3101
|
Min CW, Lee SH, Cheon YE, Han WY, Ko JM, Kang HW, Kim YC, Agrawal GK, Rakwal R, Gupta R, Kim ST. Gel-based and gel-free proteome data associated with controlled deterioration treatment of Glycine max seeds. Data Brief 2017; 15:449-453. [PMID: 29062869 PMCID: PMC5645486 DOI: 10.1016/j.dib.2017.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022] Open
Abstract
Data presented here are associated with the article: "In-depth proteomic analysis of soybean (Glycine max) seeds during controlled deterioration treatment (CDT) reveals a shift in seed metabolism" (Min et al., 2017) [1]. Seed deterioration is one of the major problems, affecting the seed quality, viability, and vigor in a negative manner. Here, we display the gel-based and gel-free proteomic data, associated with the CDT in soybean seeds. The present data was obtained from 2-DE, shotgun proteomic analysis (label-free quantitative proteomic analysis) using Q-Exactive, and gene ontology analysis associated with CDT in soybean seeds (Min et al., 2017) [1].
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Seo Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Ye Eun Cheon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Won Young Han
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Jong Min Ko
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Hang Won Kang
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Yong Chul Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| |
Collapse
|
3102
|
The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery. Nat Commun 2017; 8:1809. [PMID: 29180619 PMCID: PMC5703878 DOI: 10.1038/s41467-017-01900-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
SUMO-targeted ubiquitin ligases (STUbLs) mediate the ubiquitylation of SUMOylated proteins to modulate their functions. In search of direct targets for the STUbL RNF4, we have developed TULIP (targets for ubiquitin ligases identified by proteomics) to covalently trap targets for ubiquitin E3 ligases. TULIP methodology could be widely employed to delineate E3 substrate wiring. Here we report that the single SUMO E2 Ubc9 and the SUMO E3 ligases PIAS1, PIAS2, PIAS3, ZNF451, and NSMCE2 are direct RNF4 targets. We confirm PIAS1 as a key RNF4 substrate. Furthermore, we establish the ubiquitin E3 ligase BARD1, a tumor suppressor and partner of BRCA1, as an indirect RNF4 target, regulated by PIAS1. Interestingly, accumulation of BARD1 at local sites of DNA damage increases upon knockdown of RNF4. Combined, we provide an insight into the role of the STUbL RNF4 to balance the role of SUMO signaling by directly targeting Ubc9 and SUMO E3 ligases. SUMO and ubiquitin are key signal transducers in several cellular processes including the DNA-damage response. Here the authors describe a method for selective enrichment of ubiquitin substrates for E3 ligases from complex cellular proteomes and identify the SUMO conjugation machinery as direct RNF4 substrates.
Collapse
|
3103
|
Tse SPK, Beauchemin M, Morse D, Lo SCL. Refining Transcriptome Gene Catalogs by MS-Validation of Expressed Proteins. Proteomics 2017; 18. [PMID: 29152876 DOI: 10.1002/pmic.201700271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/17/2017] [Indexed: 11/11/2022]
Abstract
Protein sequence identification by tandem mass spectroscopy (LC-MS/MS) identifies thousands of protein sequences even in complex mixtures, and provides valuable insight into the biological functions of different cells. For non-model organisms, transcriptomes are generally used to allow peptide identification, an important addition to their use as a gene catalog allowing the potential metabolic activities of cells to be determined. We used LC-MS/MS data to identify which of the six possible reading frames in the transcriptome was actually used by the cell to make protein, and asked whether this would have an impact on downstream analyses using the dataset. We combined results from several LC-MS/MS experiments designed to identify peptide sequences in extracts from the dinoflagellate Lingulodinium polyedra using a 74 655-sequence transcriptome. We compiled a list of 6628 translated nucleic acid sequences that contained the ensemble of peptide matches (termed MS-validated sequences) and assessed the similarity in downstream analyses between this data set and the 6628 nucleic acid sequences from which they were derived. When compared with BLASTx analyses of the DNA sequences, the MS-validated protein-sequences-analyzed using BLASTp showed differences in gene ontology, had more identified BLAST hits, and contained more KEGG pathway enzymes. The MS-validated protein sequences also differ from datasets containing longest open reading frame (ORF) protein sequences. We also note a poor correlation between the levels of protein and mRNA abundance, a comparison not previously performed for dinoflagellates. The differences observed between analyses of MS-validated protein sequence and nucleic acid sequence datasets suggest use of the former may provide a more accurate representation of cellular capacity than the latter. Developing MS-validated protein sequence datasets may also speed interpretation of MS-MS spectra in bottom up proteomics experiments.
Collapse
Affiliation(s)
- Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Mathieu Beauchemin
- Département de Sciences Biologiques, Institut de Recherche en biologie Végétale, Université de Montréal, Montreal, Canada
| | - David Morse
- Département de Sciences Biologiques, Institut de Recherche en biologie Végétale, Université de Montréal, Montreal, Canada
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
3104
|
Assessing species biomass contributions in microbial communities via metaproteomics. Nat Commun 2017; 8:1558. [PMID: 29146960 PMCID: PMC5691128 DOI: 10.1038/s41467-017-01544-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial community structure can be analyzed by quantifying cell numbers or by quantifying biomass for individual populations. Methods for quantifying cell numbers are already available (e.g., fluorescence in situ hybridization, 16S rRNA gene amplicon sequencing), yet high-throughput methods for assessing community structure in terms of biomass are lacking. Here we present metaproteomics-based methods for assessing microbial community structure using protein abundance as a measure for biomass contributions of individual populations. We optimize the accuracy and sensitivity of the method using artificially assembled microbial communities and show that it is less prone to some of the biases found in sequencing-based methods. We apply the method to communities from two different environments, microbial mats from two alkaline soda lakes, and saliva from multiple individuals. We show that assessment of species biomass contributions adds an important dimension to the analysis of microbial community structure. Convenient methods for assessing microbial community structure in terms of biomass are lacking. Here, the authors present a metaproteomics-based approach for assessing microbial community structure using protein abundance as a measure for biomass contributions of individual populations.
Collapse
|
3105
|
Hosp F, Mann M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron 2017; 96:558-571. [PMID: 29096073 DOI: 10.1016/j.neuron.2017.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
3106
|
Blümmel AS, Drepper F, Knapp B, Eimer E, Warscheid B, Müller M, Fröbel J. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. J Biol Chem 2017; 292:21320-21329. [PMID: 29089385 DOI: 10.1074/jbc.m117.812560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate-receptor complexes with a central binding cavity for twin-arginine-containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event. We previously reported that Tat-dependent protein translocation into membrane vesicles of Escherichia coli is blocked by the compound N,N'-dicyclohexylcarbodiimide (DCCD, DCC). We have now identified a highly conserved glutamate residue in the transmembrane region of E. coli TatC, which when modified by DCCD interferes with the deep insertion of a Tat signal peptide into the TatBC receptor complex. Our findings are consistent with a hydrophobic binding cavity formed by TatB and TatC inside the lipid bilayer. Moreover, we found that DCCD mediates discrete intramolecular cross-links of E. coli TatC involving both its N- and C-tails. These results confirm the close proximity of two distant sequence sections of TatC proposed to concertedly function as the primary docking site for twin-arginine signal peptides.
Collapse
Affiliation(s)
- Anne-Sophie Blümmel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Spemann Graduate School of Biology and Medicine (SGBM).,the Faculty of Biology
| | - Friedel Drepper
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and
| | - Ekaterina Eimer
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Faculty of Biology
| | - Bettina Warscheid
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine,
| | - Julia Fröbel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine
| |
Collapse
|
3107
|
Palomino-Alonso M, Lachén-Montes M, González-Morales A, Ausín K, Pérez-Mediavilla A, Fernández-Irigoyen J, Santamaría E. Network-Driven Proteogenomics Unveils an Aging-Related Imbalance in the Olfactory IκBα-NFκB p65 Complex Functionality in Tg2576 Alzheimer's Disease Mouse Model. Int J Mol Sci 2017; 18:ijms18112260. [PMID: 29077059 PMCID: PMC5713230 DOI: 10.3390/ijms18112260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
Olfaction is often deregulated in Alzheimer’s disease (AD) patients, and is also impaired in transgenic Tg2576 AD mice, which overexpress the Swedish mutated form of human amyloid precursor protein (APP). However, little is known about the molecular mechanisms that accompany the neurodegeneration of olfactory structures in aged Tg2576 mice. For that, we have applied proteome- and transcriptome-wide approaches to probe molecular disturbances in the olfactory bulb (OB) dissected from aged Tg2576 mice (18 months of age) as compared to those of age matched wild-type (WT) littermates. Some over-represented biological functions were directly relevant to neuronal homeostasis and processes of learning, cognition, and behavior. In addition to the modulation of CAMP responsive element binding protein 1 (CREB1) and APP interactomes, an imbalance in the functionality of the IκBα-NFκB p65 complex was observed during the aging process in the OB of Tg2576 mice. At two months of age, the phosphorylated isoforms of olfactory IκBα and NFκB p65 were inversely regulated in transgenic mice. However, both phosphorylated proteins were increased at 6 months of age, while a specific drop in IκBα levels was detected in 18-month-old Tg2576 mice, suggesting a transient activation of NFκB in the OB of Tg2576 mice. Taken together, our data provide a metabolic map of olfactory alterations in aged Tg2576 mice, reflecting the progressive effect of APP overproduction and β-amyloid (Aβ) accumulation on the OB homeostasis in aged stages.
Collapse
Affiliation(s)
- Maialen Palomino-Alonso
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Karina Ausín
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Alberto Pérez-Mediavilla
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research (CIMA), Department of Biochemistry, University of Navarra, 31008 Pamplona, Spain.
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, 31008 Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, 31008 Pamplona, Spain.
| |
Collapse
|
3108
|
Zolg DP, Wilhelm M, Yu P, Knaute T, Zerweck J, Wenschuh H, Reimer U, Schnatbaum K, Kuster B. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. Proteomics 2017; 17. [PMID: 28872757 DOI: 10.1002/pmic.201700263] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Indexed: 11/06/2022]
Abstract
Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries.
Collapse
Affiliation(s)
- Daniel Paul Zolg
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Peng Yu
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | | | | | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Center for Integrated Protein Science Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| |
Collapse
|
3109
|
Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nat Chem Biol 2017; 13:1267-1273. [PMID: 29058723 PMCID: PMC5698155 DOI: 10.1038/nchembio.2494] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/07/2017] [Indexed: 12/17/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential human glycosyltransferase that adds O-GlcNAc modifications to numerous proteins. However, little is known about the mechanism with which OGT recognizes various protein substrates. Here we report on GlcNAc electrophilic probes (GEPs) to expedite the characterization of OGT-substrate recognition. Data from mass spectrometry, X-ray crystallization, and biochemical and radiolabeled kinetic assays support the application of GEPs to rapidly report the impacts of OGT mutations on protein substrate or sugar binding and to discover OGT residues crucial for protein recognition. Interestingly, we found that the same residues on the inner surface of the N-terminal domain contribute to OGT interactions with different protein substrates. By tuning reaction conditions, a GEP enables crosslinking of OGT with acceptor substrates in situ, affording a unique method to discover genuine substrates that weakly or transiently interact with OGT. Hence, GEPs provide new strategies to dissect OGT-substrate binding and recognition.
Collapse
|
3110
|
Kotliński M, Jerzmanowski A. Histone H1 Purification and Post-Translational Modification Profiling by High-Resolution Mass Spectrometry. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1675:147-166. [PMID: 29052191 DOI: 10.1007/978-1-4939-7318-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has proven particularly difficult to purify Linker (H1) histones from the model plant Arabidopsis thaliana. This is most likely due to its low nuclear DNA content and the abundance of substances that interfere with protein isolation. These problems have hindered the use of Arabidopsis for in-depth characterization of nuclear proteins by modern techniques based on mass spectrometry (MS). Here, we describe an improved methodology for preparing pure Arabidopsis H1s and separating them by HPLC into fractions corresponding to nonallelic variants. In addition, we outline basic approaches enabling the identification of posttranslational modifications of H1 by MS and their mapping by digestion with different proteases. We also discuss the analysis and interpretation of the acquired data.
Collapse
Affiliation(s)
- Maciej Kotliński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, Poland
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
3111
|
Bartosova M, Schaefer B, Bermejo JL, Tarantino S, Lasitschka F, Macher-Goeppinger S, Sinn P, Warady BA, Zaloszyc A, Parapatics K, Májek P, Bennett KL, Oh J, Aufricht C, Schaefer F, Kratochwill K, Schmitt CP. Complement Activation in Peritoneal Dialysis-Induced Arteriolopathy. J Am Soc Nephrol 2017; 29:268-282. [PMID: 29046343 DOI: 10.1681/asn.2017040436] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of increased mortality in patients with CKD and is further aggravated by peritoneal dialysis (PD). Children are devoid of preexisting CVD and provide unique insight into specific uremia- and PD-induced pathomechanisms of CVD. We obtained peritoneal specimens from children with stage 5 CKD at time of PD catheter insertion (CKD5 group), children with established PD (PD group), and age-matched nonuremic controls (n=6/group). We microdissected omental arterioles from tissue layers not directly exposed to PD fluid and used adjacent sections of four arterioles per patient for transcriptomic and proteomic analyses. Findings were validated in omental and parietal arterioles from independent pediatric control (n=5), CKD5 (n=15), and PD (n=15) cohorts. Transcriptomic analysis revealed differential gene expression in control versus CKD5 arterioles and in CKD5 versus PD arterioles. Gene ontology analyses revealed activation of metabolic processes in CKD5 arterioles and of inflammatory, immunologic, and stress-response cascades in PD arterioles. PD arterioles exhibited particular upregulation of the complement system and respective regulatory pathways, with concordant findings at the proteomic level. In the validation cohorts, PD specimens had the highest abundance of omental and parietal arteriolar C1q, C3d, terminal complement complex, and phosphorylated SMAD2/3, a downstream effector of TGF-β Furthermore, in the PD parietal arterioles, C1q and terminal complement complex abundance correlated with the level of dialytic glucose exposure, abundance of phosphorylated SMAD2/3, and degree of vasculopathy. We conclude that PD fluids activate arteriolar complement and TGF-β signaling, which quantitatively correlate with the severity of arteriolar vasculopathy.
Collapse
Affiliation(s)
- Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | - Betti Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | | | | | - Felix Lasitschka
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | - Peter Sinn
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ariane Zaloszyc
- Department of Pediatrics 1, University Hospital of Strasbourg, Strasbourg, France
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Jun Oh
- Department of Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | - Klaus Kratochwill
- Department of Pediatrics and Adolescent Medicine and.,Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine,
| |
Collapse
|
3112
|
Parker BL, Burchfield JG, Clayton D, Geddes TA, Payne RJ, Kiens B, Wojtaszewski JFP, Richter EA, James DE. Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Mol Cell Proteomics 2017; 16:2055-2068. [PMID: 28982716 DOI: 10.1074/mcp.ra117.000020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 01/06/2023] Open
Abstract
Exercise is extremely beneficial to whole body health reducing the risk of a number of chronic human diseases. Some of these physiological benefits appear to be mediated via the secretion of peptide/protein hormones into the blood stream. The plasma peptidome contains the entire complement of low molecular weight endogenous peptides derived from secretion, protease activity and PTMs, and is a rich source of hormones. In the current study we have quantified the effects of intense exercise on the plasma peptidome to identify novel exercise regulated secretory factors in humans. We developed an optimized 2D-LC-MS/MS method and used multiple fragmentation methods including HCD and EThcD to analyze endogenous peptides. This resulted in quantification of 5,548 unique peptides during a time course of exercise and recovery. The plasma peptidome underwent dynamic and large changes during exercise on a time-scale of minutes with many rapidly reversible following exercise cessation. Among acutely regulated peptides, many were known hormones including insulin, glucagon, ghrelin, bradykinin, cholecystokinin and secretogranins validating the method. Prediction of bioactive peptides regulated with exercise identified C-terminal peptides from Transgelins, which were increased in plasma during exercise. In vitro experiments using synthetic peptides identified a role for transgelin peptides on the regulation of cell-cycle, extracellular matrix remodeling and cell migration. We investigated the effects of exercise on the regulation of PTMs and proteolytic processing by building a site-specific network of protease/substrate activity. Collectively, our deep peptidomic analysis of plasma revealed that exercise rapidly modulates the circulation of hundreds of bioactive peptides through a network of proteases and PTMs. These findings illustrate that peptidomics is an ideal method for quantifying changes in circulating factors on a global scale in response to physiological perturbations such as exercise. This will likely be a key method for pinpointing exercise regulated factors that generate health benefits.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Clayton
- §School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas A Geddes
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- §School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Bente Kiens
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F P Wojtaszewski
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - Erik A Richter
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - David E James
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; .,‖School of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3113
|
Chen LL, Wang YB, Song JX, Deng WK, Lu JH, Ma LL, Yang CB, Li M, Xue Y. Phosphoproteome-based kinase activity profiling reveals the critical role of MAP2K2 and PLK1 in neuronal autophagy. Autophagy 2017; 13:1969-1980. [PMID: 28933595 PMCID: PMC5788482 DOI: 10.1080/15548627.2017.1371393] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/25/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023] Open
Abstract
Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid β [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy.
Collapse
Affiliation(s)
- Lei-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, Shandong, China
| | - Yong-Bo Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju-Xian Song
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wan-Kun Deng
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Li-Li Ma
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuan-Bin Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson Disease Research, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, and the Collaborative Innovation Center for Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3114
|
Min CW, Lee SH, Cheon YE, Han WY, Ko JM, Kang HW, Kim YC, Agrawal GK, Rakwal R, Gupta R, Kim ST. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J Proteomics 2017; 169:125-135. [PMID: 28669816 DOI: 10.1016/j.jprot.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 01/23/2023]
Abstract
Seed aging is one of the major events, affecting the overall quality of agricultural seeds. To analyze the effect of seed aging, soybean seeds were exposed to controlled deterioration treatment (CDT) for 3 and 7days, followed by their physiological, biochemical, and proteomic analyses. Seed proteins were subjected to protamine sulfate precipitation for the enrichment of low-abundance proteins and utilized for proteome analysis. A total of 14 differential proteins were identified on 2-DE, whereas label-free quantification resulted in the identification of 1626 non-redundant proteins. Of these identified proteins, 146 showed significant changes in protein abundance, where 5 and 141 had increased and decreased abundances, respectively while 352 proteins were completely degraded during CDT. Gene ontology and KEGG analyses suggested the association of differential proteins with primary metabolism, ROS detoxification, translation elongation and initiation, protein folding, and proteolysis, where most, if not all, had decreased abundance during CDT. Western blotting confirmed reduced level of antioxidant enzymes (DHAR, APx1, MDAR, and SOD) upon CDT. This in-depth integrated study reveals a major downshift in seed metabolism upon CDT. Reported data here serve as a resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality. BIOLOGICAL SIGNIFICANCE Controlled deterioration treatment (CDT) is one of the major events that negatively affects the quality and nutrient composition of agricultural seeds. However, the molecular mechanism of CDT is largely unknown. A combination of gel-based and gel-free proteomic approach was utilized to investigate the effects of CDT in soybean seeds. Moreover, we utilized protamine sulfate precipitation method for enrichment of low-abundance proteins, which are generally masked due to the presence of high-abundance seed storage proteins. Reported data here serve as resource for its exploitation to metabolic engineering of seeds for multiple purposes, including increased seed viability, vigor, and quality.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Seo Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Ye Eun Cheon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea
| | - Won Young Han
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Jong Min Ko
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Hang Won Kang
- National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Yong Chul Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea; National Institute of Crop Science, RDA, Miryang 627-803, Republic of Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-706, Republic of Korea.
| |
Collapse
|
3115
|
Windeløv JA, Wewer Albrechtsen NJ, Kuhre RE, Jepsen SL, Hornburg D, Pedersen J, Jensen EP, Galsgaard KD, Winther-Sørensen M, Ørgaard A, Deacon CF, Mann M, Kissow H, Hartmann B, Holst JJ. Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia 2017; 60:2066-2075. [PMID: 28669086 DOI: 10.1007/s00125-017-4347-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS In humans, glucagon-like peptide-1 (GLP-1) is rapidly degraded by dipeptidyl peptidase-4 to a relatively stable metabolite, GLP-1(9-36)NH2, which allows measurement of GLP-1 secretion. However, little is known about the kinetics of the GLP-1 metabolite in mice. We hypothesised that the GLP-1 metabolite is rapidly degraded in this species by neutral endopeptidase(s) (NEP[s]). METHODS We administered glucose, mixed meal or water orally to 256 mice, and took blood samples before and 2, 6, 10, 20, 30, 60 or 90 min after stimulation. To study the metabolism of the GLP-1 metabolite, i.v. GLP-1(9-36)NH2 (800 fmol) or saline (154 mmol/l NaCl) was administered to 160 mice, some of which had a prior injection of a selective NEP 24.11 ± inhibitor (candoxatril, 5 mg/kg) or saline. Blood was collected before and 1, 2, 4 and 12 min after GLP-1/saline injection. Plasma GLP-1 levels were analysed using a customised single-site C-terminal ELISA, two different two-site ELISAs and MS. RESULTS GLP-1 secretion profiles after oral glucose administration differed markedly when assayed by C-terminal ELISA compared with sandwich ELISAs, with the former showing a far higher peak value and AUC. In mice injected with GLP-1(9-36)NH2, immunoreactive GLP-1 plasma levels peaked at approximately 75 pmol/l at 1 min when measured with sandwich ELISAs, returning to baseline (~20 pmol/l) after 12 min, but remained elevated using the C-terminal ELISA (~90 pmol/l at 12 min). NEP 24.11 inhibition by candoxatril significantly attenuated GLP-1(9-36)NH2 degradation in vivo and in vitro. MS identified GLP-1 fragments consistent with NEP 24.11 degradation. CONCLUSIONS/INTERPRETATION In mice, the GLP-1 metabolite is eliminated within a few minutes owing to endoproteolytic cleavage by NEP 24.11. Therefore, accurate measurement of GLP-1 secretion in mice requires assays for NEP 24.11 metabolites. Conventional sandwich ELISAs are inadequate because of endoproteolytic cleavage of the dipeptidyl peptidase-4-generated metabolite.
Collapse
Affiliation(s)
- Johanne A Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ørgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hannelouise Kissow
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3116
|
Min CW, Lee SH, Cheon YE, Han WY, Ko JM, Kang HW, Kim YC, Agrawal GK, Rakwal R, Gupta R, Kim ST. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J Proteomics 2017. [DOI: 10.1016/j.jprot.2017.06.022 pmid: 28669816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3117
|
Rykær M, Svensson B, Davies MJ, Hägglund P. Unrestricted Mass Spectrometric Data Analysis for Identification, Localization, and Quantification of Oxidative Protein Modifications. J Proteome Res 2017; 16:3978-3988. [PMID: 28920440 DOI: 10.1021/acs.jproteome.7b00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidation generates multiple diverse post-translational modifications resulting in changes in protein structure and function associated with a wide range of diseases. Of these modifications, carbonylations have often been used as hallmarks of oxidative damage. However, accumulating evidence supports the hypothesis that other oxidation products may be quantitatively more important under physiological conditions. To address this issue, we have developed a holistic mass spectrometry-based approach for the simultaneous identification, localization, and quantification of a broad range of oxidative modifications based on so-called "dependent peptides". The strategy involves unrestricted database searches with rigorous filtering focusing on oxidative modifications. The approach was applied to bovine serum albumin and human serum proteins subjected to metal ion-catalyzed oxidation, resulting in the identification of a wide range of different oxidative modifications. The most common modification in the oxidized samples is hydroxylation, but carbonylation, decarboxylation, and dihydroxylation are also abundant, while carbonylation showed the largest increase in abundance relative to nonoxidized samples. Site-specific localization of modified residues reveals several "oxidation hotspots" showing high levels of modification occupancy, including specific histidine, tryptophan, methionine, glutamate, and aspartate residues. The majority of the modifications, however, occur at low occupancy levels on a diversity of side chains.
Collapse
Affiliation(s)
- Martin Rykær
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK 2200 Copenhagen, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads, Building 221, DK 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3118
|
Warneford-Thomson R, He C, Sidoli S, Garcia BA, Bonasio R. Sample Preparation for Mass Spectrometry-based Identification of RNA-binding Regions. J Vis Exp 2017. [PMID: 28994809 DOI: 10.3791/56004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Noncoding RNAs play important roles in several nuclear processes, including regulating gene expression, chromatin structure, and DNA repair. In most cases, the action of noncoding RNAs is mediated by proteins whose functions are in turn regulated by these interactions with noncoding RNAs. Consistent with this, a growing number of proteins involved in nuclear functions have been reported to bind RNA and in a few cases the RNA-binding regions of these proteins have been mapped, often through laborious, candidate-based methods. Here, we report a detailed protocol to perform a high-throughput, proteome-wide unbiased identification of RNA-binding proteins and their RNA-binding regions. The methodology relies on the incorporation of a photoreactive uridine analog in the cellular RNA, followed by UV-mediated protein-RNA crosslinking, and mass spectrometry analyses to reveal RNA-crosslinked peptides within the proteome. Although we describe the procedure for mouse embryonic stem cells, the protocol should be easily adapted to a variety of cultured cells.
Collapse
Affiliation(s)
- Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine
| | - Chongsheng He
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine
| | - Simone Sidoli
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine
| | - Benjamin A Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine;
| |
Collapse
|
3119
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
3120
|
Gil J, Ramírez-Torres A, Chiappe D, Luna-Peñaloza J, Fernandez-Reyes FC, Arcos-Encarnación B, Contreras S, Encarnación-Guevara S. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells. J Biol Chem 2017; 292:18129-18144. [PMID: 28893905 DOI: 10.1074/jbc.m117.784546] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/01/2017] [Indexed: 01/03/2023] Open
Abstract
Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.
Collapse
Affiliation(s)
- Jeovanis Gil
- From the Programa de Genómica Funcional de Procariotes and.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos CP 62210, México
| | | | - Diego Chiappe
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | | | - Francis C Fernandez-Reyes
- Centro de Investigación en Ciencia-Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62210, México
| | | | | | | |
Collapse
|
3121
|
Hughes CS, Morin GB. Using Public Data for Comparative Proteome Analysis in Precision Medicine Programs. Proteomics Clin Appl 2017; 12. [PMID: 28887829 DOI: 10.1002/prca.201600179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/06/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE Maximizing the clinical utility of information obtained in longitudinal precision medicine programs would benefit from robust comparative analyses to known information to assess biological features of patient material toward identifying the underlying features driving their disease phenotype. Herein, the potential for utilizing publically deposited mass-spectrometry-based proteomics data to perform inter-study comparisons of cell-line or tumor-tissue materials is investigated. EXPERIMENTAL DESIGN To investigate the robustness of comparison between MS-based proteomics studies carried out with different methodologies, deposited data representative of label-free (MS1) and isobaric tagging (MS2 and MS3 quantification) are utilized. RESULTS In-depth quantitative proteomics data acquired from analysis of ovarian cancer cell lines revealed the robust recapitulation of observable gene expression dynamics between individual studies carried out using significantly different methodologies. The observed signatures enable robust inter-study clustering of cell line samples. In addition, the ability to classify and cluster tumor samples based on observed gene expression trends when using a single patient sample is established. With this analysis, relevant gene expression dynamics are obtained from a single patient tumor, in the context of a precision medicine analysis, by leveraging a large cohort of repository data as a comparator. CONCLUSION AND CLINICAL RELEVANCE Together, these data establish the potential for state-of-the-art MS-based proteomics data to serve as resources for robust comparative analyses in precision medicine applications.
Collapse
Affiliation(s)
- Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3122
|
Pilling C, Cooper JA. SOCS2 Binds to and Regulates EphA2 through Multiple Mechanisms. Sci Rep 2017; 7:10838. [PMID: 28883622 PMCID: PMC5589800 DOI: 10.1038/s41598-017-11040-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 02/08/2023] Open
Abstract
Suppressors of cytokine signaling (SOCS) proteins inhibit signaling by serving as substrate receptors for the Cullin5-RING E3 ubiquitin ligase (CRL5) and through a variety of CRL5-independent mechanisms. CRL5, SOCS2 and SOCS6 are implicated in suppressing transformation of epithelial cells. We identified cell proteins that interact with SOCS2 and SOCS6 using two parallel proteomics techniques: BioID and Flag affinity purification mass spectrometry. The receptor tyrosine kinase ephrin type-A receptor 2 (EphA2) was identified as a SOCS2-interacting protein. SOCS2-EphA2 binding requires the SOCS2 SH2 domain and EphA2 activation loop autophosphorylation, which is stimulated by Ephrin A1 (EfnA1) or by phosphotyrosine phosphatase inhibition. Surprisingly, EfnA1-stimulated EphA2-SOCS2 binding is delayed until EphA2 has been internalized into endosomes. This suggests that SOCS2 binds to EphA2 in the context of endosomal membranes. We also found that SOCS2 overexpression decreases steady state levels of EphA2, consistent with increased EphA2 degradation. This effect is indirect: SOCS2 induces EfnA1 expression, and EfnA1 induces EphA2 down-regulation. Other RTKs have been reported to bind, and be regulated by, over-expressed SOCS proteins. Our data suggest that SOCS protein over-expression may regulate receptor tyrosine kinases through indirect and direct mechanisms.
Collapse
Affiliation(s)
- Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.,Molecular and Cellular Biology Program, 1959 NE Pacific Street, HSB T-466, University of Washington, Box 357275, Seattle, WA, 98195-7275, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, Washington, 98109, USA.
| |
Collapse
|
3123
|
Hinkelbein J, Jansen S, Iovino I, Kruse S, Meyer M, Cirillo F, Drinhaus H, Hohn A, Klein C, Robertis ED, Beutner D. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum. Int J Mol Sci 2017; 18:E1882. [PMID: 28858246 PMCID: PMC5618531 DOI: 10.3390/ijms18091882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades "regulation of haemostasis" (four proteins), "metabolism" (five proteins), and "leukocyte mediated immune response" (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis.
Collapse
Affiliation(s)
- Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Stefanie Jansen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| | - Ivan Iovino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Silvia Kruse
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Moritz Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| | - Fabrizio Cirillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Hendrik Drinhaus
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Andreas Hohn
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Corinna Klein
- CECAD Lipidomics & Proteomics Facilities, CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| | - Edoardo De Robertis
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
3124
|
Mohl BP, Emmott E, Roy P. Phosphoproteomic Analysis Reveals the Importance of Kinase Regulation During Orbivirus Infection. Mol Cell Proteomics 2017; 16:1990-2005. [PMID: 28851738 PMCID: PMC5672004 DOI: 10.1074/mcp.m117.067355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
Bluetongue virus (BTV) causes infections in wild and domesticated ruminants with high morbidity and mortality and is responsible for significant economic losses in both developing and developed countries. BTV serves as a model for the study of other members of the Orbivirus genus. Previously, the importance of casein kinase 2 for BTV replication was demonstrated. To identify intracellular signaling pathways and novel host-cell kinases involved during BTV infection, the phosphoproteome of BTV infected cells was analyzed. Over 1000 phosphosites were identified using mass spectrometry, which were then used to determine the corresponding kinases involved during BTV infection. This analysis yielded protein kinase A (PKA) as a novel kinase activated during BTV infection. Subsequently, the importance of PKA for BTV infection was validated using a PKA inhibitor and activator. Our data confirmed that PKA was essential for efficient viral growth. Further, we showed that PKA is also required for infection of equid cells by African horse sickness virus, another member of the Orbivirus genus. Thus, despite their preference in specific host species, orbiviruses may utilize the same host signaling pathways during their replication.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- From the ‡Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Edward Emmott
- §University of Cambridge, Division of Virology, Department of Pathology, Lab block level 5, Box 237, Addenbrookes Hospital, Cambridge, UK
| | - Polly Roy
- From the ‡Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK;
| |
Collapse
|
3125
|
Yu P, Petzoldt S, Wilhelm M, Zolg DP, Zheng R, Sun X, Liu X, Schneider G, Huhmer A, Kuster B. Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Anal Chem 2017; 89:8884-8891. [DOI: 10.1021/acs.analchem.7b01356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Yu
- Technical University of Munich, D-85354 Freising, Germany
| | - Svenja Petzoldt
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | - Runsheng Zheng
- Technical University of Munich, D-85354 Freising, Germany
| | - Xuefei Sun
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Xiaodong Liu
- Thermo Fisher Scientific, Sunnyvale, California 94085, United States
| | - Günter Schneider
- Department
of Medicine II, Klinikum rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Andreas Huhmer
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Bernhard Kuster
- Technical University of Munich, D-85354 Freising, Germany
- German Cancer Consortium (DKTK), 80336 Munich, Germany
- German Cancer Center (DKFZ), D-69120 Heidelberg, Germany
- Center for Integrated Protein Science Munich, 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, 85354 Freising, Germany
| |
Collapse
|
3126
|
Kuljanin M, Brown CFC, Raleigh MJ, Lajoie GA, Flynn LE. Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds. Biomaterials 2017; 144:130-143. [PMID: 28829951 DOI: 10.1016/j.biomaterials.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022]
Abstract
There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∼2.2 fold, the DCB by ∼1.3 fold, and the BTC by ∼1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM composition of two human decellularized tissues of interest as cell-instructive platforms for regenerative medicine.
Collapse
Affiliation(s)
- Miljan Kuljanin
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cody F C Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Matthew J Raleigh
- Undergraduate Medical Education, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| |
Collapse
|
3127
|
Danielsen HN, Hansen SH, Herbst FA, Kjeldal H, Stensballe A, Nielsen PH, Dueholm MS. Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry. Biomolecules 2017; 7:biom7030058. [PMID: 28777328 PMCID: PMC5618239 DOI: 10.3390/biom7030058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
Functional amyloids are important structural and functional components of many biofilms, yet our knowledge of these fascinating polymers is limited to a few examples for which the native amyloids have been isolated in pure form. Isolation of the functional amyloids from other cell components represents a major bottleneck in the search for new functional amyloid systems. Here we present a label-free quantitative mass spectrometry method that allows identification of amyloid proteins directly in cell lysates. The method takes advantage of the extreme structural stability and polymeric nature of functional amyloids and the ability of concentrated formic acid to depolymerize the amyloids. An automated data processing pipeline that provides a short list of amyloid protein candidates was developed based on an amyloid-specific sigmoidal abundance signature in samples treated with increasing concentrations of formic acid. The method was evaluated using the Escherichiacoli curli and the Pseudomonas Fap system. It confidently identified the major amyloid subunit for both systems, as well as the minor subunit for the curli system. A few non-amyloid proteins also displayed the sigmoidal abundance signature. However, only one of these contained a sec-dependent signal peptide, which characterizes most of all secreted proteins, including all currently known functional bacterial amyloids.
Collapse
Affiliation(s)
- Heidi N Danielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Susan H Hansen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Henrik Kjeldal
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Morten S Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
3128
|
Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Boddaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z, Retterer K, Bai R, Calvo SE, Mootha VK, Christodoulou J, Rötig A, Filipovska A, Cristian I, Falk MJ, Metodiev MD, Thorburn DR. Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome. Am J Hum Genet 2017; 101:239-254. [PMID: 28777931 DOI: 10.1016/j.ajhg.2017.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022] Open
Abstract
The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.
Collapse
|
3129
|
Hernandez-Valladares M, Vaudel M, Selheim F, Berven F, Bruserud Ø. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers. Expert Rev Proteomics 2017; 14:649-663. [DOI: 10.1080/14789450.2017.1352474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frode Selheim
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Berven
- Proteomics Unit, Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
3130
|
Sap KA, Bezstarosti K, Dekkers DHW, Voets O, Demmers JAA. Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila. J Proteome Res 2017; 16:2848-2862. [DOI: 10.1021/acs.jproteome.7b00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Karen A. Sap
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Dick H. W. Dekkers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Olaf Voets
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
3131
|
Assessing the impact of protein extraction methods for human gut metaproteomics. J Proteomics 2017; 180:120-127. [PMID: 28705725 DOI: 10.1016/j.jprot.2017.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022]
Abstract
Metaproteomics is a promising methodology for the functional characterizations of the gut microbiome. However, the performance of metaproteomic analysis is affected by protein extraction protocols in terms of the amount of protein recovered and the relative abundance of different bacteria observed in microbiome. Currently, there is a lack of consistency on protein extraction methods in published metaproteomics studies. Here we evaluated the effects of different protein extraction methods on human fecal metaproteome characterizations. We found that sodium dodecyl sulfate (SDS)-based lysis buffer obtained higher protein yields and peptide/protein group identifications compared to urea and the non-ionic detergent-based B-Per buffer. The addition of bead beating to any of the extraction buffers increased both protein yields and protein identifications. As well, bead beating led to a significant increase of the relative abundances of Firmicutes and Actinobacteria. We also demonstrated that ultrasonication, another commonly used mechanical disruption approach, performed even better than bead beating for gut microbial protein extractions. Importantly, proteins of the basic metabolic pathways showed significantly higher relative abundances when using ultrasonication. Overall, these results demonstrate that protein extraction protocols markedly impact the metaproteomic results and recommend a protein extraction protocol with both SDS and ultrasonication for metaproteomic studies. BIOLOGICAL SIGNIFICANCE The gut microbiome is emerging as an important factor influencing human health. Metaproteomics is promising for advancing the understanding of the functional roles of the microbiome in disease. However, metaproteomics suffers from a lack of consistent sample preparation procedures. In the present study, protein extraction protocols for fecal microbiome samples were evaluated for their effects on protein yields, peptide identifications, protein group identifications, taxonomic compositions and functional category distributions. While different protocols favor different microbial taxa and protein functions, our results suggest that a protein extraction protocol using sodium dodecyl sulfate (SDS) and ultrasonication provides the best performance for general shotgun metaproteomics studies.
Collapse
|
3132
|
Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, Beloin C, Gribaldo S. Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome. Front Microbiol 2017; 8:1215. [PMID: 28713344 PMCID: PMC5491611 DOI: 10.3389/fmicb.2017.01215] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022] Open
Abstract
Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may develop into an opportunistic pathogen. Furthermore, the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they phylogenetically belong to Gram-positive (monoderm) Firmicutes yet maintain an outer membrane (OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The OMs of Negativicutes have unique characteristics including the replacement of Braun's lipoprotein by OmpM for tethering the OM to the peptidoglycan. Through phylogenomic analysis, we have recently provided bioinformatic annotation of the Negativicutes diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture; however, little experimental data is presently available for any Negativicutes cell envelope. Here, we performed the first experimental proteomic characterization of the cell envelope of a diderm Firmicute, producing an OM proteome of V. parvula. We initially conducted a thorough bioinformatics analysis of all 1,844 predicted proteins from V. parvula DSM 2008's genome using 12 different localization prediction programs. These results were complemented by protein extraction with surface exposed (SE) protein tags and by subcellular fractionation, both of which were analyzed by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 78 OM proteins. These include a number of receptors for TonB-dependent transport, the main component of the BAM system for OM protein biogenesis (BamA), the Lpt system component LptD, which is responsible for insertion of LPS into the OM, and several copies of the major OmpM protein. The annotation of V. parvula's OM proteome markedly extends previous inferences on the nature of the cell envelope of Negativicutes, including the experimental evidence of a BAM/TAM system for OM protein biogenesis and of a complete Lpt system for LPS transport to the OM. It also provides important information on the role of OM components in the lifestyle of Veillonella, such as a possible gene cluster for O-antigen synthesis and a large number of adhesins. Finally, many OM hypothetical proteins were identified, which are priority targets for further characterization.
Collapse
Affiliation(s)
- Daniel I. Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut PasteurParis, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Jennifer Flechsler
- Pflanzliche Entwicklungsbiologie und Elektronenmikroskopie, Department I. Botanik, Biozentrum der LMU MünchenPlanegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie und Elektronenmikroskopie, Department I. Botanik, Biozentrum der LMU MünchenPlanegg-Martinsried, Germany
| | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut PasteurParis, France
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut PasteurParis, France
| |
Collapse
|
3133
|
Hamey JJ, Wienert B, Quinlan KGR, Wilkins MR. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol Cell Proteomics 2017; 16:2229-2242. [PMID: 28663172 DOI: 10.1074/mcp.m116.066308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/28/2017] [Indexed: 02/03/2023] Open
Abstract
Lysine methylation is widespread on human proteins, however the enzymes that catalyze its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knockout putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knockout of METTL21B, and the expected loss of lysine 79 methylation on knockout of EEF1AKMT1 No loss of eEF1A methylation was seen in the METTL23 knockout. Recombinant METTL21B was shown in vitro to catalyze methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knockout, and changes to further processes related to eEF1A function in knockouts of both METTL21B and EEF1AKMT1 This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knockouts of putative protein methyltransferase genes, for substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Beeke Wienert
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Kate G R Quinlan
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|
3134
|
Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. J Biotechnol 2017; 261:24-36. [PMID: 28663049 DOI: 10.1016/j.jbiotec.2017.06.1201] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional knowledge about microbial communities supports medical and technical application such as fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its success. In particular, construction of databases for protein identification, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and software. This review summarizes recent metaproteomics software and addresses the introduced issues in detail.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Kay Schallert
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Roman Zoun
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Beatrice Becher
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Gunter Saake
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
3135
|
Mateus A, Määttä TA, Savitski MM. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Proteome Sci 2017; 15:13. [PMID: 28652855 PMCID: PMC5482948 DOI: 10.1186/s12953-017-0122-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
In recent years, phenotypic-based screens have become increasingly popular in drug discovery. A major challenge of this approach is that it does not provide information about the mechanism of action of the hits. This has led to the development of multiple strategies for target deconvolution. Thermal proteome profiling (TPP) allows for an unbiased search of drug targets and can be applied in living cells without requiring compound labeling. TPP is based on the principle that proteins become more resistant to heat-induced unfolding when complexed with a ligand, e.g., the hit compound from a phenotypic screen. The melting proteome is also sensitive to other intracellular events, such as levels of metabolites, post-translational modifications and protein-protein interactions. In this review, we describe the principles of this approach, review the method and its developments, and discuss its current and future applications. While proteomics has generally focused on measuring relative protein concentrations, TPP provides a novel approach to gather complementary information on protein stability not present in expression datasets. Therefore, this strategy has great potential not only for drug discovery, but also for answering fundamental biological questions.
Collapse
Affiliation(s)
- André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Tomi A Määttä
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| |
Collapse
|
3136
|
Rosenberger G, Liu Y, Röst HL, Ludwig C, Buil A, Bensimon A, Soste M, Spector TD, Dermitzakis ET, Collins BC, Malmström L, Aebersold R. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat Biotechnol 2017; 35:781-788. [PMID: 28604659 PMCID: PMC5593115 DOI: 10.1038/nbt.3908] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
Abstract
Consistent detection and quantification of protein post-translational modifications (PTMs) across sample cohorts is a prerequisite for functional analysis of biological processes. Data-independent acquisition (DIA) is a bottom-up mass spectrometry approach that provides complete information on precursor and fragment ions. However, owing to the convoluted structure of DIA data sets, confident, systematic identification and quantification of peptidoforms has remained challenging. Here, we present inference of peptidoforms (IPF), a fully automated algorithm that uses spectral libraries to query, validate and quantify peptidoforms in DIA data sets. The method was developed on data acquired by the DIA method SWATH-MS and benchmarked using a synthetic phosphopeptide reference data set and phosphopeptide-enriched samples. IPF reduced false site-localization by more than sevenfold compared with previous approaches, while recovering 85.4% of the true signals. Using IPF, we quantified peptidoforms in DIA data acquired from >200 samples of blood plasma of a human twin cohort and assessed the contribution of heritable, environmental and longitudinal effects on their PTMs.
Collapse
Affiliation(s)
- George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,PhD Program in Systems Biology, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Hannes L Röst
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Genetics, Stanford University, Stanford, California, USA
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University Munich, Freising, Germany
| | - Alfonso Buil
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - Ariel Bensimon
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Martin Soste
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital Campus, London, UK
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Lars Malmström
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,S3IT, University of Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3137
|
Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C, Bramsen JB, Sørensen KD, Høyer S, Ørntoft TF, Andersen CL, Nielsen ML, Olsen JV. An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes. Cell Syst 2017; 4:587-599.e4. [PMID: 28601559 PMCID: PMC5493283 DOI: 10.1016/j.cels.2017.05.009] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
Abstract
This study investigates the challenge of comprehensively cataloging the complete human proteome from a single-cell type using mass spectrometry (MS)-based shotgun proteomics. We modify a classical two-dimensional high-resolution reversed-phase peptide fractionation scheme and optimize a protocol that provides sufficient peak capacity to saturate the sequencing speed of modern MS instruments. This strategy enables the deepest proteome of a human single-cell type to date, with the HeLa proteome sequenced to a depth of ∼584,000 unique peptide sequences and ∼14,200 protein isoforms (∼12,200 protein-coding genes). This depth is comparable with next-generation RNA sequencing and enables the identification of post-translational modifications, including ∼7,000 N-acetylation sites and ∼10,000 phosphorylation sites, without the need for enrichment. We further demonstrate the general applicability and clinical potential of this proteomics strategy by comprehensively quantifying global proteome expression in several different human cancer cell lines and patient tissue samples. Multi-shot proteomics quantifies the protein levels of 12,200+ genes in HeLa cells This essentially complete HeLa proteome has coverage similar to next-gen RNA-seq Deep coverage of major PTMs is achieved without specific enrichment The approach is extendable to other human cell lines and patient samples
Collapse
Affiliation(s)
- Dorte B Bekker-Jensen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christian D Kelstrup
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Tanveer S Batth
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sara C Larsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christa Haldrup
- Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Jesper B Bramsen
- Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Karina D Sørensen
- Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Søren Høyer
- Institute of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Torben F Ørntoft
- Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Claus L Andersen
- Departments of Molecular Medicine and Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Michael L Nielsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3138
|
Scifo E, Calza G, Fuhrmann M, Soliymani R, Baumann M, Lalowski M. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics. Expert Rev Proteomics 2017; 14:545-559. [PMID: 28539064 DOI: 10.1080/14789450.2017.1335200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.
Collapse
Affiliation(s)
- Enzo Scifo
- a Department of Psychiatry, and of Pharmacology and Toxicology , University of Toronto, Campbell Family Mental Health Research Institute of CAMH , Toronto , Canada
| | - Giulio Calza
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Martin Fuhrmann
- c Neuroimmunology and Imaging Group , German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Rabah Soliymani
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Marc Baumann
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Maciej Lalowski
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| |
Collapse
|
3139
|
Yu Q, Shi X, Feng Y, Kent KC, Li L. Improving data quality and preserving HCD-generated reporter ions with EThcD for isobaric tag-based quantitative proteomics and proteome-wide PTM studies. Anal Chim Acta 2017; 968:40-49. [PMID: 28395773 PMCID: PMC5509462 DOI: 10.1016/j.aca.2017.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/22/2022]
Abstract
Mass spectrometry (MS)-based isobaric labeling has undergone rapid development in recent years due to its capability for high throughput quantitation. Apart from its originally designed use with collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD), isobaric tagging technique could also work with electron-transfer dissociation (ETD), which provides complementarity to CID and is preferred in sequencing peptides with post-translational modifications (PTMs). However, ETD suffers from long reaction time, reduced duty cycle and bias against peptides with lower charge states. In addition, common fragmentation mechanism in ETD results in altered reporter ion production, decreased multiplexing capability, and even loss of quantitation capability for some of the isobaric tags, including custom-designed dimethyl leucine (DiLeu) tags. Here, we demonstrate a novel electron-transfer/higher-energy collision dissociation (EThcD) approach that preserves original reporter ion channels, mitigates bias against lower charge states, improves sensitivity, and significantly improves data quality for quantitative proteomics and proteome-wide PTM studies. Systematic optimization was performed to achieve a balance between data quality and sensitivity. We provide direct comparison of EThcD with ETD and HCD for DiLeu- and TMT-labeled HEK cell lysate and IMAC enriched phosphopeptides. Results demonstrate improved data quality and phosphorylation localization accuracy while preserving sufficient reporter ion production. Biological studies were performed to investigate phosphorylation changes in a mouse vascular smooth muscle cell line treated with four different conditions. Overall, EThcD exhibits superior performance compared to conventional ETD and offers distinct advantages compared to HCD in isobaric labeling based quantitative proteomics and quantitative PTM studies.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Yu Feng
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
3140
|
Proceedings of the EuBIC Winter School 2017. J Proteomics 2017; 161:78-80. [DOI: 10.1016/j.jprot.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
3141
|
Diedrich B, Dengjel J. Insights into autosomal dominant polycystic kidney disease by quantitative mass spectrometry-based proteomics. Cell Tissue Res 2017; 369:41-51. [DOI: 10.1007/s00441-017-2617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
|
3142
|
Murugaiyan J, Eravci M, Weise C, Roesler U. Mass spectrometry data from label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp. Data Brief 2017; 12:320-326. [PMID: 28480323 PMCID: PMC5407497 DOI: 10.1016/j.dib.2017.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae. Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - Murat Eravci
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Centre for Infectious Medicine, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
3143
|
Goeminne LJE, Gevaert K, Clement L. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob. J Proteomics 2017; 171:23-36. [PMID: 28391044 DOI: 10.1016/j.jprot.2017.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). SIGNIFICANCE The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments.
Collapse
Affiliation(s)
- Ludger J E Goeminne
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biochemistry, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium; Bioinformatics Institute Ghent, Ghent University, Belgium.
| |
Collapse
|
3144
|
Perumal N, Manicam C, Steinicke M, Funke S, Pfeiffer N, Grus FH. Characterization of the human aqueous humour proteome: A comparison of the genders. PLoS One 2017; 12:e0172481. [PMID: 28273097 PMCID: PMC5342205 DOI: 10.1371/journal.pone.0172481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Aqueous humour (AH) is an important biologic fluid that maintains normal intraocular pressure and contains proteins that regulate the homeostasis of ocular tissues. Any alterations in the protein compositions are correlated to the pathogenesis of various ocular disorders. In recent years, gender-based medicine has emerged as an important research focus considering the prevalence of certain diseases, which are higher in a particular sex. Nevertheless, the inter-gender variations in the AH proteome are unknown. Therefore, this study endeavoured to characterize the AH proteome to assess the differences between genders. Thirty AH samples of patients who underwent cataract surgery were categorized according to their gender. Label-free quantitative discovery mass spectrometry-based proteomics strategy was employed to characterize the AH proteome. A total of 147 proteins were identified with a false discovery rate of less than 1% and only the top 10 major AH proteins make up almost 90% of the total identified proteins. A large number of proteins identified were correlated to defence, immune and inflammatory mechanisms, and response to wounding. Four proteins were found to be differentially abundant between the genders, comprising SERPINF1, SERPINA3, SERPING1 and PTGDS. The findings emerging from our study provide the first insight into the gender-based proteome differences in the AH and also highlight the importance in considering potential sex-dependent changes in the proteome of ocular pathologies in future studies employing the AH.
Collapse
Affiliation(s)
- Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Steinicke
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H. Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
3145
|
Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, Lanzavecchia A, Mann M, Meissner F. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 2017; 18:583-593. [DOI: 10.1038/ni.3693] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/26/2017] [Indexed: 02/08/2023]
|
3146
|
Schatton D, Pla-Martin D, Marx MC, Hansen H, Mourier A, Nemazanyy I, Pessia A, Zentis P, Corona T, Kondylis V, Barth E, Schauss AC, Velagapudi V, Rugarli EI. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol 2017; 216:675-693. [PMID: 28188211 PMCID: PMC5350512 DOI: 10.1083/jcb.201607019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/06/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal-neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.
Collapse
Affiliation(s)
- Désirée Schatton
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - David Pla-Martin
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Marie-Charlotte Marx
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Henriette Hansen
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ivan Nemazanyy
- Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France
| | - Alberto Pessia
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Teresa Corona
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Vangelis Kondylis
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Astrid C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
3147
|
Sequential fragment ion filtering and endoglycosidase-assisted identification of intact glycopeptides. Anal Bioanal Chem 2017; 409:3077-3087. [PMID: 28258464 DOI: 10.1007/s00216-017-0195-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Detailed characterization of glycoprotein structures requires determining both the sites of glycosylation as well as the glycan structures associated with each site. In this work, we developed an analytical strategy for characterization of intact N-glycopeptides in complex proteome samples. In the first step, tryptic glycopeptides were enriched using ZIC-HILIC. Secondly, a portion of the glycopeptides was treated with endoglycosidase H (Endo H) to remove high-mannose (Man) and hybrid N-linked glycans. Thirdly, a fraction of the Endo H-treated glycopeptides was further subjected to PNGase F treatment in 18O water to remove the remaining complex glycans. The intact glycopeptides and deglycosylated peptides were analyzed by nano-RPLC-MS/MS, and the glycan structures and the peptide sequences were identified by using the Byonic or pFind tools. Sequential digestion by endoglycosidase provided candidate glycosites information and indication of the glycoforms on each glycopeptide, thus helping to confine the database search space and improve the confidence regarding intact glycopeptide identification. We demonstrated the effectiveness of this approach using RNase B and IgG and applied this sequential digestion strategy for the identification of glycopeptides from the HepG2 cell line. We identified 4514 intact glycopeptides coming from 947 glycosites and 1011 unique peptide sequences from HepG2 cells. The intensity of different glycoforms at a specific glycosite was obtained to reach the occupancy ratios of site-specific glycoforms. These results indicate that our method can be used for characterizing site-specific protein glycosylation in complex samples. Graphical abstract Through integrating the information of intact glycopeptide, fragment ions filters and endoglycosidase digestion, the reliability of the identification could be significantly improved. We quantified the site-specific glycoforms occupancy ratios through the MS response signaling of each glycopeptide at the same time.
Collapse
|
3148
|
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res 2017; 16:1410-1424. [PMID: 28217993 DOI: 10.1021/acs.jproteome.6b00645] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.
Collapse
Affiliation(s)
- Mhd Rami Al Shweiki
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Domenika Thieme
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Diana Trutschel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen , Stockumer Straße. 12, 58453 Witten, Germany.,Martin-Luther-University Halle-Wittenberg , Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
3149
|
Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R. Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis. J Proteome Res 2017; 16:1288-1299. [PMID: 28164708 PMCID: PMC5363888 DOI: 10.1021/acs.jproteome.6b00915] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The "deep" proteome has been accessible by mass spectrometry for some time. However, the number of proteins identified in cells of the same type has plateaued at ∼8000-10 000 without ID transfer from reference proteomes/data. Moreover, limited sequence coverage hampers the discrimination of protein isoforms when using trypsin as standard protease. Multienzyme approaches appear to improve sequence coverage and subsequent isoform discrimination. Here we expanded proteome and protein sequence coverage in MCF-7 breast cancer cells to an as yet unmatched depth by employing a workflow that addresses current limitations in deep proteome analysis in multiple stages: We used (i) gel-aided sample preparation (GASP) and combined trypsin/elastase digests to increase peptide orthogonality, (ii) concatenated high-pH prefractionation, and (iii) CHarge Ordered Parallel Ion aNalysis (CHOPIN), available on an Orbitrap Fusion (Lumos) mass spectrometer, to achieve 57% median protein sequence coverage in 13 728 protein groups (8949 Unigene IDs) in a single cell line. CHOPIN allows the use of both detectors in the Orbitrap on predefined precursor types that optimizes parallel ion processing, leading to the identification of a total of 179 549 unique peptides covering the deep proteome in unprecedented detail.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Lin He
- Bioinformatics Solutions, Inc. , 470 Weber Street North Suite 204, Waterloo, Ontario N2L 6J2, Canada
| | - Peter Mowlds
- Thermo Fisher, Inc. , Stafford House, 1 Boundary Park, Hemel Hampstead HP2 7GE, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
3150
|
Huang FK, Zhang G, Lawlor K, Nazarian A, Philip J, Tempst P, Dephoure N, Neubert TA. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling. J Proteome Res 2017; 16:1121-1132. [PMID: 28102081 DOI: 10.1021/acs.jproteome.6b00374] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Labeling peptides with isobaric tags is a popular strategy in quantitative bottom-up proteomics. In this study, we labeled six breast tumor cell lysates (1.34 mg proteins per channel) using 10-plex tandem mass tag reagents and analyzed the samples on a Q Exactive HF Quadrupole-Orbitrap mass spectrometer. We identified a total of 8,706 proteins and 28,186 phosphopeptides, including 7,394 proteins and 23,739 phosphosites common to all channels. The majority of technical replicates correlated with a R2 ≥ 0.98, indicating minimum variability was introduced after labeling. Unsupervised hierarchical clustering of phosphopeptide data sets successfully classified the breast tumor samples into Her2 (epidermal growth factor receptor 2) positive and Her2 negative groups, whereas mRNA abundance did not. The tyrosine phosphorylation levels of receptor tyrosine kinases, phosphoinositide-3-kinase, protein kinase C delta, and Src homology 2, among others, were significantly higher in the Her2 positive than the Her2 negative group. Despite ratio compression in MS2-based experiments, we demonstrated the ratios calculated using an MS2 method are highly correlated (R2 > 0.65) with ratios obtained using MS3-based quantitation (using a Thermo Orbitrap Fusion mass spectrometer) with reduced ratio suppression. Given the deep coverage of global and phosphoproteomes, our data show that MS2-based quantitation using TMT can be successfully used for large-scale multiplexed quantitative proteomics.
Collapse
Affiliation(s)
- Fang-Ke Huang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| | - Kevin Lawlor
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Arpi Nazarian
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - John Philip
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Noah Dephoure
- Sandra and Edward Meyer Cancer Center, Department of Biochemistry, Weill Cornell Medical College , New York, New York 10065, United States
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine , New York, New York 10016, United States
| |
Collapse
|