251
|
The Protective Effect of Oral Application of Corni Fructus on the Disorders of the Cornea, Conjunctiva, Lacrimal Gland and Retina by Topical Particulate Matter 2.5. Nutrients 2021; 13:nu13092986. [PMID: 34578864 PMCID: PMC8464674 DOI: 10.3390/nu13092986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) may aggravate dry eye disease (DED). Corni Fructus (CF), which is fruit of Cornus officinalis Sieb. et Zucc., has been reported to have various beneficial pharmacological effects, whereas the effect of CF on the eye is still unknown. Therefore, in this study, we investigated the effect of oral administration of water extract of CF (CFW) on the eye, hematology, and biochemistry in a DED model induced by topical exposure to PM2.5. Furthermore, the efficacy of CFW compared with cyclosporine (CsA), an anti-inflammatory agent, and lutein, the posterior eye-protective agent. Sprague-Dawley rats were topically administered 5 mg/mL PM2.5 in both eyes four times daily for 14 days. During the same period, CFW (200 mg/kg and 400 mg/kg) and lutein (4.1 mg/kg) were orally administered once a day. All eyes of rats in the 0.05% cyclosporine A (CsA)-treated group were topically exposed to 20 μL of CsA, twice daily for 14 days. Oral administration of CFW attenuated the PM2.5-induced reduction of tear secretion and corneal epithelial damage. In addition, CFW protected against goblet cell loss in conjunctiva and overexpression of inflammatory factors in the lacrimal gland following topical exposure to PM2.5. Furthermore, CFW markedly prevented PM2.5-induced ganglion cell loss and recovered the thickness of inner plexiform layer. Meanwhile, CFW treatment decreased the levels of total cholesterol and low-density lipoprotein cholesterol in serum induced by PM2.5. Importantly, the efficacy of CFW was superior or similar to that of CsA and lutein. Taken together, oral administration of CFW may have protective effects against PM2.5-induced DED symptoms via stabilization of the tear film and suppression of inflammation. Furthermore, CFW may in part contribute to improving retinal function and lipid metabolism disorder.
Collapse
|
252
|
Abstract
Dry eye disease (DED), a multifactorial condition of the tear film and ocular surface, is one of the leading reasons for patients seeking eye care. Despite the multiple toxic ingredients of eye make-up products and their long-term application close to the ocular surface, few studies have analyzed their role in initiating and worsening DED. Females and the elderly experience the highest prevalence of DED and may be particularly vulnerable to the effects of eye make-up. The multifactorial nature of DED and common mechanisms behind several ocular surface diseases make it difficult to link a particular ingredient-driven mechanism to DED. Therefore, here, we list potential responses to eye cosmetics that may be involved in DED development. The first part of this review introduces the anatomy of the eye and DED, the second section explains the classification of eye cosmetic products, and the final part discusses the undesired effects under physical, pathogenic, and chemical insults.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.,The Norwegian Dry Eye Clinic, 0366 Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.,The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.,Department of Oral Surgery and Oral Medicine, Dentistry, University of Oslo, 0317 Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.,Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway
| |
Collapse
|
253
|
Schneider-Futschik EK, Reyes-Ortega F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics 2021; 13:1157. [PMID: 34452117 PMCID: PMC8400382 DOI: 10.3390/pharmaceutics13081157] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Nanomaterials provide enormous opportunities to overcome the limitations of conventional ocular delivery systems, such as low therapeutic efficacy, side effects due to the systemic exposure, or invasive surgery. Apart from the more common ocular disorders, there are some genetic diseases, such as cystic fibrosis, that develop ocular disorders as secondary effects as long as the disease progresses. These patients are more difficult to be pharmacologically treated using conventional drug routes (topically, systemic), since specific pharmacological formulations can be incompatible, display increased toxicity, or their therapeutic efficacy decreases with the administration of different kind of chemical molecules. Magnetic nanoparticles can be used as potent drug carriers and magnetic hyperthermia agents due to their response to an external magnetic field. Drugs can be concentrated in the target point, limiting the damage to other tissues. The other advantage of these magnetic nanoparticles is that they can act as magnetic resonance imaging agents, allowing the detection of the exact location of the disease. However, there are some drawbacks related to their use in drug delivery, such as the limitation to maintain efficacy in the target organ once the magnetic field is removed from outside. Another disadvantage is the difficulty in maintaining the therapeutic action in three dimensions inside the human body. This review summarizes all the application possibilities related to magnetic nanoparticles in ocular diseases.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Felisa Reyes-Ortega
- Visual Quality Research Group, Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital and University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
254
|
Mechanobiology of conjunctival epithelial cells exposed to wall shear stresses. Biomech Model Mechanobiol 2021; 20:1903-1917. [PMID: 34228228 DOI: 10.1007/s10237-021-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
The human conjunctival epithelial cells (HCEC) line the inner sides of the eyelids and the anterior part of the sclera. They include goblet cells that secret mucus into the tear film that protects the ocular surface. The conjunctival epithelium is subjected to mechano-physical stimuli due to eyelid movement during blinking, during wiping and rubbing the eyes, and when exposed to wind and air currents. We cultured primary HCEC under air-liquid interface (ALI) conditions in custom-designed wells that can be disassembled for installation of the in vitro model in a flow chamber. We exposed the HCEC after ALI culture of 8-10 days to steady and oscillatory airflows. The in vitro model of HCEC was exposed to steady wall shear stresses (sWSS) of 0.5 and 1.0 dyne/cm2 for lengths of 30 and 60 min and to oscillatory wall shear stresses (oWSS) of 0.5 and 0.77 dyne/cm2 amplitudes for a length of 10 min. Cytoskeletal alterations and MUC5AC mucin secretion in response to WSS were investigated using immunohistochemically fluorescent staining and enzyme-linked lectin assay (ELLA), respectively. The results revealed that both exposure times and sWSS values increased the polymerization of F-actin filaments while mucin secretion decreased. However, after a recovery of 24 h in the incubator we observed a decrease of F-actin fibers and mucin secretion only for exposure of 30 min. The length of exposure was more influential on cytoskeletal alterations than the level of sWSS. The very small effect of sWSS on mucin secretion is most likely related to the much smaller amount of goblet cell than in other mucus-secreting tissue. The results for both oWSS amplitudes revealed similar trends regarding F-actin and mucin secretion. Immediately post-exposure we observed an increase in polymerization of F-actin filaments while mucin secretion decreased. However, after 24-h recovery we observed that both F-actin and mucin secretion returned to the same values as for unexposed cultures. The results of this study suggest that WSS should be considered while exploring the physiological characteristics of HCEC.
Collapse
|
255
|
Kurtul BE, Elbeyli A, Kakac A, Turgut F. Corneal endothelial cell density and microvascular changes of retina and optic disc in autosomal dominant polycystic kidney disease. Indian J Ophthalmol 2021; 69:1735-1740. [PMID: 34146017 PMCID: PMC8374801 DOI: 10.4103/ijo.ijo_3212_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: Vascular endothelial dysfunction in autosomal dominant polycystic kidney disease (ADPKD) may affect the retinal vascular parameters due to structural similarities of kidney and retina. We aimed to evaluate the microvascular changes of retina and optic disc and also corneal endothelial cell density in patients with ADPKD. Methods: Forty-six eyes of 23 patients with ADPKD (Group 1), and 46 eyes of 23 sex- and age-matched healthy controls (Group 2) were included in this cross-sectional study. Demographic and ophthalmic findings of participants were collected. Corneal endothelial cell density (CECD) measurements were obtained by noncontact specular microscopy. Foveal retinal thickness, peripapillary retinal nerve fiber layer (RNFL) thickness, vessel density in different sections of the retina and optic nerve head were analyzed by optical coherence tomography angiography. Results: The mean ages were 41 ± 11 years for Group 1 and 39 ± 10 years for Group 2 (P = 0.313). CECD values were significantly lower in group 1 when compared to group 2 (2653 ± 306 cells/mm2 and 2864 ± 244 cells/mm2, respectively, P < 0.001). The foveal retinal thickness and RNFL thickness were similar, but superior quadrant thickness of RNFL was significantly lower in Group 1 than Group 2 (126 ± 14 μm vs. 135 ± 15 μm, P = 0.003). In Group 1, whole image of optic disc radial peripapillary capillary densities were significantly lower compared to Group 2 (49.4 ± 2.04%, and 50.0 ± 2.2%, respectively, P = 0.043). There was no significant difference regarding superficial, deep retinal vessel densities, foveal avascular zone and flow areas between the groups (P > 0.05 for all). Conclusion: Lower CECD values and decreased superior quadrant RNFL thickness, and microvascular densities of optic disc were revealed in patients with ADPKD. Evaluation of CECD and retinal microvasculature may be helpful in the management of these patients.
Collapse
Affiliation(s)
- Bengi Ece Kurtul
- Department of Ophthalmology, Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| | - Ahmet Elbeyli
- Department of Ophthalmology, Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| | - Ahmet Kakac
- Department of Ophthalmology, Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| | - Faruk Turgut
- Department of Nephrology, Hatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Hatay, Turkey
| |
Collapse
|
256
|
Prompetch T, Chailorm A, Tiwananthagorn S, Buranapim N, Okonogi S, Kato H, Katip W, Mektrirat R. Preclinical Evaluations of Modified Rice Hydrogel for Topical Ophthalmic Drug Delivery of Praziquantel on Avian Philophalmiasis. Pharmaceutics 2021; 13:pharmaceutics13070952. [PMID: 34202866 PMCID: PMC8309131 DOI: 10.3390/pharmaceutics13070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
The present study aims to evaluate the efficacy of a novel drug delivery system of the modified rice hydrogel containing praziquantel (PZQ) against Philophthalmus gralli isolated from ostrich eyes and determine the toxicity of the preparation on chicken eye model. The parasiticidal activity of PZQ (0, 1, 10, and 100 µg/mL) was tested on P. gralli. The ophthalmic antiparasitic hydrogel was formulated with appropriate amount of PZQ and chemically modified rice gel. The parasitic morphology after exposure with the preparation was examined under scanning electron microscope (SEM). The anthelminthic efficacy of the preparation on motility and mortality of parasites was performed by visual inspection and vital dye staining. The ocular irritation of the preparation was evaluated for 21 days using standard avian model followed by OECD 405. The results demonstrated that the parasiticidal activity of PZQ against P. gralli appears to be in a concentration- and time-dependent manner. In addition, the concentration of PZQ 10 µg/mL (Chi squared test, p = 0.003) and exposure time for 24 h (log-rank test, p = 0.0004) is sufficient to kill parasites, when statistically compared to negative control group. Rice hydrogel containing a lethal concentration of 10 µg/mL PZQ was successfully prepared. The preparation illustrated good parasitic killing and motile inhibiting effect on P. gralli compared with PZQ 10 µg/mL and its control (p < 0.05). An appearance under SEM of non-viable parasite after being incubated with the preparation, showing parasitic deformity, was observed comparing with the viable parasite in 0.9% normal saline solution (NSS). Moreover, no irritation of chicken eyes was also observed. Our results contribute to understanding the efficacy and the safety of the rice hydrogel of PZQ which have a predictive value for controlling P. gralli on the animal eyes. However, the pharmacological application needs to be further investigated for the best possible therapeutic approach.
Collapse
Affiliation(s)
- Treepecth Prompetch
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Akawat Chailorm
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Saruda Tiwananthagorn
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Nithidol Buranapim
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hirotomo Kato
- Department of Infection and Immunity, Jichi Medical University, Tochigi 3290498, Japan;
| | - Wasan Katip
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.K.); (R.M.); Tel.: +66-53-944342 (W.K.); +66-53-948046 (R.M.)
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.K.); (R.M.); Tel.: +66-53-944342 (W.K.); +66-53-948046 (R.M.)
| |
Collapse
|
257
|
Moreno-Montañés J, Bleau AM, Martínez T, Vargas B, González MV, Jiménez AI. siRNA Therapeutics in Ocular Diseases. Methods Mol Biol 2021; 2282:417-442. [PMID: 33928588 DOI: 10.1007/978-1-0716-1298-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The field of RNAi therapeutics has quickly adapted to the treatment of ocular diseases. Although the eye provides a unique system for the delivery of siRNAs, its complex structure and composition fostered the development of novel strategies for efficient gene silencing in the target compartment. Moreover, anterior and posterior segments differ in their multiple drug barriers and clearance mechanisms. This chapter summarizes the recent achievements in terms of routes of administration, chemical modifications, and delivery systems for siRNAs that specifically apply to eye disorders. Methods employed for siRNA detection/quantitation in ocular tissues are also described, together with safety concerns that need to be addressed to fulfill regulatory requirements of new drug approval. Even though RNAi therapies for ocular diseases have not yet translated into patient care, we document herein the rising number of candidate drugs currently under preclinical or clinical development.
Collapse
|
258
|
Iqbal Z, Kalteniece A, Ferdousi M, Adam S, D'Onofrio L, Ho JH, Rao AP, Dhage S, Azmi S, Liu Y, Donn R, Malik RA, Soran H. Corneal Keratocyte Density and Corneal Nerves Are Reduced in Patients With Severe Obesity and Improve After Bariatric Surgery. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 33475689 PMCID: PMC7817877 DOI: 10.1167/iovs.62.1.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Obesity is associated with peripheral neuropathy, which bariatric surgery may ameliorate. The aim of this study was to assess whether corneal confocal microscopy can show a change in corneal nerve morphology and keratocyte density in subjects with severe obesity after bariatric surgery. Methods Twenty obese patients with diabetes (n = 13) and without diabetes (n = 7) underwent assessment of hemoglobin A1c (HbA1c), lipids, IL-6, highly sensitive C-reactive protein (hsCRP), and corneal confocal microscopy before and 12 months after bariatric surgery. Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and keratocyte density (KD) from the anterior, middle, and posterior stroma were quantified. Twenty-two controls underwent assessment at baseline only. Results CNFL (P < 0.001), CNBD (P < 0.05), and anterior (P < 0.001), middle (P < 0.001), and posterior (P < 0.001) keratocyte densities were significantly lower in obese patients compared to controls, and anterior keratocyte density (AKD) correlated with CNFL. Twelve months after bariatric surgery, there were significant improvements in body mass index (BMI; P < 0.001), HDL cholesterol (P < 0.05), hsCRP (P < 0.001), and IL-6 (P < 0.01). There were significant increases in CNFD (P < 0.05), CNBD (P < 0.05), CNFL (P < 0.05), and anterior (P < 0.05) and middle (P < 0.001) keratocyte densities. The increase in AKD correlated with a decrease in BMI (r = -0.55, P < 0.05) and triglycerides (r = -0.85, P < 0.001). There were no significant correlations between the change in keratocyte densities and corneal nerve fiber or other neuropathy measures. Conclusions Corneal confocal microscopy demonstrates early small fiber damage and reduced keratocyte density in obese patients. Bariatric surgery leads to weight reduction and improvement in lipids and inflammation and an improvement in keratocyte density and corneal nerve regeneration.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Jan H Ho
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Anoop Prasanna Rao
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Shaishav Dhage
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Yifen Liu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachelle Donn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
259
|
Abstract
Purpose: To describe the treatment of nine patients with chronic, low clinical activity score thyroid eye disease with teprotumumab.Methods: A retrospective series of patients with chronic thyroid eye disease (TED) and low clinical activity score (CAS) treated with teprotumumab infusion therapy. Inclusion criteria: adults over 18 years of age with TED for greater than 9 months and CAS of 1 or less. All patients included in the analyses completed a full series of eight infusions. Primary outcome measures included proptosis and eyelid retraction in both eyes. Secondary outcomes included CAS, reported adverse effects, and surgery post-treatment.Results: Nine patients met all inclusion criteria, seven females and two males with mean age of 50.2 years and TED diagnosis of 6.25 years. Three patients had a baseline CAS of 1 and 6 had a CAS of 0. Mean proptosis reduction in the worse eye was 4.0 ± 2.4 mm immediately post-treatment (p = .02). Five out of nine patients had extended follow-up (average 16.8 ± 5.1 weeks) with mean proptosis reduction of 4.2 ± 2.8 mm at last follow-up (p = .03). Mean reduction in eyelid retraction in the worse eye was 0.3 ± 1.6 mm post-treatment (p = .58) and 0.5 ± 0.9 mm at last follow-up (p = .30). Three patients reported infusion-related myalgias, two hair thinning, one exacerbated chronic tinnitus, and one hyperglycemia.Conclusions: We report clinically and statistically significant proptosis reduction in nine patients with chronic, low CAS TED treated with teprotumumab. Teprotumumab may be an effective treatment option for these patients.
Collapse
Affiliation(s)
- Daniel J Ozzello
- Division of Oculofacial Plastic and Reconstructive Surgery, UC San Diego Viterbi Family Department of Ophthalmology, Shiley Eye Institute, La Jolla, California, USA
| | - Liane O Dallalzadeh
- Division of Oculofacial Plastic and Reconstructive Surgery, UC San Diego Viterbi Family Department of Ophthalmology, Shiley Eye Institute, La Jolla, California, USA
| | - Catherine Y Liu
- Division of Oculofacial Plastic and Reconstructive Surgery, UC San Diego Viterbi Family Department of Ophthalmology, Shiley Eye Institute, La Jolla, California, USA
| |
Collapse
|
260
|
Toffoletto N, Chauhan A, Alvarez-Lorenzo C, Saramago B, Serro AP. Asymmetry in Drug Permeability through the Cornea. Pharmaceutics 2021; 13:694. [PMID: 34064834 PMCID: PMC8151369 DOI: 10.3390/pharmaceutics13050694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The permeability through the cornea determines the ability of a drug or any topically applied compound to cross the tissue and reach the intraocular area. Most of the permeability values found in the literature are obtained considering topical drug formulations, and therefore, refer to the drug permeability inward the eye. However, due to the asymmetry of the corneal tissue, outward drug permeability constitutes a more meaningful parameter when dealing with intraocular drug-delivery systems (i.e., drug-loaded intraocular lenses, intraocular implants or injections). Herein, the permeability coefficients of two commonly administered anti-inflammatory drugs (i.e., bromfenac sodium and dexamethasone sodium) were determined ex vivo using Franz diffusion cells and porcine corneas in both inward and outward configurations. A significantly higher drug accumulation in the cornea was detected in the outward direction, which is consistent with the different characteristics of the corneal layers. Coherently, a higher permeability coefficient was obtained for bromfenac sodium in the outward direction, but no differences were detected for dexamethasone sodium in the two directions. Drug accumulation in the cornea can prolong the therapeutic effect of intraocular drug-release systems.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Anuj Chauhan
- Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401, USA;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
261
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
262
|
Collin J, Queen R, Zerti D, Bojic S, Dorgau B, Moyse N, Molina MM, Yang C, Dey S, Reynolds G, Hussain R, Coxhead JM, Lisgo S, Henderson D, Joseph A, Rooney P, Ghosh S, Clarke L, Connon C, Haniffa M, Figueiredo F, Armstrong L, Lako M. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells. Ocul Surf 2021; 21:279-298. [PMID: 33865984 PMCID: PMC8343164 DOI: 10.1016/j.jtos.2021.03.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Purpose Single cell (sc) analyses of key embryonic, fetal and adult stages were performed to generate a comprehensive single cell atlas of all the corneal and adjacent conjunctival cell types from development to adulthood. Methods Four human adult and seventeen embryonic and fetal corneas from 10 to 21 post conception week (PCW) specimens were dissociated to single cells and subjected to scRNA- and/or ATAC-Seq using the 10x Genomics platform. These were embedded using Uniform Manifold Approximation and Projection (UMAP) and clustered using Seurat graph-based clustering. Cluster identification was performed based on marker gene expression, bioinformatic data mining and immunofluorescence (IF) analysis. RNA interference, IF, colony forming efficiency and clonal assays were performed on cultured limbal epithelial cells (LECs). Results scRNA-Seq analysis of 21,343 cells from four adult human corneas and adjacent conjunctivas revealed the presence of 21 cell clusters, representing the progenitor and differentiated cells in all layers of cornea and conjunctiva as well as immune cells, melanocytes, fibroblasts, and blood/lymphatic vessels. A small cell cluster with high expression of limbal progenitor cell (LPC) markers was identified and shown via pseudotime analysis to give rise to five other cell types representing all the subtypes of differentiated limbal and corneal epithelial cells. A novel putative LPCs surface marker, GPHA2, expressed on the surface of 0.41% ± 0.21 of the cultured LECs, was identified, based on predominant expression in the limbal crypts of adult and developing cornea and RNAi validation in cultured LECs. Combining scRNA- and ATAC-Seq analyses, we identified multiple upstream regulators for LPCs and demonstrated a close interaction between the immune cells and limbal progenitor cells. RNA-Seq analysis indicated the loss of GPHA2 expression and acquisition of proliferative limbal basal epithelial cell markers during ex vivo LEC expansion, independently of the culture method used. Extending the single cell analyses to keratoconus, we were able to reveal activation of collagenase in the corneal stroma and a reduced pool of limbal suprabasal cells as two key changes underlying the disease phenotype. Single cell RNA-Seq of 89,897 cells obtained from embryonic and fetal cornea indicated that during development, the conjunctival epithelium is the first to be specified from the ocular surface epithelium, followed by the corneal epithelium and the establishment of LPCs, which predate the formation of limbal niche by a few weeks. Conclusions Our scRNA-and ATAC-Seq data of developing and adult cornea in steady state and disease conditions provide a unique resource for defining genes/pathways that can lead to improvement in ex vivo LPCs expansion, stem cell differentiation methods and better understanding and treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rachel Queen
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Darin Zerti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sanja Bojic
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Nicky Moyse
- Newcastle Cellular Therapies Facility, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, UK
| | - Marina Moya Molina
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Chunbo Yang
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Sunanda Dey
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Israel
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Rafiqul Hussain
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Jonathan M Coxhead
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Agatha Joseph
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Paul Rooney
- NHS Blood and Transplant Tissue and Eye Services, Liverpool, UK
| | - Saurabh Ghosh
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Lucy Clarke
- UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Che Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Francisco Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK; UK Department of Ophthalmology, Royal Victoria Infirmary and Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK.
| |
Collapse
|
263
|
Cai Z, Zhang Y, Zhang Z, Song KH, Beckmann L, Djalilian A, Sun C, Zhang HF. Super-resolution imaging of flat-mounted whole mouse cornea. Exp Eye Res 2021; 205:108499. [PMID: 33610603 PMCID: PMC8043998 DOI: 10.1016/j.exer.2021.108499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Super-resolution microscopy revolutionized biomedical research with significantly improved imaging resolution down to the molecular scale. To date, only limited studies reported multi-color super-resolution imaging of thin tissue slices mainly because of unavailable staining protocols and incompatible imaging techniques. Here, we show the first super-resolution imaging of flat-mounted whole mouse cornea using single-molecule localization microscopy (SMLM). We optimized immunofluorescence staining protocols for β-Tubulin, Vimentin, Peroxisome marker (PMP70), and Histone-H4 in whole mouse corneas. Using the optimized staining protocols, we imaged these four intracellular protein structures in the epithelium and endothelium layers of flat-mounted mouse corneas. We also achieved simultaneous two-color spectroscopic SMLM (sSMLM) imaging of β-Tubulin and Histone-H4 in corneal endothelial cells. The spatial localization precision of sSMLM in these studies was around 20-nm. This work sets the stage for investigating multiple intracellular alterations in corneal diseases at a nanoscopic resolution using whole corneal flat-mount beyond cell cultures.
Collapse
Affiliation(s)
- Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zheyuan Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ali Djalilian
- Department of Ophthalmology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
264
|
Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, Niknejad H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep 2021; 11:7060. [PMID: 33782482 PMCID: PMC8007807 DOI: 10.1038/s41598-021-86340-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
We aimed to construct a biodegradable transparent scaffold for culturing corneal endothelial cells by incorporating chitosan nanoparticles (CSNPs) into chitosan/polycaprolactone (PCL) membranes. Various ratios of CSNP/PCL were prepared in the presence of constant concentration of chitosan and the films were constructed by solvent casting method. Scaffold properties including transparency, surface wettability, FTIR, and biocompatibility were examined. SEM imaging, H&E staining, and cell count were performed to investigate the HCECs adhesion. The phenotypic maintenance of the cells during culture was investigated by flow cytometry. Transparency and surface wettability improved by increasing the CSNP/PCL ratio. The CSNP/PCL 50/25, which has the lowest WCA, showed comparable transparency with human acellular corneal stroma. The scaffold was not cytotoxic and promoted the HCECs proliferation as evaluated by MTT assay. Cell counting, flow cytometry, SEM, and H&E results showed appropriate attachment of HCECs to the scaffold which formed a compact monolayer. The developed scaffold seems to be suitable for use in corneal endothelial regeneration in terms of transparency and biocompatibility.
Collapse
Affiliation(s)
- Tahereh Tayebi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
265
|
Shetty R, Kumar NR, Subramani M, Krishna L, Murugeswari P, Matalia H, Khamar P, Dadachanji ZV, Mohan RR, Ghosh A, Das D. Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Sci Rep 2021; 11:4392. [PMID: 33623133 PMCID: PMC7902619 DOI: 10.1038/s41598-021-83881-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Corneal haze post refractive surgery is prevented by mitomycin c (MMC) treatment though it can lead to corneal endothelial damage, persistent epithelial defects and necrosis of cells. Suberanilohydroxamic acid (SAHA) however has been proposed to prevent corneal haze without any adverse effects. For clinical application we have investigated the short and long term outcome of cells exposed to SAHA. Human donor cornea, cultured limbal epithelial cells, corneal rims and lenticules were incubated with SAHA and MMC. The cells/tissue was then analyzed by RT-qPCR, immunofluorescence and western blot for markers of apoptosis and fibrosis. The results reveal that short term exposure of SAHA and SAHA + MMC reduced apoptosis levels and increased αSMA expression compared to those treated with MMC. Epithelial cells derived from cultured corneal rim that were incubated with the MMC, SAHA or MMC + SAHA revealed enhanced apoptosis, reduced levels of CK3/CK12, ∆NP63 and COL4A compared to other treatments. In SAHA treated lenticules TGFβ induced fibrosis was reduced. The results imply that MMC treatment for corneal haze has both short term and long term adverse effects on cells and the cellular properties. However, a combinatorial treatment of SAHA + MMC prevents expression of corneal fibrotic markers without causing any adverse effect on cellular properties.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Nimisha Rajiv Kumar
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Ponnalagu Murugeswari
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Zelda V Dadachanji
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Rajiv R Mohan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, 65211, USA. .,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Harry S Truman Veterans' Memorial Hospital, Columbia, MO, 65201, USA.
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India.
| | - Debashish Das
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India.
| |
Collapse
|
266
|
Schroeter A, Kropp M, Cvejic Z, Thumann G, Pajic B. Comparison of Femtosecond Laser-Assisted and Ultrasound-Assisted Cataract Surgery with Focus on Endothelial Analysis. SENSORS 2021; 21:s21030996. [PMID: 33540680 PMCID: PMC7867300 DOI: 10.3390/s21030996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Femtosecond laser-assisted cataract surgery has the potential to make critical steps of cataract surgery easier and safer, and reduce endothelial cell loss, thus, improving postoperative outcomes. This study compared FLACS with the conventional method in terms of endothelial cells behavior, clinical outcomes, and capsulotomy precision. METHODS In a single-center, randomized controlled study, 130 patients with cataracta senilis received FLACS or conventional cataract surgery. RESULTS A significant endothelial cell loss was observed postoperatively, compared to the preoperative values in both groups. The endothelial cell counts was significantly better in the FLACS group in cataract grade 2 (p = 0.048) patients, compared to conventionally at 4 weeks. The effective phaco time was notably shorter in grade 2 of the FLACS group (p = 0.007) compared to the conventional. However, no statistically significant differences were found for the whole sample, including all cataract grades, due to the overall cataract density in the FLACS group being significantly higher (2.60 ± 0.58, p < 0.001) as compared to conventional methods (2.23 ± 0.42). CONCLUSIONS Low energy FLACS provides a better result compared to endothelial cell loss, size, and shape variations, as well as in effective phaco time within certain cataract grade subgroups. A complete comparison between two groups was not possible because of the higher cataract grade in the FLACS. FLACS displayed a positive effect on endothelial cell preservation and was proven to be much more precise.
Collapse
Affiliation(s)
- Anna Schroeter
- Department of Ophthalmology, Basel University Hospital, Mittlerestr str. 91, 4056 Basel, Switzerland;
| | - Martina Kropp
- Division of Ophthalmology, Department of Clinical Neurosciences, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.K.); (G.T.)
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Zeljka Cvejic
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia;
| | - Gabriele Thumann
- Division of Ophthalmology, Department of Clinical Neurosciences, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.K.); (G.T.)
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Division of Ophthalmology, Department of Clinical Neurosciences, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.K.); (G.T.)
- Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia;
- Eye Clinic Orasis, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Medicine of the Military Medical Academy, University of Defence, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +41-62-765-60-80
| |
Collapse
|
267
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
268
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
269
|
Swetledge S, Jung JP, Carter R, Sabliov C. Distribution of polymeric nanoparticles in the eye: implications in ocular disease therapy. J Nanobiotechnology 2021; 19:10. [PMID: 33413421 PMCID: PMC7789499 DOI: 10.1186/s12951-020-00745-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
Advantages of polymeric nanoparticles as drug delivery systems include controlled release, enhanced drug stability and bioavailability, and specific tissue targeting. Nanoparticle properties such as hydrophobicity, size, and charge, mucoadhesion, and surface ligands, as well as administration route and suspension media affect their ability to overcome ocular barriers and distribute in the eye, and must be carefully designed for specific target tissues and ocular diseases. This review seeks to discuss the available literature on the biodistribution of polymeric nanoparticles and discuss the effects of nanoparticle composition and administration method on their ocular penetration, distribution, elimination, toxicity, and efficacy, with potential impact on clinical applications. ![]()
Collapse
Affiliation(s)
- Sean Swetledge
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jangwook P Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Renee Carter
- Veterinary Clinical Sciences, Louisiana State University and LSU Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Cristina Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
270
|
Pan P, Chan MF. Corneal Repair Models in Mice: Epithelial/Mechanical Versus Stromal/Chemical Injuries. Methods Mol Biol 2021; 2193:149-158. [PMID: 32808267 PMCID: PMC10448794 DOI: 10.1007/978-1-0716-0845-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tissue response to injury is a complex process. The cornea is an excellent model for studying wound repair processes because of its simple anatomy, easy accessibility, and normal avascular state. Here, we describe two corneal repair models in mice: an epithelial/mechanical injury model and a stromal/chemical injury model. The two models induce different repair responses, and consequently enable the study of independent repair processes. Here, we describe how these two wound models may be used to study basic cellular and molecular mechanisms of corneal repair.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Matilda F Chan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA.
- Francis I. Proctor Foundation, University of California, San Francisco, CA, USA.
| |
Collapse
|
271
|
Mimura T, Mizota A, Hayashi T, Nishimura S. In situ Observations of Porcine Ocular Surface Cells with Handheld 2K-pixel Microscope. Open Ophthalmol J 2020. [DOI: 10.2174/1874364102014010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
To present our findings of the porcine ocular surface that were obtained with an ultra-compact hand-held microscope that weighs less than 500 g, we examined the corneal epithelial cells with this hand-held microscope.
Methods:
This device is equipped with an automatic focusing mechanism that enabled us to observe living cells in macro to micro magnifications with a series of operations. The focus is semi-automatically adjusted by the infrared and ultrasonic distance sensor. The instrument has a commercially-available microscope objective lens of 20x or 40x magnification and has a high-resolution 2K Complementary Metal-Oxide-Semiconductor (CMOS) camera. The theoretical spatial resolution is around 300 nm with a higher Numerical Aperture (high-NA) lenses. The widefield reflectance-based imaging system is equipped with three-color visible Light-Emitting Diodes (LEDs) for use in bright environments and an infrared LED for dark environments. Ten normal and two injured porcine corneas were examined with this hand-held microscope.
Results:
Our observations showed that the corneal and conjunctival epithelial cells could be continuously observed. The epithelial cells of the central cornea, limbus, and conjunctiva were clearly seen. The epithelial cells on the injured corneal surface were also easily and clearly observed.
Conclusion:
This hand-held microscopic imaging device allows medical health care workers such as ophthalmologists and endoscopists to obtain real-time in vivo optical biopsies without collecting tissues and cells. Our system enables us to observe single cells in the superficial layers without any fluorescein or other dyes.
Collapse
|
272
|
García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020; 12:E1215. [PMID: 33333869 PMCID: PMC7765302 DOI: 10.3390/pharmaceutics12121215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, the establishment of complex three-dimensional (3D) models of tissues has allowed researchers to perform high-quality studies and to not only advance knowledge of the physiology of these tissues but also mimic pathological conditions to test novel therapeutic strategies. The main advantage of 3D models is that they recapitulate the spatial architecture of tissues and thereby provide more physiologically relevant information. The eye is an extremely complex organ that comprises a large variety of highly heterogeneous tissues that are divided into two asymmetrical portions: the anterior and posterior segments. The anterior segment consists of the cornea, conjunctiva, iris, ciliary body, sclera, aqueous humor, and the lens. Different diseases in these tissues can have devastating effects. To study these pathologies and develop new treatments, the use of cell culture models is instrumental, and the better the model, the more relevant the results. Thus, the development of sophisticated 3D models of ocular tissues is a significant challenge with enormous potential. In this review, we present a comprehensive overview of the latest advances in the development of 3D in vitro models of the anterior segment of the eye, with a special focus on those that use human primary cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | - Yolanda Diebold
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
273
|
CannabinEYEds: The Endocannabinoid System as a Regulator of the Ocular Surface Nociception, Inflammatory Response, Neovascularization and Wound Healing. J Clin Med 2020; 9:jcm9124036. [PMID: 33327429 PMCID: PMC7764860 DOI: 10.3390/jcm9124036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex regulatory system, highly conserved among vertebrates. It has been widely described in nearly all human tissues. In the conjunctiva and cornea, the ECS is believed to play a pivotal role in the modulation of the local inflammatory state as well as in the regulation of tissue repair and fibrosis, neo-angiogenesis and pain perception. This review aims to summarize all the available data on ECS expression and its function in ocular surface structures to provide a specific insight concerning its modulation in dry eye disease, and to propose directions for future research.
Collapse
|
274
|
Rodrigues FSC, Campos A, Martins J, Ambrósio AF, Campos EJ. Emerging Trends in Nanomedicine for Improving Ocular Drug Delivery: Light-Responsive Nanoparticles, Mesoporous Silica Nanoparticles, and Contact Lenses. ACS Biomater Sci Eng 2020; 6:6587-6597. [PMID: 33320633 DOI: 10.1021/acsbiomaterials.0c01347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vision is the most dominant of our senses, and it is crucial in every stage of our lives. Ocular diseases, regardless of whether they cause vision impairment or not, lead to personal and financial hardships. The anatomy and physiology of the eye strongly limit the efficacy of current ocular drug delivery strategies. Nanotechnology has been the ground for the development of powerful strategies in several fields, namely in medicine. This review highlights emerging nanotechnology-based solutions for improving ocular drug delivery and thus the bioavailability and efficacy of drugs. We focus our review on ambitious but promising approaches currently emerging to leverage the efficacy of nanoparticle-based systems in ocular therapy: (i) light-responsive nanoparticles, which enable spatiotemporal control of drug release; (ii) mesoporous silica nanoparticles, which offer high surface area-to-volume ratio, simple surface modification, good biocompatibility, and improved bioavailability; and (iii) contact lenses, which serve as a compliant method of nanoparticles use and as drug delivery systems for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Flávia S C Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - António Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal.,Department of Ophthalmology, Centro Hospitalar Leiria E.P.E., 2410-197 Leiria, Portugal.,ciTechCare, Center for Innovative Care and Health Technology, Polytechnic Institute of Leiria, 2410-541 Leiria, Portugal
| | - João Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Elisa J Campos
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
275
|
Impact of Air Pollution and Weather on Dry Eye. J Clin Med 2020; 9:jcm9113740. [PMID: 33233863 PMCID: PMC7699870 DOI: 10.3390/jcm9113740] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Air pollution has broad effects on human health involving many organ systems. The ocular surface is an excellent model with which to study the effects of air pollution on human health as it is in constant contact with the environment, and it is directly accessible, facilitating disease monitoring. Effects of air pollutants on the ocular surface typically manifest as dry eye (DE) symptoms and signs. In this review, we break down air pollution into particulate matter (organic and inorganic) and gaseous compounds and summarize the literature regarding effects of various exposures on DE. Additionally, we examine the effects of weather (relative humidity, temperature) on DE symptoms and signs. To do so, we conducted a PubMed search using key terms to summarize the existing literature on the effects of air pollution and weather on DE. While we tried to focus on the effect of specific exposures on specific aspects of DE, environmental conditions are often studied concomitantly, and thus, there are unavoidable interactions between our variables of interest. Overall, we found that air pollution and weather conditions have differential adverse effects on DE symptoms and signs. We discuss these findings and potential mitigation strategies, such as air purifiers, air humidifiers, and plants, that may be instituted as treatments at an individual level to address environmental contributors to DE.
Collapse
|
276
|
Efraim Y, Chen FYT, Stashko C, Cheong KN, Gaylord E, McNamara N, Knox SM. Alterations in corneal biomechanics underlie early stages of autoimmune-mediated dry eye disease. J Autoimmun 2020; 114:102500. [PMID: 32565048 PMCID: PMC8269964 DOI: 10.1016/j.jaut.2020.102500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Autoimmune-mediated dry eye disease is a pathological feature of multiple disorders including Sjögren's syndrome, lupus and rheumatoid arthritis that has a life-long, detrimental impact on vision and overall quality of life. Although late stage disease outcomes such as epithelial barrier dysfunction, reduced corneal innervation and chronic inflammation have been well characterized in both human patients and mouse models, there is little to no understanding of early pathological processes. Moreover, the mechanisms underlying the loss of cornea homeostasis and disease progression are unknown. Here, we utilize the autoimmune regulatory (Aire)-deficient mouse model of autoimmune-mediated dry eye disease in combination with genome wide transcriptomics, high-resolution imaging and atomic force microscopy to reveal a potential extracellular matrix (ECM)-biomechanical-based mechanism driving cellular and morphological changes at early disease onset. Early disease in the Aire-deficient mouse model is associated with a mild reduction in tear production and moderate immune cell infiltration, allowing for interrogation of cellular, molecular and biomechanical changes largely independent of chronic inflammation. Using these tools, we demonstrate for the first time that the emergence of autoimmune-mediated dry eye disease is associated with an alteration in the biomechanical properties of the cornea. We reveal a dramatic disruption of the synthesis and organization of the extracellular matrix as well as degradation of the epithelial basement membrane during early disease. Notably, we provide evidence that the nerve supply to the cornea is severely reduced at early disease stages and that this is independent of basement membrane destruction or significant immune cell infiltration. Furthermore, diseased corneas display spatial heterogeneity in mechanical, structural and compositional changes, with the limbal compartment often exhibiting the opposite response compared to the central cornea. Despite these differences, however, epithelial hyperplasia is apparent in both compartments, possibly driven by increased activation of IL-1R1 and YAP signaling pathways. Thus, we reveal novel perturbations in corneal biomechanics, matrix organization and cell behavior during the early phase of dry eye that may underlie disease development and progression, presenting new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eliza Gaylord
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nancy McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, CA, 94720, USA; Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
277
|
Theerakittayakorn K, Thi Nguyen H, Musika J, Kunkanjanawan H, Imsoonthornruksa S, Somredngan S, Ketudat-Cairns M, Parnpai R. Differentiation Induction of Human Stem Cells for Corneal Epithelial Regeneration. Int J Mol Sci 2020; 21:E7834. [PMID: 33105778 PMCID: PMC7660084 DOI: 10.3390/ijms21217834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.
Collapse
Affiliation(s)
- Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Jidapa Musika
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hataiwan Kunkanjanawan
- Medeze Research and Development Co., Ltd. 28/9 Moo 8, Phutthamonthon Sai 4 Rd., Krathum Lom, Sam Phran, Nakhon Pathom 73220, Thailand;
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| |
Collapse
|
278
|
Elsawy A, Gregori G, Eleiwa T, Abdel-Mottaleb M, Shousha MA. Pathological-Corneas Layer Segmentation and Thickness Measurement in OCT Images. Transl Vis Sci Technol 2020; 9:24. [PMID: 33173606 PMCID: PMC7594599 DOI: 10.1167/tvst.9.11.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose The purpose of this study was to propose a new algorithm for the segmentation and thickness measurement of pathological corneas with irregular layers using a two-stage graph search and ray tracing. Methods In the first stage, a graph, with only gradient edge-cost, is used to segment the air-epithelium and endothelium-aqueous boundaries. In the second stage, a graph, with gradient, directional, and multiplier edge-cost, is used to correct segmentation. The optical coherence tomography (OCT) image is flattened using the air-epithelium boundary and a graph search is used to segment the epithelium-Bowman's and Bowman's-stroma boundaries. Then, the OCT image is flattened using the endothelium-aqueous boundary and a graph search is used to segment the Descemet's membrane. Ray tracing is used to correct the inter-boundary distances, then the thickness is measured using the shortest distance. The proposed algorithm was trained and evaluated using 190 OCT images manually segmented by trained operators. Results The mean and standard deviation of the unsigned errors of the algorithm-operator and inter-operator were 0.89 ± 1.03 and 0.77 ± 0.68 pixels in segmentation and 3.62 ± 3.98 and 2.95 ± 2.52 µm in thickness measurement. Conclusions Our proposed algorithm can produce accurate segmentation and thickness measurements compared with the manual operators. Translational Relevance Our algorithm could be potentially useful in the clinical practice.
Collapse
Affiliation(s)
- Amr Elsawy
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Electrical and Computer Engineering, University of Miami, Miami, FL, USA
| | - Giovanni Gregori
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Taher Eleiwa
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Ophthalmology Department, Benha Faculty of Medicine, Egypt
| | | | - Mohamed Abou Shousha
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Electrical and Computer Engineering, University of Miami, Miami, FL, USA
- Biomedical Engineering, University of Miami, Miami, FL, USA
| |
Collapse
|
279
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
280
|
Kim YH, Lin MC, Radke CJ. Limbal Metabolic Support Reduces Peripheral Corneal Edema with Contact-Lens Wear. Transl Vis Sci Technol 2020; 9:44. [PMID: 32832249 PMCID: PMC7414613 DOI: 10.1167/tvst.9.7.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the influence of limbal metabolic support on corneal edema during scleral-lens (SL) and soft-contact-lens (SCL) wear for healthy lens wearers. Methods A two-dimensional (2D) model of the cornea and sclera was designed on Comsol Multiphysics 5.4 along with SL and SCL architectures to mimic lens-wear induced hypoxia. The cornea is suffused with oxygen and metabolites from the limbus and aqueous humor. Air oxygen is supplied from and carbon dioxide is expelled to the atmosphere. Lens-oxygen permeability (Dk) was adjusted to investigate lens-wear safety against edema in different wear conditions. The 2D concentrations of oxygen, carbon dioxide, bicarbonate, lactate, sodium, chloride, glucose, and pH are quantified. Central-to-peripheral swelling of the cornea is determined by the change in stromal hydration caused by changing metabolite concentrations at the endothelium during hypoxia. Results The metabolic model assesses central-to-peripheral corneal swelling with different types of lenses, and oxygen Dks. Limbal metabolic support reduces edema from the periphery to approximately 1 mm away from the central cornea. Despite thicker lens designs, the peripheral cornea exhibits practically zero swelling due to limbal metabolic support. Conclusions The metabolic model accurately predicts central-to-peripheral corneal edema with various contact-lens designs, post-lens tear-film thicknesses, and lens oxygen Dk values. Despite the thicker periphery of most contact-lens designs, lactate and bicarbonate support from the limbus significantly reduces peripheral and mid-peripheral corneal edema, whereas oxygen has a lesser effect. Translational Relevance By utilizing metabolic kinetics, we provide a 2D computational tool to predict oxygenation safety across the entire cornea with various types and designs of contact lenses.
Collapse
Affiliation(s)
- Young Hyun Kim
- Vision Science Group, University of California, Berkeley, CA, USA.,Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA.,Clinical Research Center, School of Optometry, University of California, Berkeley, CA, USA
| | - Meng C Lin
- Vision Science Group, University of California, Berkeley, CA, USA.,Clinical Research Center, School of Optometry, University of California, Berkeley, CA, USA
| | - Clayton J Radke
- Vision Science Group, University of California, Berkeley, CA, USA.,Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA
| |
Collapse
|
281
|
Gao N, Me R, Dai C, Yu FSX. ISG15 Acts as a Mediator of Innate Immune Response to Pseudomonas aeruginosa Infection in C57BL/6J Mouse Corneas. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32416603 PMCID: PMC7405721 DOI: 10.1167/iovs.61.5.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose IFN-stimulated gene (ISG) 15 is a type 1 IFN-induced protein and known to modify target proteins in a manner similar to ubiquitylation (protein conjugation by ISG15 is termed ISGylation). We sought to determine the role of ISG15 and its underlying mechanisms in corneal innate immune defense against Pseudomonas aeruginosa keratitis. Methods ISG15 expression in cultured human corneal epithelial cells (HCECs) and mouse corneas was determined by PCR and Western blot analysis. Gene knockout mice were used to define the role of ISG15 signaling in controlling the severity of P. aeruginosa keratitis, which was assessed with photographing, clinical scoring, bacterial counting, myeloperoxidase assay, and quantitative PCR determination of cytokine expression. Integrin LFA-1 inhibitor was used to assess its involvement of ISG15 signaling in P. aeruginosa-infected corneas. Results Heat-killed P. aeruginosa induced ISG15 expression in cultured HCECs and accumulation in the conditioned media. Isg15 deficiency accelerated keratitis progress, suppressed IFNγ and CXCL10, and promoted IL-1β while exhibiting no effects on IFNα expression. Moreover, exogenous ISG15 protected the corneas of wild-type mice from P. aeruginosa infection while markedly reducing the severity of P. aeruginosa keratitis in type 1 IFN-receptor knockout mice. Exogenous ISG15 increased bacteriostatic activity of B6 mouse corneal homogenates, and inhibition of LFA-1 exacerbated the severity of and abolished protective effects of ISG15 on P. aeruginosa keratitis. Conclusions Type 1 INF-induced ISG15 regulates the innate immune response and greatly reduces the susceptibility of B6 mouse corneas to P. aeruginosa infection in an LFA-1-dependent manner.
Collapse
|
282
|
Bai J, Fu H, Bazinet L, Birsner AE, D'Amato RJ. A Method for Developing Novel 3D Cornea-on-a-Chip Using Primary Murine Corneal Epithelial and Endothelial Cells. Front Pharmacol 2020; 11:453. [PMID: 32410987 PMCID: PMC7198819 DOI: 10.3389/fphar.2020.00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Microfluidic-based organ-on-a-chip assays with simultaneous coculture of multi-cell types have been widely utilized for basic research and drug development. Here we describe a novel method for a primary cell-based corneal microphysiological system which aims to recapitulate the basic functions of the in vivo cornea and to study topically applied ocular drug permeation. In this study, the protocols for isolating and cultivating primary corneal epithelial cells and endothelial cells from mouse inbred strain C57BL/6J were optimized, to allow for the development of a primary-cell based microfluidic 3D micro-engineered cornea. This tissue unit, by overcoming the limitations of 2D conventional cell culture, supports new investigations on cornea function and facilitates drug delivery testing.
Collapse
Affiliation(s)
- Jing Bai
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Haojie Fu
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lauren Bazinet
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Amy E Birsner
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert J D'Amato
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
283
|
Tear Organic Acid Analysis After Corneal Collagen Crosslinking in Keratoconus. Eye Contact Lens 2020; 46 Suppl 2:S122-S128. [DOI: 10.1097/icl.0000000000000644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
284
|
Bandeira F, Goh TW, Setiawan M, Yam GHF, Mehta JS. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther 2020; 11:14. [PMID: 31900226 PMCID: PMC6942321 DOI: 10.1186/s13287-019-1533-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Persistent epithelial defects (PED), associated with limbal stem cell deficiency (LSCD), require ocular surface reconstruction with a stable corneal epithelium (CE). This study investigated CE reformation using human adipose mesenchymal stem cells (ADSC), which derived epithelial progenitors via mesenchymal-epithelial transition (MET). Methods STEMPRO human ADSC were cultured with specific inhibitors antagonizing glycogen synthase kinase-3 and transforming growth factor-β signaling, followed by culture under a defined progenitor cell targeted-epithelial differentiation condition to generate epithelial-like cells (MET-Epi), which were characterized for cell viability, mesenchymal, and epithelial phenotypes using immunofluorescence and flow cytometry. Tissue-engineered (TE) MET-Epi cells on fibrin gel were transplanted to corneal surface of the rat LSCD model caused by alkali injury. Epithelial healing, corneal edema, and haze grading, CE formation were assessed by fluorescein staining, slit lamp bio-microscopy, anterior segment optical coherence tomography, and immunohistochemistry. Results CD73high/CD90high/CD105high/CD166high/CD14negative/CD31negative human ADSC underwent MET, giving viable epithelial-like progenitors expressing δNp63, CDH1 (E-cadherin), epidermal growth factor receptor, integrin-β4, and cytokeratin (CK)-5, 9. Under defined epithelial differentiation culture, these progenitors generated MET-Epi cells expressing cell junction proteins ZO1 and occludin. When transplanted onto rat corneal surface with LSCD-induced PED, TE-MET-Epi achieved more efficient epithelial healing, suppressed corneal edema, and opacities, when compared to corneas without treatment or transplanted with TE-ADSC. CE markers (CK3, 12, and CDH1) were expressed on TE-MET-Epi-transplanted corneas but not in other control groups. Conclusion Human ADSC-derived epithelial-like cells, via MET, recovered the CE from PED associated with LSCD. ADSC can be a viable adult stem cell source for potential autologous epithelial cell-based therapy for corneal surface disorders.
Collapse
Affiliation(s)
- Francisco Bandeira
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore.,Federal University of São Paulo, Sao Paulo, Brazil
| | - Tze-Wei Goh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 20 College Road, The Academia, Discovery Tower Level 6, Singapore, 169856, Singapore. .,Eye-Academic Clinical Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
285
|
Kasiri A, Mirdehghan MS, Farrahi F, Ostadian F, Feghhi M, Ghomi MR, Mohammad Jafari A, Mahdian Rad A, Kasiri N. Prevention of Corneal Neovascularization; a Preliminary Experimental Study in Rabbits. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:47-55. [PMID: 31976343 PMCID: PMC6969563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to compare the effects of propranolol, timolol and bevacizumab with betamethasone to prevent corneal neovascularization (CNV) in rabbits. This study was performed on 28 male rabbits. CNV was induced by three 7-0 silk sutures 2 mm long and 1 mm distal to the limbus. Animals were randomly divided into 4 groups of propranolol + betamethasone, timolol + betamethasone and bevacizumab + betamethasone and betamethasone alone. Eye drops were started from the first day of study. On 7th, 14th, 21st, 28th, 35th and 42nd days, vascular progression, time of neovascularization and vascular area were evaluated and compared with the control group (betamethasone alone). There was a significant reduction in the area of neovascularization in the timolol and bevacizumab groups compared to the control group (P-value = 0.05, P=0.047, respectively). Also, regarding vascular progression, there was a significant decrease in the timolol and bevacizumab groups (P-value = 0.014, P=0.002, respectively). Regarding delayed onset of neovascularization, there was a significant difference in the timolol and bevacizumab group in rabbits (P-value = 0.04, P=0.00, respectively). In conclusion, the use of timolol and bevacizumab drops besides betamethasone can delay neovascularization and decrease the length of corneal vascularization in rabbits.
Collapse
Affiliation(s)
- Ali Kasiri
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Mirdehghan
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereydoun Farrahi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshad Ostadian
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Feghhi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Reza Ghomi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aram Mohammad Jafari
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Mahdian Rad
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Kasiri
- Medical Student, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran
| |
Collapse
|
286
|
Courson JA, Smith I, Do T, Landry PT, Hargrave A, Behzad AR, Hanlon SD, Rumbaut RE, Smith CW, Burns AR. Serial block-face scanning electron microscopy reveals neuronal-epithelial cell fusion in the mouse cornea. PLoS One 2019; 14:e0224434. [PMID: 31721785 PMCID: PMC6853292 DOI: 10.1371/journal.pone.0224434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022] Open
Abstract
The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8–10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ≤ 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.
Collapse
Affiliation(s)
- Justin A. Courson
- University of Houston, College of Optometry, Houston, TX, United States of America
- * E-mail:
| | - Ian Smith
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Thao Do
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Paul T. Landry
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Aubrey Hargrave
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Ali R. Behzad
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Sam D. Hanlon
- University of Houston, College of Optometry, Houston, TX, United States of America
| | - Rolando E. Rumbaut
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States of America
| | - C. Wayne Smith
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
| | - Alan R. Burns
- University of Houston, College of Optometry, Houston, TX, United States of America
- Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
| |
Collapse
|
287
|
Wang Z, Shan W, Li H, Feng J, Lu S, Ou B, Ma M, Ma Y. The PACAP-derived peptide MPAPO facilitates corneal wound healing by promoting corneal epithelial cell proliferation and trigeminal ganglion cell axon regeneration. Int J Biol Sci 2019; 15:2676-2691. [PMID: 31754339 PMCID: PMC6854382 DOI: 10.7150/ijbs.35630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
It is well known that the cornea plays an important role in providing protection to the eye, but it is fragile and vulnerable. To clarify the biological effects and molecular mechanisms of the pituitary adenylate cyclase activating polypeptide (PACAP)-derived peptide MPAPO (named MPAPO) to promote corneal wound healing, we applied a mechanical method to establish a corneal injury model and analyzed the repair effects of MPAPO on corneal injury. MPAPO significantly promoted corneal wound repair in C57BL/6 mice. In addition, we established injury models of epithelial cells and trigeminal ganglion cells with H2O2. The results show that when the concentration of MPAPO is 1 μM, it can significantly promote the repair of injured corneal epithelial cells and the regeneration of trigeminal ganglion cell axons. MPAPO repairs epithelial cells through the promotion of GSK3β phosphorylation by binding to PAC1 and activating AKT. β-catenin escapes the phosphorylation of GSK3β and enters the nucleus to promote the expression of cyclin D1, accelerate cell cycle progression and promote cell proliferation. MPAPO promotes axonal regeneration by binding to the PAC1 receptor and activating adenylate cyclase activity, followed by the cAMP activation of protein kinase A activity and the promotion of CREB phosphorylation. Phosphorylated CREB promotes Bcl2 expression and axonal regeneration. In conclusion, our data support the role of MPAPO to facilitate corneal wound healing by promoting corneal epithelial cell proliferation and trigeminal ganglion cell axon regeneration.
Collapse
Affiliation(s)
- Zixian Wang
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Wailan Shan
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Huixian Li
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Jia Feng
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Shiyin Lu
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Biqian Ou
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Min Ma
- College of traditional Chinese Medicine, Jinan University
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| |
Collapse
|
288
|
Gunzinger JM, Voulgari N, Petrovic A, Hashemi K, Kymionis G. Peripheral hypertrophic subepithelial corneal degeneration: clinical aspects related to in vivo confocal microscopy and optical coherence tomography. Int Med Case Rep J 2019; 12:237-241. [PMID: 31440105 PMCID: PMC6668246 DOI: 10.2147/imcrj.s208297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose To report the findings of anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) in two patients with peripheral hypertrophic subepithelial corneal degeneration (PHSD). Methods Case series by restrospective chart review and imaging analysis of AS-OCT and IVCM. Results Slit lamp examination of the two patients revealed a bilateral subepithelial-elevated fibrous tissue of the superior-nasal quadrant, as well as inferior-nasal in one of the patients. Best corrected visual acuity ranged from 20/25 to 20/15. AS-OCT showed continuous, homogenous, well-demarked hyperreflective subepithelial band associated with hyperreflectivity in the anterior stroma. IVCM demonstrated normal epithelial cell morphology and arrangement and a fibrous structure subepithelial and in the anterior stroma. Conclusion AS-OCT and IVCM can facilitate the diagnosis of PHSD and differentiate it from other corneal entities that present peripheral opacifications.
Collapse
Affiliation(s)
- Jeanne Martine Gunzinger
- Lausanne University, Cornea and Refractive Surgery Department, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Nafsika Voulgari
- Lausanne University, Cornea and Refractive Surgery Department, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Aleksandra Petrovic
- Lausanne University, Cornea and Refractive Surgery Department, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Kattayoon Hashemi
- Lausanne University, Cornea and Refractive Surgery Department, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Georgios Kymionis
- Lausanne University, Cornea and Refractive Surgery Department, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| |
Collapse
|
289
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
290
|
Tummala GK, Lopes VR, Mihranyan A, Ferraz N. Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications. J Funct Biomater 2019; 10:E35. [PMID: 31375008 PMCID: PMC6787653 DOI: 10.3390/jfb10030035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Transparent composite hydrogel in the form of a contact lens made from poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) was subjected to in vitro biocompatibility evaluation with human corneal epithelial cells (HCE-2 cells). The cell response to direct contact with the hydrogels was investigated by placing the samples on top of confluent cell layers and evaluating cell viability, morphology, and cell layer integrity subsequent to 24 h culture and removal of the hydrogels. To further characterize the lens-cell interactions, HCE-2 cells were seeded on the hydrogels, with and without simulated tear fluid (STF) pre-conditioning, and cell viability and morphology were evaluated. Furthermore, protein adsorption on the hydrogel surface was investigated by incubating the materials with STF, followed by protein elution and quantification. The hydrogel material was found to have affinity towards protein adsorption, most probably due to the interactions between the positively charged lysozyme and the negatively charged CNCs embedded in the PVA matrix. The direct contact experiment demonstrated that the physical presence of the lenses did not affect corneal epithelial cell monolayers in terms of integrity nor cell metabolic activity. Moreover, it was found that viable corneal cells adhered to the hydrogel, showing the typical morphology of epithelial cells and that such response was not influenced by the STF pre-conditioning of the hydrogel surface. The results of the study confirm that PVA-CNC hydrogel is a promising ophthalmic biomaterial, motivating future in vitro and in vivo biocompatibility studies.
Collapse
Affiliation(s)
- Gopi Krishna Tummala
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - Viviana R Lopes
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - Albert Mihranyan
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - Natalia Ferraz
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden.
| |
Collapse
|
291
|
Yazdani M, Elgstøen KBP, Rootwelt H, Shahdadfar A, Utheim ØA, Utheim TP. Tear Metabolomics in Dry Eye Disease: A Review. Int J Mol Sci 2019; 20:E3755. [PMID: 31374809 PMCID: PMC6695908 DOI: 10.3390/ijms20153755] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that can be caused by alteration in the quality or quantity of the precorneal tear film. It is considered one of the most common ocular conditions leading patients to seek eye care. The current method for diagnostic evaluations and follow-up examinations of DED is a combination of clinical signs and symptoms determined by clinical tests and questionnaires, respectively. The application of powerful omics technologies has opened new avenues toward analysis of subjects in health and disease. Metabolomics is a new emerging and complementary research discipline to all modern omics in the comprehensive analysis of biological systems. The identification of distinct metabolites and integrated metabolic profiles in patients can potentially inform clinicians at an early stage or during monitoring of disease progression, enhancing diagnosis, prognosis, and the choice of therapy. In ophthalmology, metabolomics has gained considerable attention over the past decade but very limited such studies have been reported on DED. This paper aims to review the application of tear metabolomics in DED.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
| | | | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0027 Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway
- Department of Life Sciences and Health, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
292
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
293
|
Luis de Redín I, Boiero C, Recalde S, Agüeros M, Allemandi D, Llabot JM, García-Layana A, Irache JM. In vivo effect of bevacizumab-loaded albumin nanoparticles in the treatment of corneal neovascularization. Exp Eye Res 2019; 185:107697. [PMID: 31228461 DOI: 10.1016/j.exer.2019.107697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/28/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Corneal neovascularization (CNV) is associated with different ocular pathologies, including infectious keratitis, trachoma or corneal trauma. Pharmacological treatments based on the topical application of anti-VEGF therapies have been shown to be effective in the treatment and prevention of CNV. The aim of this work was to evaluate the effect of bevacizumab-loaded albumin nanoparticles in a rat model of CNV. Bevacizumab-loaded nanoparticles, either "naked" (B-NP) or coated with PEG 35,000 (B-NP-PEG), were administered once a day in the eyes of animals (10 μL, 4 mg/mL every 24 h) during 7 days. Bevacizumab and dexamethasone were employed as controls and administered at the same dose every 12 h. At the end of the study, the area of the eye affected by neovascularization was about 2-times lower for animals treated with B-NP than with free bevacizumab. In the study, dexamethasone did not demonstrate an inhibitory effect on CNV at the employed dose. All of these results were confirmed by histopathological analysis, which clearly showed that eyes treated with nanoparticles displayed lower levels of fibrosis, inflammation and edema. In summary, the encapsulation of bevacizumab in human serum albumin nanoparticles improved its efficacy in an animal model of CNV.
Collapse
Affiliation(s)
- Inés Luis de Redín
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Carolina Boiero
- UNITEFA-CONICET, Department of Pharmacy, Faculty of Chemical Sciences (FCQ-UNC), National University of Córdoba, Argentina
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, Spain
| | - Maite Agüeros
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Daniel Allemandi
- UNITEFA-CONICET, Department of Pharmacy, Faculty of Chemical Sciences (FCQ-UNC), National University of Córdoba, Argentina
| | - Juan M Llabot
- UNITEFA-CONICET, Department of Pharmacy, Faculty of Chemical Sciences (FCQ-UNC), National University of Córdoba, Argentina
| | - Alfredo García-Layana
- Experimental Ophthalmology Laboratory, University of Navarra, Navarra Institute for Health Research, IdiSNA, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain.
| |
Collapse
|
294
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
295
|
Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A Review of Structural and Biomechanical Changes in the Cornea in Aging, Disease, and Photochemical Crosslinking. Front Bioeng Biotechnol 2019; 7:66. [PMID: 31019909 PMCID: PMC6459081 DOI: 10.3389/fbioe.2019.00066] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/07/2019] [Indexed: 12/27/2022] Open
Abstract
The study of corneal biomechanics is motivated by the tight relationship between biomechanical properties and visual function within the ocular system. For instance, variation in collagen fibril alignment and non-enzymatic crosslinks rank high among structural factors which give rise to the cornea's particular shape and ability to properly focus light. Gradation in these and other factors engender biomechanical changes which can be quantified by a wide variety of techniques. This review summarizes what is known about both the changes in corneal structure and associated changes in corneal biomechanical properties in aging, keratoconic, and photochemically crosslinked corneas. In addition, methods for measuring corneal biomechanics are discussed and the topics are related to both clinical studies and biomechanical modeling simulations.
Collapse
Affiliation(s)
- Brecken J. Blackburn
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of CWRU, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - William J. Dupps
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
296
|
Kim SY, Koetzner CA, Payne AF, Nierode GJ, Yu Y, Wang R, Barr E, Dordick JS, Kramer LD, Zhang F, Linhardt RJ. Glycosaminoglycan Compositional Analysis of Relevant Tissues in Zika Virus Pathogenesis and in Vitro Evaluation of Heparin as an Antiviral against Zika Virus Infection. Biochemistry 2019; 58:1155-1166. [PMID: 30698412 DOI: 10.1021/acs.biochem.8b01267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.
Collapse
Affiliation(s)
- So Young Kim
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Cheri A Koetzner
- Wadsworth Center , New York State Department of Health , Slingerlands , New York 12159 , United States
| | - Anne F Payne
- Wadsworth Center , New York State Department of Health , Slingerlands , New York 12159 , United States
| | - Gregory J Nierode
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Yanlei Yu
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Rufeng Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Evan Barr
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jonathan S Dordick
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Laura D Kramer
- Wadsworth Center , New York State Department of Health , Slingerlands , New York 12159 , United States.,State University of New York at Albany School of Public Health , Albany , New York 12222 , United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Robert J Linhardt
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|