251
|
Kaiser JA, Nelson CE, Liu X, Park HS, Matsuoka Y, Luongo C, Santos C, Ahlers LRH, Herbert R, Moore IN, Wilder-Kofie T, Moore R, Walker A, Yang L, Munir S, Teng IT, Kwong PD, Dowdell K, Nguyen H, Kim J, Cohen JI, Johnson RF, Garza NL, Via LE, Barber DL, Buchholz UJ, Le Nouën C. Mucosal prime-boost immunization with live murine pneumonia virus-vectored SARS-CoV-2 vaccine is protective in macaques. Nat Commun 2024; 15:3553. [PMID: 38670948 PMCID: PMC11053155 DOI: 10.1038/s41467-024-47784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E Nelson
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD, USA
| | - Ian N Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Temeri Wilder-Kofie
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Assurances, Office of Laboratory Animal Welfare, National Institutes of Health, Bethesda, MD, USA
| | - Rashida Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Emory National Primate Research Center, Environmental Health and Safety Office, Emory University, Atlanta, GA, USA
| | - April Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - JungHyun Kim
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Barber
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
252
|
Meng H, Liao Z, Ji Y, Wang D, Han Y, Huang C, Hu X, Chen J, Zhang H, Li Z, Wang C, Sun H, Sun J, Chen L, Yin J, Zhao J, Xu T, Liu H. FGF7 enhances the expression of ACE2 in human islet organoids aggravating SARS-CoV-2 infection. Signal Transduct Target Ther 2024; 9:104. [PMID: 38654010 PMCID: PMC11039711 DOI: 10.1038/s41392-024-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells. This upregulation increases both insulin secretion and susceptibility of β cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.
Collapse
Affiliation(s)
- Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Yanting Ji
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hengrui Zhang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zonghong Li
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Changliang Wang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Hui Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaqi Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Lihua Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaxiang Yin
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jincun Zhao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
253
|
Kim MJ, Haizan I, Ahn MJ, Park DH, Choi JH. Recent Advances in Lateral Flow Assays for Viral Protein Detection with Nanomaterial-Based Optical Sensors. BIOSENSORS 2024; 14:197. [PMID: 38667190 PMCID: PMC11048458 DOI: 10.3390/bios14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Controlling the progression of contagious diseases is crucial for public health management, emphasizing the importance of early viral infection diagnosis. In response, lateral flow assays (LFAs) have been successfully utilized in point-of-care (POC) testing, emerging as a viable alternative to more traditional diagnostic methods. Recent advancements in virus detection have primarily leveraged methods such as reverse transcription-polymerase chain reaction (RT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and the enzyme-linked immunosorbent assay (ELISA). Despite their proven effectiveness, these conventional techniques are often expensive, require specialized expertise, and consume a significant amount of time. In contrast, LFAs utilize nanomaterial-based optical sensing technologies, including colorimetric, fluorescence, and surface-enhanced Raman scattering (SERS), offering quick, straightforward analyses with minimal training and infrastructure requirements for detecting viral proteins in biological samples. This review describes the composition and mechanism of and recent advancements in LFAs for viral protein detection, categorizing them into colorimetric, fluorescent, and SERS-based techniques. Despite significant progress, developing a simple, stable, highly sensitive, and selective LFA system remains a formidable challenge. Nevertheless, an advanced LFA system promises not only to enhance clinical diagnostics but also to extend its utility to environmental monitoring and beyond, demonstrating its potential to revolutionize both healthcare and environmental safety.
Collapse
Affiliation(s)
- Min Jung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Izzati Haizan
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Min Ju Ahn
- Department of Biotechnology, Jeonbuk National University, 79 Gobongro, Iksan-si 54596, Jeollabuk-do, Republic of Korea;
| | - Dong-Hyeok Park
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (M.J.K.); (D.-H.P.)
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| |
Collapse
|
254
|
Seekings AH, Shipley R, Byrne AMP, Shukla S, Golding M, Amaya-Cuesta J, Goharriz H, Vitores AG, Lean FZX, James J, Núñez A, Breed A, Frost A, Balzer J, Brown IH, Brookes SM, McElhinney LM. Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021. Viruses 2024; 16:617. [PMID: 38675958 PMCID: PMC11053977 DOI: 10.3390/v16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Shweta Shukla
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joan Amaya-Cuesta
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ana Gómez Vitores
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fabian Z. X. Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alistair Breed
- Government of Jersey, Infrastructure Housing and Environment, Howard Davis Farm, La Route de la Trinité, Trinity, Jersey JE3 5JP, UK
| | - Andrew Frost
- One Health, Animal Health and Welfare Advice Team, Animal and Plant Health Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Jörg Balzer
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Humboldtstraße 2, 70806 Kornwestheim, Germany
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
255
|
Wang Y, Thaler M, Salgado‐Benvindo C, Ly N, Leijs AA, Ninaber DK, Hansbro PM, Boedijono F, van Hemert MJ, Hiemstra PS, van der Does AM, Faiz A. SARS-CoV-2-infected human airway epithelial cell cultures uniquely lack interferon and immediate early gene responses caused by other coronaviruses. Clin Transl Immunology 2024; 13:e1503. [PMID: 38623540 PMCID: PMC11017760 DOI: 10.1002/cti2.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 03/24/2024] [Indexed: 04/17/2024] Open
Abstract
Objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of a class of highly pathogenic coronaviruses. The large family of coronaviruses, however, also includes members that cause only mild symptoms, like human coronavirus-229E (HCoV-229E) or OC43 (HCoV-OC43). Unravelling how molecular (and cellular) pathophysiology differs between highly and low pathogenic coronaviruses is important for the development of therapeutic strategies. Methods Here, we analysed the transcriptome of primary human bronchial epithelial cells (PBEC), differentiated at the air-liquid interface (ALI) after infection with SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV and HCoV-229E using bulk RNA sequencing. Results ALI-PBEC were efficiently infected by all viruses, and SARS-CoV, MERS-CoV and HCoV-229E infection resulted in a largely similar transcriptional response. The response to SARS-CoV-2 infection differed markedly as it uniquely lacked the increase in expression of immediate early genes, including FOS, FOSB and NR4A1 that was observed with all other coronaviruses. This finding was further confirmed in publicly available experimental and clinical datasets. Interfering with NR4A1 signalling in Calu-3 lung epithelial cells resulted in a 100-fold reduction in extracellular RNA copies of SARS-CoV-2 and MERS-CoV, suggesting an involvement in virus replication. Furthermore, a lack in induction of interferon-related gene expression characterised the main difference between the highly pathogenic coronaviruses and low pathogenic viruses HCoV-229E and HCoV-OC43. Conclusion Our results demonstrate a previously unknown suppression of a host response gene set by SARS-CoV-2 and confirm a difference in interferon-related gene expression between highly pathogenic and low pathogenic coronaviruses.
Collapse
Affiliation(s)
- Ying Wang
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Melissa Thaler
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Nathan Ly
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| | - Anouk A Leijs
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dennis K Ninaber
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Philip M Hansbro
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Fia Boedijono
- Centre for InflammationCentenary Institute and University of Technology Sydney, Faculty of ScienceSydneyNSWAustralia
| | - Martijn J van Hemert
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter S Hiemstra
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne M van der Does
- PulmoScience Lab, Department of PulmonologyLeiden University Medical CenterLeidenThe Netherlands
| | - Alen Faiz
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
256
|
Reis AC, Pinto D, Monteiro S, Santos R, Martins JV, Sousa A, Páscoa R, Lourinho R, Cunha MV. Systematic SARS-CoV-2 S-gene sequencing in wastewater samples enables early lineage detection and uncovers rare mutations in Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170961. [PMID: 38367735 DOI: 10.1016/j.scitotenv.2024.170961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/23/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
As the COVID-19 pandemic reached its peak, many countries implemented genomic surveillance systems to track the evolution and transmission of SARS-CoV-2. Transition from the pandemic to the endemic phase prioritized alternative testing strategies to maintain effective epidemic surveillance at the population level, with less intensive sequencing efforts. One such promising approach was Wastewater-Based Surveillance (WBS), which offers non-invasive, cost-effective means for analysing virus trends at the sewershed level. From 2020 onwards, wastewater has been recognized as an instrumental source of information for public health, with national and international authorities exploring options to implement national wastewater surveillance systems and increasingly relying on WBS as early warning of potential pathogen outbreaks. In Portugal, several pioneer projects joined the academia, water utilities and Public Administration around WBS. To validate WBS as an effective genomic surveillance strategy, it is crucial to collect long term performance data. In this work, we present one year of systematic SARS-CoV-2 wastewater surveillance in Portugal, representing 35 % of the mainland population. We employed two complementary methods for lineage determination - allelic discrimination by RT-PCR and S-gene sequencing. This combination allowed us to monitor variant evolution in near-real-time and identify low-frequency mutations. Over the course of this year-long study, spanning from May 2022 to April 2023, we successfully tracked the dominant Omicron sub-lineages, their progression and evolution, which aligned with concurrent clinical surveillance data. Our results underscore the effectiveness of WBS as a tracking system for virus variants, with the ability to unveil mutations undetected via massive sequencing of clinical samples from Portugal, demonstrating the ability of WBS to uncover new mutations and detect rare genetic variants. Our findings emphasize that knowledge of the genetic diversity of SARS-CoV-2 at the population level can be extended far beyond via the combination of routine clinical genomic surveillance with wastewater sequencing and genotyping.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela Pinto
- Centre for Ecology, Evolution and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CERIS - Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; DECN - Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; CERIS - Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; DECN - Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
257
|
Losada A, Izquierdo-Useros N, Aviles P, Vergara-Alert J, Latino I, Segalés J, Gonzalez SF, Cuevas C, Raïch-Regué D, Muñoz-Alonso MJ, Perez-Zsolt D, Muñoz-Basagoiti J, Rodon J, Chang LA, Warang P, Singh G, Brustolin M, Cantero G, Roca N, Pérez M, Bustos-Morán E, White K, Schotsaert M, García-Sastre A. Plitidepsin as an Immunomodulator against Respiratory Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1307-1318. [PMID: 38416036 PMCID: PMC10984758 DOI: 10.4049/jimmunol.2300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.
Collapse
Affiliation(s)
- Alejandro Losada
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Aviles
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Latino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Carmen Cuevas
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | - María J Muñoz-Alonso
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mònica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Eugenio Bustos-Morán
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
258
|
Santman-Berends IMGA, van Schaik G, Augustijn-Schretlen M, Bisschop IPIH, de Rond J, Meijer PA, van der Heijden HMJF, Velkers FC, Koopmans MPG, van der Poel WHM, Smit LAM, Stegeman AJA, Sikkema RS, Oude Munnink BB, Hakze-van der Honing RW, Molenaar RJ. Effectiveness of Passive and Active Surveillance for Early Detection of SARS-CoV-2 in Mink during the 2020 Outbreak in the Netherlands. Transbound Emerg Dis 2024; 2024:4793475. [PMID: 40303015 PMCID: PMC12016721 DOI: 10.1155/2024/4793475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2025]
Abstract
Starting December 2019, a novel coronavirus (SARS-CoV-2) spread among humans across the world. From 2020 onward, farmed mink were found susceptible to the virus. In this paper, we describe the Dutch surveillance system and the added surveillance components for early detection of SARS-CoV-2 outbreaks and their results in Dutch mink farms. In the Netherlands, a surveillance system was in place in which mink farmers could submit carcasses for postmortem evaluation and could contact a telephone helpdesk for veterinary advise. Through this system, the first SARS-CoV-2 outbreak in two mink farms was detected in April 2020. Immediately, the Dutch Ministry of Agriculture commissioned a consortium of statutory and research institutes to intensify the surveillance system. The program consisted of both passive surveillance, i.e., mandatory notifications and active surveillance components, i.e., serological screenings and weekly risk-based sampling of dead mink for early detection of new SARS-CoV-2 infections. When one of the surveillance components indicated a suspicion of a possible SARS-CoV-2 infection, follow-up samplings were conducted and at confirmation, all mink were culled. During 2020, 67 out of 124 mink farms that were under surveillance became infected with SARS-CoV-2 (54%). Of these, 31 were detected based on clinical signs (passive surveillance of clinical signs) and 36 were detected through active surveillance. From the mink farms with a new SARS-CoV-2 outbreak that was detected through the surveillance, in 19% of the farms (n = 7), the mink never showed any clinical signs of SARS-CoV-2 and might have been missed by the passive notification system. This study underlines the added value of a surveillance system that can quickly be intensified. The subsequent combination of both passive and active surveillance has shown to be effective in the early detection of emerging pathogens, which is important to minimize the risk of zoonotic spill-over.
Collapse
Affiliation(s)
| | - Gerdien van Schaik
- Department of Research and Development, Royal GD, Deventer, Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Jan de Rond
- Department of Poultry Health, Royal GD, Deventer, Netherlands
| | - Paola A. Meijer
- Department of Research and Development, Royal GD, Deventer, Netherlands
| | | | - Francisca C. Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Arjan J. A. Stegeman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
259
|
Moreno A, Canziani S, Lelli D, Castelli A, Bianchi A, Bertoletti I, Maccarinelli F, Carlomagno M, Paini M, Rossato M, Delledonne M, Giacomelli S, Cordedda A, Nicoloso S, Bellinello E, Campagnoli A, Trogu T. Molecular and Serological Detection of Bovine Coronaviruses in Marmots ( Marmota marmota) in the Alpine Region. Viruses 2024; 16:591. [PMID: 38675932 PMCID: PMC11054042 DOI: 10.3390/v16040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, virological surveillance focused on coronaviruses in marmots in the Alpine region in 2022, captured as part of a population control reduction program in the Livigno area. Seventy-six faecal samples were randomly collected from marmots at the time of capture and release and tested for genome detection of pan-coronavirus, pan-pestivirus, canine distemper virus, and influenza A and D virus. Nine faecal samples were positive in the Pan-CoV RT-PCR, while all were negative for the other viruses. Pan-coronavirus positives were further identified using Illumina's complete genome sequencing, which showed the highest homology with Bovine Coronavirus previously detected in roe deer in the Alps. Blood samples (n.35) were collected randomly from animals at release and tested for bovine coronavirus (BCoV) antibodies using competitive ELISA and VNT. Serological analyses revealed that 8/35 sera were positive for BCoV antibodies in both serological tests. This study provides molecular and serological evidence of the presence of BCoV in an alpine marmot population due to a likely spillover event. Marmots share areas and pastures with roe deer and other wild ruminants, and environmental transmission is a concrete possibility.
Collapse
Affiliation(s)
- Ana Moreno
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Sabrina Canziani
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Davide Lelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Anna Castelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Alessandro Bianchi
- Sondrio Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bormio, 30, 23100 Sondrio, Italy; (A.B.); (I.B.)
| | - Irene Bertoletti
- Sondrio Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bormio, 30, 23100 Sondrio, Italy; (A.B.); (I.B.)
| | - Federica Maccarinelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Marco Carlomagno
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
| | - Matteo Paini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
- Genartis s.r.l., Via IV Novembre 24, 37126 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
- Genartis s.r.l., Via IV Novembre 24, 37126 Verona, Italy
| | - Stefano Giacomelli
- ATS della Montagna, Via Nazario Sauro, 36/38, 23100 Sondrio, Italy; (S.G.); (A.C.)
| | - Antonella Cordedda
- ATS della Montagna, Via Nazario Sauro, 36/38, 23100 Sondrio, Italy; (S.G.); (A.C.)
| | - Sandro Nicoloso
- Dimensione Ricerca Ecologie e Ambiente Italia Società Cooperativa, Via Enrico Bindi n. 14, 51100 Pistoia, Italy; (S.N.); (E.B.)
| | - Enrica Bellinello
- Dimensione Ricerca Ecologie e Ambiente Italia Società Cooperativa, Via Enrico Bindi n. 14, 51100 Pistoia, Italy; (S.N.); (E.B.)
| | | | - Tiziana Trogu
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| |
Collapse
|
260
|
Galhaut M, Lundberg U, Marlin R, Schlegl R, Seidel S, Bartuschka U, Heindl-Wruss J, Relouzat F, Langlois S, Dereuddre-Bosquet N, Morin J, Galpin-Lebreau M, Gallouët AS, Gros W, Naninck T, Pascal Q, Chapon C, Mouchain K, Fichet G, Lemaitre J, Cavarelli M, Contreras V, Legrand N, Meinke A, Le Grand R. Immunogenicity and efficacy of VLA2001 vaccine against SARS-CoV-2 infection in male cynomolgus macaques. COMMUNICATIONS MEDICINE 2024; 4:62. [PMID: 38570605 PMCID: PMC10991505 DOI: 10.1038/s43856-024-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The fight against COVID-19 requires mass vaccination strategies, and vaccines inducing durable cross-protective responses are still needed. Inactivated vaccines have proven lasting efficacy against many pathogens and good safety records. They contain multiple protein antigens that may improve response breadth and can be easily adapted every year to maintain preparedness for future seasonally emerging variants. METHODS The vaccine dose was determined using ELISA and pseudoviral particle-based neutralization assay in the mice. The immunogenicity was assessed in the non-human primates with multiplex ELISA, neutralization assays, ELISpot and intracellular staining. The efficacy was demonstrated by viral quantification in fluids using RT-qPCR and respiratory tissue lesions evaluation. RESULTS Here we report the immunogenicity and efficacy of VLA2001 in animal models. VLA2001 formulated with alum and the TLR9 agonist CpG 1018™ adjuvant generate a Th1-biased immune response and serum neutralizing antibodies in female BALB/c mice. In male cynomolgus macaques, two injections of VLA2001 are sufficient to induce specific and polyfunctional CD4+ T cell responses, predominantly Th1-biased, and high levels of antibodies neutralizing SARS-CoV-2 infection in cell culture. These antibodies also inhibit the binding of the Spike protein to human ACE2 receptor of several variants of concern most resistant to neutralization. After exposure to a high dose of homologous SARS-CoV-2, vaccinated groups exhibit significant levels of protection from viral replication in the upper and lower respiratory tracts and from lung tissue inflammation. CONCLUSIONS We demonstrate that the VLA2001 adjuvanted vaccine is immunogenic both in mouse and NHP models and prevent cynomolgus macaques from the viruses responsible of COVID-19.
Collapse
Affiliation(s)
- Mathilde Galhaut
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | | | | | | | | | - Francis Relouzat
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sébastien Langlois
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Julie Morin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Maxence Galpin-Lebreau
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Wesley Gros
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Catherine Chapon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Karine Mouchain
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | - Guillaume Fichet
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Mariangela Cavarelli
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Vanessa Contreras
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Nicolas Legrand
- ONCODESIGN SERVICES, François Hyafil Research Center, Villebon-sur-Yvette, France
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
261
|
Relich RF, Van Benten K, Lei GS, Robinson CM, Carozza M, Sahoo MK, Huang C, Solis D, Sibai M, Myers CA, Sikorski C, Balagot C, Yang D, Pinsky BA, Loeffelholz MJ. Determination of the cycle threshold value of the Xpert Xpress SARS-CoV-2/Flu/RSV test that corresponds to the presence of infectious SARS-CoV-2 in anterior nasal swabs. Microbiol Spectr 2024; 12:e0390823. [PMID: 38466093 PMCID: PMC10986483 DOI: 10.1128/spectrum.03908-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Despite having high analytical sensitivities and specificities, qualitative SARS-CoV-2 nucleic acid amplification tests (NAATs) cannot distinguish infectious from non-infectious virus in clinical samples. In this study, we determined the highest cycle threshold (Ct) value of the SARS-CoV-2 targets in the Xpert Xpress SARS-CoV-2/Flu/RSV (Xpert 4plex) test that corresponded to the presence of detectable infectious SARS-CoV-2 in anterior nasal swab samples. A total of 111 individuals with nasopharyngeal swab specimens that were initially tested by the Xpert Xpress SARS-CoV-2 test were enrolled. A healthcare worker subsequently collected anterior nasal swabs from all SARS-CoV-2-positive individuals, and those specimens were tested by the Xpert 4plex test, viral culture, and laboratory-developed assays for SARS-CoV-2 replication intermediates. SARS-CoV-2 Ct values from the Xpert 4plex test were correlated with data from culture and replication intermediate testing to determine the Xpert 4plex assay Ct value that corresponded to the presence of infectious virus. Ninety-eight of the 111 (88.3%) individuals initially tested positive by the Xpert Xpress SARS-CoV-2 test. An anterior nasal swab specimen collected from positive individuals a median of 2 days later (range, 0-9 days) tested positive for SARS-CoV-2 by the Xpert 4plex test in 39.8% (39/98) of cases. Of these samples, 13 (33.3%) were considered to contain infectious virus based on the presence of cultivable virus and replication intermediates, and the highest Ct value observed for the Xpert 4plex test in these instances was 26.3. Specimens that yielded Ct values of ≤26.3 when tested by the Xpert 4plex test had a likelihood of containing infectious SARS-CoV-2; however, no infectious virus was detected in specimens with higher Ct values.IMPORTANCEUnderstanding the correlation between real-time PCR test results and the presence of infectious SARS-CoV-2 may be useful for informing patient management and workforce return-to-work or -duty. Further studies in different patient populations are needed to correlate Ct values or other biomarkers of viral replication along with the presence of infectious virus in clinical samples.
Collapse
Affiliation(s)
- Ryan F. Relich
- Division of Clinical Microbiology, Indiana University Health, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Guang-Sheng Lei
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher A. Myers
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
| | - Cynthia Sikorski
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
| | - Caroline Balagot
- Operational Infectious Diseases, Naval Health Research Center, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | | | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
262
|
Zhu X, Zhang J, Pan R, Zhang K, Dai H. CRISPR/Cas12a-mediated entropy-driven electrochemical biosensor for detection of genetically modified maize Mon810. Anal Chim Acta 2024; 1296:342290. [PMID: 38401924 DOI: 10.1016/j.aca.2024.342290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Genetically modified crops (GMOs) have led to significant, if not revolutionary, agricultural advances. The development of GMOs requires necessary regulations, which depend on the detection of GMOs. A sensitive and specific biosensor for the detection of transgenic crops is crucial to improve the detection efficiency of GMOs. Here, we developed a CRISPR/Cas12a-mediated entropy-driven electrochemiluminescence (ECL) biosensor for the sensitive and specific detection of MON810, the world's most widely used transgenic insect-resistant maize. We designed two crRNAs to activate CRISPR/Cas12a, allowing it to cut non-specific single strands, and we modified the DNA tetrahedron (DT) on the surface of the gold electrode to diminish non-specific adsorption. The entropy-driven chain displacement reaction with the target DNA takes place for amplification. After optimization, the biosensor has satisfactory accuracy and selectivity, with a linear range of ECL of 1-106 fM and a limit of detection (LOD) of 3.3 fM by the 3σ method. The biosensor does not require polymerase chain reaction (PCR) amplification or complex sample processing, which dramatically improves transgenic crop detection efficiency. This new biosensor achieves rapid, sensitive, and highly specific detection of transgenic crops, and has great potential for large-scale field detection of transgenic crops.
Collapse
Affiliation(s)
- Xia Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Changping, 102209, Beijing, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Huaxin Dai
- Beijing Life Science Academy, Changping, 102209, Beijing, China.
| |
Collapse
|
263
|
Shahriarirad S, Asmarian N, Shahriarirad R, Moghadami M, Askarian M, Hashemizadeh Fard Haghighi L, Javadi P, Sabetian G. High Post-Infection Protection after COVID-19 among Healthcare Workers: A Population-Level Observational Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:247-258. [PMID: 38680224 PMCID: PMC11053253 DOI: 10.30476/ijms.2023.97708.2951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 05/01/2024]
Abstract
Background Even though a few years have passed since the coronavirus disease 2019 (COVID-19) outbreak, information regarding certain aspects of the disease, such as post-infection immunity, is still quite limited. This study aimed to evaluate post-infection protection and COVID-19 features among healthcare workers (HCWs), during three successive surges, as well as the rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection, reactivation, re-positivity, and severity. Methods This cross-sectional population-level observational study was conducted from 20 April 2020 to 18 February 2021. The study population included all HCWs in public or private hospitals in Fars Province, Southern Iran. The infection rate was computed as the number of individuals with positive polymerase chain reaction (PCR) tests divided by the total number of person-days at risk. The re-infection was evaluated after 90 days. Results A total of 30,546 PCR tests were performed among HCWs, of which 13,749 (61.94% of total HCWs) were positive. Considering the applied 90-day threshold, there were 44 (31.2%) cases of reactivation and relapse, and 97 (68.8% of infected and 1.81% of total HCWs) cases of reinfection among 141 (2.64%) diagnosed cases who experienced a second episode of COVID-19. There was no significant difference in symptoms (P=0.65) or the necessity for ICU admission (P=0.25). The estimated protection against repeated infection after a previous SARS-CoV-2 infection was 94.8% (95% CI=93.6-95.7). Conclusion SARS-CoV-2 re-positivity, relapse, and reinfection were rare in the HCW population. After the first episode of infection, an estimated 94.8% protection against recurring infections was achieved. A preprint version of this manuscript is available at DOI:10.21203/rs.3.rs-772662/v1 (https://www.researchsquare.com/article/rs-772662/v1).
Collapse
Affiliation(s)
- Sepehr Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naeimehossadat Asmarian
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Askarian
- Department of Community Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parisa Javadi
- Department of Anesthesiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golnar Sabetian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
264
|
Futschik ME, Johnson S, Turek E, Chapman D, Carr S, Thorlu-Bangura Z, Klapper PE, Sudhanva M, Dodgson A, Cole-Hamilton JR, Germanacos N, Kulasegaran-Shylini R, Blandford E, Tunkel S, Peto T, Hopkins S, Fowler T. Rapid antigen testing for SARS-CoV-2 by lateral flow assay: A field evaluation of self- and professional testing at UK community testing sites. J Clin Virol 2024; 171:105654. [PMID: 38387136 DOI: 10.1016/j.jcv.2024.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The advent of lateral flow devices (LFDs) for SARS-CoV-2 detection enabled widespread use of rapid self-tests during the pandemic. While self-testing using LFDs is now common, whether self-testing provides comparable performance to professional testing was a key question that remained important for pandemic planning. METHODS Three prospective multi-centre studies were conducted to compare the performance of self- and professional testing using LFDs. Participants tested themselves or were tested by trained (professional) testers at community testing sites in the UK. Corresponding qRT-PCR test results served as reference standard. The performance of Innova, Orient Gene and SureScreen LFDs by users (self) and professional testers was assessed in terms of sensitivity, specificity, and kit failure (void) rates. Impact of age, sex and symptom status was analysed using logistic regression modelling. RESULTS 16,617 participants provided paired tests, of which 15,418 were included in the analysis. Self-testing with Innova, Orient Gene or SureScreen LFDs achieved sensitivities of 50 %, 53 % or 72 %, respectively, compared to qRT-PCR. Self and professional LFD testing showed no statistically different sensitivity with respect to corresponding qRT-PCR testing. Specificity was consistently equal to or higher than 99 %. Sex and age had no or only marginal impact on LFD performance while sensitivity was significantly higher for symptomatic individuals. Sensitivity of LFDs increased strongly to up to 90 % with higher levels of viral RNA measured by qRT-PCR. CONCLUSIONS Our results support SARS-CoV-2 self-testing with LFDs, especially for the detection of individuals whose qRT-PCR tests showed high viral concentrations.
Collapse
Affiliation(s)
- Matthias E Futschik
- UK Health Security Agency, London, United Kingdom; University of Plymouth, School of Biomedical Sciences, Faculty of Health, Plymouth, United Kingdom
| | | | - Elena Turek
- Deloitte, London, United Kingdom, Deloitte MCS Ltd, London, United Kingdom
| | - David Chapman
- Deloitte, London, United Kingdom, Deloitte MCS Ltd, London, United Kingdom
| | - Simon Carr
- Deloitte, London, United Kingdom, Deloitte MCS Ltd, London, United Kingdom
| | | | - Paul E Klapper
- UK Health Security Agency, London, United Kingdom; University of Manchester, Manchester, United Kingdom
| | - Malur Sudhanva
- UK Health Security Agency, London, United Kingdom; King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew Dodgson
- UK Health Security Agency, London, United Kingdom; University of Manchester, Manchester, United Kingdom
| | | | | | | | | | - Sarah Tunkel
- UK Health Security Agency, London, United Kingdom
| | | | | | - Tom Fowler
- UK Health Security Agency, London, United Kingdom; Queen Mary University of London, William Harvey Research Institute, London, United Kingdom.
| |
Collapse
|
265
|
van Eijk LE, Bourgonje AR, Mastik MF, Snippe D, Bulthuis MLC, Vos W, Bugiani M, Smit JM, Berger SP, van der Voort PHJ, van Goor H, den Dunnen WFA, Hillebrands JL. Viral presence and immunopathology in a kidney transplant recipient with fatal COVID-19: a clinical autopsy report. J Leukoc Biol 2024; 115:780-789. [PMID: 38252562 DOI: 10.1093/jleuko/qiae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
COVID-19 is of special concern to immunocompromised individuals, including organ transplant recipients. However, the exact implications of COVID-19 for the immunocompromised host remain unclear. Existing theories regarding this matter are controversial and mainly based on clinical observations. Here, the postmortem histopathology, immunopathology, and viral presence in various tissues of a kidney transplant recipient with COVID-19 were compared to those of 2 nontransplanted patients with COVID-19 matched for age, sex, length of intensive care unit stay, and admission period in the pandemic. None of the tissues of the kidney transplant recipient demonstrated the presence of SARS-CoV-2. In lung tissues of both controls, some samples showed viral positivity with high Ct values with quantitative reverse transcription polymerase chain reaction. The lungs of the kidney transplant recipient and controls demonstrated similar pathology, consisting of acute fibrinous and organizing pneumonia with thrombosis and an inflammatory response with T cells, B cells, and macrophages. The kidney allograft and control kidneys showed a similar pattern of interstitial lymphoplasmacytic infiltration. No myocarditis could be observed in the hearts of the kidney transplant recipient and controls, although all cases contained scattered lymphoplasmacytic infiltrates in the myocardium, pericardium, and atria. The brainstems of the kidney transplant recipient and controls showed a similar pattern of lymphocytic inflammation with microgliosis. This research report highlights the possibility that, based on the results obtained from this single case, at time of death, the immune response in kidney transplant recipients with long-term antirejection immunosuppression use prior to severe illness is similar to nontransplanted deceased COVID-19 patients.
Collapse
Affiliation(s)
- Larissa E van Eijk
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Mirjam F Mastik
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dirk Snippe
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wim Vos
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan P Berger
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Peter H J van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
266
|
Li Y, Ash K, Alamilla I, Joyner D, Williams DE, McKay PJ, Green B, DeBlander S, North C, Kara-Murdoch F, Swift C, Hazen TC. COVID-19 trends at the University of Tennessee: predictive insights from raw sewage SARS-CoV-2 detection and evaluation and PMMoV as an indicator for human waste. Front Microbiol 2024; 15:1379194. [PMID: 38605711 PMCID: PMC11007199 DOI: 10.3389/fmicb.2024.1379194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring the prevalence of SARS-CoV-2 on university campuses. However, concerns about effectiveness of raw sewage as a COVID-19 early warning system still exist, and it's not clear how useful normalization by simultaneous comparison of Pepper Mild Mottle Virus (PMMoV) is in addressing variations resulting from fecal discharge dilution. This study aims to contribute insights into these aspects by conducting an academic-year field trial at the student residences on the University of Tennessee, Knoxville campus, raw sewage. This was done to investigate the correlations between SARS-CoV-2 RNA load, both with and without PMMoV normalization, and various parameters, including active COVID-19 cases, self-isolations, and their combination among all student residents. Significant positive correlations between SARS-CoV-2 RNA load a week prior, during the monitoring week, and the subsequent week with active cases. Despite these correlations, normalization by PMMoV does not enhance these associations. These findings suggest the potential utility of SARS-CoV-2 RNA load as an early warning indicator and provide valuable insights into the application and limitations of WBE for COVID-19 surveillance specifically within the context of raw sewage on university campuses.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Dominique Joyner
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Daniel Edward Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Peter J. McKay
- Battelle Memorial Institute, Columbus, OH, United States
| | - Brianna Green
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Sydney DeBlander
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Carman North
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - Fadime Kara-Murdoch
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Battelle Memorial Institute, Columbus, OH, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Cynthia Swift
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
267
|
Silva MDO, Castro-Amarante MF, Venceslau-Carvalho AA, Almeida BDS, Daher IP, de Souza-Silva GA, Yamamoto MM, Koike G, de Souza EE, Wrenger C, Ferreira LCDS, Boscardin SB. Enhanced Immunogenicity and Protective Effects against SARS-CoV-2 Following Immunization with a Recombinant RBD-IgG Chimeric Protein. Vaccines (Basel) 2024; 12:356. [PMID: 38675739 PMCID: PMC11054318 DOI: 10.3390/vaccines12040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
The unprecedented global impact caused by SARS-CoV-2 imposed huge health and economic challenges, highlighting the urgent need for safe and effective vaccines. The receptor-binding domain (RBD) of SARS-CoV-2 is the major target for neutralizing antibodies and for vaccine formulations. Nonetheless, the low immunogenicity of the RBD requires the use of alternative strategies to enhance its immunological properties. Here, we evaluated the use of a subunit vaccine antigen generated after the genetic fusing of the RBD with a mouse IgG antibody. Subcutaneous administration of RBD-IgG led to the extended presence of the protein in the blood of immunized animals and enhanced RBD-specific IgG titers. Furthermore, RBD-IgG immunized mice elicited increased virus neutralizing antibody titers, measured both with pseudoviruses and with live original (Wuhan) SARS-CoV-2. Immunized K18-hACE2 mice were fully resistant to the lethal challenge of the Wuhan SARS-CoV-2, demonstrated by the control of body-weight loss and virus loads in their lungs and brains. Thus, we conclude that the genetic fusion of the RBD with an IgG molecule enhanced the immunogenicity of the antigen and the generation of virus-neutralizing antibodies, supporting the use of IgG chimeric antigens as an approach to improve the performance of SARS-CoV-2 subunit vaccines.
Collapse
Affiliation(s)
- Mariângela de Oliveira Silva
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Maria Fernanda Castro-Amarante
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alexia Adrianne Venceslau-Carvalho
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bianca da Silva Almeida
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Isabela Pazotti Daher
- Laboratory of Immunology, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Guilherme Antonio de Souza-Silva
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Marcio Massao Yamamoto
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Gabriela Koike
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| |
Collapse
|
268
|
Ávila-Nieto C, Vergara-Alert J, Amengual-Rigo P, Ainsua-Enrich E, Brustolin M, Rodríguez de la Concepción ML, Pedreño-Lopez N, Rodon J, Urrea V, Pradenas E, Marfil S, Ballana E, Riveira-Muñoz E, Pérez M, Roca N, Tarrés-Freixas F, Cantero G, Pons-Grífols A, Rovirosa C, Aguilar-Gurrieri C, Ortiz R, Barajas A, Trinité B, Lepore R, Muñoz-Basagoiti J, Perez-Zsolt D, Izquierdo-Useros N, Valencia A, Blanco J, Guallar V, Clotet B, Segalés J, Carrillo J. Immunization with V987H-stabilized Spike glycoprotein protects K18-hACE2 mice and golden Syrian hamsters upon SARS-CoV-2 infection. Nat Commun 2024; 15:2349. [PMID: 38514609 PMCID: PMC10957958 DOI: 10.1038/s41467-024-46714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we describe the V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity is similar to S-2P in mice and golden Syrian hamsters (GSH), and superior to a monomeric RBD. S-V987H immunization confer full protection against severe disease in K18-hACE2 mice and GSH upon SARS-CoV-2 challenge (D614G or B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice show a faster tissue viral clearance than RBD- or S-2P-vaccinated animals challenged with D614G, B.1.351 or Omicron BQ1.1 variants. Thus, S-V987H protein might be considered for future SARS-CoV-2 vaccines development.
Collapse
Affiliation(s)
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Pep Amengual-Rigo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Marco Brustolin
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | | | - Mònica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain
| | | | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | | | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
| | - Rosalba Lepore
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
| | - Victor Guallar
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic-Central University of Catalonia (UVic-UCC), Vic, Catalonia, Spain
- Fundaciò Lluita contra les infeccions. Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia, Spain.
- Universitat Autonoma de Barcelona. Bellaterra, Cerdanyola del Vallès, Catalonia, Spain.
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Campus Can Ruti, Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain.
- CIBERINFEC. ISCIII, Madrid, Spain.
| |
Collapse
|
269
|
Hwang C, Baek S, Song Y, Lee WJ, Park S. Wide-range and selective detection of SARS-CoV-2 DNA via surface modification of electrolyte-gated IGZO thin-film transistors. iScience 2024; 27:109061. [PMID: 38361625 PMCID: PMC10867417 DOI: 10.1016/j.isci.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The 2019 coronavirus pandemic resulted in a massive global healthcare crisis, highlighting the necessity to develop effective and reproducible platforms capable of rapidly and accurately detecting SARS-CoV-2. In this study, we developed an electrolyte-gated indium-gallium-zinc-oxide (IGZO) thin-film transistor with sequential surface modification to realize the low limit of detection (LoD <50 fM) and a wide detection range from 50 fM to 5 μM with good linearity (R2 = 0.9965), and recyclability. The surface chemical modification was achieved to anchor the single strand of SARS-CoV-2 DNA via selective hybridization. Moreover, the minute electrical signal change following the chemical modification was investigated by in-depth physicochemical analytical techniques. Finally, we demonstrate fully recyclable biosensors based on oxygen plasma treatment. Owing to its cost-effective fabrication, rapid detection at the single-molecule level, and low detection limit, the proposed biosensor can be used as a point-of-care platform to perform timely and effective SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Chuljin Hwang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Seokhyeon Baek
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Yoonseok Song
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Won-June Lee
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
- Department of Intelligence Semiconductor Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Republic of Korea
| |
Collapse
|
270
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
271
|
Lebedin M, Ratswohl C, Garg A, Schips M, García CV, Spatt L, Thibeault C, Obermayer B, Weiner J, Velásquez IM, Gerhard C, Stubbemann P, Hanitsch LG, Pischon T, Witzenrath M, Sander LE, Kurth F, Meyer-Hermann M, de la Rosa K. Soluble ACE2 correlates with severe COVID-19 and can impair antibody responses. iScience 2024; 27:109330. [PMID: 38496296 PMCID: PMC10940809 DOI: 10.1016/j.isci.2024.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/25/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 μg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.
Collapse
Affiliation(s)
- Mikhail Lebedin
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Ratswohl
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Free University of Berlin, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Berlin, Germany
| | - Amar Garg
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marta Schips
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Clara Vázquez García
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Spatt
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - January Weiner
- Core Unit Bioinformatics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ilais Moreno Velásquez
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Cathrin Gerhard
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Paula Stubbemann
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leif-Gunnar Hanitsch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tobias Pischon
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Molecular Epidemiology Research Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kathrin de la Rosa
- Max-Delbück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
272
|
Kaiser FK, Hernandez MG, Krüger N, Englund E, Du W, Mykytyn AZ, Raadsen MP, Lamers MM, Rodrigues Ianiski F, Shamorkina TM, Snijder J, Armando F, Beythien G, Ciurkiewicz M, Schreiner T, Gruber-Dujardin E, Bleyer M, Batura O, Erffmeier L, Hinkel R, Rocha C, Mirolo M, Drabek D, Bosch BJ, Emalfarb M, Valbuena N, Tchelet R, Baumgärtner W, Saloheimo M, Pöhlmann S, Grosveld F, Haagmans BL, Osterhaus ADME. Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models. Nat Commun 2024; 15:2319. [PMID: 38485931 PMCID: PMC10940701 DOI: 10.1038/s41467-024-46443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Mariana Gonzalez Hernandez
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ellinor Englund
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs P Raadsen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Francine Rodrigues Ianiski
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Eva Gruber-Dujardin
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Martina Bleyer
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Olga Batura
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lena Erffmeier
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Cheila Rocha
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Monica Mirolo
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Stefan Pöhlmann
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany.
- Global Virus Network, Baltimore, MD, 21201, USA.
| |
Collapse
|
273
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
274
|
Castellar-Mendoza C, Calderón-Peláez MA, Castellanos JE, Velandia-Romero ML, Coronel-Ruiz C, Camacho-Ortega S, Bernal-Cepeda LJ, López-Ibarra L, Arturo JA, Delgado FG, Gutierrez-Barbosa H, Bohorquez-Avila S, Madroñero J, Corredor-Rozo ZL, Perdomo-Lara SJ, Fonseca-Benitez A, Calvo E. Development and Optimization of a Multiplex Real-Time RT-PCR to Detect SARS-CoV-2 in Human Samples. Int J Microbiol 2024; 2024:4894004. [PMID: 38500634 PMCID: PMC10948217 DOI: 10.1155/2024/4894004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 03/20/2024] Open
Abstract
PCR and its variants (RT-PCR and qRT-PCR) are valuable and innovative molecular techniques for studying nucleic acids. qPCR has proven to be highly sensitive, efficient, and reproducible, generating reliable results that are easy to analyze. During the COVID-19 pandemic, qPCR became the gold standard technique for detecting the SARS-CoV-2 virus that allowed to confirm the infection event, and those asymptomatic ones, and thus save millions of lives. In-house multiplex qPCR tests were developed worldwide to detect different viral targets and ensure results, follow the infections, and favor the containment of a pandemic. Here, we present the detailed fundamentals of the qPCR technique based on fluorogenic probes and processes to develop and optimize a successful multiplex RT-qPCR test for detecting SARS-CoV-2 that could be used to diagnose COVID-19 accurately.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lilia J. Bernal-Cepeda
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Jhann A. Arturo
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Inmugen Corporation, Bogotá, Colombia
| | | | | | - Sonia Bohorquez-Avila
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
- Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | - Eliana Calvo
- Virology Group, Universidad El Bosque, Bogotá 110121, Colombia
| |
Collapse
|
275
|
Santos AC, Costa VDD, Silva LLD, Miguel JC, Jardim R, Dávila AMR, Paula VSD, Melgaço JG, Lago BVD, Villar LM. SARS-CoV-2 and dialysis: humoral response, clinical and laboratory impacts before vaccination. Braz J Infect Dis 2024; 28:103735. [PMID: 38467386 DOI: 10.1016/j.bjid.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Patients with kidney disease on Hemodialysis (HD) are susceptible to Coronavirus Disease (COVID-19) due to multiple risk factors. AIM This study aims to report the prevalence of antibodies against SARS-CoV-2 among patients on hemodialysis before vaccination in Brazil and to compare with clinical, demographic, and laboratory data. METHODS Blood samples from 398 Chronic Kidney Disease (CKD) patients treated in three different private institutions in Rio de Janeiro State, Brazil were submitted to the total anti-SARS-CoV-2 testing. Kidney, liver, and hematological markers were also determined. Respiratory samples were tested by real-time PCR for SARS-CoV-2 RNA and positive samples were subjected to high-throughput sequencing on the MinION device. RESULTS Overall, anti-SARS-CoV-2 prevalence was 54.5 % (217/398) and two individuals had SARS-CoV-2 RNA with variant B.1.1. High anti-SARS-CoV-2 seroprevalence was found in male gender and those with hospital admission in the last 3-months before the inclusion in the study. Lower red blood cell count was observed in the anti-SARS-CoV-2 seropositive group. High levels of anti-SARS-CoV-2 were found in those who reported symptoms, had low levels of eosinophils and low hematocrit, and who practiced physical activity. CONCLUSION High prevalence of anti-SARS-CoV-2 was found in CKD patients before the universal immunization in Brazil suggesting that dialysis patients were highly exposed to SARS-CoV-2.
Collapse
Affiliation(s)
- Alanna Calheiros Santos
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil
| | - Vanessa Duarte da Costa
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil
| | - Lucas Lima da Silva
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil
| | - Juliana Custódio Miguel
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Jardim
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório de Biologia Computacional e de Sistemas, Programa de Pós-Graduação em Biodiversidade e Saúde, Rio de Janeiro, RJ, Brazil
| | - Alberto Martín Rivera Dávila
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório de Biologia Computacional e de Sistemas, Programa de Pós-Graduação em Biodiversidade e Saúde, Rio de Janeiro, RJ, Brazil
| | - Vanessa Salete de Paula
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório de Virologia Molecular e Parasitologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Gil Melgaço
- Bio-Manguinhos (FIOCRUZ), Laboratório de Tecnologia Imunológica, Rio de Janeiro, RJ, Brazil
| | - Barbara Vieira do Lago
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil
| | - Livia Melo Villar
- Instituto Oswaldo Cruz (FIOCRUZ), Laboratório Brasileiro de Referência em Hepatites Virais, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
276
|
Marcos-Villar L, Perdiguero B, Anthiya S, Borrajo ML, Lou G, Franceschini L, Esteban I, Sánchez-Cordón PJ, Zamora C, Sorzano CÓS, Jordá L, Codó L, Gelpí JL, Sisteré-Oró M, Meyerhans A, Thielemans K, Martínez-Jiménez F, López-Bigas N, García F, Alonso MJ, Plana M, Esteban M, Gómez CE. Modulating the immune response to SARS-CoV-2 by different nanocarriers delivering an mRNA expressing trimeric RBD of the spike protein: COVARNA Consortium. NPJ Vaccines 2024; 9:53. [PMID: 38448450 PMCID: PMC10918104 DOI: 10.1038/s41541-024-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ignasi Esteban
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro J Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis Jordá
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep L Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
277
|
Piri A, Hyun KA, Jung HI, Nam KS, Hwang J. Enhanced enrichment of collected airborne coronavirus and influenza virus samples via a ConA-coated microfluidic chip for PCR detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133249. [PMID: 38154189 DOI: 10.1016/j.jhazmat.2023.133249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.
Collapse
Affiliation(s)
- Amin Piri
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-A Hyun
- Korea Electronics Technology Institute (KETI), Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Kang Sik Nam
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
278
|
Huang X, Kantonen J, Nowlan K, Nguyen NA, Jokiranta ST, Kuivanen S, Heikkilä N, Mahzabin S, Kantele A, Vapalahti O, Myllykangas L, Heinonen S, Mäyränpää MI, Strandin T, Kekäläinen E. Mucosal-Associated Invariant T Cells are not susceptible in vitro to SARS-CoV-2 infection but accumulate into the lungs of COVID-19 patients. Virus Res 2024; 341:199315. [PMID: 38211733 PMCID: PMC10826420 DOI: 10.1016/j.virusres.2024.199315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Prolonged T cell lymphopenia is common in COVID-19, caused by SARS-CoV-2. While the mechanisms of lymphopenia during COVID-19 remain elusive, it is especially pronounced in a specialized innate-like T cell population called Mucosal Associated Invariant T cells (MAITs). MAITs has been suggested to express Angiotensin-Converting Enzyme 2 (ACE2), which is the well-known cellular receptor for SARS-CoV-2. However, it is still unclear if SARS-CoV-2 can infect or affect MAIT cells directly. In this study, we performed multicolor flow cytometry on peripheral blood mononuclear cells obtained from COVID-19 patients to assess the frequencies of CD8+Vα7.2+CD161+ MAIT subsets at acute and convalescent disease phases. The susceptibility of MAITs and T cells to direct exposure by SARS-CoV-2 was analysed using cells isolated from healthy donor buffy coats by viability assays, virus-specific RT-PCR, and flow cytometry. In situ lung immunofluorescence was used to evaluate retention of T cells, especially MAIT cells, in lung tissues during acute COVID-19. Our study confirms previous reports indicating that circulating MAITs are activated, and their frequency is declined in patients with acute SARS-CoV-2 infection, whereas an accumulation of MAITs and T cells was seen in the lung tissue of individuals with fatal COVID-19. However, despite a fraction of MAITs found to express ACE2, no evidence for the susceptibility of MAITs for direct infection or activation by SARS-CoV-2 particles was observed. Thus, their activation and decline in the circulation is most likely explained by indirect mechanisms involving other immune cells and cytokine-induced pro-inflammatory environment but not by direct exposure to viral particles at the infection site.
Collapse
Affiliation(s)
- Xiaobo Huang
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
| | - Jonas Kantonen
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kirsten Nowlan
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ngoc Anh Nguyen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi T Jokiranta
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Nelli Heikkilä
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Shamita Mahzabin
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Meilahti Vaccine Research Center, MeVac, Infectious Diseases, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland; Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Santtu Heinonen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki, Helsinki, Finland; Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Division of Virology and Immunology, HUS Diagnostic Center, HUSLAB Clinical Microbiology, Helsinki, Finland
| |
Collapse
|
279
|
Schädler J, Azeke AT, Ondruschka B, Steurer S, Lütgehetmann M, Fitzek A, Möbius D. Concordance between MITS and conventional autopsies for pathological and virological diagnoses. Int J Legal Med 2024; 138:431-442. [PMID: 37837537 PMCID: PMC10861633 DOI: 10.1007/s00414-023-03088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023]
Abstract
In pandemics or to further study highly contagious infectious diseases, new strategies are needed for the collection of post-mortem tissue samples to identify the pathogen as well as its morphological impact. In this study, an ultrasound-guided minimally invasive tissue sampling (MITS) protocol was developed and validated for post-mortem use. The histological and microbiological qualities of post-mortem specimens were evaluated and compared between MITS and conventional autopsy (CA) in a series of COVID-19 deaths. Thirty-six ultrasound-guided MITS were performed. In five cases more, specimens for histological and virological examination were also obtained and compared during the subsequently performed CA. Summary statistics and qualitative interpretations (positive, negative) were calculated for each organ tissue sample from MITS and CA, and target genes were determined for both human cell count (beta-globin) and virus (SARS-CoV-2 specific E gene). There are no significant differences between MITS and CA with respect to the detectability of viral load in individual organs, which is why MITS can be of utmost importance and an useful alternative, especially during outbreaks of infectious diseases.
Collapse
Affiliation(s)
- Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Akhator Terence Azeke
- Department of Anatomic Pathology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dustin Möbius
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
280
|
Fanshawe TR, Tonner S, Turner PJ, Cogdale J, Glogowska M, de Lusignan S, Okusi C, Perera R, Sebastianpillai P, Williams A, Zambon M, Nicholson BD, Hobbs FDR, Hayward GN. Diagnostic accuracy of a point-of-care antigen test for SARS-CoV-2 and influenza in a primary care population (RAPTOR-C19). Clin Microbiol Infect 2024; 30:380-386. [PMID: 38103638 DOI: 10.1016/j.cmi.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Limited evidence exists for the diagnostic performance of point-of-care tests for SARS-CoV-2 and influenza in community healthcare. We carried out a prospective diagnostic accuracy study of the LumiraDx™ SARS-CoV-2 and influenza A or B assay in primary care. METHODS Total of 913 adults and children with symptoms of current SARS-CoV-2 infection were recruited from 18 UK primary care practices during a period when Omicron was the predominant COVID variant of concern (June 2022 to December 2022). Trained health care staff performed the index test, with diagnostic accuracy parameters estimated for SARS-CoV-2 and influenza against real-time reverse-transcription PCR (rtRT-PCR). RESULTS 151/887 participants were SARS-CoV-2 rtRT-PCR positive, 109 positive for Influenza A, 6 for Influenza B. Index test sensitivity for SARS-CoV-2 was 80.8% (122 of the 151, 95% CI, 73.6-86.7%) and specificity 98.9% (728 of the 736, 95% CI, 97.9-99.5%). For influenza A, sensitivity was 61.5% (67 of the 109, 95% CI, 51.7-70.6%) and specificity 99.4% (771 of the 776, 95% CI, 98.5-99.8%). Sensitivity to detect SARS-CoV-2 and influenza dropped sharply at rtRT-PCR cycle thresholds (Ct) > 30. DISCUSSIONS The LumiraDx™ SARS-CoV-2 and influenza A/B assay had moderate sensitivity for SARS-CoV-2 in symptomatic patients in primary care, with lower performance with high rtRT-PCR Ct. Negative results in this patient group cannot definitively rule out SARS-CoV-2 or influenza.
Collapse
Affiliation(s)
- Thomas R Fanshawe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Sharon Tonner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Philip J Turner
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jade Cogdale
- Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - Margaret Glogowska
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Cecilia Okusi
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Praveen Sebastianpillai
- Immunization and Vaccine Preventable Diseases Division and Public Health Programmes, UK Health Security Agency, UK
| | - Alice Williams
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Maria Zambon
- Influenza and Respiratory Virology and Polio Reference Service, UK Health Security Agency, UK; NIHR Health Protection Research Unit, Imperial College London, UK
| | - Brian D Nicholson
- Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| | - Gail N Hayward
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; Virus Reference Department, Respiratory Virus Unit, UK Health Security Agency, UK
| |
Collapse
|
281
|
Lee LKF, Himsworth CG, Prystajecky N, Dibernardo A, Lindsay LR, Albers TM, Dhawan R, Henderson K, Mulder G, Atwal HK, Beattie I, Wobeser BK, Parsons MH, Byers KA. SARS-CoV-2 Surveillance of Wild Mice and Rats in North American Cities. ECOHEALTH 2024; 21:1-8. [PMID: 38748281 DOI: 10.1007/s10393-024-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 05/26/2024]
Abstract
From July 2020 to June 2021, 248 wild house mice (Mus musculus), deer mice (Peromyscus maniculatus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) from Texas and Washington, USA, and British Columbia, Canada, were tested for SARS-CoV-2 exposure and infection. Two brown rats and 11 house mice were positive for neutralizing antibodies using a surrogate virus neutralization test, but negative or indeterminate with the Multiplexed Fluorometric ImmunoAssay COVID-Plex, which targets full-length spike and nuclear proteins. Oro-nasopharyngeal swabs and fecal samples tested negative by RT-qPCR, with an indeterminate fecal sample in one house mouse. Continued surveillance of SARS-CoV-2 in wild rodents is warranted.
Collapse
Affiliation(s)
- Lisa K F Lee
- Canadian Wildlife Health Cooperative British Columbia, Abbotsford, BC, Canada.
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada.
| | - Chelsea G Himsworth
- Canadian Wildlife Health Cooperative British Columbia, Abbotsford, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Natalie Prystajecky
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Theresa M Albers
- Research Models and Services, Charles River, Wilmington, MA, USA
| | - Rajeev Dhawan
- Research Models and Services, Charles River, Wilmington, MA, USA
| | - Ken Henderson
- Research Models and Services, Charles River, Wilmington, MA, USA
| | - Guy Mulder
- Research Models and Services, Charles River, Wilmington, MA, USA
| | - Harveen K Atwal
- Canadian Wildlife Health Cooperative British Columbia, Abbotsford, BC, Canada
| | - Imara Beattie
- Canadian Wildlife Health Cooperative British Columbia, Abbotsford, BC, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Bruce K Wobeser
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK, S7N 5B4, Canada
| | - Michael H Parsons
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
- Centre for Urban Ecological Solutions, LLC, Spring, TX, USA
| | - Kaylee A Byers
- Canadian Wildlife Health Cooperative British Columbia, Abbotsford, BC, Canada
- Pacific Institute On Pathogens, Pandemics and Society, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
282
|
Nair C, Kozak R, Alavi N, Mbareche H, Kung RC, Murphy KE, Perruzza D, Jarvi S, Salvant E, Ladhani NNN, Yee AJM, Gagnon LH, Jenkinson R, Liu GY, Lee PE. Evaluation of Real and Perceived Risk to Health Care Workers Caring for Patients With the Omicron Variant of the SARS-CoV-2 Virus in Surgery and Obstetrics. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102276. [PMID: 37944819 DOI: 10.1016/j.jogc.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES The Omicron variant of the SARS-CoV-2 virus is described as more contagious than previous variants. We sought to assess risk to health care workers (HCWs) caring for patients with COVID-19 in surgical/obstetrical settings, and the perception of risk among this group. METHODS From January to April 2022, reverse transcription polymerase chain reaction was used to detect the presence of SARS-CoV-2 viral ribonucleic acid in patient, environmental (floor, equipment, passive air) samples, and HCWs' masks (inside surface) during urgent surgery or obstetrical delivery for patients with SARS-CoV-2 infection. The primary outcome was the proportion of HCWs' masks testing positive. Results were compared with our previous cross-sectional study involving obstetrical/surgical patients with earlier variants (2020-2021). HCWs completed a risk perception electronic questionnaire. RESULTS Eleven patients were included: 3 vaginal births and 8 surgeries. In total, 5/108 samples (5%) tested positive (SARS-CoV-2 Omicron) viral ribonucleic acid: 2/5 endotracheal tubes, 1/22 floor samples, 1/4 patient masks, and 1 nasal probe. No samples from the HCWs' masks (0/35), surgical equipment (0/10), and air (0/11) tested positive. No significant differences were found between the Omicron and 2020/21 patient groups' positivity rates (Mann-Whitney U test, P = 0.838) or the level of viral load from the nasopharyngeal swabs (P = 0.405). Nurses had a higher risk perception than physicians (P = 0.038). CONCLUSION No significant difference in contamination rates was found between SARS-CoV-2 Omicron BA.1 and previous variants in surgical/obstetrical settings. This is reassuring as no HCW mask was positive and no HCW tested positive for COVID-19 post-exposure.
Collapse
Affiliation(s)
- Chaithanya Nair
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON
| | - Robert Kozak
- Division of Microbiology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Nasrin Alavi
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Hamza Mbareche
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Rose C Kung
- Divisions of Urogynecology and Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Kellie E Murphy
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sinai Health System, University of Toronto, Toronto, ON
| | - Darian Perruzza
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Stephanie Jarvi
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Elsa Salvant
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Noor Niyar N Ladhani
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Albert J M Yee
- Division of Orthopedics and Trauma Surgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Louise-Helene Gagnon
- Divisions of Urogynecology and Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Richard Jenkinson
- Division of Orthopedics and Trauma Surgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Grace Y Liu
- Divisions of Urogynecology and Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON
| | - Patricia E Lee
- Divisions of Urogynecology and Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON.
| |
Collapse
|
283
|
van Huizen M, Bloeme - ter Horst JR, de Gruyter HLM, Geurink PP, van der Heden van Noort GJ, Knaap RCM, Nelemans T, Ogando NS, Leijs AA, Urakova N, Mark BL, Snijder EJ, Myeni SK, Kikkert M. Deubiquitinating activity of SARS-CoV-2 papain-like protease does not influence virus replication or innate immune responses in vivo. PLoS Pathog 2024; 20:e1012100. [PMID: 38527094 PMCID: PMC10994560 DOI: 10.1371/journal.ppat.1012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
The coronavirus papain-like protease (PLpro) is crucial for viral replicase polyprotein processing. Additionally, PLpro can subvert host defense mechanisms by its deubiquitinating (DUB) and deISGylating activities. To elucidate the role of these activities during SARS-CoV-2 infection, we introduced mutations that disrupt binding of PLpro to ubiquitin or ISG15. We identified several mutations that strongly reduced DUB activity of PLpro, without affecting viral polyprotein processing. In contrast, mutations that abrogated deISGylating activity also hampered viral polyprotein processing and when introduced into the virus these mutants were not viable. SARS-CoV-2 mutants exhibiting reduced DUB activity elicited a stronger interferon response in human lung cells. In a mouse model of severe disease, disruption of PLpro DUB activity did not affect lethality, virus replication, or innate immune responses in the lungs. This suggests that the DUB activity of SARS-CoV-2 PLpro is dispensable for virus replication and does not affect innate immune responses in vivo. Interestingly, the DUB mutant of SARS-CoV replicated to slightly lower titers in mice and elicited a diminished immune response early in infection, although lethality was unaffected. We previously showed that a MERS-CoV mutant deficient in DUB and deISGylating activity was strongly attenuated in mice. Here, we demonstrate that the role of PLpro DUB activity during infection can vary considerably between highly pathogenic coronaviruses. Therefore, careful considerations should be taken when developing pan-coronavirus antiviral strategies targeting PLpro.
Collapse
Affiliation(s)
- Mariska van Huizen
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Jonna R. Bloeme - ter Horst
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Heidi L. M. de Gruyter
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Paul P. Geurink
- Department of Cell and Chemical Biology, Division of Chemical Biology and Drug Discovery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Department of Cell and Chemical Biology, Division of Chemical Biology and Drug Discovery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert C. M. Knaap
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Nelemans
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Natacha S. Ogando
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Anouk A. Leijs
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Nadya Urakova
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Brian L. Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Eric J. Snijder
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
284
|
El-Daly MM. Advances and Challenges in SARS-CoV-2 Detection: A Review of Molecular and Serological Technologies. Diagnostics (Basel) 2024; 14:519. [PMID: 38472991 DOI: 10.3390/diagnostics14050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The urgent need for accurate COVID-19 diagnostics has led to the development of various SARS-CoV-2 detection technologies. Real-time reverse transcriptase polymerase chain reaction (RT-qPCR) remains a reliable viral gene detection technique, while other molecular methods, including nucleic acid amplification techniques (NAATs) and isothermal amplification techniques, provide diverse and effective approaches. Serological assays, detecting antibodies in response to viral infection, are crucial for disease surveillance. Saliva-based immunoassays show promise for surveillance purposes. The efficiency of SARS-CoV-2 antibody detection varies, with IgM indicating recent exposure and IgG offering prolonged detectability. Various rapid tests, including lateral-flow immunoassays, present opportunities for quick diagnosis, but their clinical significance requires validation through further studies. Challenges include variations in specificity and sensitivity among testing platforms and evolving assay sensitivities over time. SARS-CoV-2 antigens, particularly the N and S proteins, play a crucial role in diagnostic methods. Innovative approaches, such as nanozyme-based assays and specific nucleotide aptamers, offer enhanced sensitivity and flexibility. In conclusion, ongoing advancements in SARS-CoV-2 detection methods contribute to the global effort in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mai M El-Daly
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
285
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia C, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. eLife 2024; 12:RP87094. [PMID: 38416804 PMCID: PMC10942639 DOI: 10.7554/elife.87094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Taylor A Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Colin A Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUnited States
| |
Collapse
|
286
|
Usai C, Ainsua-Enrich E, Gales VU, Pradenas E, Lorca-Oró C, Tarrés-Freixas F, Roca N, Pérez M, Ávila-Nieto C, Rodríguez de la Concepción ML, Pedreño-Lopez N, Carabelli J, Trinité B, Ballana E, Riveira-Muñoz E, Izquierdo-Useros N, Clotet B, Blanco J, Guallar V, Cantero G, Vergara-Alert J, Carrillo J, Segalés J. Immunisation efficacy of a stabilised SARS-CoV-2 spike glycoprotein in two geriatric animal models. NPJ Vaccines 2024; 9:48. [PMID: 38413645 PMCID: PMC10899648 DOI: 10.1038/s41541-024-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | - Cristina Lorca-Oró
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ferran Tarrés-Freixas
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Mónica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | | | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
- Fundació Lluita contra les Infeccions, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain
- CIBERINFEC. ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
| | - Victor Guallar
- Life Science Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, CReSA, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruit, Badalona, Spain.
- CIBERINFEC. ISCIII, Madrid, Spain.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|
287
|
Ritto AP, de Araujo AL, de Carvalho CRR, De Souza HP, Favaretto PMES, Saboya VRB, Garcia ML, Kulikowski LD, Kallás EG, Pereira AJR, Cobello Junior V, Silva KR, Abdalla ERF, Segurado AAC, Sabino EC, Ribeiro Junior U, Francisco RPV, Miethke-Morais A, Levin ASS, Sawamura MVY, Ferreira JC, Silva CA, Mauad T, Gouveia NDC, Letaif LSH, Bego MA, Battistella LR, Duarte AJDS, Seelaender MCL, Marchini J, Forlenza OV, Rocha VG, Mendes-Correa MC, Costa SF, Cerri GG, Bonfá ESDDO, Chammas R, de Barros Filho TEP, Busatto Filho G. Data-driven, cross-disciplinary collaboration: lessons learned at the largest academic health center in Latin America during the COVID-19 pandemic. Front Public Health 2024; 12:1369129. [PMID: 38476486 PMCID: PMC10927964 DOI: 10.3389/fpubh.2024.1369129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction The COVID-19 pandemic has prompted global research efforts to reduce infection impact, highlighting the potential of cross-disciplinary collaboration to enhance research quality and efficiency. Methods At the FMUSP-HC academic health system, we implemented innovative flow management routines for collecting, organizing and analyzing demographic data, COVID-related data and biological materials from over 4,500 patients with confirmed SARS-CoV-2 infection hospitalized from 2020 to 2022. This strategy was mainly planned in three areas: organizing a database with data from the hospitalizations; setting-up a multidisciplinary taskforce to conduct follow-up assessments after discharge; and organizing a biobank. Additionally, a COVID-19 curated collection was created within the institutional digital library of academic papers to map the research output. Results Over the course of the experience, the possible benefits and challenges of this type of research support approach were identified and discussed, leading to a set of recommended strategies to enhance collaboration within the research institution. Demographic and clinical data from COVID-19 hospitalizations were compiled in a database including adults and a minority of children and adolescents with laboratory confirmed COVID-19, covering 2020-2022, with approximately 350 fields per patient. To date, this database has been used in 16 published studies. Additionally, we assessed 700 adults 6 to 11 months after hospitalization through comprehensive, multidisciplinary in-person evaluations; this database, comprising around 2000 fields per subject, was used in 15 publications. Furthermore, thousands of blood samples collected during the acute phase and follow-up assessments remain stored for future investigations. To date, more than 3,700 aliquots have been used in ongoing research investigating various aspects of COVID-19. Lastly, the mapping of the overall research output revealed that between 2020 and 2022 our academic system produced 1,394 scientific articles on COVID-19. Discussion Research is a crucial component of an effective epidemic response, and the preparation process should include a well-defined plan for organizing and sharing resources. The initiatives described in the present paper were successful in our aim to foster large-scale research in our institution. Although a single model may not be appropriate for all contexts, cross-disciplinary collaboration and open data sharing should make health research systems more efficient to generate the best evidence.
Collapse
Affiliation(s)
- Ana Paula Ritto
- Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Heraldo Possolo De Souza
- Departamento de Emergências Médicas, Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Manga e Silva Favaretto
- Diretoria Executiva dos Laboratórios de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vivian Renata Boldrim Saboya
- Diretoria Executiva dos Laboratórios de Investigação Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michelle Louvaes Garcia
- Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Esper Georges Kallás
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Vilson Cobello Junior
- Núcleo Especializado em Tecnologia da Informação, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Katia Regina Silva
- Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eidi Raquel Franco Abdalla
- Divisão de Biblioteca e Documentação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aluisio Augusto Cotrim Segurado
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ulysses Ribeiro Junior
- Departamento de Gastroenterologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rossana Pulcineli Vieira Francisco
- Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Miethke-Morais
- Diretoria Clínica, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Anna Sara Shafferman Levin
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcio Valente Yamada Sawamura
- Faculdade de Medicina, Instituto de Radiologia, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Carvalho Ferreira
- Faculdade de Medicina, Instituto do Coração, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Clovis Artur Silva
- Instituto da Criança e do Adolescente, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nelson da Cruz Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leila Suemi Harima Letaif
- Diretoria Clínica, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Antonio Bego
- Faculdade de Medicina, Instituto de Radiologia, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Linamara Rizzo Battistella
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Divisão de Laboratório Central, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Julio Marchini
- Departamento de Emergências Médicas, Faculdade de Medicina, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vanderson Geraldo Rocha
- Departamento de Clínica Médica, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Cassia Mendes-Correa
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Giovanni Guido Cerri
- Faculdade de Medicina, Instituto de Radiologia, Hospital das Clínicas HC-FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Geraldo Busatto Filho
- Departamento e Instituto de Psiquiatria, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
288
|
Liu Y, Yin Y, Ward MP, Li K, Chen Y, Duan M, Wong PPY, Hong J, Huang J, Shi J, Zhou X, Chen X, Xu J, Yuan R, Kong L, Zhang Z. Optimization of Screening Strategies for COVID-19: Scoping Review. JMIR Public Health Surveill 2024; 10:e44349. [PMID: 38412011 PMCID: PMC10933748 DOI: 10.2196/44349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND COVID-19 screening is an effective nonpharmaceutical intervention for identifying infected individuals and interrupting viral transmission. However, questions have been raised regarding its effectiveness in controlling the spread of novel variants and its high socioeconomic costs. Therefore, the optimization of COVID-19 screening strategies has attracted great attention. OBJECTIVE This review aims to summarize the evidence and provide a reference basis for the optimization of screening strategies for the prevention and control of COVID-19. METHODS We applied a methodological framework for scoping reviews and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. We conducted a scoping review of the present publications on the optimization of COVID-19 screening strategies. We searched the PubMed, Web of Science, and Elsevier ScienceDirect databases for publications up to December 31, 2022. English publications related to screening and testing strategies for COVID-19 were included. A data-charting form, jointly developed by 2 reviewers, was used for data extraction according to the optimization directions of the screening strategies. RESULTS A total of 2770 unique publications were retrieved from the database search, and 95 abstracts were retained for full-text review. There were 62 studies included in the final review. We summarized the results in 4 major aspects: the screening population (people at various risk conditions such as different regions and occupations; 12/62, 19%), the timing of screening (when the target population is tested before travel or during an outbreak; 12/62, 19%), the frequency of screening (appropriate frequencies for outbreak prevention, outbreak response, or community transmission control; 6/62, 10%), and the screening and detection procedure (the choice of individual or pooled detection and optimization of the pooling approach; 35/62, 56%). CONCLUSIONS This review reveals gaps in the optimization of COVID-19 screening strategies and suggests that a number of factors such as prevalence, screening accuracy, effective allocation of resources, and feasibility of strategies should be carefully considered in the development of future screening strategies.
Collapse
Affiliation(s)
- Yuanhua Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yun Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, NSW, Australia
| | - Ke Li
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mengwei Duan
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | | | - Jie Hong
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jin Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xuan Zhou
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | - Xi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jiayao Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Rui Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lingcai Kong
- Department of Mathematics and Physics, North China Electric Power University, Baoding, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| |
Collapse
|
289
|
Bashir IM, Al-Waleedi AA, Al-Shaibani SM, Rajamanar M, Al-Akbari S, Al-Harazi A, Salim Aliwah L, Ahmed Salem N, Al-Ademi D, Barakat A, Sarkis N, Abubakar A, Senga M, Musani A, Abdel Moneim ARI, Mahmoud N. Strengthening laboratories in response to outbreaks in humanitarian emergencies and conflict settings: Results, challenges and lessons from expanding PCR diagnostic capacities for COVID-19 testing in Yemen. PLoS One 2024; 19:e0298603. [PMID: 38394178 PMCID: PMC10889613 DOI: 10.1371/journal.pone.0298603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND When the COVID-19 pandemic was declared, Yemen, a country facing years of conflict had only one laboratory with PCR testing capacity. In this article, we describe the outcome of the implementation of molecular based diagnostics platform in Yemen and highlight the key milestones the country went through to increase access to testing for its populations residing in a geographically vast and politically divided country. METHODS A retrospective assessment of COVID-19 laboratory response activities was done detailing the needs assessment process, timelines, geographical coverage, and outcomes of the activities. Laboratory data was analyzed to construct the geographical locations of COVID-19 testing laboratories and the numbers of tests performed in each facility to highlight the demands of testing for travelers. Finally, we discuss the impact these activities had in enabling the movement of people across international borders for economic gains and in delivery of critical humanitarian aid. OUTCOME PCR testing capacities in Yemen significantly improved, from one laboratory in Sanaa in April 2020 to 18 facilities across the country by June 2022. In addition, the number of functional Real-Time PCR thermocyclers increased from one to 32, the PCR tests output per day improved from 192 to 6144 tests per day. Results from analysis of laboratory data showed there were four peaks of COVID-19 in Yemen as October 2022. The majority of laboratory tests were performed for travelers than for medical or public health reasons. Demand for laboratory testing in Yemen was generally low and waned over time as the perceived risk of COVID-19 declined, in parallel with rollout of the COVID-19 vaccines. DISCUSSION/CONCLUSION The successful expansion of laboratory testing capacity was instrumental in the control and management of COVID-19 cases and critical in the implementation of public response strategies, including restrictions on gathering. Laboratory testing also facilitated the movement of humanitarian agencies and delivery of aid and enabled hundreds of thousands of Yemeni nationals to travel internationally. By virtue of these outcomes, the impact of laboratory strengthening activities was thus felt in the health sector and beyond.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Amal Barakat
- World Health Organization, East Mediterranean Regional Office, Cairo, Egypt
| | | | - Abdinasir Abubakar
- World Health Organization, East Mediterranean Regional Office, Cairo, Egypt
| | | | | | | | | |
Collapse
|
290
|
Melcher P, Metzner F, Schleifenbaum S, Wendler T, Rahden P, Pietsch C, Hepp P, Henkelmann R. Engineering, feasibility, and safety of force-controlled oropharyngeal swabs with a 3D-printed feedback system FCCSS (force controlled COVID-19 swab study) - a preliminary study. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc06. [PMID: 38505094 PMCID: PMC10949076 DOI: 10.3205/dgkh000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Errors in laboratory diagnostics of viral infections primarily occur during the preanalytical phase, which is especially observed in sample collection. Hitherto, no efforts have been made to optimize oropharyngeal smears. An accurate method to analyze the necessary conditions for a valid oropharyngeal smear test is required, especially to avoid false negative results, which can lead to promotion of the spread of viruses such as SARS-CoV-2. In this study, a maximum-force failure analysis was performed on a swab, and the highest tolerable force was then measured on 20 healthy volunteers to obtain the dimensions of the possible force to be applied on a swab. Subsequently, a device which can validate and reproducibly indicate this force during swab collection was developed. The study demonstrated that swabs generally fail at a maximum force of 5 N. Furthermore, an average force of 2.4±1.0 N was observed for the 20 volunteers. Lastly, this study described the development of a device which presents the selected force with a mean accuracy of 0.05 N (Force applied by Device 1: 0.46±0.05 N, Device 2: 1.55±0.11 N, Device 3: 2.57±0.18 N) and provides feedback via haptic and acoustic clicks as well as with a visual indicator. In the future, the swab will be analyzed for the presence of viral pathogens to determine its diagnostic performance corresponding to the force (German Clinical Trials Register Number 00024455).
Collapse
Affiliation(s)
- Peter Melcher
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Florian Metzner
- ZESBO – Center for Research on the Musculoskeletal System, University of Leipzig, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO – Center for Research on the Musculoskeletal System, University of Leipzig, Leipzig, Germany
| | - Toni Wendler
- ZESBO – Center for Research on the Musculoskeletal System, University of Leipzig, Leipzig, Germany
| | - Paul Rahden
- Department of Internal Medicine, Asklepios Hospital Nord-Heidberg, Hamburg, Germany
| | - Corinna Pietsch
- Institute of Medical Microbiology and Virology, University of Leipzig, Leipzig, Germany
| | - Pierre Hepp
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| | - Ralf Henkelmann
- Department of Orthopedics, Trauma and Plastic Surgery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
291
|
Brito Reia VC, Vilhena FV, Marques Honório H, Marques da Costa Alves L, da Silva Bastos R, da Silva Santos PS. Use of phthalocyanine-derived mouthwash as a protective factor for COVID-19: a community trial. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc05. [PMID: 38505095 PMCID: PMC10949082 DOI: 10.3205/dgkh000460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Aim In a population profile corrected for sociodemographic factors, the aim of this study was to examine sociodemographic the protective effect of a phthalocyanine-derived mouthwash (APD) before infection with SARS-CoV-2, in addition to analyzing the survival of the at-risk population and the confirmed diagnosis of COVID-19. Methods For individuals from the Uru municipality, a structured questionnaire consisting of two parts was completed before the distribution of APD. Subsequently, subjects received two bottles containing 600 mL of APD and were instructed to rinse/gargle with 3 mL of the solution 3 to 5 times per day for 1 min for 2 months. Data were obtained from the electronic system of the municipal health center, organized in a spreadsheet, and analyzed using multiple linear regression and Cox regression analysis. Results The study included 995 participants with the following sociodemographic data: 98/995 individuals (p<0.002) who did not complete high school used the APD 66.30 times more than did individuals with higher education. The results in terms of survival were meaningful in relation to the duration of APD use. The protective factor for COVID-19 was 14.1%. Conclusion Daily use of a solution containing phthalocyanine derivatives provided a higher protection factor against COVID-19 infection, predominantly in individuals without a school-completion certificate.
Collapse
Affiliation(s)
- Verônica Caroline Brito Reia
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Heitor Marques Honório
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Roosevelt da Silva Bastos
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
292
|
Park KS, Choi A, Park TI, Pack SP. Fluorometric and Colorimetric Method for SARS-CoV-2 Detection Using Designed Aptamer Display Particles. BIOSENSORS 2024; 14:113. [PMID: 38534220 DOI: 10.3390/bios14030113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has spurred the urgent need for practical diagnostics with high sensitivity and selectivity. Although advanced diagnostic tools have emerged to efficiently control pandemics, they still have costly limitations owing to their reliance on antibodies or enzymes and require high-tech equipment. Therefore, there is still a need to develop rapid and low-cost diagnostics with high sensitivity and selectivity. In this study, we generated aptamer display particles (AdP), enabling easy fabrication of a SARS-CoV-2 detection matrix through particle PCR, and applied it to diagnosis using fluorometric and colorimetric assays. We designed two AdPs, C1-AdP and C4-AdP, displayed with SpS1-C1 and SpS1-C4 aptamers, respectively, and showed their high binding ability against SARS-CoV-2 spike protein with a concentration-dependent fluorescence increase. This enabled detection even at low concentrations (0.5 nM). To validate its use as a diagnostic tool for SARS-CoV-2, we designed a sandwich-type assay using two AdPs and high-quality aptamers targeting SARS-CoV-2 pseudoviruses. The fluorometric assay achieved a detection limit of 3.9 × 103 pseudoviruses/mL. The colorimetric assay using an amplification approach exhibited higher sensitivity, with a detection limit of 1 × 101 pseudoviruses/mL, and a broad range of over four orders of magnitude was observed.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Anna Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
293
|
Chaiyawong S, Charoenkul K, Jairak W, Udom K, Chamsai E, Techakriengkrai N, Suwannakarn K, Amonsin A. Serological Evidence of SARS-CoV-2 Exposure in Domestic Dogs and Cats, Thailand: Detection of SARS-CoV-2 Omicron Variant in Dogs Living in COVID-19-Positive Households. Transbound Emerg Dis 2024; 2024:9938523. [PMID: 40303161 PMCID: PMC12016992 DOI: 10.1155/2024/9938523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 05/02/2025]
Abstract
SARS-CoV-2 causes the coronavirus disease 2019 (COVID-19) pandemic. Cross-species transmission of SARS-CoV-2 from humans to domestic animals has been reported. In this study, we conducted a serological survey and molecular investigation of SARS-CoV-2 infection in domestic dogs and cats in Bangkok and the vicinities from January 2021 to August 2022. A total of 2,664 serum samples were examined for antibodies against SARS-CoV-2 using nucleocapsid protein-based ELISA (NP-ELISA). Our result showed 2.28% (33/1,446) seropositivity in dogs and 1.81% (22/1,218) in cats. The positive NP-ELISA serum samples were confirmed using a surrogate virus neutralization test (sVNT). Of 55 seropositive samples by NP-ELISA, two dogs and 19 cats were confirmed seropositive by sVNT. Our result supported the serological evidence of SARS-CoV-2 exposure in domestic dogs and cats. We also investigated SARS-CoV-2 infection by real-time RT-PCR in 156 domestic dogs and cats in COVID-19-positive households. Our result showed active SARS-CoV-2 infection in a dog living with COVID-19 positive owner. Genetic and phylogenetic analysis of the SARS-CoV-2 from the dog and its owner confirmed the SARS-CoV-2 variant Omicron BA.2. It is the first report of SARS-CoV-2 Omicron variant in pet living in COVID-19-positive household in Thailand.
Collapse
Affiliation(s)
- Supassama Chaiyawong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waleemas Jairak
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitikhun Udom
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkapat Chamsai
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging and Re-Emerging Infectious Diseases in Animals, Center of Excellence, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
294
|
Bonde JPE, Begtrup LM, Jensen JH, Flachs EM, Jakobsson K, Nielsen C, Nilsson K, Rylander L, Vilhelmsson A, Petersen KU, Tøttenborg SS. Occupational risk of COVID-19 in foreign-born employees in Denmark. Occup Med (Lond) 2024; 74:63-70. [PMID: 37133767 DOI: 10.1093/occmed/kqad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Foreign-born workers in high-income countries experience higher rates of COVID-19 but the causes are only partially known. AIMS To examine if the occupational risk of COVID-19 in foreign-born workers deviates from the risk in native-born employees in Denmark. METHODS Within a registry-based cohort of all residents employed in Denmark (n = 2 451 542), we identified four-digit DISCO-08 occupations associated with an increased incidence of COVID-19-related hospital admission during 2020-21 (at-risk occupations). The sex-specific prevalence of at-risk employment in foreign born was compared with the prevalence in native born. Moreover, we examined if the country of birth modified the risk of a positive SARS-CoV-2 polymerase chain reaction (PCR) test and COVID-19-related hospital admission in at-risk occupations. RESULTS Workers born in low-income countries and male workers from Eastern Europe more often worked in at-risk occupations (relative risks between 1.16 [95% confidence interval {CI} 1.14-1.17] and 1.87 [95% CI 1.82-1.90]). Being foreign-born modified the adjusted risk of PCR test positivity (test for interaction P < 0.0001), primarily because of higher risk in at-risk occupations among men born in Eastern European countries (incidence rate ratio [IRR] 2.39 [95% CI 2.09-2.72] versus IRR 1.19 [95% CI 1.14-1.23] in native-born men). For COVID-19-related hospital admission, no overall interaction was seen, and in women, country of birth did not consistently modify the occupational risk. CONCLUSIONS Workplace viral transmission may contribute to an excess risk of COVID-19 in male workers born in Eastern Europe, but most foreign-born employees in at-risk occupations seem not to be at higher occupational risk than native born.
Collapse
Affiliation(s)
- J P E Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen 1500, Denmark
| | - L M Begtrup
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen 1500, Denmark
| | - J H Jensen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - E M Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - K Jakobsson
- School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - C Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 22363, Sweden
- Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense 5000, Denmark
| | - K Nilsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 22363, Sweden
- Division of Public Health, Kristianstad University, Kristianstad 29188, Sweden
| | - L Rylander
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 22363, Sweden
| | - A Vilhelmsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund 22363, Sweden
| | - K U Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - S S Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen 1500, Denmark
| |
Collapse
|
295
|
Janssen R, Cuypers L, Laenen L, Keyaerts E, Beuselinck K, Janssenswillen S, Slechten B, Bode J, Wollants E, Van Laethem K, Rector A, Bloemen M, Sijmons A, de Schaetzen N, Capron A, Van Baelen K, Pascal T, Vermeiren C, Bureau F, Vandesompele J, De Smet P, Uten W, Malonne H, Kerkhofs P, De Cock J, Matheeussen V, Verhasselt B, Gillet L, Detry G, Bearzatto B, Degosserie J, Henin C, Pairoux G, Maes P, Van Ranst M, Lagrou K, Dequeker E, André E. Nationwide quality assurance of high-throughput diagnostic molecular testing during the SARS-CoV-2 pandemic: role of the Belgian National Reference Centre. Virol J 2024; 21:40. [PMID: 38341597 PMCID: PMC10858549 DOI: 10.1186/s12985-024-02308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance. Here, we outline the measures taken by the NRC, the national public health institute Sciensano and the executing clinical laboratories to ensure effective quality management of molecular testing throughout the initial two years of the pandemic (March 2020 to March 2022).
Collapse
Affiliation(s)
- Reile Janssen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Lize Cuypers
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Lies Laenen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Els Keyaerts
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Beuselinck
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Sunita Janssenswillen
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Bram Slechten
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Jannes Bode
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Elke Wollants
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Kristel Van Laethem
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mandy Bloemen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Anke Sijmons
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Nathalie de Schaetzen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Arnaud Capron
- Quality of Laboratories Unit, Scientific Directorate of Biological Health Risks, Sciensano, 1000, Brussels, Belgium
| | - Kurt Van Baelen
- Janssen Pharmaceutica N.V, Johnson & Johnson, 2340, Beerse, Belgium
| | | | | | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, 4000, Liège, Belgium
| | - Jo Vandesompele
- Biogazelle, a CellCarta Company, Technologiepark Zwijnaarde, 9052, Zwijnaarde, Belgium
| | | | | | - Hugues Malonne
- Federal Agency for Medicines and Health Products (FAGG-AFMPS), 1210, Brussels, Belgium
- Department of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Biomedical Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000, Namur, Belgium
| | - Pierre Kerkhofs
- Federal Public Service Public Health, Safety of the Food Chain and the Environment, 1210, Brussels, Belgium
| | - Jo De Cock
- National Institute for Health and Disability Insurance (RIZIV/INAMI), 1150, Brussels, Belgium
| | - Veerle Matheeussen
- Federal Testing Platform COVID-19, University Hospitals Antwerp, 2650, Edegem, Belgium
| | - Bruno Verhasselt
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, Ghent University and Ghent University Hospital, 9000, Ghent, Belgium
| | - Laurent Gillet
- Federal Testing Platform COVID-19, University of Liège, 4000, Liège, Belgium
| | - Gautier Detry
- Federal Testing Platform COVID-19, Laboratory of Clinical Biology, Pole Hospitalier Jolimont, 7100, La Louvière, Belgium
| | - Bertrand Bearzatto
- Federal Testing Platform COVID-19, Centre Des Technologies Moléculaires Appliquées (CTMA), Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Jonathan Degosserie
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Coralie Henin
- Federal Testing Platform COVID-19, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Gregor Pairoux
- Quality of Laboratories Unit, Scientific Directorate of Biological Health Risks, Sciensano, 1000, Brussels, Belgium
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Marc Van Ranst
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Katrien Lagrou
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Elisabeth Dequeker
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, University of Leuven, 3000, Leuven, Belgium
| | - Emmanuel André
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
296
|
Suzuki S, Kuroda M, Aoki K, Kawaji K, Hiramatsu Y, Sasano M, Nishiyama A, Murayama K, Kodama EN, Oishi S, Hayashi H. Helix-based screening with structure prediction using artificial intelligence has potential for the rapid development of peptide inhibitors targeting class I viral fusion. RSC Chem Biol 2024; 5:131-140. [PMID: 38333196 PMCID: PMC10849125 DOI: 10.1039/d3cb00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/04/2023] [Indexed: 02/10/2024] Open
Abstract
The rapid development of drugs against emerging and re-emerging viruses is required to prevent future pandemics. However, inhibitors usually take a long time to optimize. Here, to improve the optimization step, we used two heptad repeats (HR) in the spike protein (S protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a model and established a screening system for peptide-based inhibitors containing an α-helix region (SPICA). SPICA can be used to identify critical amino acid regions and evaluate the inhibitory effects of peptides as decoys. We further employed an artificial intelligence structure-prediction system (AlphaFold2) for the rapid analysis of structure-activity relationships. Here, we identified that critical amino acid regions, DVDLGD (amino acids 1163-1168 in the S protein), IQKEIDRLNE (1179-1188), and NLNESLIDL (1192-1200), played a pivotal role in SARS-CoV-2 fusion. Peptides containing these critical amino acid regions efficiently blocked viral replication. We also demonstrated that AlphaFold2 could successfully predict structures similar to the reported crystal and cryo-electron microscopy structures of the post-fusion form of the SARS-CoV-2 S protein. Notably, the predicted structures of the HR1 region and the peptide-based fusion inhibitors corresponded well with the antiviral effects of each fusion inhibitor. Thus, the combination of SPICA and AlphaFold2 is a powerful tool to design viral fusion inhibitors using only the amino-acid sequence of the fusion protein.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mio Kuroda
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
| | - Keisuke Aoki
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Yoshiki Hiramatsu
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Mina Sasano
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Akie Nishiyama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Eiichi N Kodama
- Department of Infectious Diseases, Tohoku University Graduate School of Medicine 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
- Department of Infectious Disease, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| | - Shinya Oishi
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University 1, Misasagi-Shichono-cho, Yamashina-ku Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hironori Hayashi
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University 2-1, Seiryo-machi, Aoba-ku Sendai Miyagi 980-8575 Japan
| |
Collapse
|
297
|
Flipse J, Tromp AT, Thijssen D, van Xanten-Jans-Beken N, Pauwelsen R, van der Veer HJ, Schlaghecke JM, Swanink CMA. Optimization of the STARlet workflow for semi-automatic SARS-CoV-2 screening of swabs and deep respiratory materials using the RealAccurate Quadruplex SARS-CoV-2 PCR kit and Allplex SARS-CoV-2 PCR kit. Microbiol Spectr 2024; 12:e0329623. [PMID: 38193688 PMCID: PMC10846099 DOI: 10.1128/spectrum.03296-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories have to apply lean laboratory management to design workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different SARS-CoV-2 reverse transcription polymerase chain reactions (RT-PCRs) and to be able to process a variety of clinical samples. We validated two SARS-CoV-2 PCR assays on the STARlet workflow: Allplex SARS-CoV-2 PCR kit and RealAccurate Quadruplex SARS-CoV-2 PCR kit. Furthermore, we optimized and validated the STARlet workflow for semi-automatic screening for SARS-CoV-2 in upper respiratory swabs and deep respiratory materials (sputa, bronchoalveolar lavage, and aspirate). Strikingly, guanidine-containing lysis buffers allow for easy processing and can enhance sensitivity of SARS-COV-2 screening since sampling in these buffers may preserve viral transcripts as evident by the higher copy numbers of the SARS-CoV-2 N gene. Moreover, using the principles of lean laboratory management, several bottlenecks that are typical for medical laboratories were addressed. We show that lean laboratory management resulted in significant reduction of the turnaround times of the SARS-CoV-2 PCR in our laboratory. This report thus describes a useful framework for laboratories to implement similar semi-automated workflows.IMPORTANCEThe SARS-CoV-2 pandemic triggered the implementation of large-scale screenings in the health care and in the general population. Consequently, medical laboratories had to adapt and evolve workflows that are able to process large batches within short turnaround times while maintaining flexibility to use different assays and to be able to process a variety of clinical samples. We describe how the need for increased outputs and greater flexibility was addressed with respect to clinical samples and assays (Allplex SARS-CoV-2 PCR and RealAccurate Quadruplex SARS-CoV-2 PCR). Strikingly, we found that upper respiratory swabs collected in guanidine-containing lysis buffers both improved the ease of processing as well as enhanced the sensitivity of the SARS-CoV-2 screening. This report thus describes a useful framework for laboratories to implement and optimize similar semi-automated workflows.
Collapse
Affiliation(s)
- Jacky Flipse
- Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands
| | - Angelino T. Tromp
- Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands
| | - Danique Thijssen
- Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands
| | | | - Roy Pauwelsen
- Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands
| | - Harmen J. van der Veer
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Juliëtte M. Schlaghecke
- Research Group Applied Natural Sciences, Fontys University of Applied Sciences, Eindhoven, the Netherlands
| | - Caroline M. A. Swanink
- Laboratory for Medical Microbiology and Immunology, Rijnstate Hospital, Velp, the Netherlands
| |
Collapse
|
298
|
Camp JV, Puchhammer-Stöckl E, Aberle SW, Buchta C. Virus sequencing performance during the SARS-CoV-2 pandemic: a retrospective analysis of data from multiple rounds of external quality assessment in Austria. Front Mol Biosci 2024; 11:1327699. [PMID: 38375507 PMCID: PMC10875003 DOI: 10.3389/fmolb.2024.1327699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction: A notable feature of the 2019 coronavirus disease (COVID-19) pandemic was the widespread use of whole genome sequencing (WGS) to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Countries around the world relied on sequencing and other forms of variant detection to perform contact tracing and monitor changes in the virus genome, in the hopes that epidemic waves caused by variants would be detected and managed earlier. As sequencing was encouraged and rewarded by the government in Austria, but represented a new technicque for many laboratories, we designed an external quality assessment (EQA) scheme to monitor the accuracy of WGS and assist laboratories in validating their methods. Methods: We implemented SARS-CoV-2 WGS EQAs in Austria and report the results from 7 participants over 5 rounds from February 2021 until June 2023. The participants received sample material, sequenced genomes with routine methods, and provided the sequences as well as information about mutations and lineages. Participants were evaluated on the completeness and accuracy of the submitted sequence and the ability to analyze and interpret sequencing data. Results: The results indicate that performance was excellent with few exceptions, and these exceptions showed improvement over time. We extend our findings to infer that most publicly available sequences are accurate within ≤1 nucleotide, somewhat randomly distributed through the genome. Conclusion: WGS continues to be used for SARS-CoV-2 surveillance, and will likely be instrumental in future outbreak scenarios. We identified hurdles in building next-generation sequencing capacity in diagnostic laboratories. EQAs will help individual laboratories maintain high quality next-generation sequencing output, and strengthen variant monitoring and molecular epidemiology efforts.
Collapse
Affiliation(s)
- Jeremy V Camp
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Christoph Buchta
- Austrian Association for Quality Assurance and Standardization of Medical and Diagnostic Tests (ÖQUASTA), Vienna, Austria
| |
Collapse
|
299
|
Adler JM, Martin Vidal R, Langner C, Vladimirova D, Abdelgawad A, Kunecova D, Lin X, Nouailles G, Voss A, Kunder S, Gruber AD, Wu H, Osterrieder N, Kunec D, Trimpert J. An intranasal live-attenuated SARS-CoV-2 vaccine limits virus transmission. Nat Commun 2024; 15:995. [PMID: 38307868 PMCID: PMC10837132 DOI: 10.1038/s41467-024-45348-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
The development of effective SARS-CoV-2 vaccines has been essential to control COVID-19, but significant challenges remain. One problem is intramuscular administration, which does not induce robust mucosal immune responses in the upper airways-the primary site of infection and virus shedding. Here we compare the efficacy of a mucosal, replication-competent yet fully attenuated virus vaccine, sCPD9-ΔFCS, and the monovalent mRNA vaccine BNT162b2 in preventing transmission of SARS-CoV-2 variants B.1 and Omicron BA.5 in two scenarios. Firstly, we assessed the protective efficacy of the vaccines by exposing vaccinated male Syrian hamsters to infected counterparts. Secondly, we evaluated transmission of the challenge virus from vaccinated and subsequently challenged male hamsters to naïve contacts. Our findings demonstrate that the live-attenuated vaccine (LAV) sCPD9-ΔFCS significantly outperformed the mRNA vaccine in preventing virus transmission in both scenarios. Our results provide evidence for the advantages of locally administered LAVs over intramuscularly administered mRNA vaccines in preventing infection and reducing virus transmission.
Collapse
Affiliation(s)
- Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Daniela Kunecova
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Xiaoyuan Lin
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Sandra Kunder
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
300
|
Coria LM, Rodriguez JM, Demaria A, Bruno LA, Medrano MR, Castro CP, Castro EF, Del Priore SA, Hernando Insua AC, Kaufmann IG, Saposnik LM, Stone WB, Prado L, Notaro US, Amweg AN, Diaz PU, Avaro M, Ortega H, Ceballos A, Krum V, Zurvarra FM, Sidabra JE, Drehe I, Baqué JA, Li Causi M, De Nichilo AV, Payes CJ, Southard T, Vega JC, Auguste AJ, Álvarez DE, Flo JM, Pasquevich KA, Cassataro J. A Gamma-adapted subunit vaccine induces broadly neutralizing antibodies against SARS-CoV-2 variants and protects mice from infection. Nat Commun 2024; 15:997. [PMID: 38307851 PMCID: PMC10837449 DOI: 10.1038/s41467-024-45180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
In the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies. The Gamma RBD presents more immunogenic B-cell restricted epitopes and induces a higher proportion of specific-B cells and plasmablasts than the Ancestral RBD version. The Gamma-adapted vaccine induces antigen specific T cell immune responses and confers protection against Ancestral and Omicron BA.5 SARS-CoV-2 challenge in mice. Moreover, the Gamma RBD vaccine induces higher and broader neutralizing antibody activity than homologous booster vaccination in mice previously primed with different SARS-CoV-2 vaccine platforms. Our study indicates that the adjuvanted Gamma RBD vaccine is highly immunogenic and a broad-spectrum vaccine candidate.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| | - Juan Manuel Rodriguez
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Agostina Demaria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Mayra Rios Medrano
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Eliana F Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Sabrina A Del Priore
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Andres C Hernando Insua
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ingrid G Kaufmann
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Lucas M Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - William B Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lineia Prado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Ulises S Notaro
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ayelen N Amweg
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Pablo U Diaz
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Martin Avaro
- Servicio Virosis Respiratorias, Laboratorio de Referencia de Influenza, SARS-CoV-2 y otros Virus Respiratorios, Centro Nacional de Influenza de OPS/OMS, Departamento de Virología, Instituto Nacional de Enfermedades Infecciosas - ANLIS "Dr. Carlos G. Malbrán". Ciudad Autónoma de Buenos Aires, Buenos Aires, C1282AFF, Argentina
| | - Hugo Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Ana Ceballos
- Facultad de Medicina UBA, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Buenos Aires, Argentina
| | - Valeria Krum
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Francisco M Zurvarra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Johanna E Sidabra
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Ignacio Drehe
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Jonathan A Baqué
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Mariana Li Causi
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Analia V De Nichilo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
- Fundación Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Cristian J Payes
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Teresa Southard
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Julio C Vega
- Laboratorio Pablo Cassará - I+D+i, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1408GBV, Argentina
| | - Albert J Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Diego E Álvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juan M Flo
- Laboratorio Pablo Cassará, Unidad de I+D de Biofármacos, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1440FFX, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| |
Collapse
|