals. Binge alcohol exposure induced leaky gut with significantly elevated plasma endotoxin and inflammatory fatty liver by increasing the levels of oxidative and nitrative stress marker proteins such as ethanol-inducible CYP2E1, inducible nitric oxide synthase, and nitrated proteins in the small intestine and liver. POM pretreatment significantly reduced the alcohol-induced gut barrier dysfunction, plasma endotoxin and inflammatory liver disease by inhibiting the elevated oxidative and nitrative stress marker proteins. POM pretreatment significantly restored the levels of intestinal tight junction (TJ) proteins such as ZO-1, occludin, claudin-1, and claundin-3 markedly diminished after alcohol-exposure. In addition, the levels of gut adherent junction (AJ) proteins (e.g., β-catenin and E-cadherin) and desmosome plakoglobin along with associated protein α-tubulin were clearly decreased in binge alcohol-exposed rats but restored to basal levels in POM-pretreated rats. Immunoprecipitation followed by immunoblot analyses revealed that intestinal claudin-1 protein was nitrated and ubiquitinated in alcohol-exposed rats, whereas these modifications were significantly blocked by POM pretreatment. These results showed for the first time that POM can prevent alcohol-induced gut leakiness and inflammatory liver injury by suppressing oxidative and nitrative stress.
Collapse
Affiliation(s)
- Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
292
|
Glueck B, Han Y, Cresci GAM. Tributyrin Supplementation Protects Immune Responses and Vasculature and Reduces Oxidative Stress in the Proximal Colon of Mice Exposed to Chronic-Binge Ethanol Feeding. J Immunol Res 2018; 2018:9671919. [PMID: 30211234 PMCID: PMC6120279 DOI: 10.1155/2018/9671919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Excessive ethanol consumption causes adverse effects and contributes to organ dysfunction. Ethanol metabolism triggers oxidative stress, altered immune function, and gut dysbiosis. The gut microbiome is known to contribute to the maintenance of intestinal homeostasis, and disturbances are associated with pathology. A consequence of gut dysbiosis is also alterations in its metabolic and fermentation byproducts. The gut microbiota ferments undigested dietary polysaccharides to yield short-chain fatty acids, predominantly acetate, propionate, and butyrate. Butyrate has many biological mechanisms of action including anti-inflammatory and immunoprotective effects, and its depletion is associated with intestinal injury. We previously showed that butyrate protects gut-liver injury during ethanol exposure. While the intestine is the largest immune organ in the body, little is known regarding the effects of ethanol on intestinal immune function. This work is aimed at investigating the effects of butyrate supplementation, in the form of the structured triglyceride tributyrin, on intestinal innate immune responses and oxidative stress following chronic-binge ethanol exposure in mice. Our work suggests that tributyrin supplementation preserved immune responses and reduced oxidative stress in the proximal colon during chronic-binge ethanol exposure. Our results also indicate a possible involvement of tributyrin in maintaining the integrity of intestinal villi vasculature disrupted by chronic-binge ethanol exposure.
Collapse
Affiliation(s)
- B. Glueck
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Y. Han
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - G. A. M. Cresci
- Lerner Research Institute, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Pediatric Institute, Gastroenterology, Cleveland Clinic, Cleveland, OH, USA
- Digestive Disease & Surgery Institute, Gastroenterology, Hepatology & Nutrition Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
293
|
Wang G, Liu Q, Guo L, Zeng H, Ding C, Zhang W, Xu D, Wang X, Qiu J, Dong Q, Fan Z, Zhang Q, Pan J. Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Front Microbiol 2018; 9:1874. [PMID: 30158912 PMCID: PMC6104187 DOI: 10.3389/fmicb.2018.01874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse is a major public health crisis. Relative evidences supported that the gut microbiota (GM) played an important role in central nervous system (CNS) function, and the composition of them had changed after alcohol drinking. We sought to explore the changes of GM in alcohol dependence. In our study, the GM of mice with alcohol administration was detected through analyzed 16S rRNA gene sequencing and the fecal metabolites were analyzed by LC-MS. The microbial diversity was significantly higher in the alcohol administration group, the abundance of phylum Firmicutes and its class Clostridiales were elevated, meanwhile the abundance of Lachnospiraceae, Alistipes, and Odoribacter showed significant differences among the three groups. Based on LC-MS results, bile acid, secondary bile acid, serotonin and taurine level had varying degrees of changes in alcohol model. From paraffin sections, tissue damage was observed in liver and colon. These findings provide direct evidence that alcohol intake affects the composition of GM, enable a better understanding of the function of GM in the microbiota-gut-brain (MGB) axis, and give a new thought for alcohol addiction treatment.
Collapse
Affiliation(s)
- Guanhao Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liang Guo
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Haijuan Zeng
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengchao Ding
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wentong Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongpo Xu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingxuan Qiu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai, China
| | - Qi Zhang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jing Pan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
294
|
Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber-DeCarli Diet-A Flagship Model for Experimental Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1828-1840. [DOI: 10.1111/acer.13840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Feifei Guo
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Raquel Benedé-Ubieto
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Yulia A. Nevzorova
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
- Department of Internal Medicine III; University Hospital RWTH Aachen; Aachen Germany
| |
Collapse
|
295
|
Laghi L, Zhu C, Campagna G, Rossi G, Bazzano M, Laus F. Probiotic supplementation in trained trotter horses: effect on blood clinical pathology data and urine metabolomic assessed in field. J Appl Physiol (1985) 2018; 125:654-660. [PMID: 29672225 PMCID: PMC6139516 DOI: 10.1152/japplphysiol.01131.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/16/2023] Open
Abstract
The attention of sports community toward probiotic supplementation as a way to promote exercise and training performance, together with good health, has increased in recent years. This has applied also to horses, with promising results. Here, for the first time, we tested a probiotic mix of several strains of live bacteria typically employed for humans to improve the training performance of Standardbred horses in athletic activity. To evaluate its effects on the horse performance, we measured lactate concentration in blood, a translational outcome largely employed for the purpose, combined with the study of hematological and biochemical parameters, together with urine from a metabolomics perspective. The results showed that the probiotic supplementation significantly reduced postexercise blood lactate concentration. The hematological and biochemical parameters, together with urine molecular profile, suggested that a likely mechanism underlying this positive effect was connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Three sulfur-containing molecules differently concentrated in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism. NEW & NOTEWORTHY Probiotic supplementation could reduce postexercise blood lactate concentration in Standardbred horses in athletic activity. Blood parameters, together with urine molecular profile, suggest the mechanism underlying this positive effect is connected to a switch of energy source in muscle from carbohydrates to short-chain fatty acids. Sulfur-containing molecules found in urines in connection to probiotics administration suggested that such switch was linked to sulfur metabolism.
Collapse
Affiliation(s)
- Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna , Cesena , Italy
| | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna , Cesena , Italy
| | - Giuseppe Campagna
- Department of Experimental Medicine "Sapienza" University of Rome , Rome , Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
296
|
Hillemacher T, Bachmann O, Kahl KG, Frieling H. Alcohol, microbiome, and their effect on psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:105-115. [PMID: 29705711 DOI: 10.1016/j.pnpbp.2018.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
There is accumulating evidence that alcohol consumption and especially alcohol withdrawal increase brain levels of known innate immune signaling molecules and cause neuroinflammation. It has been shown that microbiota play a pivotal role in this process and affect central neurochemistry and behavior. Disruption of or alterations in the intimate cross-talk between microbiome and brain may be a significant factor in many psychiatric disorders. Alterations in the composition of the microbiome, so called dysbiosis, may result in detrimental distortion of microbe-host homeostasis modulating the hypothalamic-pituitary-adrenal axis. A variety of pathologies are associated with changes in the community structure and function of the gut microbiota, suggesting a link between dysbiosis and disease etiology, including irritable bowel syndrome depression, anxiety disorders, schizophrenia, and alcoholism. Despite a paucity of clinical studies in alcohol-dependent humans, emerging data suggests that alcohol induced alterations of the microbiome may explain reward-seeking behaviors as well as anxiety, depression, and craving in withdrawal and increase the risk of developing psychiatric disorders.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, Germany; Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Germany
| | - Oliver Bachmann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School (MHH), Germany.
| |
Collapse
|
297
|
Barr T, Sureshchandra S, Ruegger P, Zhang J, Ma W, Borneman J, Grant K, Messaoudi I. Concurrent gut transcriptome and microbiota profiling following chronic ethanol consumption in nonhuman primates. Gut Microbes 2018; 9:338-356. [PMID: 29517944 PMCID: PMC6219653 DOI: 10.1080/19490976.2018.1441663] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/28/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Alcohol use disorder (AUD) results in increased intestinal permeability, nutrient malabsorption, and increased risk of colorectal cancer (CRC). Our understanding of the mechanisms underlying these morbidities remains limited because studies to date have relied almost exclusively on short-term heavy/binge drinking rodent models and colonic biopsies/fecal samples collected from AUD subjects with alcoholic liver disease (ALD). Consequently, the dose- and site-dependent impact of chronic alcohol consumption in the absence of overt liver disease remains poorly understood. In this study, we addressed this knowledge gap using a nonhuman primate model of voluntary ethanol self-administration where rhesus macaques consume varying amounts of 4% ethanol in water for 12 months. Specifically, we performed RNA-Seq and 16S rRNA gene sequencing on duodenum, jejunum, ileum, and colon biopsies collected from 4 controls and 8 ethanol-consuming male macaques. Our analysis revealed that chronic ethanol consumption leads to changes in the expression of genes involved in protein trafficking, metabolism, inflammation, and CRC development. Additionally, we observed differences in the relative abundance of putatively beneficial bacteria as well as those associated with inflammation and CRC. Given that the animals studied in this manuscript did not exhibit signs of ALD or CRC, our data suggest that alterations in gene expression and bacterial communities precede clinical disease and could serve as biomarkers as well as facilitate future studies aimed at developing interventions to restore gut homeostasis.
Collapse
Affiliation(s)
- Tasha Barr
- Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| | - Paul Ruegger
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Jingfei Zhang
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California-Riverside, Riverside, CA, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California-Riverside, Riverside, CA, USA
| | - Kathleen Grant
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
298
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 935] [Impact Index Per Article: 133.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
299
|
Abstract
The genus Lactobacillus encompasses a diversity of species that occur widely in nature and encode a plethora of metabolic pathways reflecting their adaptation to various ecological niches, including humans, animals, plants and food products. Accordingly, their functional attributes have been exploited industrially and several strains are commonly formulated as probiotics or starter cultures in the food industry. Although divergent evolutionary processes have yielded the acquisition and evolution of specialized functionalities, all Lactobacillus species share a small set of core metabolic properties, including the glycolysis pathway. Thus, the sequences of glycolytic enzymes afford a means to establish phylogenetic groups with the potential to discern species that are too closely related from a 16S rRNA standpoint. Here, we identified and extracted glycolysis enzyme sequences from 52 species, and carried out individual and concatenated phylogenetic analyses. We show that a glycolysis-based phylogenetic tree can robustly segregate lactobacilli into distinct clusters and discern very closely related species. We also compare and contrast evolutionary patterns with genome-wide features and transcriptomic patterns, reflecting genomic drift trends. Overall, results suggest that glycolytic enzymes provide valuable phylogenetic insights and may constitute practical targets for evolutionary studies.
Collapse
Affiliation(s)
- Katelyn Brandt
- 1Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695, USA.,2Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rodolphe Barrangou
- 1Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC 27695, USA.,2Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
300
|
Shukla PK, Meena AS, Manda B, Gomes-Solecki M, Dietrich P, Dragatsis I, Rao R. Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism. FASEB J 2018; 32:fj201800351R. [PMID: 29912589 PMCID: PMC6181630 DOI: 10.1096/fj.201800351r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Pathogenesis of alcohol-related diseases such as alcoholic hepatitis involves gut barrier dysfunction, endotoxemia, and toxin-mediated cellular injury. Here we show that Lactobacillus plantarum not only blocks but also mitigates ethanol (EtOH)-induced gut and liver damage in mice. L. plantarum blocks EtOH-induced protein thiol oxidation, and down-regulation of antioxidant gene expression in colon L. plantarum also blocks EtOH-induced expression of TNF-α, IL-1β, IL-6, monocyte chemotactic protein 1 ( MCP1), C-X-C motif chemokine ligand ( CXCL)1, and CXCL2 genes in colon. Epidermal growth factor receptor (EGFR) signaling mediates the L. plantarum-mediated protection of tight junctions (TJs) and barrier function from acetaldehyde, the EtOH metabolite, in Caco-2 cell monolayers. In mice, doxycycline-mediated expression of dominant negative EGFR blocks L. plantarum-mediated prevention of EtOH-induced TJ disruption, mucosal barrier dysfunction, oxidative stress, and inflammatory response in colon. L. plantarum blocks EtOH-induced endotoxemia as well as EtOH-induced pathologic lesions, triglyceride deposition, oxidative stress, and inflammatory responses in the liver by an EGFR-dependent mechanism. L. plantarum treatment after injury accelerated recovery from EtOH-induced TJ, barrier dysfunction, oxidative stress, and inflammatory response in colon, endotoxemia, and liver damage. Results demonstrate that L. plantarum has both preventive and therapeutic values in treatment of alcohol-induced tissue injury, particularly in alcoholic hepatitis.-Shukla, P. K., Meena, A. S., Manda, B., Gomes-Solecki, M., Dietrich, P., Dragatsis, I., Rao, R. Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism.
Collapse
Affiliation(s)
- Pradeep K. Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Avtar S. Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Paula Dietrich
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|