251
|
Wiera G, Wozniak G, Bajor M, Kaczmarek L, Mozrzymas JW. Maintenance of long-term potentiation in hippocampal mossy fiber-CA3 pathway requires fine-tuned MMP-9 proteolytic activity. Hippocampus 2013; 23:529-43. [DOI: 10.1002/hipo.22112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 01/08/2023]
|
252
|
Natarajan R, Harding JW, Wright JW. A role for matrix metalloproteinases in nicotine-induced conditioned place preference and relapse in adolescent female rats. J Exp Neurosci 2013; 7:1-14. [PMID: 25157203 PMCID: PMC4089657 DOI: 10.4137/jen.s11381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reconfiguration of extracellular matrix proteins appears to be necessary for the synaptic plasticity that underlies memory consolidation. The primary candidates involved in controlling this process are a family of endopeptidases called matrix metalloproteinases (MMPs); however, the potential role of MMPs in nicotine addiction-related memories has not been adequately tested. Present results indicate transient changes in hippocampal MMP-2, -3, and -9 expression following context dependent learning of nicotine-induced conditioned place preference (CPP). Members of a CPP procedural control group also indicated similar MMP changes, suggesting that memory activation occurred in these animals as well. However, hippocampal MMP-9 expression was differentially elevated in members of the nicotine-induced CPP group on days 4 and 5 of training. Inhibition of MMPs using a broad spectrum MMP inhibitor (FN439) during nicotine-induced CPP training blocked the acquisition of CPP. Elevations in hippocampal and prefrontal cortex MMP-3 expression-but not MMP-2 and -9-accompanied reactivation of a previously learned drug related memory. Decreases in the actin regulatory cytoskeletal protein cortactin were measured in the HIP and PFC during the initial two days of acquisition of CPP; however, no changes were seen following re-exposure to the drug related environment. These results suggest that MMP-9 may be involved in facilitating the intracellular and extracellular events required for the synaptic plasticity underlying the acquisition of nicotine-induced CPP. Furthermore, MMP-3 appears to be important during re-exposure to the drug associated environment. However, rats introduced into the CPP apparatus and given injections of vehicle rather than nicotine during training also revealed a pattern of MMP expression similar to nicotine-induced CPP animals.
Collapse
Affiliation(s)
- Reka Natarajan
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, USA
| | - Joseph W Harding
- Departments of Psychology, and Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA, USA
| | - John W Wright
- Departments of Psychology, and Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA, USA
| |
Collapse
|
253
|
Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. Mol Cell Biol 2013; 33:2149-62. [PMID: 23508111 DOI: 10.1128/mcb.00008-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in the regulation of the transcription of genes that encode proplasticity proteins. In the present study, we provide evidence that stimulation of rat primary cortical neurons with BDNF upregulates matrix metalloproteinase 9 (MMP-9) mRNA and protein levels and increases enzymatic activity. The BDNF-induced MMP-9 transcription was dependent on extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and c-Fos expression. Overexpression of AP-1 dimers in neurons led to MMP-9 promoter activation, with the most potent being those that contained c-Fos, whereas knockdown of endogenous c-Fos by small hairpin RNA (shRNA) reduced BDNF-mediated MMP-9 transcription. Additionally, mutation of the proximal AP-1 binding site in the MMP-9 promoter inhibited the activation of MMP-9 transcription. BDNF stimulation of neurons induced binding of endogenous c-Fos to the proximal MMP-9 promoter region. Furthermore, as the c-Fos gene is a known target of serum response factor (SRF), we investigated whether SRF contributes to MMP-9 transcription. Inhibition of SRF and its cofactors by either overexpression of dominant negative mutants or shRNA decreased MMP-9 promoter activation. In contrast, MMP-9 transcription was not dependent on CREB activity. Finally, we showed that neuronal activity stimulates MMP-9 transcription in a tyrosine kinase receptor B (TrkB)-dependent manner.
Collapse
|
254
|
Perederiy JV, Westbrook GL. Structural plasticity in the dentate gyrus- revisiting a classic injury model. Front Neural Circuits 2013; 7:17. [PMID: 23423628 PMCID: PMC3575076 DOI: 10.3389/fncir.2013.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/12/2022] Open
Abstract
The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.
Collapse
Affiliation(s)
- Julia V Perederiy
- Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
255
|
Abstract
Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release. First, dendritic transport of MMP-9 mRNA was seen in primary hippocampal neuronal cultures treated with glutamate and in dentate gyrus granule cells in adult anesthetized rats after induction of long-term potentiation. Second, rapid, activity-dependent polyadenylation of MMP-9 mRNA; association of the mRNA with actively translating polysomes; and de novo MMP-9 protein synthesis were obtained in synaptoneurosomes isolated from rat hippocampus. Third, glutamate stimulation of cultured hippocampal neurons evoked a rapid (in minutes) increase in MMP-9 activity, as measured by cleavage of its native substrate, β-dystroglycan. This activity was reduced by the polyadenylation inhibitor, thus linking MMP-9 translation with protein function. In aggregate, our findings show that MMP-9 mRNA is transported to dendrites and locally translated and that the protein is released in an activity-dependent manner. Acting in concert with other dendritically synthesized proteins, locally secreted MMP-9 may contribute to the structural and functional plasticity of the activated synapses.
Collapse
|
256
|
Tamura H, Ishikawa Y, Shiosaka S. Does extracellular proteolysis control mammalian cognition? Rev Neurosci 2013; 24:365-74. [DOI: 10.1515/revneuro-2013-0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/14/2013] [Indexed: 11/15/2022]
|
257
|
Lei C, Lin S, Zhang C, Tao W, Dong W, Hao Z, Liu M, Wu B. Activation of cerebral recovery by matrix metalloproteinase-9 after intracerebral hemorrhage. Neuroscience 2013. [DOI: 10.1016/j.neuroscience.2012.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
258
|
Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, Lo EH. Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des 2012; 18:3645-8. [PMID: 22574977 DOI: 10.2174/138161212802002742] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Blood-brain barrier (BBB) leakage and brain edema is a critical part of stroke pathophysiology. In this mini-review, we briefly survey the potential role of matrix metalloproteinases (MMPs) in BBB dysfunction. A large body of data in both experimental models as well as clinical patient populations suggests that MMPs may disrupt BBB permeability and interfere with cell-cell signaling in the neurovascular unit. Hence, ongoing efforts are underway to validate MMPs as potential biomarkers in stroke as well as pursue MMP blockers as therapeutic opportunities. Because BBB perturbations may also occur in neurodegeneration, MMPs and associated neurovascular unit mechanisms may also be potential targets in a broader range of CNS disorders.
Collapse
Affiliation(s)
- Ji Hae Seo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Hoehna Y, Uckermann O, Luksch H, Stefovska V, Marzahn J, Theil M, Gorkiewicz T, Gawlak M, Wilczynski GM, Kaczmarek L, Ikonomidou C. Matrix metalloproteinase 9 regulates cell death following pilocarpine-induced seizures in the developing brain. Neurobiol Dis 2012; 48:339-47. [DOI: 10.1016/j.nbd.2012.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/24/2012] [Accepted: 06/27/2012] [Indexed: 12/28/2022] Open
|
260
|
Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. J Neurosci 2012; 32:12854-61. [PMID: 22973009 DOI: 10.1523/jneurosci.2024-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. β1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-β1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that β1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory.
Collapse
|
261
|
Abstract
Focal cortical dysplasia (FCD) is a developmental brain disorder characterized by localized abnormalities of cortical layering and neuronal morphology. It is associated with pharmacologically intractable forms of epilepsy in both children and adults. The mechanisms that underlie FCD-associated seizures and lead to the progression of the disease are unclear. Matrix metalloproteinases (MMPs) are enzymes that are able to influence neuronal function through extracellular proteolysis in various normal and pathological conditions. The results of experiments that have used rodent models showed that extracellular MMP-9 can play an important role in epileptogenesis. However, no studies have shown that MMP-9 is involved in the pathogenesis of human epilepsy. The aim of the present study was to determine whether MMP-9 plays a role in intractable epilepsy. Using an unbiased antibody microarray approach, we found that up regulation of MMP-9 is prominent and consistent in FCD tissue derived from epilepsy surgery, regardless of the patient's age. Additionally, an up regulation of MMP-1, -2, -8, -10, and -13 was found but was either less pronounced or limited only to adult cases. In the dysplastic cortex, immunohistochemistry revealed that the highest MMP-9 immuno reactivity occurred in the cytoplasm of abnormal neurons and balloon cells. The neuronal over expression of MMP-9 also occurred in sclerotic hippocampi that were excised together with the dysplastic cortex, but sclerotic hippocampi were free of dysplastic features. In both locations, MMP-9 was also found in reactive astrocytes, albeit to a lesser extent. At the subcellular level, increased MMP-9 immunoreactivity was prominently upregulated at synapses. Thus, although upregulation of the enzyme in FCD is not causally linked to the developmental malformation, it may be a result of ongoing abnormal synaptic plasticity. The present findings support the hypothesis of the pathogenic role of MMP-9 in human epilepsy and may stimulate discussions about whether MMPs could be novel therapeutic targets for intractable epilepsy.
Collapse
|
262
|
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 2012; 13:743-57. [PMID: 23047773 PMCID: PMC4900464 DOI: 10.1038/nrn3320] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
263
|
Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 2012; 91:2-19. [PMID: 23115049 DOI: 10.1002/jnr.23143] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/14/2022]
Abstract
Copper is an essential metal present at high levels in the CNS. Its role as a cofactor in mitochondrial ATP production and in essential cuproenzymes is well defined. Menkes and Wilson's diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. In the brain, intracellular levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than 100-fold. Cu stored in the secretory pathway is released in a Ca(2+)-dependent manner and can transiently reach concentrations over 100 μM at synapses. The ability of low micromolar levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABA(A)) receptors, N-methyl-D-aspartate (NMDA) receptors, and voltage-gated Ca(2+) channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted.
Collapse
Affiliation(s)
- E D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
264
|
Peixoto R, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 2012; 76:396-409. [PMID: 23083741 PMCID: PMC3783515 DOI: 10.1016/j.neuron.2012.07.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+ /calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
Collapse
Affiliation(s)
- Rui Peixoto
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Gulbenkian PhD Program in Biomedicine, Oeiras, Portugal
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Portia A. Kunz
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Hyungbae Kwon
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Angela M. Mabb
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Benjamin D. Philpot
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Pfizer Worldwide Research and Development, Neuroscience Research Unit, Cambridge MA, USA
| |
Collapse
|
265
|
Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 2012; 123:203-16. [PMID: 22862420 DOI: 10.1111/j.1471-4159.2012.07900.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/11/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell-matrix and cell-cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non-ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase-3 (MMP-3) or stromelysin-1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP-3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP-3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP-3 up-regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.
Collapse
Affiliation(s)
- Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
266
|
Matrix metalloproteinases in neuropathic pain and migraine: friends, enemies, and therapeutic targets. PAIN RESEARCH AND TREATMENT 2012; 2012:952906. [PMID: 22970361 PMCID: PMC3434407 DOI: 10.1155/2012/952906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent endopeptidases that mediate extracellular matrix turnover and associated processes, such as cell survival, growth, and differentiation. This paper discusses important functions of MMP in the normal and injured nervous system, focusing on the role played by these proteases in neurological pain syndromes, most prominently in neuropathic pain and migraine headaches. In the past decade, metalloproteinases emerged as key modulators of neuropathic pain, with MMP-9 acting as an initiator of the neuropathic cascade. Increased MMP activity was detected in migraine patients, independent of aura, in tight association with metabolic derangements. The therapeutic implications of MMP inhibition are considered in the context of neurogenic pain regulation.
Collapse
|
267
|
Mortillo S, Elste A, Ge Y, Patil SB, Hsiao K, Huntley GW, Davis RL, Benson DL. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J Comp Neurol 2012; 520:2041-52. [PMID: 22488504 DOI: 10.1002/cne.23027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β1-containing integrins are required for persistent synaptic potentiation in hippocampus and regulate hippocampal-dependent learning. Based largely on indirect evidence, there is a prevailing assumption that β1-integrins are localized at synapses, where they contribute to synapse adhesion and signaling, but this has not been examined directly. Here we investigate the fine localization of β1-integrin in adult mouse hippocampus using high-resolution immunogold labeling, with a particular emphasis on synaptic labeling patterns. We find that β1-integrins localize to synapses in CA1 and are concentrated postsynaptically. At the postsynaptic membrane, β1-integrins are found more commonly clustered near active zone centers rather than at the peripheral edges. In mice harboring a conditional deletion of β1-integrins, labeling for N-cadherin and neuroligins increases. Western blots show increased levels of N-cadherin in total lysates and neuroligins increase selectively in synaptosomes. These data suggest there is a dynamic, compensatory adjustment of synaptic adhesion. Such adjustment is specific only for certain cell adhesion molecules (CAMs), because labeling for SynCAM is unchanged. Together, our findings demonstrate unequivocally that β1-integrin is an integral synaptic adhesion protein, and suggest that adhesive function at the synapse reflects a cooperative and dynamic network of multiple CAM families.
Collapse
Affiliation(s)
- Steven Mortillo
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Girard TD, Ware LB, Bernard GR, Pandharipande PP, Thompson JL, Shintani AK, Jackson JC, Dittus RS, Ely EW. Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med 2012; 38:1965-73. [PMID: 22903241 DOI: 10.1007/s00134-012-2678-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 07/24/2012] [Indexed: 01/11/2023]
Abstract
PURPOSE To assess the associations between a priori-selected markers of inflammation and coagulation and delirium during critical illness. METHODS In this prospective cohort study, we collected blood from mechanically ventilated medical intensive care unit (ICU) patients and measured nine plasma markers of inflammation and coagulation. We assessed patients daily for delirium using the Confusion Assessment Method for the ICU and used multivariable regression to analyze the associations between plasma markers and subsequent delirium, after adjusting for age, severity of illness, and sepsis. RESULTS Among the 138 patients studied, with median age of 66 years and median Acute Physiology and Chronic Health Evaluation (APACHE) II of 27, 107 (78 %) were delirious at some point during the study. Two markers of inflammation and one of coagulation were significantly associated with delirium. After adjusting for covariates, lower plasma concentrations of matrix metalloproteinase-9 (MMP-9) and protein C were associated with increased probability of delirium (p = 0.04 and 0.01, respectively), and higher concentrations of soluble tumor necrosis factor receptor-1 (sTNFR1) were associated with increased probability of delirium (p < 0.01). Concentrations of C-reactive protein (p = 0.82), myeloperoxidase (p = 0.11), neutrophil gelatinase-associated lipocalin (p = 0.70), D-dimer (p = 0.83), plasminogen activator inhibitor type 1 (p = 0.98), and Von Willebrand factor antigen (p = 0.65) were not associated with delirium. CONCLUSIONS In this study, MMP-9, protein C, and sTNFR1 were independently associated with subsequent ICU delirium. These results suggest that specific aspects of inflammation and coagulation may play a role in the evolution of delirium during critical illness and that these markers should be examined in larger studies of ICU patients.
Collapse
Affiliation(s)
- Timothy D Girard
- Vanderbilt University School of Medicine, Nashville, TN 37232-8300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Niedringhaus M, Chen X, Dzakpasu R, Conant K. MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons. PLoS One 2012; 7:e42631. [PMID: 22912716 PMCID: PMC3418258 DOI: 10.1371/journal.pone.0042631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β1 integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β1 integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
| | - Rhonda Dzakpasu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| |
Collapse
|
270
|
Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A. Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 2012; 71:1040-53. [PMID: 21793226 DOI: 10.1002/dneu.20958] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural cells secrete diverse molecules, which accumulate in the extracellular space and form the extracellular matrix (ECM). Interactions between cells and the ECM are well recognized to play the crucial role in cell migration and guidance of growing axons, whereas formation of mature neural ECM in the form of perineuronal nets is believed to restrict certain forms of developmental plasticity. On the other hand, major components of perineuronal nets and other ECM molecules support induction of functional plasticity, the most studied form of which is long-term potentiation. Here, we review the underlying mechanisms by which ECM molecules, their receptors and remodeling proteases regulate the induction and maintenance of synaptic modifications. In particular, we highlight that activity-dependent secretion and activation of proteases leads to a local cleavage of the ECM and release of signaling proteolytic fragments. These molecules regulate transmitter receptor trafficking, actin cytoskeleton, growth of dendritic spines, and formation of dendritic filopodia.
Collapse
|
271
|
Bajor M, Michaluk P, Gulyassy P, Kekesi AK, Juhasz G, Kaczmarek L. Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J Neurochem 2012; 122:775-88. [DOI: 10.1111/j.1471-4159.2012.07829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
272
|
Conant K, Lim ST, Randall B, Maguire-Zeiss KA. Matrix metalloproteinase dependent cleavage of cell adhesion molecules in the pathogenesis of CNS dysfunction with HIV and methamphetamine. Curr HIV Res 2012; 10:384-91. [PMID: 22591362 PMCID: PMC6035363 DOI: 10.2174/157016212802138733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/15/2023]
Abstract
Physiologically appropriate levels of matrix metalloproteinases (MMPs) are likely important to varied aspects of CNS function. In particular, these enzymes may contribute to neuronal activity dependent synaptic plasticity and to cell mobility in processes including stem cell migration and immune surveillance. Levels of MMPs may, however, be substantially increased in the setting of HIV infection with methamphetamine abuse. Elevated MMP levels might in turn influence integrity of the blood brain barrier, as has been demonstrated in published work. Herein we suggest that elevated levels of MMPs can also contribute to microglial activation as well as neuronal and synaptic injury through a mechanism that involves cleavage of specific cell and synaptic adhesion molecules.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Research Building EP-16, 3970 Reservoir Rd, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
273
|
Frischknecht R, Gundelfinger ED. The brain's extracellular matrix and its role in synaptic plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:153-71. [PMID: 22351055 DOI: 10.1007/978-3-7091-0932-8_7] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Collapse
Affiliation(s)
- Renato Frischknecht
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
274
|
Mukhina IV, Korotchenko SA, Dityatev AE. Extracellular matrix molecules, their receptors, and extracellular proteases as synaptic plasticity modulators. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
275
|
Conceptualizing withdrawal-induced escalation of alcohol self-administration as a learned, plasticity-dependent process. Alcohol 2012; 46:339-48. [PMID: 22459874 DOI: 10.1016/j.alcohol.2012.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 11/24/2022]
Abstract
This article represents one of five contributions focusing on the topic "Plasticity and neuroadaptive responses within the extended amygdala in response to chronic or excessive alcohol exposure" that were developed by awardees participating in the Young Investigator Award Symposium at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference in Volterra, Italy on May 3-6, 2011 that was organized/chaired by Drs. Antonio Noronha and Fulton Crews and sponsored by the National Institute on Alcohol Abuse and Alcoholism. This review discusses the dependence-induced neuroadaptations in affective systems that provide a basis for negative reinforcement learning and presents evidence demonstrating that escalated alcohol consumption during withdrawal is a learned, plasticity-dependent process. The review concludes by identifying changes within extended amygdala dynorphin/kappa-opioid receptor systems that could serve as the foundation for the occurrence of negative reinforcement processes. While some evidence contained herein may be specific to alcohol dependence-related learning and plasticity, much of the information will be of relevance to any addictive disorder involving negative reinforcement mechanisms. Collectively, the information presented within this review provides a framework to assess the negative reinforcing effects of alcohol in a manner that distinguishes neuroadaptations produced by chronic alcohol exposure from the actual plasticity that is associated with negative reinforcement learning in dependent organisms.
Collapse
|
276
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
277
|
Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast 2012; 2012:124548. [PMID: 22685676 PMCID: PMC3364018 DOI: 10.1155/2012/124548] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/24/2012] [Indexed: 12/22/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common known genetic form of intellectual disability and autism spectrum disorders. FXS patients suffer a broad range of other neurological symptoms, including hyperactivity, disrupted circadian activity cycles, obsessive-compulsive behavior, and childhood seizures. The high incidence and devastating effects of this disease state make finding effective pharmacological treatments imperative. Recently, reports in both mouse and Drosophila FXS disease models have indicated that the tetracycline derivative minocycline may hold great therapeutic promise for FXS patients. Both models strongly suggest that minocycline acts on the FXS disease state via inhibition of matrix metalloproteinases (MMPs), a class of zinc-dependent extracellular proteases important in tissue remodeling and cell-cell signaling. Recent FXS clinical trials indicate that minocycline may be effective in treating human patients. In this paper, we summarize the recent studies in Drosophila and mouse FXS disease models and human FXS patients, which indicate that minocycline may be an effective FXS therapeutic treatment, and discuss the data forming the basis for the proposed minocycline mechanism of action as an MMP inhibitor.
Collapse
|
278
|
Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, Hadass O, Lehmidi T, Blair GJ, Lee M, Chang M, Mobashery S, Sun GY, Gu Z. Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 2012; 7:21. [PMID: 22587708 PMCID: PMC3500265 DOI: 10.1186/1750-1326-7-21] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/15/2012] [Indexed: 01/12/2023] Open
Abstract
Background Cerebral ischemia has been shown to induce activation of matrix metalloproteinases (MMPs), particularly MMP-9, which is associated with impairment of the neurovasculature, resulting in blood–brain barrier breakdown, hemorrhage and neurodegeneration. We previously reported that the thiirane inhibitor SB-3CT, which is selective for gelatinases (MMP-2 and −9), could antagonize neuronal apoptosis after transient focal cerebral ischemia. Results Here, we used a fibrin-rich clot to occlude the middle cerebral artery (MCA) and assessed the effects of SB-3CT on the neurovasculature. Results show that neurobehavioral deficits and infarct volumes induced by embolic ischemia are comparable to those induced by the filament-occluded transient MCA model. Confocal microscopy indicated embolus-blocked brain microvasculature and neuronal cell death. Post-ischemic SB-3CT treatment attenuated infarct volume, ameliorated neurobehavioral outcomes, and antagonized the increases in levels of proform and activated MMP-9. Embolic ischemia caused degradation of the neurovascular matrix component laminin and tight-junction protein ZO-1, contraction of pericytes, and loss of lectin-positive brain microvessels. Despite the presence of the embolus, SB-3CT mitigated these outcomes and reduced hemorrhagic volumes. Interestingly, SB-3CT treatment for seven days protected against neuronal laminin degradation and protected neurons from ischemic cell death. Conclusion These results demonstrate considerable promise for the thiirane class of selective gelatinase inhibitors as potential therapeutic agents in stroke therapy.
Collapse
Affiliation(s)
- Jiankun Cui
- Department of Pathology and Anatomical Sciences, Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Warren KM, Reeves TM, Phillips LL. MT5-MMP, ADAM-10, and N-cadherin act in concert to facilitate synapse reorganization after traumatic brain injury. J Neurotrauma 2012; 29:1922-40. [PMID: 22489706 DOI: 10.1089/neu.2012.2383] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function.
Collapse
Affiliation(s)
- Kelly M Warren
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
280
|
Meighan PC, Meighan SE, Rich ED, Brown RL, Varnum MD. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels. Channels (Austin) 2012; 6:181-96. [PMID: 22699690 PMCID: PMC3431585 DOI: 10.4161/chan.20904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.
Collapse
Affiliation(s)
- Peter C Meighan
- Department of Veterinary and Comparative Anatomy, Program in Neuroscience, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
281
|
Dziembowska M, Wlodarczyk J. MMP9: A novel function in synaptic plasticity. Int J Biochem Cell Biol 2012; 44:709-13. [DOI: 10.1016/j.biocel.2012.01.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/28/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
|
282
|
Baclofen influences acquisition and MMP-2, MMP-9 levels in the hippocampus of rats after hypoxia. Pharmacol Rep 2012; 64:536-45. [DOI: 10.1016/s1734-1140(12)70849-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/02/2012] [Indexed: 11/18/2022]
|
283
|
Abstract
Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology, or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity.
Collapse
Affiliation(s)
- Deanna L Benson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
284
|
Long term potentiation affects intracellular metalloproteinases activity in the mossy fiber-CA3 pathway. Mol Cell Neurosci 2012; 50:147-59. [PMID: 22555058 DOI: 10.1016/j.mcn.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 04/06/2012] [Accepted: 04/13/2012] [Indexed: 01/08/2023] Open
Abstract
Matrix Metalloproteinases (MMPs) are a family of endopeptidases known to process extracellular proteins. In the last decade, studies carried out mainly on the Schaffer collateral-CA1 hippocampal projection have provided solid evidence that MMPs regulate synaptic plasticity and learning. Recently, our group has shown that MMP blockade disrupts LTP maintenance also in the mossy fiber-CA3 (mf-CA3) projection (Wojtowicz and Mozrzymas, 2010), where LTP mechanisms are profoundly different (NMDAR-independent and presynaptic expression site). However, how plasticity of this pathway correlates with activity and expression of MMPs remains unknown. Interestingly, several potential MMP substrates (especially of gelatinases) are localized intracellularly but little is known about MMP activity in this compartment. In the present study we have asked whether LTP is associated with the expression and activity of gelatinases in apparent intra- and extracellular compartments along mf-CA3 projection. In situ zymography showed that LTP induction was associated with increased gelatinases activity in the cytoplasm of the hilar and CA3 neurons. Using gelatin zymography, immunohistochemistry and immunofluorescent staining we found that this effect was due to de novo synthesis and activation of MMP-9 which, 2-3h after LTP induction was particularly evident in the cytoplasm. In contrast, MMP-2 was localized preferentially in the nuclei and was not affected by LTP induction. In conclusion, we demonstrate that LTP induction in the mf-CA3 pathway correlates with increased expression and activity of MMP-9 and provide the first evidence that this increase is particularly evident in the neuronal cytoplasm and nucleus.
Collapse
|
285
|
Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int 2012; 2012:789083. [PMID: 22567285 PMCID: PMC3332068 DOI: 10.1155/2012/789083] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/08/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022] Open
Abstract
The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease.
Collapse
|
286
|
Personality traits and the R668Q polymorphism located in the MMP-9 gene. Behav Brain Res 2012; 228:232-5. [DOI: 10.1016/j.bbr.2011.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/20/2011] [Accepted: 11/21/2011] [Indexed: 12/29/2022]
|
287
|
Fragkouli A, Papatheodoropoulos C, Georgopoulos S, Stamatakis A, Stylianopoulou F, Tsilibary EC, Tzinia AK. Enhanced neuronal plasticity and elevated endogenous sAPPα levels in mice over-expressing MMP9. J Neurochem 2012; 121:239-51. [PMID: 22192143 DOI: 10.1111/j.1471-4159.2011.07637.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evidence accumulating during the past few years points to a significant role of matrix metalloproteinase 9 (MMP9) enzymatic activity in synaptic plasticity and cognitive processes. We have previously demonstrated that MMP9 is involved in receptor-mediated α-secretase-like cleavage of APP in vitro, resulting in increased secretion of sAPPα, the soluble N-terminal product of the non-amyloidogenic pathway known to be involved in neuronal plasticity and memory formation. To study the in vivo role of MMP9, we have generated transgenic mice over-expressing MMP9 in the brain. Herein, we demonstrate that MMP9 transgenic animals display enhanced performance in the non-spatial novel object recognition and the spatial water-maze task and that their enhanced performance was accompanied by increased dendritic spine density in the hippocampus and cortex following behavioural testing. Consistent with the above observations, the electrophysiological analysis revealed prolonged maintenance of long-term synaptic potentiation in hippocampal slices from MMP9 transgenic mice. Moreover, elevated sAPPα levels in the hippocampus and cortex of MPP9 transgenic animals were also observed. Overall, our results extend previous findings on the physiological role of MMP9 in neuronal plasticity and furthermore reveal that, APP may be one of the physiological proteolytic targets of MMP9 in vivo.
Collapse
Affiliation(s)
- Apostolia Fragkouli
- Laboratory of Cell & Matrix Pathobiology, Institute of Biology, NCSR Demokritos, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
288
|
Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012; 31:170-7. [PMID: 22285841 DOI: 10.1016/j.matbio.2012.01.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.
Collapse
Affiliation(s)
- W Christopher Risher
- Cell Biology Department, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
289
|
Huntley GW, Elste AM, Patil SB, Bozdagi O, Benson DL, Steward O. Synaptic loss and retention of different classic cadherins with LTP-associated synaptic structural remodeling in vivo. Hippocampus 2012; 22:17-28. [PMID: 20848607 PMCID: PMC3008765 DOI: 10.1002/hipo.20859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2010] [Indexed: 11/10/2022]
Abstract
Cadherins are synaptic cell adhesion molecules that contribute to persistently enhanced synaptic strength characteristic of long-term potentiation (LTP). What is relatively unexplored is how synaptic activity of the kind that induces LTP-associated remodeling of synapse structure affects localization of cadherins, particularly in mature animals in vivo, details which could offer insight into how different cadherins contribute to synaptic plasticity. Here, we use a well-described in vivo LTP induction protocol that produces robust synaptic morphological remodeling in dentate gyrus of adult rats in combination with confocal and immunogold electron microscopy to localize cadherin-8 and N-cadherin at remodeled synapses. We find that the density and size of cadherin-8 puncta are significantly diminished in the potentiated middle molecular layer (MML) while concurrently, N-cadherin remains tightly clustered at remodeled synapses. These changes are specific to the potentiated MML, and occur without any change in density or size of synaptophysin puncta. Thus, the loss of cadherin-8 probably represents selective removal from synapses rather than overall loss of synaptic junctions. Together, these findings suggest that activity-regulated loss and retention of different synaptic cadherins could contribute to dual demands of both flexibility and stability in synapse structure that may be important for synaptic morphological remodeling that accompanies long-lasting plasticity.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029-6574, USA.
| | | | | | | | | | | |
Collapse
|
290
|
Matrix metalloproteinases contribute to neuronal dysfunction in animal models of drug dependence, Alzheimer's disease, and epilepsy. Biochem Res Int 2011; 2011:681385. [PMID: 22235372 PMCID: PMC3253438 DOI: 10.1155/2011/681385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/17/2011] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) remodel the pericellular environment by regulating the cleavage of extracellular matrix proteins, cell surface components, neurotransmitter receptors, and growth factors that mediate cell adhesion, synaptogenesis, synaptic plasticity, and long-term potentiation. Interestingly, increased MMP activity and dysregulation of the balance between MMPs and TIMPs have also been implicated in various pathologic conditions. In this paper, we discuss various animal models that suggest that the activation of the gelatinases MMP-2 and MMP-9 is involved in pathogenesis of drug dependence, Alzheimer's disease, and epilepsy.
Collapse
|
291
|
Abstract
Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells, and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors, and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain.
Collapse
Affiliation(s)
- Lorraine E. Dansie
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Biochemistry and Molecular Biology Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
292
|
Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 2011; 31:12963-71. [PMID: 21900575 DOI: 10.1523/jneurosci.3118-11.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recurrent seizure activity has been shown to induce a variety of permanent structural changes in the brain. Matrix metalloproteinases (MMPs) function to promote neuronal plasticity, primarily through cleavage of extracellular matrix proteins. Here, we investigated the role of MMP-9 in the development of pentylenetetrazole (PTZ)-induced kindled seizure in mice. Repeated treatment with PTZ (40 mg/kg) produced kindled seizure, which was accompanied by enhanced MMP-9 activity and expression in the hippocampus. No change in MMP-9 activity was observed in the hippocampi of mice with generalized tonic seizure following single administration of PTZ (60 mg/kg). MMP-9 colocalized with the neuronal marker NeuN and the glial marker GFAP in the dentate gyrus of the kindled mouse hippocampus. Coadministration of diazepam or MK-801 with PTZ inhibited the development of kindling and the increased MMP-9 levels in the hippocampus. Marked suppression of kindled seizure progression in response to repeated PTZ treatment was observed in MMP-9((-/-)) mice compared with wild-type mice, an observation that was accompanied by decreased hippocampal levels of mature brain-derived neurotrophic factor. Microinjecting the BDNF scavenger TrkB-Fc into the right ventricle before each PTZ treatment significantly suppressed the development of kindling in wild-type mice, whereas no effect was observed in MMP-9((-/-)) mice. On the other hand, bilateral injections of pro-BDNF into the hippocampal dentate gyrus significantly enhanced kindling in wild-type mice but not MMP-9((-/-)) mice. These findings suggest that MMP-9 is involved in the progression of behavioral phenotypes in kindled mice because of conversion of pro-BDNF to mature BDNF in the hippocampus.
Collapse
|
293
|
Deafferentation-induced redistribution of MMP-2, but not of MMP-9, depends on the emergence of GAP-43 positive axons in the adult rat cochlear nucleus. Neural Plast 2011; 2011:859359. [PMID: 22135757 PMCID: PMC3202138 DOI: 10.1155/2011/859359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/17/2011] [Indexed: 12/23/2022] Open
Abstract
The matrix metalloproteinases MMP-9 and MMP-2, major modulators of the extracellular matrix (ECM), were changed in amount and distribution in the rat anteroventral cochlear nucleus (AVCN) following its sensory deafferentation by cochlear ablation. To determine what causal relationships exist between the redistribution of MMP-9 and MMP-2 and deafferentation-induced reinnervation, kainic acid was stereotaxically injected into the ventral nucleus of the trapezoid body (VNTB) prior to cochlear ablation, killing cells that deliver the growth associated protein 43 (GAP-43) into AVCN. Deafferentation-induced changes in the pattern of MMP-9 staining remained unaffected by VNTB lesions. By contrast, changes in the distribution of MMP-2 normally evoked by sensory deafferentation were reversed if GAP-43 positive axons were prevented to grow in AVCN. In conclusion, GAP-43-containing axons emerging in AVCN after cochlear ablation seem to be causal for the maintenance of MMP-2-mediated ECM remodeling.
Collapse
|
294
|
Kaliszewska A, Bijata M, Kaczmarek L, Kossut M. Experience-Dependent Plasticity of the Barrel Cortex in Mice Observed with 2-DG Brain Mapping and c-Fos: Effects of MMP-9 KO. Cereb Cortex 2011; 22:2160-70. [DOI: 10.1093/cercor/bhr303] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
295
|
Extracellular proteases in epilepsy. Epilepsy Res 2011; 96:191-206. [DOI: 10.1016/j.eplepsyres.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/10/2011] [Accepted: 08/03/2011] [Indexed: 11/20/2022]
|
296
|
He B, Peng H, Zhao Y, Zhou H, Zhao Z. Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res 2011; 1426:38-42. [PMID: 22036079 DOI: 10.1016/j.brainres.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 01/14/2023]
Abstract
Previous work showed that sleep deprivation (SD) impairs hippocampal-dependent cognitive function and synaptic plasticity, and a novel wake-promoting agent modafinil prevents SD-induced memory impairment in rat. However, the mechanisms by which modafinil prevented REM-SD-induced impairment of brain function remain poorly understood. In the present study, rats were sleep-deprived by using the modified multiple platform method and brain function was detected. The results showed that modafinil treatment prevented REM-SD-induced impairment of cognitive function. Modafinil significantly reduced the number of errors compared to placebo and upregulated synapsin I expression in the dorsal hippocampal CA3 region. A synaptic plasticity-related gene, MMP-9 expression was also upregulated in modafinil-treated rats. Importantly, downregulation of MMP-9 expression by special siRNA decreased synapsin I protein levels and synapse numbers. Therefore, we demonstrated that modafinil increased cognition function and synaptic plasticity, at least in part by increasing MMP-9 expression in REM-SD rats.
Collapse
Affiliation(s)
- Bin He
- Department of Neurology, Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | |
Collapse
|
297
|
Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M, Zuschratter W, Muller D, Wilczynski GM, Mozrzymas JW, Stewart MG, Kaczmarek L, Wlodarczyk J. Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci 2011; 124:3369-80. [PMID: 21896646 DOI: 10.1242/jcs.090852] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An increasing body of data has shown that matrix metalloproteinase-9 (MMP-9), an extracellularly acting, Zn(2+)-dependent endopeptidase, is important not only for pathologies of the central nervous system but also for neuronal plasticity. Here, we use three independent experimental models to show that enzymatic activity of MMP-9 causes elongation and thinning of dendritic spines in the hippocampal neurons. These models are: a recently developed transgenic rat overexpressing autoactivating MMP-9, dissociated neuronal cultures, and organotypic neuronal cultures treated with recombinant autoactivating MMP-9. This dendritic effect is mediated by integrin β1 signalling. MMP-9 treatment also produces a change in the decay time of miniature synaptic currents; however, it does not change the abundance and localization of synaptic markers in dendritic protrusions. Our results, considered together with several recent studies, strongly imply that MMP-9 is functionally involved in synaptic remodelling.
Collapse
Affiliation(s)
- Piotr Michaluk
- Department of Molecular and Cellular Neurobiology, The Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Shiosaka S, Ishikawa Y. Neuropsin—A possible modulator of synaptic plasticity. J Chem Neuroanat 2011; 42:24-9. [DOI: 10.1016/j.jchemneu.2011.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/30/2011] [Accepted: 05/30/2011] [Indexed: 01/20/2023]
|
299
|
Smith AW, Nealey KA, Wright JW, Walker BM. Plasticity associated with escalated operant ethanol self-administration during acute withdrawal in ethanol-dependent rats requires intact matrix metalloproteinase systems. Neurobiol Learn Mem 2011; 96:199-206. [PMID: 21530666 PMCID: PMC3148339 DOI: 10.1016/j.nlm.2011.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 11/20/2022]
Abstract
Repeated cycles of ethanol intoxication and withdrawal associated with dependence induce neuroadaptations in a variety of brain systems. Withdrawal-induced negative emotional states can be ameliorated by ethanol consumption; a learned process termed negative reinforcement. Accordingly, a dependence-induced phenotype is escalated ethanol self-administration. Matrix metalloproteinases (MMPs) are proteolytic enzymes which degrade the extracellular matrix to allow for synaptic reorganization and plasticity. To test the hypothesis that an intact MMP system is required for animals to learn about the negative reinforcing effects of ethanol and display escalated self-administration during acute withdrawal when ethanol-dependent, male Wistar rats were trained to self-administer ethanol and then assigned to either acute or chronic MMP inhibition treatment groups. The chronic treatment group received intracerebroventricular (ICV) infusions of the broad spectrum MMP inhibitor FN-439 or artificial cerebrospinal fluid (aCSF) via osmotic minipumps during a 1 month ethanol dependence induction period and subsequent post-dependence induction self-administration sessions that occurred during acute withdrawal. The acute treatment group only received ICV FN-439 or aCSF on the day of self-administration sessions following dependence induction during acute withdrawal. The results showed that inhibition of MMPs attenuated escalated ethanol self-administration following chronic and acute exposure conditions. Furthermore, once learning (i.e., plasticity) had occurred, MMP inhibition had no impact on escalated response patterns and animals previously subjected to MMP inhibition that did not escalate evidenced normal escalations in operant ethanol self-administration once FN-439 treatments were terminated. Thus, the present data identified that an intact MMP system is required for the escalated responding that occurs during acute withdrawal in dependent animals and implicate such escalation as a learned response.
Collapse
Affiliation(s)
| | | | - John W. Wright
- Department of Psychology, Washington State University, Pullman, WA
- Graduate Program in Neuroscience, Washington State University, Pullman, WA
| | - Brendan M. Walker
- Department of Psychology, Washington State University, Pullman, WA
- Graduate Program in Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
300
|
Jung JH, An K, Kwon OB, Kim HS, Kim JH. Pathway-specific alteration of synaptic plasticity in Tg2576 mice. Mol Cells 2011; 32:197-201. [PMID: 21638202 PMCID: PMC3887667 DOI: 10.1007/s10059-011-0077-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 12/12/2022] Open
Abstract
Various animal models of Alzheimer disease (AD) are characterized by deficits in spatial memory that are causally related to altered synaptic function and impairment of long-term potentiation (LTP) in the hippocampus. In Tg2576 AD mice, we compared LTP in 2 major hippocampal pathways, Schaffer collateral (SC) and mossy fiber (MF) pathways. Whereas LTP was completely abolished in the SC pathway of Tg2576 mice, we found no decrease in LTP induced by stimulation of the MF pathway. In fact, we found that in the MF pathway, LTP was slightly, but significantly, enhanced compared with that in the MF pathway of WT littermates. This pathway-specific impairment of LTP is not attributable to alterations in transmitter release, as indicated by an unaltered paired-pulse ratio. These results suggest that the spatial memory deficits normally seen in AD models arise primarily from LTP impairment at the SC pathway.
Collapse
Affiliation(s)
| | | | | | - Hye-sun Kim
- Department of Pharmacology, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | | |
Collapse
|