251
|
Han HH, Sedgwick AC, Shang Y, Li N, Liu T, Li BH, Yu K, Zang Y, Brewster JT, Odyniec ML, Weber M, Bull SD, Li J, Sessler JL, James TD, He XP, Tian H. Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chem Sci 2019; 11:1107-1113. [PMID: 34084367 PMCID: PMC8145178 DOI: 10.1039/c9sc03961a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Herein, we report a protein-based hybridization strategy that exploits the host-guest chemistry of HSA (human serum albumin) to solubilize the otherwise cell impermeable ONOO- fluorescent probe Pinkment-OAc. Formation of a HSA/Pinkment-OAc supramolecular hybrid was confirmed by SAXS and solution-state analyses. This HSA/Pinkment-OAc hybrid provided an enhanced fluorescence response towards ONOO- versus Pinkment-OAc alone, as determined by in vitro experiments. The HSA/Pinkment-OAc hybrid was also evaluated in RAW 264.7 macrophages and HeLa cancer cell lines, which displayed an enhanced cell permeability enabling the detection of SIN-1 and LPS generated ONOO- and the in vivo imaging of acute inflammation in LPS-treated mice. A remarkable 5.6 fold (RAW 264.7), 8.7-fold (HeLa) and 2.7-fold increased response was seen relative to Pinkment-OAc alone at the cellular level and in vivo, respectively. We anticipate that HSA/fluorescent probe hybrids will soon become ubiquitous and routinely applied to overcome solubility issues associated with hydrophobic fluorescent imaging agents designed to detect disease related biomarkers.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China .,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Adam C Sedgwick
- Department of Chemistry, University of Bath Bath BA2 7AY UK .,Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | - Ying Shang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory Shanghai 201210 P. R. China
| | - Tingting Liu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Bo-Han Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Kunqian Yu
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - James T Brewster
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA
| | | | - Maria Weber
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin 105 E 24th Street A5300 Austin TX 78712-1224 USA .,Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University 99 Shang-Da Road Shanghai 200444 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
252
|
Sohrabi MJ, Dehpour AR, Attar F, Hasan A, Mohammad-Sadeghi N, Meratan AA, Aziz FM, Salihi A, Shekha MS, Akhtari K, Shahpasand K, Hojjati SMM, Sharifi M, Saboury AA, Rezayat SM, Mousavi SE, Falahati M. Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. Int J Pharm 2019; 572:118824. [PMID: 31715345 DOI: 10.1016/j.ijpharm.2019.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPS-induced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average diameter between 50 nm and 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than the free counterpart. Therefore, nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. In conclusion, formulation of silymarin may hold a great promise in the development of antioxidant agents.
Collapse
Affiliation(s)
- Mohammad Javad Sohrabi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Nahid Mohammad-Sadeghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Pathological Analysis, College of Science, Knowledge University, Erbil 074016, Kurdistan Region, Iraq
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Koorosh Shahpasand
- Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | | | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
253
|
Sahu DP, Jammalamadaka SN. Detection of bovine serum albumin using hybrid TiO 2 + graphene oxide based Bio - resistive random access memory device. Sci Rep 2019; 9:16141. [PMID: 31695093 PMCID: PMC6834672 DOI: 10.1038/s41598-019-52522-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022] Open
Abstract
Bio - molecules detection and their quantification with a high precision is essential in modern era of medical diagnostics. In this context, the memristor device which can change its resistance state is a promising technique to sense the bio - molecules. In this work, detection of the Bovine Serum Albumin (BSA) protein using resistive switching memristors based on TiO2 and TiO2 + graphene oxide (GO) is explored. The sensitivity of BSA detection is found to be 4 mg/mL. Both the devices show an excellent bipolar resistive switching with an on/off ratio of 73 and 100 respectively, which essentially demonstrates that the device with GO, distinguishes the resistance states with a high precision. The enhanced performance in the GO inserted device (~ 650 cycles) is attributed to the prevention of multi-dimensional and random growth of conductive paths.
Collapse
Affiliation(s)
- Dwipak Prasad Sahu
- Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, 502 285, India
| | - S Narayana Jammalamadaka
- Magnetic Materials and Device Physics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad, 502 285, India.
| |
Collapse
|
254
|
Wang X, Lu P, Zhu L, Qin L, Zhu Y, Yan G, Duan S, Guo Y. Anti-CD133 Antibody-Targeted Therapeutic Immunomagnetic Albumin Microbeads Loaded with Vincristine-Assisted to Enhance Anti-Glioblastoma Treatment. Mol Pharm 2019; 16:4582-4593. [PMID: 31573817 DOI: 10.1021/acs.molpharmaceut.9b00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poor uptake of antitumor drugs by tumor cells is a critical challenge for anticancer therapeutics. Moreover, the deficiency of specific tumor selectivity for tumor sites may further limit the therapeutic efficacy and cause side effects in healthy regions of the body. Vincristine (VCR) is an effective antitumor drug; however, because of its severe nerve toxicity, short half-life, and fast metabolism, its clinical application is limited. Herein, novel anti-CD133 monoclonal antibody (CD133mAb)-targeted therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs) are smartly constructed for enhancing antiglioblastoma treatment. Superparamagnetic iron oxide nanoparticles (SPIO NPs) were first fabricated as nanocarrier cores, then encapsulated with human serum albumin (HSA), and loaded antitumor drug VCR. Then CD133mAb, which has specific affinity with the cell membrane CD133, was subsequently conjugated to form CD133mAb-decorated therapeutic immunomagnetic albumin microbeads (CD133mAb/TMAMbs). The influence of CD133mAb/TMAMbs on the viability, cell cycle, apoptosis, cell cytoskeleton, migration, and invasion of CD133-overexpressing U251 cells was explored. The CD133mAb-conjugated magnetic albumin microbeads exhibited a high drug loading capacity, stability and hemocompatibility, and active targeting ability by specific recognition of the CD133 surface antigen by the bioconjugation of CD133mAb. More importantly, the constructed therapeutic CD133mAb/TMAMbs have a specifically effective uptake via the CD133 transmembrane protein that is overexpressed in U251 glioblastoma cells and displayed an effective antitumor proliferation and invasive ability. Therefore, based on these results, the fabricated CD133mAb/TMAMbs demonstrate promising uses in brain cancer-targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Xueqin Wang
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,College of Bioengineering , Henan University of Technology , Zhengzhou , Henan 450001 , People's Republic of China
| | - Ping Lu
- Henan Province Direct Third People's Hospital . Zhengzhou , Henan 450003 , People's Republic of China
| | - Li Zhu
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Li Qin
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Yongxia Zhu
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Guoyi Yan
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China
| | - Shaofeng Duan
- School of Pharmacy , Henan University , Kaifeng , Henan 475004 , People's Republic of China.,Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology , Henan University , Kaifeng , Henan 475001 , People's Republic of China
| | - Yuqi Guo
- Henan Provincial People's Hospital , Zhengzhou , Henan 450003 , People's Republic of China.,School of Clinical Medicine , Henan University , Zhengzhou , Henan 450003 , People's Republic of China.,Department of Obstetrics and Gynecology , People's Hospital of Zhengzhou University , Zhengzhou , Henan 450003 , People's Republic of China.,International Joint Laboratory for Gynecological Oncology Nanomedicine of Henan Province , Zhengzhou , Henan 450003 , People's Republic of China
| |
Collapse
|
255
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019; 120:109191. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
256
|
Sun Y, Ma W, Yang Y, He M, Li A, Bai L, Yu B, Yu Z. Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian J Pharm Sci 2019; 14:581-594. [PMID: 32104485 PMCID: PMC7032247 DOI: 10.1016/j.ajps.2019.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/06/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. In addition to sorafenib and lenvatinib for the treatment of HCC approved by FDA, various strategies including transarterial chemoembolization, radiotherapy, locoregional therapy and chemotherapy have been investigated in clinics. Recently, cancer nanotechnology has got great attention for the treatment of various cancers including HCC. Both passive and active targetings are progressing at a steady rate. Herein, we describe the lessons learned from pathogenesis of HCC and the understanding of targeted and non-targeted nanoparticles used for the delivery of small molecules, monoclonal antibodies, miRNAs and peptides. Exploring current efficacy is to enhance tumor cell response of chemotherapy. It highlights the opportunities and challenges faced by nanotechnologies in contemporary hepatocellular carcinoma therapy, where personalized medicine is increasingly becoming the mainstay. Overall objective of this review is to enhance our understanding in the design and development of nanotechnology for treatment of HCC.
Collapse
Affiliation(s)
- Yongbing Sun
- National Engineering Research Center for solid preparation technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Nanchang 330006, China
| | - Wen Ma
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mengxue He
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Lei Bai
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown 26506, USA
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
257
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
258
|
Wang P, Yang W, Shen S, Wu C, Wen L, Cheng Q, Zhang B, Wang X. Differential Diagnosis and Precision Therapy of Two Typical Malignant Cutaneous Tumors Leveraging Their Tumor Microenvironment: A Photomedicine Strategy. ACS NANO 2019; 13:11168-11180. [PMID: 31585038 DOI: 10.1021/acsnano.9b04070] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Elevated hydrogen peroxide (H2O2) in biological tissues is generally recognized to be relevant to the carcinogenesis process that regulates the proliferative activity of cancer cells and the transformation of malignant features. Inspired by this observation, it can be hypothesized that imaging H2O2 in the tumor microenvironment (TME) could help diagnose tumor types and malignancy, and even guide precise therapy. Thus, in this study, a noninvasive photomedicine strategy is demonstrated that leverages the different levels of H2O2 in the TME, and two representative skin cancers, malignant melanoma (MM, clinically higher incidence of metastasis and recurrence) and cutaneous squamous cell carcinoma (cSCC, relatively less dangerous), are differentially diagnosed. The working probe used here is one we previously developed, namely, intelligent H2O2 responsive ABTS-loaded HRP@Gd nanoprobes (iHRANPs). In this study, iHRANPs have advantages over ratiometric imaging due to their bimodal imaging elements, in which the inherent magnetic resonance imaging (MR) mode can be used as the internal imaging reference and the H2O2 responsive photoacoustic (PA) imaging modality can be used for differential diagnosis. Results showed that after intravenous injection of iHRANPs, the tumor signals on both MM and cSCC are obviously enhanced without significant difference under the MR modality. However, under the PA modality, MM and cSCC can be easily distinguished with obvious variations in signal enhancement. Particularly, guided by PA imaging, photothermal therapy (PTT) can be precisely applied on MM, and a strong antitumor effect was achieved owing to the excessive H2O2 in the TME of MM. Furthermore, exogenous H2O2 was injected into cSCC to remedy H2O2 deficiency in the TME of cSCC, and an evident therapeutic efficacy on cSCC can also be realized. This study demonstrated that MM can be differentially diagnosed from cSCC by noninvasive imaging of H2O2 in the TME with iHRANPs; meanwhile, it further enabled imaging-guided precision PTT ablation, even for those unsatisfactory tumor types (cSCC) through exogenously delivering H2O2.
Collapse
Affiliation(s)
- Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
- Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
| | - Chao Wu
- School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Long Wen
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
| | - Qian Cheng
- School of Physics Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
- Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200092 , China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital , Tongji University School of Medicine , Shanghai 200443 , China
| |
Collapse
|
259
|
Huang J, Wu B, Zhou Z, Hu S, Xu H, Piao Y, Zheng H, Tang J, Liu X, Shen Y. Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102058. [DOI: 10.1016/j.nano.2019.102058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
|
260
|
Magnetic Nanoclusters Coated with Albumin, Casein, and Gelatin: Size Tuning, Relaxivity, Stability, Protein Corona, and Application in Nuclear Magnetic Resonance Immunoassay. NANOMATERIALS 2019; 9:nano9091345. [PMID: 31546937 PMCID: PMC6781099 DOI: 10.3390/nano9091345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
The surface functionalization of magnetic nanoparticles improves their physicochemical properties and applicability in biomedicine. Natural polymers, including proteins, are prospective coatings capable of increasing the stability, biocompatibility, and transverse relaxivity (r2) of magnetic nanoparticles. In this work, we functionalized the nanoclusters of carbon-coated iron nanoparticles with four proteins: bovine serum albumin, casein, and gelatins A and B, and we conducted a comprehensive comparative study of their properties essential to applications in biosensing. First, we examined the influence of environmental parameters on the size of prepared nanoclusters and synthesized protein-coated nanoclusters with a tunable size. Second, we showed that protein coating does not significantly influence the r2 relaxivity of clustered nanoparticles; however, the uniform distribution of individual nanoparticles inside the protein coating facilitates increased relaxivity. Third, we demonstrated the applicability of the obtained nanoclusters in biosensing by the development of a nuclear-magnetic-resonance-based immunoassay for the quantification of antibodies against tetanus toxoid. Fourth, the protein coronas of nanoclusters were studied using SDS-PAGE and Bradford protein assay. Finally, we compared the colloidal stability at various pH values and ionic strengths and in relevant complex media (i.e., blood serum, plasma, milk, juice, beer, and red wine), as well as the heat stability, resistance to proteolytic digestion, and shelf-life of protein-coated nanoclusters.
Collapse
|
261
|
Xiao YF, An FF, Chen JX, Yu J, Tao WW, Yu Z, Ting R, Lee CS, Zhang XH. The Nanoassembly of an Intrinsically Cytotoxic Near-Infrared Dye for Multifunctionally Synergistic Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903121. [PMID: 31379108 DOI: 10.1002/smll.201903121] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The combination of diagnostic and therapeutic functions in a single theranostic nanoagent generally requires the integration of multi-ingredients. Herein, a cytotoxic near-infrared (NIR) dye (IR-797) and its nanoassembly are reported for multifunctional cancer theranostics. The hydrophobic IR-797 molecules are self-assembled into nanoparticles, which are further modified with an amphiphilic polymer (C18PMH-PEG5000) on the surface. The prepared PEG-IR-797 nanoparticles (PEG-IR-797 NPs) possess inherent cytotoxicity from the IR-797 dye and work as a chemotherapeutic drug which induces apoptosis of cancer cells. The IR-797 NPs are found to have an ultrahigh mass extinction coefficient (444.3 L g-1 cm-1 at 797 nm and 385.9 L g-1 cm-1 at 808 nm) beyond all reported organic nanomaterials (<40 L g-1 cm-1 ) for superior photothermal therapy (PTT). In addition, IR-797 shows some aggregation-induced-emission (AIE) properties. Combining the merits of good NIR absorption, high photothermal energy conversion efficiency, and AIE, makes the PEG-IR-797 NPs useful for multimodal NIR AIE fluorescence, photoacoustic, and thermal imaging-guided therapy. The research exhibits the possibility of using a single ingredient and entity to perform multimodal NIR fluorescence, photoacoustic, and thermal imaging-guided chemo-/photothermal combination therapy, which may trigger wide interest from the fields of nanomedicine and medicinal chemistry to explore multifunctional theranostic organic molecules.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Fei-Fei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jia-Xiong Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jia Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Wen-Wen Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
262
|
Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. SCIENCE ADVANCES 2019; 5:eaaw0672. [PMID: 31548981 PMCID: PMC6744268 DOI: 10.1126/sciadv.aaw0672] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/15/2019] [Indexed: 05/22/2023]
Abstract
NIR-II fluorescence imaging greatly reduces scattering coefficients for nearly all tissue types at long wavelengths, benefiting deep tissue imaging. However, most of the NIR-II fluorophores suffer from low quantum yields and/or short circulation time that limit the quality of NIR-II imaging. Here, we engineered a supramolecular assembly of protein complex with lodged cyanine dyes to produce a brilliant NIR-II fluorophore, providing a NIR-II quantum yield of 21.2% with prolonged circulation time. Computational modeling revealed the mechanism for fluorescence enhancement and identified key parameters governing albumin complex for NIR-II fluorophores. Our complex afforded high-resolution microvessel imaging, with a 3-hour imaging window compared to 2 min for free dye alone. Furthermore, the complexation strategy was applied to an antibody-derived assembly, offering high-contrast tumor imaging without affecting the targeting ability of the antibody. This study provides a facile strategy for producing high-performance NIR-II fluorophores by chaperoning cyanine dyes with functional proteins.
Collapse
Affiliation(s)
- Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Zeng
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Swati Chandra
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Ertsey
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Kenneth S. Hettie
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Tarn Teraphongphom
- Department of Otolaryngology, Stanford University, Stanford, CA 94305, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, P. R. China
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| | - Xiaodong Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | | | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. (S.Z.); (X.C.); (H.S.)
| |
Collapse
|
263
|
Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: A review article. J Control Release 2019; 311-312:125-137. [PMID: 31476342 DOI: 10.1016/j.jconrel.2019.08.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Ovarian carcinoma (OC) is one of the leading causes of death among gynecologic malignancies all over the world. It is characterized by high mortality rate because of the lack of early diagnosis. The first-line chemotherapeutic regimen for late stage epithelial ovarian cancer is paclitaxel in combination to carboplatin. However, in most of cases, relapse occurs within six months despite the initial success of this chemotherapeutic combination. A lot of challenges have been encountered with the conventional delivery of paclitaxel in addition to the occurrence of severe off-target toxicity. One major problem is poor paclitaxel solubility which was improved by addition of Cremophor EL that unfortunately resulted in hypersensitivity side effects. Another obstacle is the multi drug resistance which is the main cause of OC recurrence. Accordingly, incorporation of paclitaxel, solely or in combination to other drugs, in nanocarrier systems has grabbed attention of many researchers to circumvent all these hurdles. The current review is the first article that provides a comprehensive overview on multi-faceted implementations of paclitaxel loaded nanoplatforms to solve delivery obstacles of paclitaxel in management of ovarian carcinoma. Moreover, challenges in physicochemical properties, biological activity and targeted delivery of PTX were depicted with corresponding solutions using nanotechnology. Different categories of nanocarriers employed were collected included lipid, protein, polymeric, solid nanoemulsion and hybrid systems. Future perspectives including imperative research considerations in ovarian cancer therapy were proposed as well.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Manal A Elsheikh
- Department of pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Amr M Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Yosra S R Elnaggar
- Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Egypt; Department of Pharmaceutics Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
264
|
Tu Y, Yu Y, Zhou Z, Xie S, Yao B, Guan S, Situ B, Liu Y, Kwok RTK, Lam JWY, Chen S, Huang X, Zeng Z, Tang BZ. Specific and Quantitative Detection of Albumin in Biological Fluids by Tetrazolate-Functionalized Water-Soluble AIEgens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29619-29629. [PMID: 31340641 DOI: 10.1021/acsami.9b10359] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The analysis of albumin has clinical significance in diagnostic tests and obvious value to research studies on the albumin-mediated drug delivery and therapeutics. The present immunoassay, instrumental techniques, and colorimetric methods for albumin detection are either expensive, troublesome, or insensitive. Herein, a class of water-soluble tetrazolate-functionalized derivatives with aggregation-induced emission (AIE) characteristics is introduced as novel fluorescent probes for albumin detection. They can be selectively lighted up by site-specific binding with albumin. The resulting albumin fluorescent assay exhibits a low detection limit (0.21 nM), high robustness in aqueous buffer (pH = 6-9), and a broad tunable linear dynamic range (0.02-3000 mg/L) for quantification. The tetrazolate functionality endows the probes with a superior water solubility (>0.01 M) and a high binding affinity to albumin (KD = 0.25 μM). To explore the detection mechanism, three unique polar binding sites on albumin are computationally identified, where the multivalent tetrazolate-lysine interactions contribute to the tight binding and restriction of the molecular motion of the AIE probes. The key role of lysine residues is verified by the detection of poly-l-lysine. Moreover, we applied the fluorogenic method to quantify urinary albumin in clinical samples and found it a feasible and practical strategy for albumin analysis in complex biological fluids.
Collapse
Affiliation(s)
- Yujie Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | | | - Shujuan Guan
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | | | | | | | - Sijie Chen
- Ming Wai Lau Center for Reparative Medicine , Karolinska Institutet , Hong Kong 999077 , China
| | | | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Ben Zhong Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, (Guangzhou International Campus) , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
265
|
Yu M, Duan X, Cai Y, Zhang F, Jiang S, Han S, Shen J, Shuai X. Multifunctional Nanoregulator Reshapes Immune Microenvironment and Enhances Immune Memory for Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900037. [PMID: 31453054 PMCID: PMC6702652 DOI: 10.1002/advs.201900037] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/23/2019] [Indexed: 04/14/2023]
Abstract
Hypoxia leads to up-regulation of PD-L1 and decreases T lymphocyte infiltration, thus boosting immunotherapeutic resistance of tumors. Moreover, tumor-infiltrating myeloid cells such as myeloid-derived suppressor cells (MDSCs) correlate with potent immune suppressive activity and resistance to the immune checkpoint blocking (ICB) in tumor sites. Here, a multifunctional nanoregulator incorporating MnO2 particles and small molecular IPI549 is developed, which can reshape the tumor immune microenvironment (TIME) to unleash the immune system. The intravenously administered nanoregulator effectively accumulates in tumor sites to alleviate hypoxia via oxygen-generating reduction of MnO2 and to inhibit PI3Kγ on MDSCs via IPI549 release in the tumor microenvironment (TME), which results in concurrent downregulation of PD-L1 expression, polarization of tumor associated macrophages (TAMs) toward pro-inflammatory M1-like phenotype (tumor-suppressive), enhanced infiltration of CD4+ helper T lymphocytes (Th cells), and cytotoxic CD8+ T lymphocytes (Tc cells), and suppressed infiltration of regulatory T lymphocytes (Treg cells) for effective tumor immunotherapy. Furthermore, the local generation of Mn2+ in TME allows tumor-specific magnetic resonance imaging (MRI). More excitingly, the nanoregulator-reshaped TIME is effectively reserved due to the synergistic effect of hypoxia alleviation and MDSC PI3Kγ inhibition, leading to remarkable post-medication inhibition of tumor re-growth and metastasis in an animal study.
Collapse
Affiliation(s)
- Meng Yu
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Xiaohui Duan
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Yujun Cai
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Fang Zhang
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
| | - Shuqi Jiang
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
| | - Shisong Han
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Jun Shen
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Xintao Shuai
- Department of RadiologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhou510120China
- PCFM Lab of Ministry of EducationSchool of Material Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
266
|
Ghilan A, Chiriac AP, Nita LE. Magnetic composites based on bovine serum albumin and poly(aspartic acid). POLYM ENG SCI 2019. [DOI: 10.1002/pen.25125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry RO‐700487 Iasi Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry RO‐700487 Iasi Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry RO‐700487 Iasi Romania
| |
Collapse
|
267
|
Li W, Lin J, Wang T, Huang P. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Curr Med Chem 2019; 26:1406-1422. [PMID: 29932026 DOI: 10.2174/0929867325666180622121801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The development of materials, chemistry and genetics has created a great number of systems for delivering antibiotics, neuropeptides or other drugs to neurons in neuroscience research, and has also provided important and powerful tools in neuron-related applications. Although these drug delivery systems can facilitate the advancement of neuroscience studies, they still have limited applications due to various drawbacks, such as difficulty in controlling delivery molecules or drugs to the target region, and trouble of releasing them in predictable manners. The combination of optics and drug delivery systems has great potentials to address these issues and deliver molecules or drugs to the nervous system with extraordinary spatiotemporal selectivity triggered by light. In this review, we will introduce the development of photo-triggered drug delivery systems in neuroscience research and their neuron-related applications including regulating neural activities, treating neural diseases and inducing nerve regenerations.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
268
|
Díaz-Saldívar P, Huidobro-Toro JP. ATP-loaded biomimetic nanoparticles as controlled release system for extracellular drugs in cancer applications. Int J Nanomedicine 2019; 14:2433-2447. [PMID: 31040666 PMCID: PMC6454990 DOI: 10.2147/ijn.s192925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The antitumoral effect of ATP requires its accumulation in the extracellular space to interact with membrane receptors in target cells. We propose the use of albumin nanoparticles (ANPs) coated with erythrocyte membranes (EMs) to load, deliver, release, and enhance the extracellular anticancer activity of ATP. Materials and methods ANPs were synthesized by desolvation method and optimal values of pH, albumin concentration, and ethanol volume were determined. EMs were derived from erythrocyte lysates and were coated on to ANPs using an extruder. Size was determined by transmission electron microscopy (TEM) and hydrodynamic size and zeta potential were determined by dynamic light scattering. Coating of the ANPs with the EMs was verified by TEM and confocal microscopy. Nanoparticle cell uptake was analyzed by confocal microscopy using HeLa and HEK-293 cell cultures treated with nanoparticles stained with 1,1′-diocta-decyl-3,3,3′,3′-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) for EM-ANPs and Alexa 488 for ANPs. Cell viability was analyzed by [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and Annexin V/propidium iodide assays. Results Optimal values of ANP preparation were as follows: pH=9, 10 mg/mL albumin concentration, and 2.33±0.04 mL ethanol volume. Size distributions as analyzed by TEM were as follows: ANPs =91.9±4.3 nm and EM-ANPs =98.3±5.1 nm; hydrodynamic sizes: ANPs =180.5±6.8 nm and EM-ANPs =197.8±3.2 nm; and zeta potentials: ANPs =17.8±3.5 mV, ANPs+ATP =−13.60±0.48 and EM-ANPs =−13.7±2.9 mV. The EMs coating the ANPs were observed by TEM and confocal microscopy. A fewer number of internalized EM-ANPs+ATP compared to non-coated ANPs+ATP was observed in HeLa and HEK-293 cells. Cell viability decreased up to 48.6%±2.0% with a concentration of 400 µM ATP after 72 hours of treatment and cell death is caused mainly via apoptosis. Conclusion Our current results show that it is possible to obtain nanoparticles from highly biocompatible, biodegradable materials and that their coating with EMs allows the regulation of the internalization process in order to promote extracellular activity of ATP.
Collapse
Affiliation(s)
- Patricia Díaz-Saldívar
- Laboratory of Pharmacology, Deparment of Biology, Faculty of Chemistry and Biology, Center for the Development of Nanoscience and Nanotechnology, University of Santiago de Chile, Santiago, Chile,
| | - Juan Pablo Huidobro-Toro
- Laboratory of Pharmacology, Deparment of Biology, Faculty of Chemistry and Biology, Center for the Development of Nanoscience and Nanotechnology, University of Santiago de Chile, Santiago, Chile,
| |
Collapse
|
269
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
270
|
Pottash AE, Kuffner C, Noonan-Shueh M, Jay SM. Protein-based vehicles for biomimetic RNAi delivery. J Biol Eng 2019; 13:19. [PMID: 30891095 PMCID: PMC6390323 DOI: 10.1186/s13036-018-0130-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022] Open
Abstract
Broad translational success of RNA interference (RNAi) technology depends on the development of effective delivery approaches. To that end, researchers have developed a variety of strategies, including chemical modification of RNA, viral and non-viral transfection approaches, and incorporation with delivery vehicles such as polymer- and lipid-based nanoparticles, engineered and native proteins, extracellular vesicles (EVs), and others. Among these, EVs and protein-based vehicles stand out as biomimetically-inspired approaches, as both proteins (e.g. Apolipoprotein A-1, Argonaute 2, and Arc) and EVs mediate intercellular RNA transfer physiologically. Proteins specifically offer significant therapeutic potential due to their biophysical and biochemical properties as well as their ability to facilitate and tolerate manipulation; these characteristics have made proteins highly successful translational therapeutic molecules in the last two decades. This review covers engineered protein vehicles for RNAi delivery along with what is currently known about naturally-occurring extracellular RNA carriers towards uncovering design rules that will inform future engineering of protein-based vehicles.
Collapse
Affiliation(s)
- Alex Eli Pottash
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Christopher Kuffner
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Madeleine Noonan-Shueh
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- 1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA.,2Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 USA.,3Program in Molecular and Cellular Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
271
|
Yan D, Long J, Liu J, Cao Y. The toxicity of ZnO nanomaterials to HepG2 cells: the influence of size and shape of particles. J Appl Toxicol 2019; 39:231-240. [PMID: 30159912 DOI: 10.1002/jat.3712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2024]
Abstract
Understanding the possible role of physicochemical properties in determining the toxicity of ZnO nanomaterials (NMs) is crucial for the safe use of ZnO-based materials. In this study, we synthesized four types of ZnO NMs, and characterized them as ZnO nanorods (NRs; length 400-500 nm, diameter 150-200 nm), ZnO Mini-NRs (length 50-100 nm, diameter 15-20 nm), amorphous ZnO microspheres (a-ZnO MS) and crystalline ZnO MS (c-ZnO MS; the a/c-ZnO MS are nanoflowers with an extensive growth of sheet-like structures). ZnO NMs and ZnO Mini-NRs were significantly more cytotoxic than a/c-ZnO MS, and this trend was similar in both HepG2 cells and human umbilical vein endothelial cells. Intracellular reactive oxygen species was only modestly induced by c-ZnO MS, whereas intracellular Zn ions were dose-dependently increased in HepG2 cells by the exposure of all types of ZnO NMs. The expression of endoplasmic reticulum stress marker DDIT3 was induced following an order of ZnO NRs > a-ZnO MS > c-ZnO MS > ZnO Mini-NRs, and the apoptosis gene CASP12 was induced following an order of a-ZnO MS > ZnO NRs > c-ZnO MS > ZnO Mini-NRs. Combined, these results suggested that ZnO NM-induced cytotoxicity and expression of endoplasmic reticulum stress-apoptosis genes could be influenced by the size and shape of ZnO NMs.
Collapse
Affiliation(s)
- Dejian Yan
- School of Chemical Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
| | - Jimin Long
- School of Chemical Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
| | - Jikai Liu
- School of Chemical Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
| | - Yi Cao
- School of Chemical Engineering, Xiangtan University, Hunan, 411105, People's Republic of China
| |
Collapse
|
272
|
Karaca N, Ünlüer ÖB. Albumin Based Nanoparticles for Detection of Pancreatic Cancer Cells. Protein Pept Lett 2019; 26:271-280. [PMID: 30659529 DOI: 10.2174/0929866526666190119121434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular imaging of cancer cells using effective drug targeting systems are most interested research area in recent years. Albumin protein is a soluble and most abundant protein in circulatory system. It has a ligand-binding function and acts as a transport protein. Researchers are interested in developing albumin based nanostructured specific anti-tumor drugs in cancer therapy. Pancreatic cancer treatment or drug design for targeted pancreatic cancer cell has great importance due to it has a high mortality rate comparing other cancer types. OBJECTIVE In this article, our goal is to develop new targeting nanoparticles based on the conjugation of albumin and Hyaluronic Acid (HA) for pancreatic cancer cells. METHOD In this article, we proposed a new technique for conjugation of albumin (BSA) and HA in nano formation. Firstly, cationic BSA is synthesized. Then, BSA-HA conjugation is obtained by interacted cationic BSA with 1000 ppm HA. Secondly, nano BSA-HA particles and nano BSA particles were synthesized according to AmiNoAcid Decorated and Light Underpinning Conjugation Approach (ANADOLUCA) method which provides a special cross-linking strategy for biomolecules using ruthenium-based amino acid monomer haptens. After characterization studies, in vitro cytotoxic activity of synthesized nano BSA-HA particles were determined for PANC-1 ATCC® CRL146 cells. RESULTS According to the data, nano BSA and nano BSA-HA particles synthesized uniquely using special ruthenium-based amino acid decorated cross-linking agent, (MATyr)2-Ru-(MATyr)2.based on ANDOLUCA method. Characterization results showed that there was not any change in protein folding structures during nano formation process. In addition, nano protein particles gained fluorescence feature. When interacting synthesized nano BSA and nano BSA-HA particles with pancreatic cells, it was found that BSA nanoparticles were usually around cells and membranes, but BSA-HA nanoparticles were identified around the cells, in the cytoplasm inside the cell, and next to the cell nucleus. So, nano BSA-HA particles could be used as cancer cell imaging agent for PANC-1 ATCC® CRL146 cells. CONCLUSION The satisfactory conclusion of this study is that synthesized nano BSA-HA particles are fundamental materials for targeting pancreatic cancer cells due to HA receptors located on pancreatic cancer cells and imaging agents due to fluorescence feature of the BSA-HA nanoparticles.
Collapse
Affiliation(s)
- Nursenem Karaca
- Graduate School of Health Sciences, Department of Pharmacognosy, Anadolu University, Eskisehir, Turkey
| | - Özlem Biçen Ünlüer
- Department of Chemistry, Faculty of Science, Eskisehir Technical University , Eskisehir, Turkey
| |
Collapse
|
273
|
Chen CC, Li JJ, Guo NH, Chang DY, Wang CY, Chen JT, Lin WJ, Chi KH, Lee YJ, Liu RS, Chen CL, Wang HE. Evaluation of the Biological Behavior of a Gold Nanocore-Encapsulated Human Serum Albumin Nanoparticle (Au@HSANP) in a CT-26 Tumor/Ascites Mouse Model after Intravenous/Intraperitoneal Administration. Int J Mol Sci 2019; 20:ijms20010217. [PMID: 30626093 PMCID: PMC6337091 DOI: 10.3390/ijms20010217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Nai-Hua Guo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Deng-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | | | - Wuu-Jyh Lin
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan.
| | - Kwan-Hwa Chi
- Shin Kong Wu Ho-Su memorial hospital, Taipei 111, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 115, Taiwan.
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
274
|
Giang Phan VH, Duong HTT, Thambi T, Nguyen TL, Turabee MH, Yin Y, Kim SH, Kim J, Jeong JH, Lee DS. Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials 2019; 195:100-110. [PMID: 30623788 DOI: 10.1016/j.biomaterials.2018.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/07/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
Lymphoid organs, which are populated by dendritic cells (DCs), are highly specialized tissues and provide an ideal microenvironment for T-cell priming. However, intramuscular or subcutaneous delivery of vaccine to DCs, a subset of antigen-presenting cells, has failed to stimulate optimal immune response for effective vaccination and need for adjuvants to induce immune response. To address this issue, we developed an in situ-forming injectable hybrid hydrogel that spontaneously assemble into microporous network upon subcutaneous administration, which provide a cellular niche to host immune cells, including DCs. In situ-forming injectable hybrid hydrogelators, composed of protein-polymer conjugates, formed a hydrogel depot at the close proximity to the dermis, resulting in a rapid migration of immune cells to the hydrogel boundary and infiltration to the microporous network. The biocompatibility of the watery microporous network allows recruitment of DCs without a DC enhancement factor, which was significantly higher than that of traditional hydrogel releasing chemoattractants, granulocyte-macrophage colony-stimulating factor. Owing to the sustained degradation of microporous hydrogel network, DNA vaccine release can be sustained, and the recruitment of DCs and their homing to lymph node can be modulated. Furthermore, immunization of a vaccine encoding amyloid-β fusion proteinbearing microporous network induced a robust antigen-specific immune response in vivo and strong recall immune response was exhibited due to immunogenic memory. These hybrid hydrogels can be administered in a minimally invasive manner using hypodermic needle, bypassing the need for cytokine or DC enhancement factor and provide niche to host immune cells. These findings highlight the potential of hybrid hydrogels that may serve as a simple, yet multifunctional, platform for DNA vaccine delivery to modulate immune response.
Collapse
Affiliation(s)
- V H Giang Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Md Hasan Turabee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yue Yin
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Han Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
275
|
Stevanović M. Biomedical Applications of Nanostructured Polymeric Materials. NANOSTRUCTURED POLYMER COMPOSITES FOR BIOMEDICAL APPLICATIONS 2019:1-19. [DOI: 10.1016/b978-0-12-816771-7.00001-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
276
|
Zhao R, Jia T, Shi H, Huang C. A versatile probe for serum albumin and its application for monitoring wounds in live zebrafish. J Mater Chem B 2019; 7:2782-2789. [DOI: 10.1039/c9tb00219g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A versatile probe for serum albumin and its application in monitoring wounds in live zebrafish.
Collapse
Affiliation(s)
- Rongrong Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- China
| | - Ti Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- China
| | - Hongyuan Shi
- Department of Radiology
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing
- P. R. China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
277
|
Li K, Dong W, Liu Q, Lv G, Xie M, Sun X, Qiu L, Lin J. A biotin receptor-targeted silicon(IV) phthalocyanine for in vivo tumor imaging and photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 190:1-7. [DOI: 10.1016/j.jphotobiol.2018.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
|
278
|
Yang W, Shi X, Shi Y, Yao D, Chen S, Zhou X, Zhang B. Beyond the Roles in Biomimetic Chemistry: An Insight into the Intrinsic Catalytic Activity of an Enzyme for Tumor-Selective Phototheranostics. ACS NANO 2018; 12:12169-12180. [PMID: 30418734 DOI: 10.1021/acsnano.8b05797] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein-assisted biomimetic synthesis has been an emerging offshoot of nanofabrication in recent years owing to its features of green chemistry, facile process, and ease of multi-integration. As a result, many proteins have been used for biomimetic synthesis of varying kinds of nanostructures. Although the efforts on exploring new proteins and investigating their roles in biomimetic chemistry are increasing, the most essential intrinsic properties of proteins are largely neglected. Herein we report a frequently used enzyme (horseradish peroxidase, HRP) to demonstrate the possibility of enzymatic activity retaining after accomplishing the roles in biomimetic synthesis of ultrasmall gadolinium (Gd) nanodots and stowing its substrate 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid ammonium salt) (ABTS), denoted as Gd@HRPABTS. It was found that ca. 70% of the enzymatic activity of HRP was preserved. The associated changes of protein structure with chemical treatments were studied by spectroscopic analysis. Leveraging on the highly retained catalytic activity, Gd@HRPABTS exerts strong catalytic oxidation of peroxidase substrate ABTS into photoactive counterparts in the presence of intrinsic H2O2 inside the tumor, therefore enabling tumor-selective catalytic photoacoustic (PA) imaging and photothermal therapy (PTT). In addition, the MR moiety of Gd@HRPABTS provides guidance for PTT and further diagrams that Gd@HRPABTS is clearable from the body via kidneys. Preliminary toxicity studies show no observed adverse effects by administration of them. This study demonstrates beyond the well-known roles in biomimetic chemistry that HRP can also preserve its enzymatic activity for tumor catalytic theranostics.
Collapse
Affiliation(s)
- Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| | - Xiudong Shi
- Department of Radiology , Shanghai Public Health Clinical Center, Fudan University , Shanghai 201508 , China
| | - Yuxin Shi
- Department of Radiology , Shanghai Public Health Clinical Center, Fudan University , Shanghai 201508 , China
| | - Defan Yao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering and Nano Science , Tongji University School of Medicine , Shanghai 200443 , China
| |
Collapse
|
279
|
Xiao B, Zhou X, Xu H, Wu B, Hu D, Hu H, Pu K, Zhou Z, Liu X, Tang J, Shen Y. Integration of Polymerization and Biomineralization as a Strategy to Facilely Synthesize Nanotheranostic Agents. ACS NANO 2018; 12:12682-12691. [PMID: 30507161 DOI: 10.1021/acsnano.8b07584] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Integration of biological macromolecules with inorganic materials via biomineralization has demonstrated great potential for development of nanotheranostic agents. To produce multifunctionality, integration of multiple components in the biomineralized theranostic agents is required; however, how to efficiently and reproducibly implement this is challenging. In this report, a universal biomineralization strategy is developed by incorporation of oxidization polymerization into albumin-templated biomineralization for facile synthesis of nanotheranostic agents. A series of biomineralized polymers and manganese dioxide hybrid nanoparticles (PMHNs) can be synthesized via the polymerization of various monomers, including dopamine (DA), epigallocatechin (EGC), pyrrole (PY), and diaminopyridine (DP), along with the reduction of KMnO4 and formation of manganese dioxide nanoparticles in albumin templates. These biomineralized PMHNs demonstrate ultrahigh MRI (longitudinal relaxivity up to 38 mM-1 s-1) and ultrasonic (US) imaging contrasting capabilities and have excellent photothermal therapy efficacy with complete ablation of orthotopic tumors. Moreover, these biomineralized hybrid nanoparticles can be effectively excreted through the kidneys, avoiding potential systemic toxicity. Thus, integration of polymerization into biomineralization presents a strategy for the fabrication of hybrid nanomaterials, allowing the production of multifunctional and biocompatible nanotheranostic agents via a facile one-pot method.
Collapse
Affiliation(s)
- Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Bihan Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Ding Hu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University , Singapore 637457 , Singapore
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| |
Collapse
|
280
|
Lee S, Lee C, Park S, Lim K, Kim SS, Kim JO, Lee ES, Oh KT, Choi HG, Youn YS. Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. Int J Pharm 2018; 553:363-374. [PMID: 30385372 DOI: 10.1016/j.ijpharm.2018.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
Gold nanoclusters (AuNCs) have been considered to be a promising candidate for hyperthermia-based anticancer therapy. Herein, we introduce albumin-assisted AuNCs composed of small gold nanoparticles (AuNPs, <6 nm) assembled with strands of polyallylamine (PAH), which exhibited strong surface plasmon resonance upon near-infrared (NIR, ∼808 nm) laser irradiation and good in vivo stability. Our albumin-assisted PAH-AuNCs (BSA/PAH-AuNCs) were facilely fabricated as a top-down process by a simple ultrasonication after the preparation of large nano-aggregates of PAH-AuNPs. Albumin played a critical role as a stabilizer and surfactant in making loosely associated large aggregates and thereby producing small gold nanoclusters (∼60 nm) of slightly negative charge upon ultrasonication. The prepared BSA/PAH-AuNCs displayed excellent hyperthermal effects (∼60 °C) in response to ∼808-nm NIR laser irradiation in a 4T1 cell system in vitro and in 4T1 cell tumor xenograft mice in vivo, indicating their remarkable potential to suppress breast cancer growth, without almost no significant toxicity in histology. Consequently, our gold nanoclusters should be considered as a promising photothermal agent that are easy to manufacture and exhibit marked anticancer effects in terms of tumor ablation.
Collapse
Affiliation(s)
- Sungin Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sanghyun Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sung Soo Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyongsan 38541, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
281
|
HSA-Coated Magnetic Nanoparticles for MRI-Guided Photodynamic Cancer Therapy. Pharmaceutics 2018; 10:pharmaceutics10040284. [PMID: 30562981 PMCID: PMC6321360 DOI: 10.3390/pharmaceutics10040284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Photodynamic therapy (PDT) is a promising technique for cancer treatment; however, low tissue permeability for irradiating light and insufficient photosensitizer (PS) accumulation in tumors limit its clinical potential. Nanoparticles are engineered to improve selective drug delivery to tumor sites, but its accumulation is highly variable between tumors and patients. Identifying PS accumulation peak in a personalized manner is crucial for therapeutic outcome. Magnetic nanoparticles (MNPs) provide opportunity for tracking drug accumulation in dynamics using non-invasive magnetic resonance imaging (MRI). The purpose of the study was to evaluate MNP loaded with PS as a theranostic tool for treating cancer in mice xenograft colon cancer models. Methods: MNPs coated with human serum albumin (HSA) were loaded with bacteriochlorine a. MRI, atomic emission spectroscopy (AES) and fluorescent imaging were used to study MNP and drug accumulation rates and dynamics in CT26 tumors. Tumor growth curves were evaluated in animals that received PDT at different time points upon MNP systemic injection. Results: Peak MNP accumulation in tumors was detected by MRI 60 min post injection (pi) and the data were verified by AES and fluorescent imaging. Up to 17% of injected dose/g of tissue was delivered to malignant tissues 24 h after injection. Consistent with MRI predicted drug accumulation peak PDT performed 60 min after intravenous injection was more efficient in inhibiting tumor growth than treatment scheduled 30 min and 240 min pi. Conclusions: PS loading on HAS-coated MNPs is a perspective approach to increase drug delivery to tumor site. Tracking for MNP accumulation by MRI can be used to predict drug concentration peak in tumors and to adjust PDT time scheduling for improved antitumor response.
Collapse
|
282
|
Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. NANO CONVERGENCE 2018; 5:35. [PMID: 30499047 PMCID: PMC6265354 DOI: 10.1186/s40580-018-0168-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 05/26/2023]
Abstract
The major neurological disorders found in a central nervous system (CNS), such as brain tumors, Alzheimer's diseases, Parkinson's diseases, and Huntington's disease, have led to devastating outcomes on the human public health. Of these disorders, early diagnostics remains poor, and no treatment has been successfully discovered; therefore, they become the most life-threatening medical burdens worldwide compared to other major diseases. The major obstacles for the drug discovery are the presence of a restrictive blood-brain barrier (BBB), limiting drug entry into brains and undesired neuroimmune activities caused by untargeted drugs, leading to irreversible neuronal damages. Recent advances in nanotechnology have contributed to the development of novel nanoplatforms and effective delivering strategies to improve the CNS disorder treatment while less disturbing brain systems. The nanoscale drug carriers, including liposomes, dendrimers, viral capsids, polymeric nanoparticles, silicon nanoparticles, and magnetic/metallic nanoparticles, enable the effective drug delivery penetrating across the BBB, the aforementioned challenges in the CNS. Moreover, drugs encapsulated by the nanocarriers can reach further deeper into targeting regions while preventing the degradation. In this review, we classify novel disease hallmarks incorporated with emerging nanoplatforms, describe promising approaches for improving drug delivery to the disordered CNS, and discuss their implications for clinical practice.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Eric Gerard Cutler
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| |
Collapse
|
283
|
Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2018; 7:357-367. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the most abundant plasma protein, serum albumin has been extensively studied and employed for therapeutic applications. Despite its direct clinical use for the maintenance of blood homeostasis in various medical conditions, this review exclusively summarizes and discusses albumin-based bio-conjugates and assemblies as versatile bio-functional additives and carriers in biomedical applications. As one of the smallest-sized proteins in the human body, albumin is physiochemically stable and biochemically inert. Moreover, albumin is also endowed with abundant specific binding sites for numerous therapeutic compounds, which also endow it with superior bioactivities. Firstly, due to its small size and binding specificity, albumin alone or its derived assemblies can be utilized as competent drug carriers, which can deliver drugs through the enhanced permeability and retention (EPR) effect or actively target lesion sites through binding with gp60 and secreted protein acidic and rich in cysteine (SPARC) in tumor sites. Furthermore, its biochemical stability and inertness make it a safe and biocompatible coating material for use in biomedical applications. Albumin-based surface modifying additives can be used to functionalize both macro substrates (e.g. surfaces of medical devices or implants) and nanoparticle surfaces (e.g. drug carriers and imaging contrast agents). In this review, we elaborate on the synthesis and applications of albumin-based bio-functional coatings and drug carriers, respectively.
Collapse
Affiliation(s)
- Chao Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore.
| | | | | | | |
Collapse
|
284
|
Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
285
|
Hoffmann S, Gorzelanny C, Moerschbacher B, Goycoolea FM. Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. NANOMATERIALS 2018; 8:nano8100846. [PMID: 30336593 PMCID: PMC6215305 DOI: 10.3390/nano8100846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Sub-micron o/w emulsions coated with chitosan have been used for drug delivery, quorum sensing inhibition, and vaccine development. To study interactions with biological systems, nanocapsules have been fluorescently labelled in previous works, but it is often difficult to distinguish the released label from intact nanocapsules. In this study, we present advanced-labelling strategies based on Förster Resonance Energy Transfer (FRET) measurements for chitosan-coated nanocapsules and investigate their dissolution and degradation. We used FRET measurements of nanocapsules loaded with equimolar concentrations of two fluorescent dyes in their oily core and correlated them with dynamic light scattering (DLS) count rate measurement and absorbance measurements during their disintegration by dissolution. Using count rate measurements, we also investigated the enzymatic degradation of nanocapsules using pancreatin and how protein corona formation influences their degradation. Of note, nanocapsules dissolved in ethanol, while FRET decreased simultaneously with count rate, and absorbance was caused by nanocapsule turbidity, indicating increased distance between dye molecules after their release. Nanocapsules were degradable by pancreatin in a dose-dependent manner, and showed a delayed enzymatic degradation after protein corona formation. We present here novel labelling strategies for nanocapsules that allow us to judge their status and an in vitro method to study nanocapsule degradation and the influence of surface characteristics.
Collapse
Affiliation(s)
- Stefan Hoffmann
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Bruno Moerschbacher
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
286
|
Shi X, Bai S, Yang C, Ma X, Hou M, Chen J, Xue P, Li CM, Kang Y, Xu Z. Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. J Mater Chem B 2018; 6:5549-5561. [PMID: 32254965 DOI: 10.1039/c8tb01384e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanomedicines based on unimolecular micelles (UMs) have shown unique advantages such as high micellar stability, programmed cargo delivery and enhanced therapeutic efficiency. Herein, we report an acid-activated amphiphilic prodrug based on a dextran (DEX) polymeric framework (DEX-PDOX-b-POEGMA, labelled DMO@DOX), which conjugates a diblock copolymer of a hydrophobic doxorubicin (DOX) prodrug block and a hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) block by atom transfer radical polymerization. The DMO@DOX prodrug can form nano-sized UMs in aqueous media attributed to its amphiphilic structure and achieve a very high drug loading rate of 80.4 wt%. In the presence of an acidic medium resembling a tumor microenvironment, the hydrazone bond embedded in the prodrug is broken, which releases the loaded drug of DOX. The DMO@DOX prodrug shows a notable and preferential inhibition effect on the growth of tumor cells in vitro compared to healthy cells, leading to advantageous biocompatibility and effective antitumor activity. For verification, the DMO@DOX prodrug was applied in the treatment of a mouse model bearing xenograft tumors and showed a remarkable therapeutic performance. This study demonstrates an effective design of UM-based nanoagents to improve the micellar stability of polymeric prodrug micelles with enhanced performance in cancer therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Najafi S, Amani S, Shahlaei M. Rapid determination of the anti-cancer agent Gemcitabine in biological samples by fluorescence sensor based on Au-doped CdTe. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
288
|
Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. J Control Release 2018; 283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022]
|
289
|
Wang Z, Chi H, Wang X, Li W, Li Z, Li J, Fu Y, Lu B, Xia Z, Qian J, Liu L. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection. J Int Med Res 2018; 46:2875-2882. [PMID: 29877099 PMCID: PMC6124272 DOI: 10.1177/0300060518778415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 107 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.
Collapse
Affiliation(s)
- Zhongyi Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Hang Chi
- Academy of Military Medical Sciences, Beijing, China
| | - Xiwen Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Wenliang Li
- Academy of Military Medical Sciences, Beijing, China
- Jilin Medical University, Jilin, Jilin Province, China
- Key Laboratory of Preparation and Application of Environmentally Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, Jilin Province, China
| | - Zhiping Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaming Li
- Academy of Military Medical Sciences, Beijing, China
| | - Yingying Fu
- Academy of Military Medical Sciences, Beijing, China
| | - Bing Lu
- Academy of Military Medical Sciences, Beijing, China
| | - Zhiping Xia
- Academy of Military Medical Sciences, Beijing, China
| | - Jun Qian
- Academy of Military Medical Sciences, Beijing, China
| | - Linna Liu
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
290
|
Wang H, Zhou L, Xie K, Wu J, Song P, Xie H, Zhou L, Liu J, Xu X, Shen Y, Zheng S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 2018; 8:3949-3963. [PMID: 30083272 PMCID: PMC6071539 DOI: 10.7150/thno.26161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/02/2018] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have been extensively explored for cancer treatment, and their efficacies have arguably been proven in various cancer cell-derived xenograft (CDX) mouse models. However, they generally fail to show such therapeutic advantages in patients because of the huge pathological differences between human tumors and CDX models. Methods: In this study, we fabricated colloidal ultrastable nanomedicines from polymeric prodrugs and compared the therapeutic efficacies in hepatocellular carcinoma (HCC) CDX and clinically relevant patient-derived xenograft (PDX) mouse models, which closely mimic human tumor pathological properties. Working towards this goal, we esterified a highly potent SN38 (7-ethyl-10-hydroxycamptothecin) agent using oligo- or polylactide (oLA or PLA) segments with varying molecular weights. Results: The resulting SN38 conjugates assembled with polyethylene glycol-block-polylactic acid to form systemically injectable nanomedicines. With increasing PLA chain length, the SN38 conjugates showed extended retention in the nanoparticles and superior antitumor activity, completely eradicating xenografted tumors in both mouse models. Our data implicate that these small-sized and ultrastable nanomedicines might also efficaciously treat cancer in patients. More interestingly, the systemically delivered nanomedicines notably alleviated the incidence of bloody diarrhea. Conclusion: Our studies demonstrate that the appropriate molecular editing of anticancer drugs enables the generation of better tolerated cytotoxic nanotherapy for cancer, which represents a potentially useful scaffold for further clinical translation.
Collapse
Affiliation(s)
- Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Liqian Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Ke Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jiaping Wu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Penghong Song
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Haiyang Xie
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Lin Zhou
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Jialin Liu
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People's Hospital, Shenzhen 518112, P. R. China
| | - Xiao Xu
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shusen Zheng
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health; Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine; Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
291
|
Xia Q, Chen Z, Yu Z, Wang L, Qu J, Liu R. Aggregation-Induced Emission-Active Near-Infrared Fluorescent Organic Nanoparticles for Noninvasive Long-Term Monitoring of Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17081-17088. [PMID: 29717866 DOI: 10.1021/acsami.8b03861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective long-term monitoring of tumor growth is significant for the evaluation of cancer therapy. Aggregation-induced emission-active near-infrared (NIR) fluorescent organic nanoparticles (TPFE-Rho dots) are designed and synthesized for long-term in vitro cell tracking and in vivo monitoring of tumor growth. TPFE-Rho dots display the advantages of NIR fluorescent emission, large Stokes shift (∼180 nm), good biocompatibility, and high photostability. In vitro cell tracing studies demonstrate that TPFE-Rho dots can track SK-Hep-1 cells over 11 generations. In vivo optical imaging results confirm that TPFE-Rho dots can monitor tumor growth for more than 19 days in a real-time manner. This work indicates that TPFE-Rho dots could act as NIR fluorescent nanoprobes for real-time long-term in situ in vivo monitoring of tumor growth.
Collapse
Affiliation(s)
| | | | | | - Lei Wang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | | |
Collapse
|
292
|
Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018; 16:E179. [PMID: 29882898 PMCID: PMC6024944 DOI: 10.3390/md16060179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/20/2018] [Indexed: 02/04/2023] Open
Abstract
Current trends in the application of nanomaterials are emerging in the nano-biotechnological sector for development of medicines. Cyanobacteria (blue-green algae) are photosynthetic prokaryotes that have applications to human health and numerous biological activities as dietary supplements. Cyanobacteria produce biologically active and chemically diverse compounds such as cyclic peptides, lipopeptides, fatty acid amides, alkaloids, and saccharides. More than 50% of marine cyanobacteria are potentially exploitable for the extraction of bioactive substances, which are effective in killing cancer cells by inducing apoptotic death. The current review emphasizes that not even 10% of microalgal bioactive components have reached commercialized platforms due to difficulties related to solubility. Considering these factors, they should be considered as a potential source of natural products for drug discovery and drug delivery approaches. Nanoformulations employing a wide variety of nanoparticles and their polymerized forms could be an emerging approach to the development of new cancer drugs. This review highlights recent research on microalgae-based medicines or compounds as well as their biomedical applications. This review further discusses the facts, limitations, and commercial market trends related to the use of microalgae for industrial and medicinal purposes.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| | - Sung-Min Kang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Seung Kyu Hwang
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Korea.
| | - Yun Suk Huh
- WCSL of Integrated Human Airway-on-a-chip, Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea.
| |
Collapse
|
293
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
294
|
Xiao Y, An FF, Chen J, Xiong S, Zhang XH. The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. J Mater Chem B 2018; 6:3692-3702. [PMID: 32254832 DOI: 10.1039/c8tb00427g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo/chemo combination therapy has been demonstrated to be a generally more powerful strategy for treating cancers than a single treatment modality. However, it is unknown whether the timing of light irradiation has any impact on therapeutic efficacy. We designed a carrier-free and self-monitoring nanodrug to monitor the entire dual-drug release profile and determined the impact of photodynamic therapy (PDT) at different time points. The designed nanodrug consists of the chemotherapeutic doxorubicin (DOX) and the photosensitizer pheophorbide A (PhA). The drugs form a fluorescence resonance energy transfer (FRET) pair (DOX transferring energy to PhA) when present at a precise ratio in the combination nanodrug. Due to the FRET effect, the DOX-PhA nanoparticles (NPs) show PhA fluorescence in a normal pH environment (such as cytoplasm). However, the FRET effect is lost when the NPs are disassembled in an acidic environment (such as lysosomes), and the DOX fluorescence is recovered. By real-time fluorescence variation monitoring, we determined the key time points when the drugs reached various subcellular locations, which helped us to determine the PDT-triggering time points and investigate the impact on the therapeutic effect in the combination therapy. Furthermore, the PDT was triggered at these established time points both in vitro and in vivo, which revealed that the best PDT-triggering time point in the combination therapy was achieved after nuclear entry of DOX. The study suggests that the optimization of combination therapy, not only photo/chemo but also chemo/chemo combination therapy, may require not only a controlled drug ratio but also a controlled drug release profile and target arrival time.
Collapse
Affiliation(s)
- Yafang Xiao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | | | | | | | | |
Collapse
|
295
|
Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, Yu Z, Wang H. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1527. [DOI: 10.1002/wnan.1527] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yiting Qiao
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
- Department of Chemical Engineering Zhejiang University Hangzhou P.R. China
| | - Liqian Zhou
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| | - Wen Ma
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Yuanyuan Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou P.R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; Key Laboratory of Combined Multi‐Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou P.R. China
| |
Collapse
|
296
|
Abstract
Graphical Abstract [Formula: see text]
Collapse
|
297
|
Gou Y, Miao D, Zhou M, Wang L, Zhou H, Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front Pharmacol 2018; 9:421. [PMID: 29755355 PMCID: PMC5934525 DOI: 10.3389/fphar.2018.00421] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/11/2018] [Indexed: 01/09/2023] Open
Abstract
Over the past decade, more interests have been aroused in engineering protein-based nanoformulations for cancer treatment. This excitement originates from the success of FDA approved Abraxane (Albumin-based paclitaxel nanoparticles) in 2005. The new generation of biocompatible endogenous protein-based nanoformulations is currently constructed through delivering cancer therapeutic and diagnostic agents simultaneously, as named potential theranostics. Protein nanoformulations are commonly incorporated with dyes, contrast agents, drug payloads or inorganic nanoclusters, serving as imaging-guided combinatorial cancer therapeutics. Employing the nature identity of proteins, the theranostics, escape the clearance by reticuloendothelial cells and have a long blood circulation time. The nanoscale sizet allows them to be penetrated deeply into tumor tissues. In addition, stimuli release and targeted molecules are incorporated to improve the delivery efficiency. The ongoing advancement of protein-based nanoformulations for cancer theranostics in recent 5 years is reviewed in this paper. Fine-designed nanoformulations based on albumin, ferritin, gelatin, and transferrin are highlighted from the literature. Finally, the current challenges are identified in translating protein-based nanoformulations from laboratory to clinical trials.
Collapse
Affiliation(s)
- Yi Gou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Dandan Miao
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Min Zhou
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| | - Lijuan Wang
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Hongyu Zhou
- Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Gaoxing Su
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Targets, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
298
|
Suresh PK. Tumor Heterogeneity: An Important Determinant for Efficacy and Safety in Nanoparticle Anticancer Gene Therapy. Trends Biotechnol 2018; 36:476-477. [PMID: 29477234 DOI: 10.1016/j.tibtech.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
Models of tumor heterogeneity should mimic perfusion in the tumor mass and consider cancer stem cell hierarchy and convertibility. Other important factors include epigenomic alterations, enhanced permeation and retention effects, and the reticuloendothelial system. New stimuli-responsive delivery systems, active targeting-based methods, and corona characterization strategies can deliver genes more precisely.
Collapse
Affiliation(s)
- P K Suresh
- School of Biosciences & Technology, VIT, Vellore, Vellore District, Tamil Nadu, India.
| |
Collapse
|
299
|
Zhang X, Zong W, Cheng W, Han X. Codelivery of doxorubicin and sodium tanshinone IIA sulfonate using multicompartmentalized vesosomes to enhance synergism and prevent doxorubicin-induced cardiomyocyte apoptosis. J Mater Chem B 2018; 6:5243-5247. [DOI: 10.1039/c8tb01136b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doxorubicin, one of the most effective antitumor drugs, causes serious adverse cardiac effects.
Collapse
Affiliation(s)
- Xunan Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| | - Wei Zong
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| | - Wenlong Cheng
- Department of Chemical Engineering
- Monash University
- Australia
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- China
| |
Collapse
|