251
|
Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
252
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
253
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
254
|
Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. MATERIALS 2021; 14:ma14216551. [PMID: 34772074 PMCID: PMC8585152 DOI: 10.3390/ma14216551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Nanocomposites as drug delivery systems (e.g., metal nanoparticles) are being exploited for several applications in the biomedical field, from therapeutics to diagnostics. Green nanocomposites stand for nanoparticles of biocompatible, biodegradable and non-toxic profiles. When using metal nanoparticles for drug delivery, the question of how hazardous these "virus-sized particles" can be is posed, due to their nanometer size range with enhanced reactivity compared to their respective bulk counterparts. These structures exhibit a high risk of being internalized by cells and interacting with the genetic material, with the possibility of inducing DNA damage. The Comet Assay, or Single-Cell Gel Electrophoresis (SCGE), stands out for its capacity to detect DNA strand breaks in eukaryotic cells. It has huge potential in the genotoxicity assessment of nanoparticles and respective cells' interactions. In this review, the Comet assay is described, discussing several examples of its application in the genotoxicity evaluation of nanoparticles commonly administered in a set of routes (oral, skin, inhaled, ocular and parenteral administration). In the nanoparticles boom era, where guidelines for their evaluation are still very limited, it is urgent to ensure their safety, alongside their quality and efficacy. Comet assay or SCGE can be considered an essential tool and a reliable source to achieve a better nanotoxicology assessment of metal nanoparticles used in drug delivery.
Collapse
|
255
|
Chen Z, Peng Y, Li Y, Xie X, Wei X, Yang G, Zhang H, Li N, Li T, Qin X, Li S, Wu C, You F, Yang H, Liu Y. Aptamer-Dendrimer Functionalized Magnetic Nano-Octahedrons: Theranostic Drug/Gene Delivery Platform for Near-Infrared/Magnetic Resonance Imaging-Guided Magnetochemotherapy. ACS NANO 2021; 15:16683-16696. [PMID: 34586789 DOI: 10.1021/acsnano.1c06667] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The combination of magnetic hyperthermia and chemotherapy within a nanosystem is thought to be a promising approach for cancer therapies. However, the nonspecific accumulation and fast clearance of magnetic nanoparticles in the physiological environment limited their further biomedical applications. Herein, we report a highly selective theranostic nanocomplex, ZIPP-Apt:DOX/siHSPs, built with superparamagnetic zinc-doped iron oxide nano-octahedral core, cationic PAMAM dendrimer, and functional surface modifications such as PEG, AS1411 aptamer, and fluorescent tags (FITC or Cy5.5), together with the loading of hydrophobic anticancer drug doxorubicin (DOX) and HSP70/HSP90 siRNAs. Our results demonstrate that the cellular uptake and the tumor-specific accumulation of ZIPP-Apt:DOX/siHSPs were significantly increased due to the AS1411-nucleolin affinity and further confirmed that the simultaneous depletion of HSP70 and HSP90 sensitized magnetic hyperthermia and chemotherapy-induced cell death both in vitro and in vivo. Altogether, our study provides a theranostic nanoplatform for aptamer-targeted, NIR/MR dual-modality imaging guided, and HSP70/HSP90 silencing sensitized magnetochemotherapy, which has the potential to advance versatile magnetic nanosystems toward clinical applications.
Collapse
Affiliation(s)
- Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Yichao Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiaodan Wei
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Geng Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ningxi Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| |
Collapse
|
256
|
Han W, Ke J, Guo F, Meng F, Li H, Wang L. Construction and antitumor properties of a targeted nano-drug carrier system responsive to the tumor microenvironment. Int J Pharm 2021; 608:121066. [PMID: 34481009 DOI: 10.1016/j.ijpharm.2021.121066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022]
Abstract
Doxorubicin (DOX) is one of the most commonly used and effective chemotherapy drugs among anthracyclines. An inherent limitation of DOX is its nonspecificity, which can cause serious side effects, thereby preventing the therapeutic use of high drug doses. In this study, we designed and created a simple nano-drug delivery system (PEG-MAF = P) with low biological toxicity that was responsive to the tumor environment. PEG-MAF = P was designed to self-assemble into nanospheres via control of a phenylalanine dipeptide (FF). The N-terminus of the peptide was linked to aldehyde groups at both ends of oxidized Pluronic F127 (F127-CHO) via Schiff bonds. The acidic environment surrounding the tumors was suitable for triggering the Schiff bonds, causing the nanospheres to disintegrate. The C-terminus of FF was connected to a ligand peptide, ATN-161, which was able to recognize cells expressing high levels of integrin α5β1 antigens both in vivo and in vitro. To prevent the impediment in drug release, PEG was linked via a matrix metalloproteinase-9 response peptide. Therefore, in an acidic tumor microenvironment containing MMP-9, PEG-MAF = P disintegrated and rapidly released the drug. PEG-MAF = P exhibited low cytotoxicity, high drug-loading rate, and excellent antitumor properties both in vivo and in vitro. Compared with free DOX, PEG-MAF = P-DOX reduced injury to normal tissues.
Collapse
Affiliation(s)
- Wenzhao Han
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Junfeng Ke
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Feng Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Fanwei Meng
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Hui Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
257
|
Cheng L, Niu MM, Yan T, Ma Z, Huang K, Yang L, Zhong X, Li C. Bioresponsive micro-to-nano albumin-based systems for targeted drug delivery against complex fungal infections. Acta Pharm Sin B 2021; 11:3220-3230. [PMID: 34729311 PMCID: PMC8546853 DOI: 10.1016/j.apsb.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
As a typical human pathogenic fungus, Cryptococcus neoformans is a life-threatening invasive fungal pathogen with a worldwide distribution causing ∼700,000 deaths annually. Cryptococcosis is not just an infection with multi-organ involvement, intracellular survival and extracellular multiplication of the fungus also play important roles in the pathogenesis of C. neoformans infections. Because adequate accumulation of drugs at target organs and cells is still difficult to achieve, an effective delivery strategy is desperately required to treat these infections. Here, we report a bioresponsive micro-to-nano (MTN) system that effectively clears the C. neoformans in vivo. This strategy is based on our in-depth study of the overexpression of matrix metalloproteinase 3 (MMP-3) in infectious microenvironments (IMEs) and secreted protein acidic and rich in cysteine (SPARC) in several associated target cells. In this MTN system, bovine serum albumin (BSA, a natural ligand of SPARC) was used for the preparation of nanoparticles (NPs), and then microspheres were constructed by conjugation with a special linker, which mainly consisted of a BSA-binding peptide and an MMP-3-responsive peptide. This MTN system was mechanically captured by the smallest capillaries of the lungs after intravenous injection, and then hydrolyzed into BSA NPs by MMP-3 in the IMEs. The NPs further targeted the lung tissue, brain and infected macrophages based on the overexpression of SPARC, reaching multiple targets and achieving efficient treatment. We have developed a size-tunable strategy where microspheres "shrink" to NPs in IMEs, which effectively combines active and passive targeting and may be especially powerful in the fight against complex fungal infections.
Collapse
Key Words
- Albumin
- AmB, amphotericin B
- BBB, blood‒brain barrier
- BSA, bovine serum albumin
- Complex fungal infection
- DDS, drug delivery system
- IME, infectious microenvironment
- MMP-3
- MMP-3, matrix metalloproteinase 3
- MTN, micro-to-nano
- Microenvironment responsive
- NP, nanoparticle
- PEG, polyethylene glycol
- PMVECs, pulmonary microvascular endothelial cells
- RFP, red fluorescent protein
- SPARC
- SPARC, secreted protein acidic and rich in cysteine
- Size-tunable strategy
Collapse
Affiliation(s)
- Liting Cheng
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Miao-Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Tong Yan
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Kexin Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ling Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhong
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
258
|
Iresha H, Kobayashi T. Ultrasound-triggered nicotine release from nicotine-loaded cellulose hydrogel. ULTRASONICS SONOCHEMISTRY 2021; 78:105710. [PMID: 34411843 PMCID: PMC8379513 DOI: 10.1016/j.ultsonch.2021.105710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 05/13/2023]
Abstract
Ultrasound (US)-triggered nicotine release system in a cellulose hydrogel drug carrier was developed with three different cellulose concentrations of 0.45 wt%, 0.9 wt%, and 1.8 wt%. The nicotine-loaded cellulose hydrogels were fabricated by the phase inversion method when the nicotine and cellulose mixture in the 6 wt% LiCl/N, N-dimethylacetamide solvent was exposed to water vapor at room temperature. Nicotine was used as the medicine due to its revealed therapeutic potential for neurodegenerative diseases like Alzheimer's and Parkinson's diseases. The behavior of US-triggered nicotine release from nicotine-cellulose hydrogel was studied at 43 kHz US frequency at the changing US output powers of 0 W, 5 W, 10 W, 20 W, 30 W, and 40 W. The significant US-triggered nicotine release enhancement was noted for the hydrogels made with 0.9 wt% and 1.8 wt% cellulose loading. The matrix made with 0.9 wt% cellulose was exhibited the highest nicotine release at the 40 W US power, and differences in nicotine release at different US powers were noticeable than at 0.45 wt% and 1.8 wt% cellulose loadings. For the three cellulose hydrogel systems, the storage modulus (G') values at the 0.01 wt% strain rate were dropped from their initial values due to the US irradiation. This reduction was proportionately decreased when the US power was increased. The deconvolution of FTIR spectra of nicotine-loaded cellulose films before and after US exposure was suggested breakage of cellulose-nicotine and cellulose-water in the matrix; thus, the stimulated nicotine release from the cellulose matrix was promoted by the US irradiation.
Collapse
Affiliation(s)
- Harshani Iresha
- Department of Energy and Environment Science, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Niigata, Japan
| | - Takaomi Kobayashi
- Department of Energy and Environment Science, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Niigata, Japan; Department of Science and Technology Innovation, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Niigata, Japan.
| |
Collapse
|
259
|
Attia MS, Hassaballah MY, Abdelqawy MA, Emad-Eldin M, Farag AK, Negida A, Ghaith H, Emam SE. An updated review of mesoporous carbon as a novel drug delivery system. Drug Dev Ind Pharm 2021; 47:1029-1037. [PMID: 34590548 DOI: 10.1080/03639045.2021.1988097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nanotechnology approach has been recently adopted to provide more reliable, effective, controlled, and safe drug delivery systems. Nanostructured materials have gained great interest, including siliceous and carbonaceous nanoparticles. The effectiveness of mesoporous carbon nanoparticles (MCNs) in tumor imaging, targeting, and treatment is urging for more future studies. MCNs possess superior properties such as their biocompatibility, large surface area, large pore volume, tunability, and more responsive behavior to internal and external release triggers. These outstanding features make MCNs more applicable for stimuli-responsive drug delivery than the conventional forms of mesoporous silica nanoparticles (MSNs) and other carbon nanoparticles. In this review, we outlined the latest updates regarding the safety, benefits, and potential applications of MCNs.
Collapse
Affiliation(s)
- Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | - Mahmoud Emad-Eldin
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Aya K Farag
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Negida
- Zagazig University Hospitals, Zagazig University, Zagazig, Egypt.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hazem Ghaith
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sherif E Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
260
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
261
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
262
|
López-Lugo JD, Pimentel-Domínguez R, Benítez-Martínez JA, Hernández-Cordero J, Vélez-Cordero JR, Sánchez-Arévalo FM. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules 2021; 26:molecules26175376. [PMID: 34500809 PMCID: PMC8433747 DOI: 10.3390/molecules26175376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites' photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.
Collapse
Affiliation(s)
- Jonathan David López-Lugo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Reinher Pimentel-Domínguez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Jorge Alejandro Benítez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Hernández-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
| | - Juan Rodrigo Vélez-Cordero
- Cátedras CONACyT-Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Francisco Manuel Sánchez-Arévalo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, México 04510, Mexico; (J.D.L.-L.); (R.P.-D.); (J.A.B.-M.); (J.H.-C.)
- Correspondence:
| |
Collapse
|
263
|
Dual targeting smart drug delivery system for multimodal synergistic combination cancer therapy with reduced cardiotoxicity. Acta Biomater 2021; 131:493-507. [PMID: 34139367 DOI: 10.1016/j.actbio.2021.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
This study first reports the development of a smart drug delivery system (DDS) for multimodal synergistic cancer therapy combining chemo-photothermal-starvation approaches. A magnetic photothermal agent was synthesized by preparing iron oxide (IO) nanoparticles (NPs) with covalently attached indocyanine green (ICG) and glucose oxidase (GOx) (ICGOx@IO). Synthesized ICGOx@IO NPs were co-encapsulated with doxorubicin (Dox) and EGCG ((-)-epigallocatechin-3-gallate) inside PLGA (poly(lactic-co-glycolic acid)) NPs using multiple emulsion solvent evaporation method. Such formulation gave the advantage of triggered drug release by near-infrared (NIR) laser irradiation (808 nm at 1 W/cm2). RGD peptide was attached to the surface of PLGA NPs and the final hydrodynamic size was around 210 nm. Dual targeting by peptide and 240 mT external magnet significantly improved cellular uptake. Cellular uptake was observed using FACS, electron and optical microscopy. Dual targeting along with laser irradiation could reduce in vitro cell viability by 90 ± 2% (Dox-equivalent dose: 10 µg/ml) and complete tumor ablation was achieved in vivo due to synergetic therapeutic effect. Another attractive feature of the DDS was the significant reduction of cardiotoxicity of doxorubicin by EGCG. This new platform is thus expected to hold strong promise for future multimodal combination therapy of cancers. STATEMENT OF SIGNIFICANCE: Doxorubicin is one of the most studied and effective chemotherapeutic agents whose application is hindered due to its cardiotoxicity. In this study, we used (-)-Epigallocatechin-3-gallate (EGCG) to overcome that limitation. However, drug delivery to tumor sites with no/minimum accumulation in healthy organs is always challenging. Although peptide-based targeting is very popular, the effectiveness of receptor/ligand binding active targeting is sometimes questioned which motivated us to apply dual targeting approach. Multimodal therapies can exhibit synergistic effects and subsequently reduce the required dose of drug over monotherapy. We aimed to achieve chemo-photothermal-starvation combination therapy in this study and such achievement is yet to be reported. Our developed system also has the advantage of triggered drug release by near-infrared (NIR) laser irradiation.
Collapse
|
264
|
A Smart Core-Crosslinked Supramolecular Drug Delivery System (SDDS) Enabled by Pendant Cyclodextrins Encapsulation of Drug Dimers via Host-Guest Interaction. BIOSENSORS 2021; 11:bios11090306. [PMID: 34562896 PMCID: PMC8466753 DOI: 10.3390/bios11090306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022]
Abstract
Owing to poor aqueous solubility and low delivery efficiency, most of anti-cancer chemodrugs depend on various smart drug delivery platforms to enhance the treatment efficacy. Herein, a stimuli-responsive supramolecular drug delivery system (SDDS) is developed based on polymeric cyclodextrins (PCD) which crosslinked by stimuli-cleavable drug dimers via host-guest interaction. PEGylated PCD was precisely controlled synthesized by ring-opening polymerization and azide-alkyne click chemistry, and two doxorubicins (DOX) were linked with a disulfide bond to form a drug dimer (ss-DOX). They then co-assembled into supramolecular micelles. Drug dimers were utilized as cross-linkers to stabilize the micelles. The drug loading efficiency was very high that could be up to 98%. The size and morphology were measured by DLS and TEM. Owing to the disulfide bonds of drug dimers, these supramolecular micelles were dissociated by treating with dithiothreitol (DTT). In the meanwhile, the free DOXs were recovered and released from cavities of cyclodextrins because of dynamic equilibrium and hydrophilicity changes. The release profile was studied under mimic physiological conditions. Furthermore, in vitro cytotoxicity study showed excellent anti-cancer efficacy of reduced-responsive supramolecular polymeric micelles. Therefore, it can be served as a safe and stimuli-responsive SDDS for cancer therapy.
Collapse
|
265
|
Singh B, Shukla N, Kim J, Kim K, Park MH. Stimuli-Responsive Nanofibers Containing Gold Nanorods for On-Demand Drug Delivery Platforms. Pharmaceutics 2021; 13:1319. [PMID: 34452280 PMCID: PMC8400774 DOI: 10.3390/pharmaceutics13081319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023] Open
Abstract
On-demand drug delivery systems using nanofibers have attracted significant attention owing to their controllable properties for drug release through external stimuli. Near-infrared (NIR)-responsive nanofibers provide a platform where the drug release profile can be achieved by the on-demand supply of drugs at a desired dose for cancer therapy. Nanomaterials such as gold nanorods (GNRs) exhibit absorbance in the NIR range, and in response to NIR irradiation, they generate heat as a result of a plasmon resonance effect. In this study, we designed poly (N-isopropylacrylamide) (PNIPAM) composite nanofibers containing GNRs. PNIPAM is a heat-reactive polymer that provides a swelling and deswelling property to the nanofibers. Electrospun nanofibers have a large surface-area-to-volume ratio, which is used to effectively deliver large quantities of drugs. In this platform, both hydrophilic and hydrophobic drugs can be introduced and manipulated. On-demand drug delivery systems were obtained through stimuli-responsive nanofibers containing GNRs and PNIPAM. Upon NIR irradiation, the heat generated by the GNRs ensures shrinking of the nanofibers owing to the thermal response of PNIPAM, thereby resulting in a controlled drug release. The versatility of the light-responsive nanofibers as a drug delivery platform was confirmed in cell studies, indicating the advantages of the swelling and deswelling property of the nanofibers and on-off drug release behavior with good biocompatibility. In addition, the system has potential for the combination of chemotherapy with multiple drugs to enhance the effectiveness of complex cancer treatments.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea; (B.S.); (N.S.); (J.K.)
| | - Nutan Shukla
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea; (B.S.); (N.S.); (J.K.)
| | - Junkee Kim
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea; (B.S.); (N.S.); (J.K.)
| | - Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
| | - Myoung-Hwan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Korea; (B.S.); (N.S.); (J.K.)
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Korea
- N to B Co., Ltd., Business Incubator Center, Hwarang-ro, Nowon-gu, Seoul 01795, Korea
| |
Collapse
|
266
|
Fan Y, Hao W, Cui Y, Chen M, Chu X, Yang Y, Wang Y, Gao C. Cancer Cell Membrane-Coated Nanosuspensions for Enhanced Chemotherapeutic Treatment of Glioma. Molecules 2021; 26:5103. [PMID: 34443689 PMCID: PMC8400986 DOI: 10.3390/molecules26165103] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Effective intracerebral delivery is key for glioma treatment. However, the drug delivery system within the brain is largely limited by its own adverse physical and chemical properties, low targeting efficiency, the blood-brain barrier and the blood-brain tumor barrier. Herein, we developed a simple, safe and efficient biomimetic nanosuspension. The C6 cell membrane (CCM) was utilized to camouflaged the 10-hydroxycamptothecin nanosuspension (HCPT-NS) in order to obtain HCPT-NS/CCM. Through the use of immune escape and homotypic binding of the cancer cell membrane, HCPT-NS/CCM was able to penetrate the blood-brain barrier and target tumors. The HCPT-NS is only comprised of drugs, as well as a small amount of stabilizers that are characterized by a simple preparation method and high drug loading. Similarly, the HCPT-NS/CCM is able to achieve targeted treatment of glioma without any ligand modification, which leads it to be stable and efficient. Cellular uptake and in vivo imaging experiments demonstrated that HCPT-NS/CCM is able to effectively cross the blood-brain barrier and was concentrated at the glioma site due to the natural homing pathway. Our results reveal that the glioma cancer cell membrane is able to promote drug transport into the brain and enter the tumor via a homologous targeting mechanism.
Collapse
Affiliation(s)
- Yueyue Fan
- College of Pharmacy, Henan University, Kaifeng 475000, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Wenyan Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Yuexin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Mengyu Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Xiaoyang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China;
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| | - Chunsheng Gao
- College of Pharmacy, Henan University, Kaifeng 475000, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (W.H.); (Y.C.); (M.C.); (Y.Y.)
| |
Collapse
|
267
|
Agarwal S, Agarwal V, Agarwal M, Singh M. Exosomes: Structure, Biogenesis, Types and Application in Diagnosis and Gene and Drug Delivery. Curr Gene Ther 2021; 20:195-206. [PMID: 32787759 DOI: 10.2174/1566523220999200731011702] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.
Collapse
Affiliation(s)
- Shriya Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT) Noida, U.P., India
| |
Collapse
|
268
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
269
|
Sher M, Sarfaraz RM, Iqbal S, Hussain MA, Naeem-Ul-Hassan M, Hassan F, Bukhari SNA. Formulation and evaluation of hydroxypropylmethylcellulose-dicyclomine microsponges for colon targeted drug delivery: In vitro and in vivo evaluation. Curr Drug Deliv 2021; 19:686-696. [PMID: 34353263 DOI: 10.2174/1567201818666210805153347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The objective of present study was to design novel colon targeted delivery of dicyclomine Hydrochloride (DCH) microsponges. METHODS Microsponges (MS1-MS4) based on different ratios of hydroxypropylmethylcellulose (HPMC) and DCH was prepared by quasi-emulsion solvent diffusion method. Micro-sponges were analyzed by determining percent yield, encapsulation efficiency, drug content, drug-polymer compatibility and thermal stability. Kinetic analysis of thermal stability data was done by Chang method, Friedman method and Broido method. In vitro dissolution study was carried out at pH 1.2, pH 6.8 and pH 7.4 at different time intervals. RESULTS Results showed that there was no chemical interaction between DCH and HPMC in all microsponge formulations. Production yield, drug content and encapsulation efficiency were enhanced on increasing the drug-polymer ratio. Thermal stability of all the micro-sponges was greater than that of pure drug. In vitro drug release was decreased on increasing the polymer concentration at different pH levels. The newly prepared micro-sponges based on HPMC were confirmed as a promising means of colon targeted delivery of DCH. An HPLC method was developed and validated for the bioequivalence study of newly designed microsponges. Pharmacokinetics parameters were calculated using linear trapezoidal method after single oral administration of microsponges in white albino rabbits. Pharmacokinetics results indicate an enhancement in the value of t1/2, tmax, Cmax and AUC0-t of DCH in the microsponges as compared to standard DCH showing enhanced bioavailability of drug after microsponges formation. CONCLUSION The current study shows a new approach for colon specific delivery of DCH based on microsponges.
Collapse
Affiliation(s)
- Muhammad Sher
- Department of Chemistry, University of Sargodha, Sargodha 40100. 0
| | | | - Sadia Iqbal
- Department of Chemistry, University of Sargodha, Sargodha 40100. 0
| | | | | | - Faiza Hassan
- Department of Chemistry, University of Sargodha, Sargodha 40100. 0
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, 2014, Sakaka, Aliouf. Saudi Arabia
| |
Collapse
|
270
|
Mahmood S, Mei TS, Yee WX, Hilles AR, Alelwani W, Bannunah AM. Synthesis of Capsaicin Loaded Silver Nanoparticles Using Green Approach and Its Anti-Bacterial Activity Against Human Pathogens. J Biomed Nanotechnol 2021; 17:1612-1626. [PMID: 34544538 DOI: 10.1166/jbn.2021.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Siew Mei
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Wong Xi Yee
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Ayah Rebhi Hilles
- Department of Medical Science and Technology, Faculty of Health Sciences, PICOMS International University College of Medical Sciences, 68100, Kuala Lumpur, Malaysia
| | - Walla Alelwani
- University of Jeddah, Collage of Science, Department of Biochemistry, Jeddah, 21577, Saudi Arabia
| | - Azzah M Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| |
Collapse
|
271
|
Phull AR, Ali A, Dhong KR, Zia M, Mahajan PG, Park HJ. Synthesis, characterization, anticancer activity assessment and apoptosis signaling of fucoidan mediated copper oxide nanoparticles. ARAB J CHEM 2021; 14:103250. [DOI: 10.1016/j.arabjc.2021.103250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
272
|
Yuba E, Takashima M, Hayashi T, Kokuryo D, Aoki I, Harada A, Aoshima S, Krishnan UM, Kono K. Multifunctional Traceable Liposomes with Temperature-Triggered Drug Release and Neovasculature-Targeting Properties for Improved Cancer Chemotherapy. Mol Pharm 2021; 18:3342-3351. [PMID: 34324363 DOI: 10.1021/acs.molpharmaceut.1c00263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poor distribution of nanocarriers at the tumor site and insufficient drug penetration into the tissue are major challenges in the development of effective and safe cancer therapy. Here, we aim to enhance the therapeutic effect of liposomes by accumulating doxorubicin-loaded liposomes at high concentrations in and around the tumor, followed by heat-triggered drug release to facilitate low-molecular-weight drug penetration throughout the tumor. A cyclic RGD peptide (cRGD) was incorporated into liposomes decorated with a thermosensitive polymer that allowed precise tuning of drug release temperature (i.e., Polymer-lip) to develop a targeted thermosensitive liposome (cRGD-Polymer-lip). Compared with conventional thermosensitive liposomes, cRGD-Polymer-lip enhanced the binding of liposomes to endothelial cells, leading to their accumulation at the tumor site upon intravenous administration in tumor-bearing mice. Drug release triggered by local heating strongly inhibited tumor growth. Notably, tumor remission was achieved via multiple administrations of cRGD-Polymer-lip and heat treatments. Thus, combining the advantages of tumor neovascular targeting and heat-triggered drug release, these liposomes offer high potential for minimally invasive and effective cancer chemotherapy.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Munenobu Takashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takaaki Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, School of Arts, Science & Humanities, and School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
273
|
Lôbo GCNB, Paiva KLR, Silva ALG, Simões MM, Radicchi MA, Báo SN. Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics 2021; 13:1167. [PMID: 34452128 PMCID: PMC8399799 DOI: 10.3390/pharmaceutics13081167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer, a group of diseases responsible for the second largest cause of global death, is considered one of the main public health problems today. Despite the advances, there are still difficulties in the development of more efficient cancer therapies and fewer adverse effects for the patients. In this context, nanobiotechnology, a materials science on a nanometric scale specified for biology, has been developing and acquiring prominence for the synthesis of nanocarriers that provide a wide surface area in relation to volume, better drug delivery, and a maximization of therapeutic efficiency. Among these carriers, the ones that stand out are those focused on the activation of the immune system. The literature demonstrates the importance of this system for anticancer therapy, given that the best treatment for this disease also activates the immune system to recognize, track, and destroy all remaining tumor cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (G.C.N.B.L.); (K.L.R.P.); (A.L.G.S.); (M.M.S.); (M.A.R.)
| |
Collapse
|
274
|
Azevedo A, Farinha D, Geraldes C, Faneca H. Combining gene therapy with other therapeutic strategies and imaging agents for cancer theranostics. Int J Pharm 2021; 606:120905. [PMID: 34293466 DOI: 10.1016/j.ijpharm.2021.120905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
Cancer is one of the most prevalent and deadly diseases in the world, to which conventional treatment options, such as chemotherapy and radiotherapy, have been applied to overcome the disease or used in a palliative manner to enhance the quality of life of the patient. However, there is an urgent need to develop new preventive and treatment strategies to overcome the limitations of the commonly used approaches. The field of cancer nanomedicine, and more recently the field of nanotheranostics, where imaging and therapeutic agents are combined in a single platform, provide new opportunities for the treatment and the diagnosis of cancer. This combination could bring us closer to a more personalized and cared-for therapy, in opposition to the conventional and standardized approaches. Gene therapy is a promising strategy for the treatment of cancer that requires a transport system to efficiently deliver the genetic material into the target cells. Hence, the main purpose of this work was to review recent findings and developments regarding theranostic nanosystems that incorporate both gene therapy and imaging agents for cancer treatment.
Collapse
Affiliation(s)
- Alexandro Azevedo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
| | - Dina Farinha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Carlos Geraldes
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal; Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal.
| |
Collapse
|
275
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
276
|
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021; 13:3396. [PMID: 34298610 PMCID: PMC8307033 DOI: 10.3390/cancers13143396] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid development of multidrug co-delivery and nano-medicines has made spontaneous progress in tumor treatment and diagnosis. DNA is a unique biological molecule that can be tailored and molded into various nanostructures. The addition of ligands or stimuli-responsive elements enables DNA nanostructures to mediate highly targeted drug delivery to the cancer cells. Smart DNA nanostructures, owing to their various shapes, sizes, geometry, sequences, and characteristics, have various modes of cellular internalization and final disposition. On the other hand, functionalized DNA nanocarriers have specific receptor-mediated uptake, and most of these ligand anchored nanostructures able to escape lysosomal degradation. DNA-based and stimuli responsive nano-carrier systems are the latest advancement in cancer targeting. The data exploration from various studies demonstrated that the DNA nanostructure and stimuli responsive drug delivery systems are perfect tools to overcome the problems existing in the cancer treatment including toxicity and compromised drug efficacy. In this light, the review summarized the insights about various types of DNA nanostructures and stimuli responsive nanocarrier systems applications for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Fakhara Sabir
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ushna Laraib
- Department of Pharmacy, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
277
|
Zheng D, Zhao J, Li Y, Zhu L, Jin M, Wang L, Liu J, Lei J, Li Z. Self-Assembled pH-Sensitive Nanoparticles Based on Ganoderma lucidum Polysaccharide-Methotrexate Conjugates for the Co-delivery of Anti-tumor Drugs. ACS Biomater Sci Eng 2021; 7:3764-3773. [PMID: 34213326 DOI: 10.1021/acsbiomaterials.1c00663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In tumor therapy, polymer nanoparticles are ideal drug delivery materials because they can mask the disadvantages of anti-tumor drugs such as poor solubility in water, high toxicity, and side effects. However, most polymer-based nanoparticles do not themselves have anti-tumor properties. Herein, a novel pH-sensitive nanoparticle drug delivery system based on Ganoderma lucidum polysaccharides (GLPs), which have demonstrated anti-tumor activities, was designed to enable the delivery of methotrexate (MTX) and 10-hydroxycamptothecin (HCPT) to tumor cells, where they could exert synergistic anti-tumor effects. The prepared nanoparticles were irregularly spherical in shape with a uniform particle size of ∼190 nm, and they exhibited a high drug-loading capacity (MTX 21.5% and HCPT 22.6%) and excellent biocompatibility. Moreover, the loaded MTX and HCPT units were rapidly released under acidic conditions within the tumor cells while remaining stable under normal physiological conditions. Meanwhile, compared to free MTX and HCPT, the GLP-APBA-MTX/HCPT nanoparticles presented exhibited better tumor suppressive effects and fewer side effects in vivo, which indicates that they may be an effective anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jingyang Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yucheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Mengchen Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zhonglong Li
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, No. 1 Dongdan Dahua Road, Dongcheng District, Beijing 100730, China
| |
Collapse
|
278
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
279
|
Mitochondria-targeted ROS- and GSH-responsive diselenide-crosslinked polymer dots for programmable paclitaxel release. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
280
|
Shao Y, Wang L, Chen J, Hunag Y, Huang Y, Wang X, Zhou D, Zhang J, Wu W, Zhang Q, Li F, Xia X, Huang Y. Increased lipid peroxidation by graphene quantum dots induces ferroptosis in macrophages. NANOIMPACT 2021; 23:100334. [PMID: 35559835 DOI: 10.1016/j.impact.2021.100334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 06/15/2023]
Abstract
Graphene quantum dots (GQDs) are an excellent tool for theranostics, and are widely used in nanomedical applications. The biosafety of GQDs has received abundant attention, but their latent toxicological mechanisms remain inadequately understood. To investigate the cellular and molecular mechanisms underlying graphene-mediated changes, quantitative proteomics and untargeted lipidomics were integrated. We discovered that glutathione peroxidase 4 as a key regulator of ferroptosis, was down-regulated at the protein level by GQDs. Lipidomics profiling with features of ferroptosis was identified in GQDs-treated RAW264.7 macrophages. Furthermore, GQDs exposure was associated with reduced levels of GSH and increased lipid peroxidation. Overexpression of GPX4 in RAW264.7 cells and pre-treatment of a ferroptosis inhibitor Ferrostatin-1 (Fer-1) not only suppressed cell death, but also alleviated lipid peroxidation. Taken together, our results indicated that GQDs exposure induced ferroptosis in RAW264.7 macrophages, and provided essential data for biosafety evaluations of GQDs.
Collapse
Affiliation(s)
- Yan Shao
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Jiajia Chen
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Youying Hunag
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Yiwei Huang
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Jinqiang Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China
| | - Wen Wu
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China
| | - Qianyu Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China.
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing Key Laboratory of Cytomics, Chongqing 400038, China.
| |
Collapse
|
281
|
An MRI-guided targeting dual-responsive drug delivery system for liver cancer therapy. J Colloid Interface Sci 2021; 603:783-798. [PMID: 34246838 DOI: 10.1016/j.jcis.2021.06.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 11/20/2022]
Abstract
The targeting dual-responsive drug delivery system was employed for cancer treatment as a positive strategy. Herein, Lactobionic acid (LA)-modified and non-modified UV/reduction dual-responsive molecules (10,10-NB-S-S-P-LA and 10,10-NB-S-S-P-OMe) were synthesized. Functional magnetic resonance imaging (MRI) contrast agent (12,12-NB-DTPA-Gd) was mixed with 10,10-NB-S-S-P-LA or 10,10-NB-S-S-P-OMe in the optimal ratio (3:1) to develop targeted empty liposomes (GNSPL) or non-targeted empty liposomes (GNSPM) with superior UV/reduction dual-responsiveness, biocompatibility and magnetic resonance imaging (MRI) performance. The drug-loaded liposomes (GNSPLD and GNSPMD) can keep stable in two weeks, and the drug cumulative release rate reached to the maximum under dual stimulation of ultraviolet (UV) and reducing agent (TCEP). The treatment with GNSPLD + UV significantly inhibited the growth and migration of cancer cells in vitro. The GNSPLD liposomes were more effectively accumulated in tumor site than GNSPMD liposomes, due to the targeting property of GNSPLD liposomes. The treatment with GNSPLD + UV showed a better therapeutic efficacy than Doxorubicin (DOX) in vivo, and almost no side effects during the treatment period. Thus, the MRI-guided targeting dual-responsive drug delivery system provided a reliable therapeutic strategy for treating liver cancer.
Collapse
|
282
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
283
|
da Silva Leite JM, Patriota YBG, de La Roca MF, Soares-Sobrinho JL. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Curr Med Chem 2021; 29:1936-1958. [PMID: 34212827 DOI: 10.2174/0929867328666210629154908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis is a chronic respiratory disease caused by Mycobacterium tuberculosis. The common treatment regimens of tuberculosis are lengthy with adverse side effects, low patient compliance, and antimicrobial resistance. Drug delivery systems (DDSs) can overcome these limitations. OBJECTIVE This review aims to summarize the latest DDSs for the treatment of tuberculosis. In the first section, the main pharmacokinetic and pharmacodynamic challenges, due to the innate properties of the drugs, are put forth. The second section elaborates on the use of DDS to overcome the disadvantages of the current treatment of tuberculosis. CONCLUSION We reviewed research articles published in the last 10 years. DDSs can improve the physicochemical properties of anti-tuberculosis drugs, improving solubility, stability, and bioavailability, with better control of drug release and can target alveolar macrophages. However, more preclinical studies and robust bio-relevant analyses are needed for DDSs to become a feasible option to treat patients and attract investors.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yuri Basilio Gomes Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
284
|
Varshney D, Qiu SY, Graf TP, McHugh KJ. Employing Drug Delivery Strategies to Overcome Challenges Using TLR7/8 Agonists for Cancer Immunotherapy. AAPS JOURNAL 2021; 23:90. [PMID: 34181117 DOI: 10.1208/s12248-021-00620-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are a potential target for cancer immunotherapy due to their role in the activation of the innate immune system. More specifically, TLR7 and TLR8, two structurally similar pattern recognition receptors that trigger interferon and cytokine responses, have proven to be therapeutically relevant targets for cancer in numerous preclinical and clinical studies. When triggered by an agonist, such as imiquimod or resiquimod, the TLR7/8 activation pathway induces cellular and humoral immune responses that can kill cancer cells with high specificity. Unfortunately, TLR7/8 agonists also present a number of issues that must be overcome prior to broad clinical implementation, such as poor drug solubility and systemic toxic effects. To overcome the key limitations of TLR7/8 agonists as a cancer therapy, biomaterial-based drug delivery systems have been developed. These delivery devices are highly diverse in their design and include systems that can be directly administered to the tumor, passively accumulated in relevant cancerous and lymph tissues, triggered by environmental stimuli, or actively targeted to specific physiological areas and cellular populations. In addition to improved delivery systems, recent studies have also demonstrated the potential benefits of TLR7/8 agonist co-delivery with other types of therapies, particularly checkpoint inhibitors, cancer vaccines, and chemotherapeutics, which can yield impressive anti-cancer effects. In this review, we discuss recent advances in the development of TLR7/8 agonist delivery systems and provide perspective on promising future directions.
Collapse
Affiliation(s)
- Dhruv Varshney
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, USA
| | - Sherry Yue Qiu
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Tyler P Graf
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| |
Collapse
|
285
|
Radulescu R, Totan AR, Imre MM, Miricescu D, Didilescu A, Greabu M. Mediators of extracellular matrix degradation and inflammation: A new team of possible biomarkers for oral squamous cell carcinoma stage. Exp Ther Med 2021; 22:877. [PMID: 34194555 PMCID: PMC8237384 DOI: 10.3892/etm.2021.10309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Oral cancer represents one of the most common types of cancer worldwide, with oral squamous cell carcinoma (OSCC) being the most frequently diagnosed. Cytokines play a crucial role in inflammation, apoptosis and metastasis. Interleukin (IL)-8 promotes the direct migration of inflammatory cells. IL-6 induces tumor cell proliferation, increases expression of invasiveness and angiogenetic factors or matrix metalloproteinases (MMPs), promoting metastasis. Tissue inhibitor of metalloproteinases (TIMPs) blocks the action of MMPs controlling extracellular matrix degradation and inhibiting metastasis. The aim of our study was to analyze the existence of correlations between inflammation markers (IL-6 and IL-8) and extracellular degradation protection markers such as TIMP-1 in OSCC tumors. Our study included 20 patients (12 females and 8 males) diagnosed with OSCC, recruited from January to April, 2020. IL-8, IL-6 and TIMP-1 levels were measured in the tumor cell lysates by ELISA technique, using relevant assay kits. Our results showed a positive and significant correlation between IL-6 and IL-8 (P=0.005, R=0.517) indicating that high IL-8 levels can be associated with high IL-6 levels. We also found a significant and high negative correlation (P<0.001, R=-0.673) between IL-6 and TIMP-1 and a significant and high negative correlation (P<0.001, R=-0.684) between IL-8 and TIMP-1 indicating that high levels of IL-8 and IL-6 are significantly associated with lower levels of TIMP-1. In conclusion, our study confirms the available literature data on IL-6 and IL-8 as potential markers for oral cancers such as OSCC and affect the tumor microenvironment by decreasing TIMPs. All three biomarkers included in this study have the potential to be used as detection or prognostic factors for oral cancer.
Collapse
Affiliation(s)
- Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 032799 Bucharest, Romania
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea Didilescu
- Department of Embryology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
286
|
Huang Y, Wang T, Tan Q, He D, Wu M, Fan J, Yang J, Zhong C, Li K, Zhang J. Smart Stimuli-Responsive and Mitochondria Targeting Delivery in Cancer Therapy. Int J Nanomedicine 2021; 16:4117-4146. [PMID: 34163163 PMCID: PMC8214531 DOI: 10.2147/ijn.s315368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Dysfunction in the mitochondria (Mc) contributes to tumor progression. It is a major challenge to deliver therapeutic agents specifically to the Mc for precise treatment. Smart drug delivery systems are based on stimuli-responsiveness and active targeting. Here, we give a whole list of documented pathways to achieve smart stimuli-responsive (St-) and Mc-targeted DDSs (St-Mc-DDSs) by combining St and Mc targeting strategies. We present the formulations, targeting characteristics of St-Mc-DDSs and clarify their anti-cancer mechanisms as well as improvement in efficacy and safety. St-Mc-DDSs usually not only have Mc-targeting groups, molecules (lipophilic cations, peptides, and aptamers) or materials but also sense the surrounding environment and correspondingly respond to internal biostimulators such as pH, redox changes, enzyme and glucose, and/or externally applied triggers such as light, magnet, temperature and ultrasound. St-Mc-DDSs exquisitely control the action site, increase therapeutic efficacy and decrease side effects of the drug. We summarize the clinical research progress and propose suggestions for follow-up research. St-Mc-DDSs may be an innovative and sensitive precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Yongjia Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingchuan Fan
- Institute of Life Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
287
|
Malik P, Hoidal JR, Mukherjee TK. Recent Advances in Curcumin Treated Non-Small Cell Lung Cancers: An Impetus of Pleiotropic Traits and Nanocarrier Aided Delive ry. Curr Med Chem 2021; 28:3061-3106. [PMID: 32838707 DOI: 10.2174/0929867327666200824110332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Characterized by the abysmal 18% five year survival chances, non-small cell lung cancers (NSCLCs) claim more than half of their sufferers within the first year of being diagnosed. Advances in biomedical engineering and molecular characterization have reduced the NSCLC diagnosis via timid screening of altered gene expressions and impaired cellular responses. While targeted chemotherapy remains a major option for NSCLCs complications, delayed diagnosis, and concurrent multi-drug resistance remain potent hurdles in regaining normalcy, ultimately resulting in relapse. Curcumin administration presents a benign resolve herein, via simultaneous interception of distinctly expressed pathological markers through its pleiotropic attributes and enhanced tumor cell internalization of chemotherapeutic drugs. Studies on NSCLC cell lines and related xenograft models have revealed a consistent decline in tumor progression owing to enhanced chemotherapeutics cellular internalization via co-delivery with curcumin. This presents an optimum readiness for screening the corresponding effectiveness in clinical subjects. Curcumin is delivered to NSCLC cells either (i) alone, (ii) in stoichiometrically optimal combination with chemotherapeutic drugs, (iii) through nanocarriers, and (iv) nanocarrier co-delivered curcumin and chemotherapeutic drugs. Nanocarriers protect the encapsulated drug from accidental and non-specific spillage. A unanimous trait of all nanocarriers is their moderate drug-interactions, whereby native structural expressions are not tampered. With such insights, this article focuses on the implicit NSCLC curative mechanisms viz-a-viz, free curcumin, nanocarrier delivered curcumin, curcumin + chemotherapeutic drug and nanocarrier assisted curcumin + chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
288
|
AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021; 4:1028-1049. [PMID: 34151199 PMCID: PMC8205246 DOI: 10.1021/acsptsci.1c00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/31/2022]
Abstract
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects. Liposomes are the most promising of such SDDSs and have been well investigated for cancer therapy. To improve the specificity, bioavailability, and anticancer efficacy of liposomes at the diseased sites, other strategies such as targeting ligands and stimulus-sensitive liposomes have been developed. This review highlights relevant surface functionalization techniques and stimuli-mediated drug release for enhanced delivery of anticancer agents at tumor sites, with a special focus on dual functionalization and design of multistimuli responsive liposomes.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical
Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| |
Collapse
|
289
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
290
|
Bhaskaran NA, Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J Control Release 2021; 336:16-39. [PMID: 34118336 DOI: 10.1016/j.jconrel.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Regardless of progress in therapy management which are developed for colon cancer (CC), it remains the third most common cause of mortality due to cancers around the world. Conventional medicines pose side effects due to untoward action on non-target cells. Their inability to deliver drugs to the affected regions of the colon locally, in a reproducible manner raises a concern towards the efficacy of therapy. In this regard, nanoparticles emerged as a promising drug delivery system due to their flexibility in designing, drug release modulation and cancer cell targeting. Not only are nanoparticles making their way into colon cancer research in the revolution of conventional onco-therapeutics, but they also offer promising scope in the development of colon cancer vaccines and theranostic tools. However, there are challenges with respect to drug delivery using nanoparticles, which may hamper the delivery of these novel carriers to the colon. The present review addresses recent advents in nanotechnology for colon-specific drug delivery (CDDS) which may help to overcome the existing challenges and intends to recognize futuristic potentials in the treatment of CC with CDDS.
Collapse
Affiliation(s)
- N A Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India
| | - L Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi, Karnataka, India.
| |
Collapse
|
291
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
292
|
Chen PC, Lai JJ, Huang CJ. Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25663-25673. [PMID: 34032419 PMCID: PMC8381753 DOI: 10.1021/acsami.1c03191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoscale coordination polymers are promising vehicles for anticancer drug delivery because their surface composition and particle size can be tuned to exploit the enhanced permeability and retention effect, and their reversible interaction with metal cations enables triggered drug release at the tumor site. Here, we develop a novel nanoscale coordination polymer using the diblock copolymer poly(2-methacryloyloxyethyl phosphorylcholine)-block-poly(serinyl acrylate) (PMPC-b-PserA) and demonstrate its use for encapsulation of a hydrophobic drug and triggered drug release to induce breast cancer cell apoptosis in vitro. The zwitterionic PMPC block was inspired by the antifouling structure of cell membranes, and the PserA block was inspired by the amphoteric amino acids of proteins. The polymer was synthesized by reversible addition-fragmentation chain transfer polymerization, and a mixture of the polymer and FeCl3 self-assembled into nanoparticles via complexation of Fe3+ with PserA, with the hydrophilic PMPC block at the particle surface. At a molar ratio of Fe3+ to serA of 3:1, the hydrodynamic diameter of the particles was 22.2 nm. Curcumin, a natural water-insoluble polyphenol used to enhance the effects of chemotherapeutics, was encapsulated in the particles as an oil-in-water emulsion, with an encapsulation efficiency of 99.6% and a particle loading capacity of 32%. Triggered release of curcumin was achieved by adding deferoxamine, an FDA-approved Fe3+ chelating agent; curcumin release efficiency increased at higher deferoxamine concentrations and lower pH. Triggered release of curcumin induced apoptosis in human triple-negative breast cancer cells; cell viability decreased to 34.3% after 24 h of treatment with the curcumin-loaded nanoparticles and deferoxamine, versus >80% viability without deferoxamine to trigger drug release. The biocompatibility, tunable composition and size, high hydrophobic drug loading, and triggered-release capability of this nanoscale coordination polymer make it well-suited for use in anticancer drug delivery.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
- NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| |
Collapse
|
293
|
AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep 2021; 11:11589. [PMID: 34078930 PMCID: PMC8172941 DOI: 10.1038/s41598-021-90349-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
Targeted liposomes are designed to target specific receptors overexpressed on the surfaces of cancer cells. This technique ensures site-specific drug delivery to reduce undesirable side effects while enhancing the efficiency of the encapsulated therapeutics. Upon reaching the tumor site, these liposomes can be triggered to release their content in a controlled manner using ultrasound (US). In this study, drug release from pegylated calcein-loaded liposomes modified with transferrin (Tf) and triggered with US was evaluated. Low-frequency ultrasound at 20-kHz using three different power densities (6.2 mW/cm2, 9 mW/cm2 and 10 mW/cm2) was found to increase calcein release. In addition, transferrin-conjugated pegylated liposomes (Tf-PEG liposomes) were found to be more sonosensitive compared to the non-targeted (control) liposomes. Calcein uptake by HeLa cells was found to be significantly higher with the Tf-PEG liposomes compared to the non-targeted control liposomes. This uptake was further enhanced following the exposure to low-frequency ultrasound (at 35 kHz). These findings show that targeted liposomes triggered with US have promising potential as a safe and effective drug delivery platform.
Collapse
Affiliation(s)
- Nour M AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Nahid S Awad
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Paul S Kawak
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE.
| |
Collapse
|
294
|
Silica Based Nanomaterial for Drug Delivery. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:57-89. [DOI: 10.2174/9781681088235121010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
295
|
Phogat S, Saxena A, Kapoor N, Aggarwal C, Tiwari A. Diatom mediated smart drug delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
296
|
Mollazadeh S, Sahebkar A, Shahlaei M, Moradi S. Nano drug delivery systems: Molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
297
|
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021; 268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered as one the most prevalent cancers worldwide. Due to its high resistance to chemotherapy and high probability of metastasis, BC is one of the leading causes of cancer-related deaths. The controlled release of chemotherapy drugs to the precise site of the tumor tissue will increase the therapeutic efficacy and decrease side effects of systemic administration. Among various drug delivery systems, natural polymers-based drug carriers have gained significant attention for cancer therapy. Chitosan, a natural polymer obtained by de-acetylation of chitin, holds huge potential for drug delivery applications because chitosan is non-toxic, non-immunogenic, biocompatible, chemically modifiable, and can be processed to form various formulations. In the current review, we will discuss the prospects and challenges of chitosan-based drug delivery systems in treating BC.
Collapse
Affiliation(s)
- Guiqiu Wang
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Rilun Li
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gang Du
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
298
|
Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101389] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
299
|
Cui MR, Gao F, Shu ZY, Ren SK, Zhu D, Chao J. Nucleic Acids-based Functional Nanomaterials for Bioimaging. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00169-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
300
|
Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021; 42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Injectable hydrogel possesses great application potential in disease treatment and tissue engineering, but damage to gel often occurs due to the squeezing pressure from injection devices and the mechanical forces from limb movement, and leads to the rapid degradation of gel matrix and the leakage of the load material. The self-healing injectable hydrogels can overcome these drawbacks via automatically repairing gel structural defects and restoring gel function. The polysaccharide hydrogels constructed through the Schiff base reaction own advantages including simple fabrication, injectability, and self-healing under physiological conditions, and therefore have drawn extensive attention and investigation recently. In this short review, the preparation and self-healing properties of the polysaccharide hydrogels that is established on the Schiff base reaction are focused on and their biological applications in drug delivery and cell therapy are discussed.
Collapse
Affiliation(s)
- Chunxiang Mo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xiang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|