251
|
Zhang D, Qin X, Wu T, Qiao Q, Song Q, Zhang Z. Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy. Biomaterials 2019; 197:220-228. [DOI: 10.1016/j.biomaterials.2019.01.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 02/08/2023]
|
252
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
253
|
Marangoni VS, Cancino Bernardi J, Reis IB, Fávaro WJ, Zucolotto V. Photothermia and Activated Drug Release of Natural Cell Membrane Coated Plasmonic Gold Nanorods and β-Lapachone. ACS APPLIED BIO MATERIALS 2019; 2:728-736. [DOI: 10.1021/acsabm.8b00603] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valeria S. Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of Sao Carlos, University of São Paulo, São Carlos, BR-13560970, Brazil
| | - Juliana Cancino Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of Sao Carlos, University of São Paulo, São Carlos, BR-13560970, Brazil
| | | | | | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of Sao Carlos, University of São Paulo, São Carlos, BR-13560970, Brazil
| |
Collapse
|
254
|
Shen Y, Du K, Zou L, Zhou X, Lv R, Gao D, Qiu B, Ding W. Rapid and continuous on-chip loading of trehalose into erythrocytes. Biomed Microdevices 2019; 21:5. [PMID: 30607639 DOI: 10.1007/s10544-018-0352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Freeze-drying is a promising approach for the long-term storage of erythrocytes at room temperature. Studies have shown that trehalose loaded into erythrocytes plays an important role in protecting erythrocytes against freeze-drying damage. Due to the impermeability of the erythrocyte membrane to trehalose, many methods have been developed to load trehalose into erythrocytes. However, these methods usually require multistep manual manipulation and long processing time; the adopted protocols are also diverse and not standardized. Thus, we develop an osmotically-based trehalose-loading microdevice (TLM) to rapidly, continuously, and automatically produce erythrocytes with loaded trehalose. In the TLM, trehalose is loaded through the erythrocyte membrane pores induced by hypotonic shock; then, the trehalose-loaded erythrocytes are rinsed to remove hemoglobin molecules and cell fragments, and the extracellular solution is restored to the isotonic state by integrating a rinsing-recovering design. First, the mixing function and the rinsing-recovering function were confirmed using a fluorescent solution. Then, the performance of the TLM was evaluated under various operating conditions with respect to the loading efficiency of trehalose, the hemolysis rate of erythrocytes (ϕ), the recovery rate of hemoglobin in erythrocytes (φ), and the separation efficiency of the TLM. Finally, the preliminary study of the freeze-drying of erythrocytes with loaded trehalose was accomplished using the TLM. The results showed that under the designated operating conditions, the loading efficiency for human erythrocytes reached ~21 mM in ~2 min with a ϕ value of ~17% and a φ value of ~74%. This study provides insights into the design of the on-chip loading of trehalose into erythrocytes and promotes the automation of life science studies on biochips.
Collapse
Affiliation(s)
- Yiren Shen
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kun Du
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaoming Zhou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Rong Lv
- Hefei Blood Center, Hefei, 230000, Anhui, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
255
|
Affiliation(s)
- Krishna Kanti Dey
- Discipline of Physics; Indian Institute of Technology Gandhinagar; Gandhinagar Gujarat 382355 Indien
| |
Collapse
|
256
|
Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 2019; 190-191:38-50. [PMID: 30391801 DOI: 10.1016/j.biomaterials.2018.10.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Natural killer (NK) cells are the key subset of innate-immunity lymphocytes; they possess antitumor activities and are used for cancer immunotherapy. In a previous study, extracellular vehicles (EVs) from NK-92MI cells were isolated and exploited for their ability to kill human cancer cells in vitro and in vivo (multiple injection methods). Here, the potential of NK-cell-derived EVs (NK-EVs) for immunotherapy was improved by priming with interleukin (IL)-15. METHODS NK-EVs were isolated from the culture medium without or with IL-15 (NK-EVsIL-15) by ultracentrifugation and were purified via density gradient ultracentrifugation. In addition, NK-EVs and NK-EVsIL-15 were characterized by transmission electron microscopy, nanoparticle-tracking analysis, and western blotting. Flow cytometry, bioluminescence imaging, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed for apoptosis, protein expression, cell proliferation, and cytotoxicity analyses. Furthermore, xenograft tumor-bearing mice were injected with PBS, NK-EVs, or NK-EVsIL-15 intravenously five times. Tumor growth was monitored using calipers and bioluminescence imaging. Toxicity of the nanoparticles was evaluated by measuring the body weight of the mice. RESULTS NK-EVsIL-15 showed significantly higher cytolytic activity toward human cancer cell lines (glioblastoma, breast cancer, and thyroid cancer) and simultaneously increased the expression of molecules associated with NK-cell cytotoxicity. When compared with NK-EVs, NK-EVsIL-15 significantly inhibited the growth of glioblastoma xenograft cells in mice. In addition, both NK-EVs and NK-EVsIL-15 were not significantly toxic to either normal cells or mice. CONCLUSION IL-15 may improve the immunotherapeutic effects of NK-EVs, thus improving the applications of NK-EVs in the future.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea.
| |
Collapse
|
257
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
258
|
Zhang X, Qiu M, Guo P, Lian Y, Xu E, Su J. Autologous Red Blood Cell Delivery of Betamethasone Phosphate Sodium for Long Anti-Inflammation. Pharmaceutics 2018; 10:pharmaceutics10040286. [PMID: 30567356 PMCID: PMC6320894 DOI: 10.3390/pharmaceutics10040286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/30/2022] Open
Abstract
Although glucocorticoids are highly effective in treating various types of inflammation such as skin disease, rheumatic disease, and allergic disease, their application have been seriously limited for their high incidence of side effects, particularly in long term treatment. To improve efficacy and reduce side effects, we encapsulated betamethasone phosphate (BSP) into biocompatible red blood cells (RBCs) and explored its long acting-effect. BSP was loaded into rat autologous erythrocytes by hypotonic preswelling method, and the loading amount was about 2.5 mg/mL cells. In vitro, BSP loaded RBCs (BSP-RBCs) presented similar morphology, osmotic fragility to native RBCs (NRBCs). After the loading process, the loaded cells can maintain around 70% of Na+/K+-ATPase activity of natural cells. In vivo, a series of tests including survival, pharmacokinetics, and anti-inflammatory effect were carried out to examine the long-acting effect of BSP-RBCs. The results shown that the loaded cells could circulate in plasma for over nine days, the release of BSP can last for over seven days and the anti-inflammatory effect can still be observed on day 5 after injection. Totally, BSP-loaded autologous erythrocytes seem to be a promising sustained releasing delivery system with long anti-inflammatory effect.
Collapse
Affiliation(s)
- Xiumei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pengcheng Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yumei Lian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Enge Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
259
|
Letko Khait N, Malkah N, Kaneti G, Fried L, Cohen Anavy N, Bronshtein T, Machluf M. Radiolabeling of cell membrane-based nano-vesicles with 14C-linoleic acid for robust and sensitive quantification of their biodistribution. J Control Release 2018; 293:215-223. [PMID: 30527755 DOI: 10.1016/j.jconrel.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
The rapid development of biomimetic cell membrane-based nanoparticles is still overshadowed by many practical challenges, one of which is the difficulty to precisely measure the biodistribution of such nanoparticles. Currently, this challenge is mostly addressed using fluorescent techniques with limited sensitivity, or radioactive labeling methods, which rarely account for the nanoparticles themselves, but their payloads instead. Here we report the development of a robust method for the innate radioactive labeling of cells and membrane-based nanoparticles and their consequent sensitive detection and biodistribution measurements. The preclinical potential of this method was demonstrated with Nano-Ghosts (NGs), manufactured from the cytoplasmic membranes of mesenchymal stem cells cultured with radioactively-labeled linoleic acid and achieving a cell labeling efficiency of 36%. Radiolabeling did not affect the physiochemical properties of the NGs, which stably retained their radiolabels. Using radioactivity measurements, we are now able to determine precisely the amount of NGs uptaken by tissues and cells, thereby providing further support to our presumed active NG targeting mechanisms. Biodistribution studies comparing radiolabeled NGs to fluorescently-labeled ones have validated our method and revealed new information, which could not be obtained otherwise, regarding the NGs' unique kinetics and rapid clearance, supporting their excellent safety profiles. The reported approach may be expanded to other membrane-based entities to facilitate and hasten their preclinical development and be used in parallel with other labeling methods to provide different and additional information.
Collapse
Affiliation(s)
- Nitzan Letko Khait
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Natali Malkah
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Galoz Kaneti
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Lital Fried
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Cohen Anavy
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Tomer Bronshtein
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelle Machluf
- The Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
260
|
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Fan Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
261
|
He H, Guo C, Wang J, Korzun WJ, Wang XY, Ghosh S, Yang H. Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. NANO LETTERS 2018; 18:6164-6174. [PMID: 30207473 PMCID: PMC6292712 DOI: 10.1021/acs.nanolett.8b01892] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell membrane-camouflaged nanoparticles have appeared as a promising platform to develop active tumor targeting nanomedicines. To evade the immune surveillance, we designed a composite cell membrane-camouflaged biomimetic nanoplatform, namely, leutusome, which is made of liposomal nanoparticles incorporating plasma membrane components derived from both leukocytes (murine J774A.1 cells) and tumor cells (head and neck tumor cells HN12). Exogenous phospholipids were used as building blocks to fuse with two cell membranes to form liposomal nanoparticles. Liposomal nanoparticles made of exogenous phospholipids only or in combination with one type of cell membrane were fabricated and compared. The anticancer drug paclitaxel (PTX) was used to make drug-encapsulating liposomal nanoparticles. Leutusome resembling characteristic plasma membrane components of the two cell membranes were examined and confirmed in vitro. A xenograft mouse model of head and neck cancer was used to profile the blood clearance kinetics, biodistribution, and antitumor efficacy of the different liposomal nanoparticles. The results demonstrated that leutusome obtained prolonged blood circulation and was most efficient accumulating at the tumor site (79.1 ± 6.6% ID per gram of tumor). Similarly, leutusome composed of membrane fractions of B16 melanoma cells and leukocytes (J774A.1) showed prominent accumulation within the B16 tumor, suggesting the generalization of the approach. Furthermore, PTX-encapsulating leutusome was found to most potently inhibit tumor growth while not causing systemic adverse effects.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - William J. Korzun
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
262
|
Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. NANO RESEARCH 2018; 11:4999-5016. [PMID: 31772723 PMCID: PMC6879063 DOI: 10.1007/s12274-018-2083-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 05/20/2023]
Abstract
Since the emergence of cancer nanomedicine, researchers have had intense interest in developing nanoparticles (NPs) that can specifically target diseased sites while avoiding healthy tissue to mitigate the off-target effects seen with conventional treatments like chemotherapy. Initial endeavors focused on the bioconjugation of targeting agents to NPs, and more recently, researchers have begun to develop biomimetic NP platforms that can avoid immune recognition to maximally accumulate in tumors. In this review, we describe the advantages and limitations of each of these targeting strategies. First, we review developments in bioconjugation strategies, where NPs are coated with biomolecules such as antibodies, aptamers, peptides, and small molecules to enable cell-specific binding. While bioconjugated NPs offer many exciting features and have improved pharmacokinetics and biodistribution relative to unmodified NPs, they are still recognized by the body as "foreign", resulting in their clearance by the mononuclear phagocytic system (MPS). To overcome this limitation, researchers have recently begun to investigate biomimetic approaches that can hide NPs from immune recognition and reduce clearance by the MPS. These biomimetic NPs fall into two distinct categories: synthetic NPs that present naturally occurring structures, and NPs that are completely disguised by natural structures. Overall, bioconjugated and biomimetic NPs have substantial potential to improve upon conventional treatments by reducing off-target effects through site-specific delivery, and they show great promise for future standards of care. Here, we provide a summary of each strategy, discuss considerations for their design moving forward, and highlight their potential clinical impact on cancer therapy.
Collapse
Affiliation(s)
- Danielle M Valcourt
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jenna Harris
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
| | - Rachel S Riley
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan Dang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jianxin Wang
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- 161 Colburn Lab, Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- 201 DuPont Hall, Department of Materials Science & Engineering, University of Delaware, Newark, DE 19716, USA
- 4701 Ogletown Stanton Road, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
263
|
Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, Jeong GJ, Kwon SP, Song SY, Go S, Jung M, Hong J, Kim BS. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS NANO 2018; 12:8977-8993. [PMID: 30133260 DOI: 10.1021/acsnano.8b02446] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer immunotherapy modulates immune cells to induce antitumor immune responses. Tumors employ immune checkpoints to evade immune cell attacks. Immune checkpoint inhibitors such as anti-PD-L1 antibody (aPD-L1), which is being used clinically for cancer treatments, can block immune checkpoints so that the immune system can attack tumors. However, immune checkpoint inhibitor therapy may be hampered by polarization of macrophages within the tumor microenvironment (TME) into M2 tumor-associated macrophages (TAMs), which suppress antitumor immune responses and promote tumor growth by releasing anti-inflammatory cytokines and angiogenic factors. In this study, we used exosome-mimetic nanovesicles derived from M1 macrophages (M1NVs) to repolarize M2 TAMs to M1 macrophages that release pro-inflammatory cytokines and induce antitumor immune responses and investigated whether the macrophage repolarization can potentiate the anticancer efficacy of aPD-L1. M1NV treatment induced successful polarization of M2 macrophages to M1 macrophages in vitro and in vivo. Intravenous injection of M1NVs into tumor-bearing mice suppressed tumor growth. Importantly, injection of a combination of M1NVs and aPD-L1 further reduced the tumor size, compared to the injection of either M1NVs or aPD-L1 alone. Thus, our study indicates that M1NV injection can repolarize M2 TAMs to M1 macrophages and potentiate antitumor efficacy of the checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Yeon Woong Choo
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jin Han
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokyung Kang
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Gun-Jae Jeong
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Republic of Korea
- Interdisciplinary Program for Bioengineering , Seoul National University , Seoul 08826 , Republic of Korea
- Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
264
|
Chen H, Sha H, Zhang L, Qian H, Chen F, Ding N, Ji L, Zhu A, Xu Q, Meng F, Yu L, Zhou Y, Liu B. Lipid insertion enables targeted functionalization of paclitaxel-loaded erythrocyte membrane nanosystem by tumor-penetrating bispecific recombinant protein. Int J Nanomedicine 2018; 13:5347-5359. [PMID: 30254439 PMCID: PMC6141126 DOI: 10.2147/ijn.s165109] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background There is currently much interest in cancer cell targeting and tumor penetrating for research and therapeutic purposes. Purpose To improve targeting delivery of antitumor drugs to gastric cancer, in this study, a tumor-targeting biocompatible drug delivery system derived from erythrocyte membrane for delivering paclitaxel (PTX) was constructed. Methods Erythrocyte membrane of human red blood cells (RBCs) were used for preparing of erythrocyte membrane-derived vesicles. 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(maleimide[polyethylene glycol]-3400) (DSPE-PEG-MAL), a phospholipid derivative, was used to insert tumor-targeting molecular into erythrocyte membrane-derived vesicles. A lipid insertion method was used to functionalize these vesicles without the need for direct chemical conjugation. Furthermore, a tumor-penetrating bispecific recombinant protein named anti-EGFR-iRGD was used for the first time in this work to enable nanosystem to target and penetrate efficiently into the tumor site. Results Paclitaxel (PTX)-loaded anti-EGFR-iRGD-modified erythrocyte membrane nano-system (anti-EGFR-iRGD-RBCm-PTX, abbreviated to PRP) were manufactured. PRP was spheroid, uniformly size, about 171.7±4.7 nm in average, could be stable in vitro for 8 days, and released PTX in a biphasic pattern. PRP showed comparable cytotoxicity toward human gastric cancer cells in vitro. In vivo studies showed that, PRP accumulated in tumor site within 2 h of administration, lasted longer than 48 h, and the tumor volume was reduced 61% by PRP treatment in Balb/c nude mice, without causing severe side effects. Conclusion PRP has potential applications in cancer treatment and as an adjunct for other anticancer strategies.
Collapse
Affiliation(s)
- Hong Chen
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China, .,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, .,Department of Oncology, Yixing People's Hospital, Jiangsu, People's Republic of China,
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Fangjun Chen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Naiqin Ding
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Liulian Ji
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Anqing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| | - Yan Zhou
- Department of Oncology, Yixing People's Hospital, Jiangsu, People's Republic of China,
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People's Republic of China, .,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China,
| |
Collapse
|
265
|
Hao X, Li Q, Wang H, Muhammad K, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. Red-blood-cell-mimetic gene delivery systems for long circulation and high transfection efficiency in ECs. J Mater Chem B 2018; 6:5975-5985. [PMID: 32254717 DOI: 10.1039/c8tb01789a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, the red blood cell (RBC) membrane has been used as a mimetic nanocoating for nanoparticles for drug delivery systems to promote their biocompatibility. In the present study, the nano-sized RBC membrane was coated on the surface of gene complexes through electrostatic interactions to prepare biomimetic gene delivery systems so as to improve their biocompatibility and prolong their circulation time in vivo. The structure of the biomimetic gene delivery systems was determined by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). They exhibited low cytotoxicity and high transfection efficiency in endothelial cells (ECs), which could improve the migration ability of ECs. Besides, the biomimetic gene delivery systems exhibited strong immune evasion and long in vivo circulation time. The phagocytic rate of these biomimetic gene delivery systems reduced 52% compared with that of the PLGA-PEI/pZNF580 control group (without RBC membrane modification). Their circulation time in vivo was more than 2 times higher than that of the control group. Consequently, we provide a simple method for the preparation of camouflaged gene delivery systems, which can further facilitate the development of a gene delivery platform for the therapy of vascular diseases via enhancing EC transfection. This strategy will open up a new avenue for gene delivery systems by RBC membrane camouflage.
Collapse
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Zhang D, Lee H, Wang X, Rai A, Groot M, Jin Y. Exosome-Mediated Small RNA Delivery: A Novel Therapeutic Approach for Inflammatory Lung Responses. Mol Ther 2018; 26:2119-2130. [PMID: 30005869 PMCID: PMC6127502 DOI: 10.1016/j.ymthe.2018.06.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 02/08/2023] Open
Abstract
Exosomes (EXOs) are a type of extracellular nanovesicles released from living cells. Accumulating evidence suggests that EXOs are involved in the pathogenesis of human diseases, including lung conditions. In recent years, the potential of EXO-mediated drug delivery has gained increasing interest. In this report, we investigated whether inhaled EXOs serve as an efficient and practical delivery vehicle to activate or inhibit alveolar macrophages (AMs), subsequently modulating pulmonary immune responses. We first identified the recipient cells of the inhaled EXOs, which were labeled with PKH26. We found that only lung macrophages efficiently take up intratracheally instilled EXOs in vivo. Using modified calcium chloride-mediated transformation, we manipulated small RNA molecules in serum-derived EXOs, including siRNAs, microRNA (miRNA) mimics, and miRNA inhibitors. Via intratracheal instillation, we successfully delivered siRNA and miRNA mimics or inhibitors into lung macrophages using the serum-derived EXOs as vehicles. Furthermore, EXO siRNA or miRNA molecules are functional in modulating LPS-induced lung inflammation in vivo. Beneficially, serum-derived EXOs themselves do not trigger lung immune responses, adding more favorable features to serve as drug delivery agents. Collectively, we developed a novel protocol using serum-derived EXOs to deliver designated small RNA molecules into lung macrophages in vivo, potentially shedding light on future gene therapy of human lung diseases.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Xiaoyun Wang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ashish Rai
- North Shore Medical Center, Salem Hospital, Boston, MA 01970, USA
| | - Michael Groot
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA.
| |
Collapse
|
267
|
Lang T, Yin Q, Li Y. Progress of Cell-Derived Biomimetic Drug Delivery Systems for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 501 Haike Road Shanghai 201203 China
- School of Pharmacy; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
268
|
Zhu L, Gangadaran P, Kalimuthu S, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:S166-S179. [PMID: 30092165 DOI: 10.1080/21691401.2018.1489824] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Exosomes are endogenous nanocarriers that can deliver biological information between cells. They are secreted by all cell types, including immune cells such as natural killer (NK) cells. However, mammalian cells release low quantities of exosomes, and the purification of exosomes is difficult. Here, nanovesicles were developed by extrusion of NK cells through filters with progressively smaller pore sizes to obtain exosome mimetics (NK-EM). The anti-tumour effect of the NK-EM was confirmed in vitro and in vivo. The morphological features of the NK-EM were revealed by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot. In vitro, the cytotoxicity of the NK-EM to cancer cells (glioblastoma, breast carcinoma, anaplastic thyroid cancer and hepatic carcinoma) was assessed using bioluminescence imaging (BLI) and CCK-8 assay. For in vivo study, a xenograft glioblastoma mouse model was established. The anti-tumour activity of NK-EM was confirmed in vivo by the significant decreases of BLI, size and weight (all p < .001) of the tumour compared with the control group. Moreover, NK-EM cytotoxicity for glioblastoma cells that related with decreased levels of the cell survival markers p-ERK and p-AKT, and increased levels of apoptosis protein markers cleaved-caspase 3, cytochrome-c and cleaved-PARP was confirmed. All those results suggest that NK-EM exert stronger killing effects to cancer cells compared with the traditional NK-Exo, at the same time, the tumour targeting ability of the NK-EM was obtained in vivo. Therefore, NK-EM might be a promising immunotherapeutic agent for treatment of cancer.
Collapse
Affiliation(s)
- Liya Zhu
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Prakash Gangadaran
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Senthilkumar Kalimuthu
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Ji Min Oh
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Se Hwan Baek
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Shin Young Jeong
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Sang-Woo Lee
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Jaetae Lee
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Byeong-Cheol Ahn
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| |
Collapse
|
269
|
Liu T, Shi C, Duan L, Zhang Z, Luo L, Goel S, Cai W, Chen T. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. J Mater Chem B 2018; 6:4756-4764. [PMID: 30450208 PMCID: PMC6234506 DOI: 10.1039/c8tb01398e] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy is a vitally important strategy for clinical treatment of malignant cancers. Therefore, rational design and development of radiosensitizers that could enhance radiotherapeutic efficacy has attracted tremendous attention. Antiangiogenesis therapy could be a potentially effective strategy to regulate tumor growth and metastasis due to angiogenesis plays a pivotal role for tumor growth, invasion and metastasis to other organs. Herein, we have rationally designed a smart and effective nanosystem by combining ultrasmall selenium nanoparticles and bevacizumab (Avastin™, Av), for simultaneous radiotherapy and antiangiogenic therapy of cancer. The nanosystem was further coated with red blood cell (RBC) membranes to develop the final construct, RBCs@Se/Av. The RBC membrane coating effectively prolongs the blood circulation time and reduces the elimination of the nanosystem by autoimmune responses. As expected, RBCs@Se/Av, when irradiated with X-ray demonstrated potent anticancer and antiangiogenesis response in vitro and in vivo, as evidenced by strong inhibition of A375 tumor growth in nude mice, without causing any obvious histological damage to the non-target major organs. Taken together, this study demonstrates an effective strategy for design of smart Se-based nanosystem decorated with RBC membrane for simultaneous cancer radiosensitization and precise antiangiogenesis.
Collapse
Affiliation(s)
- Ting Liu
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Changzheng Shi
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Linqi Duan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zehang Zhang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Liangping Luo
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shreya Goel
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
270
|
Mac JT, Vankayala R, Patel DK, Wueste S, Anvari B. Erythrocyte-Derived Optical Nanoprobes Doped with Indocyanine Green-Bound Albumin: Material Characteristics and Evaluation for Cancer Cell Imaging. ACS Biomater Sci Eng 2018; 4:3055-3062. [PMID: 33435025 DOI: 10.1021/acsbiomaterials.8b00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosize structures activated by near-infrared (NIR) photoexcitation can provide an optical platform for the image-guided removal of small tumor nodules. We have engineered nanoparticles derived from erythrocytes that can be doped with NIR fluorophore indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-derived transducers (NETs). The objective of this study was to determine if ICG-bound albumin (IbA), as the doping material, could enhance the fluorescence emission of NETs, and evaluate the capability of these nanoprobes in imaging cancer cells. Erythrocytes were isolated from bovine whole blood and depleted of hemoglobin to form erythrocyte ghosts (EGs). EGs were then extruded through nanosize porous membranes in the presence of 10-100 μm ICG or Iba (1:1 molar ratio) to form ICG- or IbA-doped NETs. The resulting nanosize constructs were characterized for their diameters, zeta-potentials, absorption, and fluorescence emission spectra. We used fluorescence microscopic imaging to evaluate the capability of the constructs in imaging SKOV3 ovarian cancer cells. Based on dynamic light-scattering measurements, ICG- and IbA-doped NETs had similar diameter distributions (Z-average diameter of 236 and 238 nm, respectively) in phosphate-buffered saline supplemented with 10% fetal bovine serum, which remained nearly constant over the course of 2 h at 37 °C. Despite a much-lower loading efficiency of IbA (∼0.7-8%) as compared to ICG (10-45%), the integrated normalized fluorescence emission of IbA-NETs was 2- to 6-fold higher than ICG-doped NETs. IbA-NETs also demonstrated an enhanced capability in fluorescence imaging of SKOV3 ovarian cancer cells, and can serve as potentially effective nanoprobes for the fluorescence imaging of cancerous cells.
Collapse
|
271
|
Gao C, Lin Z, Lin X, He Q. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing; State Key Laboratory of Robotics and Systems; Micro/Nano Technology Research Center; Harbin Institute of Technology; 2 Yikuang Street Harbin 150080 China
| |
Collapse
|
272
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
273
|
Borri C, Centi S, Ratto F, Pini R. Polylysine as a functional biopolymer to couple gold nanorods to tumor-tropic cells. J Nanobiotechnology 2018; 16:50. [PMID: 29855304 PMCID: PMC5984317 DOI: 10.1186/s12951-018-0377-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit the inherent features of tumor-tropic cells for the creation of a Trojan horse is emerging as a plausible alternative. RESULTS We report on a convenient approach to load cationic gold nanorods into murine macrophages that exhibit chemotactic sensitivity to track gradients of inflammatory stimuli. In particular, we compare a new model of poly-L-lysine-coated particles against two alternatives of cationic moieties that we have presented elsewhere, i.e. a small quaternary ammonium compound and an arginine-rich cell-penetrating peptide. Murine macrophages that are exposed to poly-L-lysine-coated gold nanorods at a dosage of 400 µM Au for 24 h undertake efficient uptake, i.e. around 3 pg Au per cell, retain the majority of their cargo until 24 h post-treatment and maintain around 90% of their pristine viability, chemotactic and pro-inflammatory functions. CONCLUSIONS With respect to previous models of cationic coatings, poly-L-lysine is a competitive solution for the preparation of biological vehicles of gold nanorods, especially for applications that may require longer life span of the Trojan horse, say in the order of 24 h. This biopolymer combines the cost-effectiveness of small molecules and biocompatibility and efficiency of natural peptides and thus holds potential for translational developments.
Collapse
Affiliation(s)
- Claudia Borri
- Institute of Applied Physics ‘N. Carrara’, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
- Department of Experimental and Clinical Biomedical Sciences ‘M. Serio’, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy
| | - Sonia Centi
- Institute of Applied Physics ‘N. Carrara’, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics ‘N. Carrara’, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics ‘N. Carrara’, National Research Council of Italy, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
274
|
Shao J, Abdelghani M, Shen G, Cao S, Williams DS, van Hest JCM. Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS NANO 2018; 12:4877-4885. [PMID: 29733578 PMCID: PMC5968433 DOI: 10.1021/acsnano.8b01772] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
We report the construction of erythrocyte membrane-cloaked Janus polymeric motors (EM-JPMs) which are propelled by near-infrared (NIR) laser irradiation and are successfully applied in thrombus ablation. Chitosan (a natural polysaccharide with positive charge, CHI) and heparin (glycosaminoglycan with negative charge, Hep) were selected as wall materials to construct biodegradable and biocompatible capsules through the layer-by-layer self-assembly technique. By partially coating the capsule with a gold (Au) layer through sputter coating, a NIR-responsive Janus structure was obtained. Due to the asymmetric distribution of Au, a local thermal gradient was generated upon NIR irradiation, resulting in the movement of the JPMs through the self-thermophoresis effect. The reversible "on/off" motion of the JPMs and their motile behavior were easily tuned by the incident NIR laser intensity. After biointerfacing the Janus capsules with an erythrocyte membrane, the EM-JPMs displayed red blood cell related properties, which enabled them to move efficiently in relevant biological environments (cell culture, serum, and blood). Furthermore, this therapeutic platform exhibited excellent performance in ablation of thrombus through photothermal therapy. As man-made micromotors, these biohybrid EM-JPMs hold great promise of navigating in vivo for active delivery while overcoming the drawbacks of existing synthetic therapeutic platforms. We expect that this biohybrid motor has considerable potential to be widely used in the biomedical field.
Collapse
|
275
|
Abstract
In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.
Collapse
|
276
|
Chu D, Dong X, Shi X, Zhang C, Wang Z. Neutrophil-Based Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706245. [PMID: 29577477 PMCID: PMC6161715 DOI: 10.1002/adma.201706245] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Indexed: 05/19/2023]
Abstract
White blood cells (WBCs) are a major component of immunity in response to pathogen invasion. Neutrophils are the most abundant WBCs in humans, playing a central role in acute inflammation induced by pathogens. Adhesion to vasculature and tissue infiltration of neutrophils are key processes in acute inflammation. Many inflammatory/autoimmune disorders and cancer therapies have been found to be involved in activation and tissue infiltration of neutrophils. A promising strategy to develop novel targeted drug delivery systems is the targeting and exploitation of activated neutrophils. Herein, a new drug delivery platform based on neutrophils is reviewed. There are two types of drug delivery systems: neutrophils as carriers and neutrophil-membrane-derived nanovesicles. It is discussed how nanoparticles hijack neutrophils in vivo to deliver therapeutics across blood vessel barriers and how neutrophil-membrane-derived nanovesicles target inflamed vasculature. Finally, the potential applications of neutrophil-based drug delivery systems in treating inflammation and cancers are presented.
Collapse
Affiliation(s)
- Dafeng Chu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Xutong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Canyang Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington 99210, United States
| |
Collapse
|
277
|
Zhang X, Wang C, Wang J, Hu Q, Langworthy B, Ye Y, Sun W, Lin J, Wang T, Fine J, Cheng H, Dotti G, Huang P, Gu Z. PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707112. [PMID: 29656492 DOI: 10.1002/adma.201707112] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/20/2018] [Indexed: 05/21/2023]
Abstract
Cancer cells resist to the host immune antitumor response via multiple suppressive mechanisms, including the overexpression of PD-L1 that exhausts antigen-specific CD8+ T cells through PD-1 receptors. Checkpoint blockade antibodies against PD-1 or PD-L1 have shown unprecedented clinical responses. However, limited host response rate underlines the need to develop alternative engineering approaches. Here, engineered cellular nanovesicles (NVs) presenting PD-1 receptors on their membranes, which enhance antitumor responses by disrupting the PD-1/PD-L1 immune inhibitory axis, are reported. PD-1 NVs exhibit a long circulation and can bind to the PD-L1 on melanoma cancer cells. Furthermore, 1-methyl-tryptophan, an inhibitor of indoleamine 2,3-dioxygenase can be loaded into the PD-1 NVs to synergistically disrupt another immune tolerance pathway in the tumor microenvironment. Additionally, PD-1 NVs remarkably increase the density of CD8+ tumor infiltrating lymphocytes in the tumor margin, which directly drive tumor regression.
Collapse
Affiliation(s)
- Xudong Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Benjamin Langworthy
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jason Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
278
|
Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703493. [PMID: 29468837 DOI: 10.1002/smll.201703493] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Indexed: 05/20/2023]
Abstract
Template synthesis represents an important class of nanofabrication methods. Herein, recent advances in nanomaterial preparation by extrusion through nanoporous membranes that preserve the template membrane without sacrificing it, which is termed as "non-sacrificing template synthesis," are reviewed. First, the types of nanoporous membranes used in nanoporous membrane extrusion applications are introduced. Next, four common nanoporous membrane extrusion strategies: vesicle extrusion, membrane emulsification, precipitation extrusion, and biological membrane extrusion, are examined. These methods have been utilized to prepare a wide range of nanomaterials, including liposomes, emulsions, nanoparticles, nanofibers, and nanotubes. The principle and historical context of each specific technology are discussed, presenting prominent examples and evaluating their positive and negative features. Finally, the current challenges and future opportunities of nanoporous membrane extrusion methods are discussed.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan road, Shanghai, 200240, China
| | - Charles R Martin
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
279
|
Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018; 23:934-943. [DOI: 10.1016/j.drudis.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
280
|
Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, Zheng J, Shi X, Yan X, Wang Y. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Am J Cancer Res 2018; 8:2683-2695. [PMID: 29774068 PMCID: PMC5957002 DOI: 10.7150/thno.23654] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 11/24/2022] Open
Abstract
Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.
Collapse
|
281
|
Zhu J, Zhang M, Zheng D, Hong S, Feng J, Zhang XZ. A Universal Approach to Render Nanomedicine with Biological Identity Derived from Cell Membranes. Biomacromolecules 2018; 19:2043-2052. [PMID: 29584410 DOI: 10.1021/acs.biomac.8b00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomimetic nanoengineering built through integrating the specific cell membrane with artificially synthetic nanomedicines represents one of the most promising directions for the actualization of personalized therapy. For addressing the technical hurdle against the development of this biomimetic technology, the present report describes the in-depth exploration and optimization over each critical preparation step, including establishment of a nanoparticle-stabilized dispersion system, cargo loading, membrane coating, and product isolation. Magnetic iron oxide nanoparticles loaded with DOX is used as a typical model for the coating with cancer cell membranes, providing compact DNP@CCCM nanostructure well-characterized by various techniques. Furthermore, the feasibility of this optimized approach in constructing biomimetic membrane-coated nanomedicines has been validated on the basis of the remarkably improved biofunctions, such as the targetability, magnetic property, hemolysis risk, macrophage evasion, in vitro cytotoxicity, in vivo circulation duration, and in vivo principal component analysis postinjection. We hope this study regarding technique optimization will prompt the advancement of biomembrane-camouflaged nanoparticles as a newly emerging biomimetic technology.
Collapse
Affiliation(s)
- Jingyi Zhu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China.,Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Diwei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Sheng Hong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
282
|
Zhang K, Cao Y, Kuang Y, Liu M, Chen Y, Wang Z, Hong S, Wang J, Pei R. Gd 2O 3 and GH combined with red blood cells to improve the sensitivity of contrast agents for cancer targeting MR imaging. Biomater Sci 2018; 5:46-49. [PMID: 27840866 DOI: 10.1039/c6bm00627b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we fabricated efficient MR imaging probes by incorporating gadolinium oxide nanoparticles (Gd2O3) and gadolinium hybrid nanoparticles (GH) within RBCs. The Gd2O3 and GH encapsulated in the RBCs exhibited high relaxation rates and revealed high sensitivity for T1 MR imaging.
Collapse
Affiliation(s)
- Kunchi Zhang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cao
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ye Kuang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Min Liu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yang Chen
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhili Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
283
|
Ding S, O'Banion CP, Welfare JG, Lawrence DS. Cellular Cyborgs: On the Precipice of a Drug Delivery Revolution. Cell Chem Biol 2018; 25:648-658. [PMID: 29628434 DOI: 10.1016/j.chembiol.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cell-based drug delivery systems offer the prospect of biocompatibility, large-loading capacity, long in vivo lifespan, and active targeting of diseased sites. However, these opportunities are offset by an array of challenges, including safeguarding the integrity of the drug cargo and the cellular host, as well as ensuring that drug release occurs at the appropriate time and place. Emerging strategies that address these, and related, issues, are described herein.
Collapse
Affiliation(s)
- Song Ding
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
284
|
Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018; 542:242-252. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/05/2023]
Abstract
Paclitaxel (PTX) belongs to a class of taxane anti-tumor drug used for the clinic treatment of breast cancer, ovarian cancer, non-small-cell lung cancer, and so on. PTX has poor water solubility and oral bioavailability. It is generally administered via intravenous (i.v.) infusion. Traditional PTX injectable preparations contain Cremophor-EL and ethanol to improve its solubility, which would result in adverse reactions like severe hypersensitivity, neutropenia, etc. Adverse reactions can be reduced only by complicated pretreatment with glucocorticoid and antihistamines drugs and followed by PTX slow infusion for three hours, which has brought significant inconvenience to the patients. Though, a new-generation PTX formulation, Abraxane, free of Cremophor-EL and ethanol, is still being administrated by frequent i.v. infusions and extremely expensive. Therefore, non-injection administration of PTX is urgently needed to avoid the side effects as well as reduce inconvenience to the patients. Recently, a variety of non-injection drug delivery systems (DDSs) of PTX have been developed. This review aims to discuss the progress of non-injectable administration systems of PTX, including oral administration systems, vaginal administration systems, implantable DDSs, transdermal DDSs and intranasal administration for the future study and clinical applications.
Collapse
Affiliation(s)
- Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
285
|
Abstract
Micro- and nano-motors are emerging as novel drug delivery platforms, offering advantages such as rapid drug transport, high tissue penetration and motion controllability. They can be propelled and/or guided by endogenous (i.e., chemotaxis) or exogenous stimuli (e.g., ultrasound, magnetic fields, light) toward the area of interest. Moreover, such stimuli can be used to trigger the release of a therapeutic payload when the motor reaches certain location in order to improve the drug targeting. In this review article, we highlight medically oriented micro-/nano-motors, in particular the ones created for targeted drug delivery, and discuss their current limitations and possibilities toward in vivo applications.
Collapse
|
286
|
Yang Y, Hong Y, Cho E, Kim GB, Kim IS. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles 2018; 7:1440131. [PMID: 29535849 PMCID: PMC5844050 DOI: 10.1080/20013078.2018.1440131] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/07/2018] [Indexed: 02/08/2023] Open
Abstract
Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Eunji Cho
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
287
|
Wang S, Dong X, Gao J, Wang Z. Targeting Inflammatory Vasculature by Extracellular Vesicles. AAPS JOURNAL 2018; 20:37. [PMID: 29484558 DOI: 10.1208/s12248-018-0200-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived compartments that regulate physiology and pathology in the body. Naturally secreted EVs have been well studied in their biogenesis and have been exploited in targeted drug delivery. Due to the limitations on production of EVs, nitrogen cavitation has been utilized to efficiently generate EV-like drug delivery systems used in treating inflammatory disorders. In this short review, we will discuss the production and purification of EVs, and we will summarize what technologies are needed to improve their production for translation. We describe the drug-loading processes in EVs and their applications as drug delivery systems for inflammatory therapies, focusing on a new type of EVs made from neutrophil membrane using nitrogen cavitation.
Collapse
Affiliation(s)
- Sihan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
288
|
Liu JM, Zhang DD, Fang GZ, Wang S. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 2018; 165:39-47. [PMID: 29501968 DOI: 10.1016/j.biomaterials.2018.02.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Combination of biological entities with functional nanostructure would produce the excellent systemic drug-delivery vehicles that possess the ability to cross the biological barriers. Herein, from a biomimetic point of view, erythrocyte membrane bioinspired optical nanocarrier is fabricated by integrating Red blood cell (RBC) membrane vesicle with near-infrared persistent luminescence nanophosphors (PLNPs). The triple-doped zinc gallogermanate nanostructures with super-long near-infrared persistent luminescence (ZGGO) are used as optical emission center, mesoporous silica coated on the PLNPs (ZGGO@mSiO2) is employed for drug delivery, and the RBC membrane vesicle is introduced for biomimetic functionalization to ensure the developed nanocarriers bypass macrophage uptake and systemic clearance. Owing to the coating of natural erythrocyte membrane along with membrane lipids and associated membrane proteins, the proposed bioinspired nanocarriers have exhibited cell-mimicking property. Retaining the applicability of PLNPs core that favored in vitro excitation, the developed RBC-ZGGO@mSiO2 biomimetic nanocarriers have demonstrated intense fluorescence, super-long persistent luminescence, monodispersed nanosize, red light renewability, and excellent biocompatibility. In vivo mice bioimaging and biodistribution study demonstrate the erythrocyte membrane bioinspired nanoprobe loaded with doxorubicin as ideal nanocarriers for long-circulating bioimaging, in situ real-time monitoring and drug delivery. We believe the PLNPs-based biomimetic nanocarriers offer a promising nano-platform for diagnostics and therapeutics application.
Collapse
Affiliation(s)
- Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dong-Dong Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
289
|
Wu T, Zhang D, Qiao Q, Qin X, Yang C, Kong M, Deng H, Zhang Z. Biomimetic Nanovesicles for Enhanced Antitumor Activity of Combinational Photothermal and Chemotherapy. Mol Pharm 2018; 15:1341-1352. [PMID: 29397741 DOI: 10.1021/acs.molpharmaceut.7b01142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of multiple modalities has shown great potential in cancer treatment with improved therapeutic effects and minimized side effects. Here, we fabricated a type of doxorubicin-encapsulated biomimetic nanovesicle (NV) by a facile method with near-infrared dye insertion in the membrane for combinatorial photothermal and chemotherapy. With innate biomimetic properties, NVs enhanced the uptake by tumor cells while reducing the phagocytosis of macrophages. Upon laser irradiation, NVs can convert the absorbed fluorescent energy into heat for effective tumor killing. Hyperthermia can further induce membrane ablation of NVs to accelerate the release of chemotherapeutic drug for potent cytotoxicity to tumor cells. The NVs improved drug accumulation and showed a more efficient in vivo photothermal effect with a rapid temperature increase in tumors. Moreover, the NV-based combinational photothermal and chemotherapy exhibited significant tumor growth suppression with a high inhibitory rate of 91.6% and negligible systemic toxicity. The results indicate that NVs could be an appealing vehicle for combinational cancer treatment.
Collapse
|
290
|
Smith WJ, Tran H, Griffin JI, Jones J, Vu VP, Nilewski L, Gianneschi N, Simberg D. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 2018; 161:57-68. [PMID: 29421563 DOI: 10.1016/j.biomaterials.2018.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
Abstract
Decoration of cell membranes with biomolecules, targeting ligands and imaging agents is an emerging strategy to improve functionality of cell-based therapies. Compared to covalent chemistry or genetic expression on the cell surface, lipid painting (i.e., incorporation of lipid-conjugated molecules into the cell bilayer) is a fast, non-damaging and less expensive approach. Previous studies demonstrated excellent incorporation and retention of distearyl indocarbocyanine dye DiI in membranes of cells in vitro and in vivo. In order to exploit the membrane stability of DiI, we synthesized an amino-DiI derivative, to which we subsequently conjugated an antibody (cetuximab), an enzyme (superoxide dismutase), and a small molecule (DyLight 800). Red blood cells have long been used as drug delivery vehicles so they were utilized as a model to study the incorporation of DiI conjugates in the plasma membrane. All the DiI constructs demonstrated fast and efficient ex vivo incorporation in the membrane of mouse RBCs, resulting in millions of exogenous molecules per RBC. Following an intravenous injection into mice, the molecules were detected on circulating RBCs for several days. DiI anchored molecules showed longer residence time in blood and significantly higher area under the curve (AUC) compared to free non-conjugated molecules. Thus, cetuximab, SOD and DyLight painted on RBC showed 5.5-fold, 6.5-fold and 78-fold increase in the AUC, respectively, compared to the non-modified molecules. Lipophilic indocarbocyanine anchors are a promising technology for incorporation of biomolecules and small molecules into biological membranes for in vivo applications.
Collapse
Affiliation(s)
- Weston J Smith
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Huy Tran
- Chemical and Biological Engineering Undergraduate Program, University of Colorado, Boulder, USA
| | - James I Griffin
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jessica Jones
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Vivian P Vu
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Lizanne Nilewski
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Nathan Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
291
|
Tao S, Guo S, Zhang C. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700449. [PMID: 29619297 PMCID: PMC5827100 DOI: 10.1002/advs.201700449] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Shi‐Cong Tao
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Shang‐Chun Guo
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Chang‐Qing Zhang
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
292
|
Timin AS, Litvak MM, Gorin DA, Atochina-Vasserman EN, Atochin DN, Sukhorukov GB. Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization. Adv Healthc Mater 2018; 7. [PMID: 29193876 DOI: 10.1002/adhm.201700818] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine.
Collapse
Affiliation(s)
- Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Maxim M. Litvak
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Dmitry A. Gorin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- Skoltech Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Skolkovo Innovation Center; Building 3 Moscow 143026 Russian Federation
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- RASA Center; Kazan Federal University; 18 Kremlyovskaya Street Kazan 42008 Russian Federation
- Pulmonary; Allergy and Critical Care Division; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Dmitriy N. Atochin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Cardiovascular Research Center; Massachusetts General Hospital; 149 East, 13 Street Charlestown MA 02129 USA
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
293
|
Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS NANO 2018; 12:327-337. [PMID: 29202221 DOI: 10.1021/acsnano.7b06398] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.
Collapse
Affiliation(s)
- Haifeng Xu
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Veronika Magdanz
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Lukas Schwarz
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden , Helmholtzstraße 20, 01069 Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology , Reichenhainer Straße 70, 09107 Chemnitz, Germany
| |
Collapse
|
294
|
Affiliation(s)
- Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
295
|
Zemljič Jokhadar Š, Klančnik U, Grundner M, Švelc Kebe T, Vrhovec Hartman S, Liović M, Derganc J. GPMVs in variable physiological conditions: could they be used for therapy delivery? BMC BIOPHYSICS 2018; 11:1. [PMID: 29308185 PMCID: PMC5751824 DOI: 10.1186/s13628-017-0041-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022]
Abstract
Background Cell based carriers are increasingly recognized as a good system for cargo delivery to cells. One of the reasons is their biocompatibility and low toxicity compared to artificial systems. Giant plasma membrane vesicles (GPMV) derive from the cell plasma membrane. Thus they offer the closest approximation to it, which makes them good candidates for potential drug delivery systems. To evaluate the applicability of GPMVs as carriers, we analyzed their basic biophysical properties to test their robustness in the face of changeable physiological conditions, as well as their ability to translocate across the membrane into cells. Results GPMVs formed from human umbilical vein endothelial cells (HUVEC) sustain a drastic osmotic challenge (50-500 mOsmoL/kg) unlike giant unilamelar vesicles (GUVs). In hyper-osmotic solutions the average volume decreases and membrane invaginations form, while in the hypo-osmolar buffer the volume of GPMVs increases and these changes were not reversible. The membranes of flaccid GPMVs started to wrinkle unevenly giving rise to buds after exposure to lipopolysaccharide (LPS). The shape changes in GUVs are reversible in contrast to GPMVs after LPS removal. GPMVs exposed to fluorescent LPS exhibited a signal that remained visible in some GPMVs even after LPS removal, which was never the case with GUVs. Calcein penetrated both into GUVs and GPMVs, however after the removal from the bulk solution some of the GPMVs still exhibited very bright signal, while in GUVs only a weak fluorescent signal was detected. We could also see that practically all GPMVs incorporated dextran initially, but after the dextran solution was changed with the initial non-fluorescent solution it remained only in 20% of them. The majority of HUVEC cells displayed a fluorescent signal after the incubation with GPMVs that contained fluorescently labeled dextran. Conclusion Our findings indicate that GPMVs behave quite differently from artificially made giant phospholipid vesicles and the changes induced by the different treatments we subjected them to are not reversible. We also demonstrate that different substances can be both loaded into them and delivered into cells, so GPMVs may be of potential use as cargo/therapy delivery systems.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Urška Klančnik
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Maja Grundner
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Tjaša Švelc Kebe
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.,Jožef Stefan Institute, Ljubljana, Slovenia
| | - Saša Vrhovec Hartman
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mirjana Liović
- Institute of biochemistry, Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Derganc
- Institute of biophysics, Faculty of medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
296
|
Zhang H, Chen J, Zhu X, Ren Y, Cao F, Zhu L, Hou L, Zhang H, Zhang Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. J Mater Chem B 2018; 6:6108-6121. [DOI: 10.1039/c8tb01788c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This ‘nanobomb’ can mechanically destroy tumor vessels, significantly relieve hypoxia within the tumor and reduce the microvessel density.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Jianjiao Chen
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xing Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yanping Ren
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Fang Cao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling Zhu
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Lin Hou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hongling Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases
| |
Collapse
|
297
|
Li SY, Xie BR, Cheng H, Li CX, Zhang MK, Qiu WX, Liu WL, Wang XS, Zhang XZ. A biomimetic theranostic O 2 -meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials 2018; 151:1-12. [DOI: 10.1016/j.biomaterials.2017.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/24/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
298
|
Mesoporous silica for drug delivery: Interactions with model fluorescent lipid vesicles and live cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:19-26. [DOI: 10.1016/j.jphotobiol.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023]
|
299
|
Cell Membrane Coated Nanoparticles: An Emerging Biomimetic Nanoplatform for Targeted Bioimaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:45-59. [PMID: 30471025 DOI: 10.1007/978-981-13-0445-3_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomimetic nanoplatform being a recent and emerging strategy plays an important role in a wide variety of applications. The different types of membranes used for coating include membranes from red blood cells, platelets, leucocytes, neutrophils, cancer cells, stem cells, etc. The as obtained membrane vesicles are fused onto the core nanoparticles through extrusion, sonication, electroporation. Biomimetic nanoparticles attain special functions which include ligand recognition and targeting, long blood circulation, immune escaping, tumor targeting depending on the core-shell interactions. The membrane coated nanoparticles indeed mimic the source cells and improves the therapeutic efficacy of drugs other cargos through specific delivery and enhanced accumulation in the tumor.
Collapse
|
300
|
Peng J, Yang Q, Li W, Tan L, Xiao Y, Chen L, Hao Y, Qian Z. Erythrocyte-Membrane-Coated Prussian Blue/Manganese Dioxide Nanoparticles as H 2O 2-Responsive Oxygen Generators To Enhance Cancer Chemotherapy/Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44410-44422. [PMID: 29210279 DOI: 10.1021/acsami.7b17022] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because of the nontargeting release of anticancer drugs, conventional chemotherapy results in serious side effects and poor therapeutic outcomes. In addition, hypoxia situation in the tumor microenvironment also promotes the growth and metastasis of tumors. Multifunctional nanocarriers with stimuli-activation and hypoxia-relieving properties can help overcome some of these limitations. In this study, we have constructed a nanocarrier which is named PBMn-DOX@RBC. A Prussian blue/manganese dioxide (PBMn) nanoparticle is used as an oxygen precursor or catalyzer for H2O2 activation, and a red blood cell (RBC) membrane is used to increase the loading capacity of doxorubicin (DOX) and prolong the circulation time in vivo. H2O2 is overproduced in tumor tissues and tumor cells. It can be used as a stimulus to activate drug release. In the presence of H2O2, the hypoxia inside the tumors is relieved by the administration of PBMn-DOX@RBC. The generated oxygen disrupts the RBC coated on the surface of PBMn, which accelerates the release of DOX. RBCs also prolong the circulation time of the nanometer system in vivo. By combining the photothermal therapy (PTT) and chemotherapy, the tumor growth inhibition mediated by PBMn-DOX@RBC is further enhanced. PBMn-DOX@RBC fulfills the demands to relieve tumor hypoxia and enhance cancer chemotherapy/PTT.
Collapse
Affiliation(s)
- Jinrong Peng
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Qian Yang
- School of Pharmacy, Chengdu Medical College , No. 783, Xindu Avenue, Xindu District, Chengdu, Sichuan, China
| | - Wenting Li
- Department of Pharmacy, West China Second University Hospital , Chengdu, Sichuan, P. R. China
| | - Liwei Tan
- Department of Pharmacy, West China Second University Hospital , Chengdu, Sichuan, P. R. China
| | - Yao Xiao
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Lijuan Chen
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Ying Hao
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| | - Zhiyong Qian
- State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, P. R. China
| |
Collapse
|