301
|
Lei Z, Yu J, Wu Y, Shen J, Lin S, Xue W, Mao C, Tang R, Sun H, Qi X, Wang X, Xu L, Wei C, Wang X, Chen H, Hao P, Yin W, Zhu J, Li Y, Wu Y, Liu S, Liang H, Chen X, Su C, Zhou S. CD1d protects against hepatocyte apoptosis in non-alcoholic steatohepatitis. J Hepatol 2024; 80:194-208. [PMID: 38438948 DOI: 10.1016/j.jhep.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS Hepatocyte apoptosis, a well-defined form of cell death in non-alcoholic steatohepatitis (NASH), is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in NASH remain largely unclear. We explored the anti-apoptotic effect of hepatocyte CD1d in NASH. METHODS Hepatocyte CD1d expression was analyzed in patients with NASH and mouse models. Hepatocyte-specific gene overexpression or knockdown and anti-CD1d crosslinking were used to investigate the anti-apoptotic effect of hepatocyte CD1d on lipotoxicity-, Fas-, and concanavalin (ConA)-mediated liver injuries. A high-fat diet, a methionine-choline-deficient diet, a Fas agonist, and ConA were used to induce lipotoxic and/or apoptotic liver injuries. Palmitic acid was used to mimic lipotoxicity-induced apoptosis in vitro. RESULTS We identified a dramatic decrease in CD1d expression in hepatocytes of patients with NASH and mouse models. Hepatocyte-specific CD1d overexpression and knockdown experiments collectively demonstrated that hepatocyte CD1d protected against hepatocyte apoptosis and alleviated hepatic inflammation and injuries in NASH mice. Furthermore, decreased JAK2-STAT3 signaling was observed in NASH patient livers. Mechanistically, anti-CD1d crosslinking on hepatocytes induced tyrosine phosphorylation of the CD1d cytoplasmic tail, leading to the recruitment and phosphorylation of JAK2. Phosphorylated JAK2 activated STAT3 and subsequently reduced apoptosis in hepatocytes, which was associated with an increase in anti-apoptotic effectors (Bcl-xL and Mcl-1) and a decrease in pro-apoptotic effectors (cleaved-caspase 3/7). Moreover, anti-CD1d crosslinking effectively protected against Fas- or ConA-mediated hepatocyte apoptosis and liver injury in mice. CONCLUSIONS Our study uncovered a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 axis in hepatocytes that conferred hepatoprotection and highlighted the potential of hepatocyte CD1d-directed therapy for liver injury and fibrosis in NASH, as well as in other liver diseases associated with hepatocyte apoptosis. IMPACT AND IMPLICATIONS Excessive and/or sustained hepatocyte apoptosis is critical in driving liver inflammation and injury. The mechanisms underlying the regulation of hepatocyte apoptosis in non-alcoholic steatohepatitis (NASH) remain largely unclear. Here, we found that CD1d expression in hepatocytes substantially decreases and negatively correlates with the severity of liver injury in patients with NASH. We further revealed a previously unrecognized anti-apoptotic CD1d-JAK2-STAT3 signaling axis in hepatocytes, which confers significant protection against liver injury in NASH and acute liver diseases. Thus, hepatocyte CD1d-targeted therapy could be a promising strategy to manipulate liver injury in both NASH and other hepatocyte apoptosis-related liver diseases.
Collapse
Affiliation(s)
- Zhigang Lei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaojiao Yu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyao Shen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weijie Xue
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxu Mao
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Tang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaohong Wang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Wei
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Wang
- Department of Blood Transfusion, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Hao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wen Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouguo Liu
- Center for Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chuan Su
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Sha Zhou
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
302
|
Sonderup MW, Kamath PS, Awuku YA, Desalegn H, Gogela N, Katsidzira L, Tzeuton C, Bobat B, Kassianides C, Spearman CW. Managing cirrhosis with limited resources: perspectives from sub-Saharan Africa. Lancet Gastroenterol Hepatol 2024; 9:170-184. [PMID: 38215781 DOI: 10.1016/s2468-1253(23)00279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 01/14/2024]
Abstract
Cirrhosis represents the end stage of chronic liver disease. Sub-Saharan Africa, a resource-constrained region, has a high burden of chronic liver disease, with causes including chronic viral hepatitis, excessive alcohol use, and metabolic dysfunction-associated steatotic liver disease (MASLD), the risk of which is burgeoning. The development of liver cirrhosis predicts for morbidity and mortality, driven by both liver dysfunction and the consequences of portal hypertension. Compensated cirrhosis portends a better prognosis than decompensated cirrhosis, highlighting the need for the early diagnosis of cirrhosis and its causes. With resource challenges, the diagnosis and management of cirrhosis is demanding, but less costly and less invasive interventions with substantial benefits, ranging from simple blood tests to transient elastography, are feasible in such settings. Simple interventions are also available to manage the complex manifestations of decompensation, such as β blockers in variceal bleeding prophylaxis, salt restriction and appropriate diuretic use in ascites, and lactulose and generic rifaximin in hepatic encephalopathy. Ultimately, managing the underlying causative factors of liver disease is key in improving prognosis. Management demands expanded policy interventions to increase screening and treatment for hepatitis B and C and reduce alcohol use and the metabolic factors driving MASLD. Furthermore, the skills needed for more specialised interventions, such as transjugular intrahepatic portosystemic shunt procedures and even liver transplantation, warrant planning, increased capacity, and support for regional centres of excellence. Such centres are already being developed in sub-Saharan Africa, demonstrating what can be achieved with dedicated initiatives and individuals.
Collapse
Affiliation(s)
- Mark W Sonderup
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.
| | | | - Yaw A Awuku
- Department of Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Hailemichael Desalegn
- Department of Internal Medicine, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Neliswa Gogela
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Leolin Katsidzira
- Internal Medicine Unit, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Christian Tzeuton
- Faculty of Medicine and Pharmaceutical Sciences of Douala, University of Douala, Douala, Cameroon
| | - Bilal Bobat
- Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand and Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Chris Kassianides
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
303
|
Meng Z, Zhou L, Hong S, Qiu X, Chen Z, Liu T, Inoki K, Lin JD. Myeloid-specific ablation of Basp1 ameliorates diet-induced NASH in mice by attenuating pro-inflammatory signaling. Hepatology 2024; 79:409-424. [PMID: 37505219 PMCID: PMC10808272 DOI: 10.1097/hep.0000000000000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIMS NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.
Collapse
Affiliation(s)
- Ziyi Meng
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Sungki Hong
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Ken Inoki
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
304
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
305
|
Liu H, Yerevanian A, Westerhoff M, Hastings MH, Guerra JRB, Zhao M, Svensson KJ, Cai B, Soukas AA, Rosenzweig A. Roles of Activin A and Gpnmb in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Diabetes 2024; 73:260-279. [PMID: 37934943 PMCID: PMC10796305 DOI: 10.2337/db23-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model. Surprisingly, overexpression of hepatic Activin A dramatically mitigated MASLD, reducing liver steatosis and inflammation as well as systemic fat accumulation, while improving insulin sensitivity. Further studies identified a dramatic decrease in the lipid-associated macrophages marker glycoprotein NMB (Gpnmb) by Activin A, and Gpnmb knockdown in the same model produced similar benefits and transcriptional changes to Activin A expression. These studies reveal a surprising protective role for Activin A in MASLD and the potential for SASP proteins to have context-specific beneficial effects. Moreover, they implicate both Activin A and Gpnmb as potential therapeutic targets for this condition. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Huan Liu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Armen Yerevanian
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Margaret H. Hastings
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Justin Ralph Baldovino Guerra
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander A. Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
306
|
Aggio D, Gallop K, Wittrup-Jensen V, Farsani SF, Lloyd AJ. Estimating utility values for non-alcoholic steatohepatitis health states: a discrete choice experiment. J Comp Eff Res 2024; 13:e230033. [PMID: 38226909 PMCID: PMC10842270 DOI: 10.57264/cer-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background: This study estimated utility values for non-alcoholic steatohepatitis (NASH). Previous studies have assumed that health-related quality of life does not vary between the early stages of NASH. Materials & Methods: Discrete choice experiment (DCE) surveys estimated the value of avoiding fibrosis progression. Patients also completed the EQ-5D-5L. Marginal rates of substitution estimated utility change associated with fibrosis progression. Results: DCE surveys were completed by the UK general public (n = 520) and patients with NASH (n = 154). The utility decline between fibrosis stages F1 and F4 decompensated was between -0.521 to -0.646 (depending on method). Conclusion: Three methods were used to estimate utilities for NASH, each one showed sensitivity to advancing fibrosis, including in the early stages, which is often considered asymptomatic.
Collapse
Affiliation(s)
- Daniel Aggio
- Acaster Lloyd Consulting Ltd, London, WC1X 8NL, UK
| | - Katy Gallop
- Acaster Lloyd Consulting Ltd, London, WC1X 8NL, UK
| | | | | | | |
Collapse
|
307
|
Wang J, Guo Y, He Y, Qin Y, Li X, Yang L, Liu K, Xiao L. Hepatic regulator of G protein signaling 14 ameliorates NAFLD through activating cAMP-AMPK signaling by targeting Giα1/3. Mol Metab 2024; 80:101882. [PMID: 38237897 PMCID: PMC10844864 DOI: 10.1016/j.molmet.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is an emerging public health threat as the most common chronic liver disease worldwide. However, there remains no effective medication to improve NAFLD. G protein-coupled receptors (GPCRs) are the most frequently investigated drug targets family. The Regulator of G protein signaling 14 (RGS14), as an essential negative modulator of GPCR signaling, plays important regulatory roles in liver damage and inflammatory responses. However, the role of RGS14 in NAFLD remains largely unclear. METHODS AND RESULTS In this study, we found that RGS14 was decreased in hepatocytes in NAFLD individuals in a public database. We employed genetic engineering technique to explore the function of RGS14 in NAFLD. We demonstrated that RGS14 overexpression ameliorated lipid accumulation, inflammatory response and liver fibrosis in hepatocytes in vivo and in vitro. Whereas, hepatocyte specific Rgs14-knockout (Rgs14-HKO) exacerbated high fat high cholesterol diet (HFHC) induced NASH. Further molecular experiments demonstrated that RGS14 depended on GDI activity to attenuate HFHC-feeding NASH. More importantly, RGS14 interacted with Guanine nucleotide-binding protein (Gi) alpha 1 and 3 (Giα1/3, gene named GNAI1/3), promoting the generation of cAMP and then activating the subsequent AMPK pathways. GNAI1/3 knockdown abolished the protective role of RGS14, indicating that RGS14 binding to Giα1/3 was required for prevention against hepatic steatosis. CONCLUSIONS RGS14 plays a protective role in the progression of NAFLD. RGS14-Giα1/3 interaction accelerated the production of cAMP and then activated cAMP-AMPK signaling. Targeting RGS14 or modulating the RGS14-Giα1/3 interaction may be a potential strategy for the treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Junyong Wang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunduan He
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yifan Qin
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangdong Liu
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Li Xiao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China.
| |
Collapse
|
308
|
Shiraishi S, Liu J, Saito Y, Oba Y, Nishihara Y, Yoshimura S. A New Non-Obese Steatohepatitis Mouse Model with Cardiac Dysfunction Induced by Addition of Ethanol to a High-Fat/High-Cholesterol Diet. BIOLOGY 2024; 13:91. [PMID: 38392309 PMCID: PMC10886349 DOI: 10.3390/biology13020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Non-obese metabolic dysfunction-associated steatotic liver disease (MASLD) has been associated with cardiovascular-related mortality, leading to a higher mortality rate compared to the general population. However, few reports have examined cardiovascular events in non-obese MASLD mouse models. In this study we created a mouse model to mimic this condition. In this study involving seven-week-old C57BL/6J male mice, two dietary conditions were tested: a standard high-fat/high-cholesterol diet (STHD-01) and a combined diet of STHD-01 and ethanol. Over periods of 6 and 12 weeks, we analyzed the effects on liver and cardiac tissues using various staining techniques and PCR. Echocardiography and blood tests were also performed to assess cardiac function and liver damage. The results showed that mice on the ethanol-supplemented STHD-01 diet developed signs of steatohepatitis and cardiac dysfunction, along with increased sympathetic activity, as early as 6 weeks. At 12 weeks, more pronounced exacerbations accompanied with cardiac dilation, advanced liver fibrosis, and activated myocardial fibrosis with sympathetic activation were observed. This mouse model effectively replicated non-obese MASLD and cardiac dysfunction over a 12-week period using a combined diet of STHD-01 and ethanol. This dietary approach highlighted that both liver inflammation and fibrosis, as well as cardiac dysfunction, could be significantly worsened due to the activation of the sympathetic nervous system. Our results indicate that alcohol, even when completely metabolized on the day of drinking, exacerbates the progression of non-obese MASLD and cardiac dysfunction.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Jinyao Liu
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| | - Yuki Saito
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Yumiko Oba
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| | - Yuiko Nishihara
- Exploratory Research Department, EA Pharma Co., Ltd., Fujisawa-shi 251-8555, Kanagawa, Japan
| | - Satomichi Yoshimura
- Student Medical Academia Investigation Lab, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan
| |
Collapse
|
309
|
You M, Tian M, Song Z, Liu Z, Yang B, Zhang S. Selection of GalNAc-Conjugated si Keap1 as Disease-Specific Delivery System for Chemotherapy-Induced Liver Injury and Chronic Liver Disease. NANO LETTERS 2024; 24:1096-1105. [PMID: 38251670 DOI: 10.1021/acs.nanolett.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Chemotherapy-induced liver injury (CILI) is a pressing concern in cancer patients. One promising approach involves activating nuclear factor erythroid 2-related factor 2 (Nrf2) to mitigate CILI. However, selectively activating liver Nrf2 without compromising chemotherapy's efficacy has remained elusive. Herein, two RNAi delivery strategies were explored: lipid nanoparticle (LNP) and N-acetylgalactosamine (GalNAc) delivery systems loaded with siRNA designed to silence Kelch-like-ECH associated protein 1 (Keap1) by aiming for liver-specific Nrf2 activation. Remarkably, siKeap1-LNP exhibited unintended tumor targeting alongside liver effects, thereby potentially promoting tumor progression. Conversely, siKeap1-GalNAc did not compromise chemotherapy efficacy and outperformed the conventional Nrf2 activator, bardoxolone, in mitigating CILI. This study proposes siKeap1-GalNAc as a promising therapeutic avenue for liver injury. Importantly, our study bridges a crucial gap concerning the delivery system for liver targeting but not tumor targeting and underscores the importance of selecting nucleic acid delivery systems tailored to specific diseases, not just to specific organs.
Collapse
Affiliation(s)
- Mengmeng You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhiling Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhen Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bingxue Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
310
|
Wang W, Chen S, Xu S, Liao G, Li W, Yang X, Li T, Zhang H, Huang H, Zhou Y, Pan H, Lin C. Jianpi Shengqing Huazhuo Formula improves abnormal glucose and lipid metabolism in obesity by regulating mitochondrial biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117102. [PMID: 37660955 DOI: 10.1016/j.jep.2023.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Shengqing Huazhuo Formula (JSH) is a modified prescription based on traditional Chinese medicine theory and classic prescriptions (Buzhong Yiqi Decoction and Yuye Decoction). It has been found that JSH has a good effect on obese patients with early abnormal glucose and lipid metabolism. Therefore, this experiment was conducted to study its clinical efficacy and pharmacological effect. AIM OF THE STUDY To observe the clinical efficacy of JSH and explore the mechanism of the formula to improve glucose and lipid metabolism in obese rats. MATERIALS AND METHODS 1. CLINICAL OBSERVATION 10 overweight/obese patients with abnormal glucose and lipid metabolism were selected to observe the indicators of serum glucose, serum lipids and liver damage of the patients before and after treatment with JSH. 2. Animal experiments: Fifty Sprague-Dawley (SD) rats were randomly divided into control group, model group, Metformin group (120 mg/kg/day), JSH-L group (5 g/kg/day) and JSH-H group (20 g/kg/day), with 10 rats in each group. The obese SD rat model was produced by feeding 60% high-fat diet for 8 weeks, and the drug group was given prophylactic administration for 8 weeks. At the end of the experiment, body weight, abdominal fat, plasma glucose, plasma lipids, plasma alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were measured. The levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in plasma were detected by Elisa, and the changes of malondialdehyde (MDA), glutathione (GSH) and catalase (CAT) in plasma and liver tissue were detected by kits. The pathological changes and lipid deposition in liver were observed by HE staining and oil red O staining, and the changes in the number of mitochondria in liver cells were observed by transmission electron microscopy. RT-qPCR and Western Blot (WB) were used to detect the mitochondrial regulation-related indicators PGC-1α, NRF1, TFAM, MFN2, DRP1 and apoptosis-related indicators Bcl-2, Bax, caspase 8 in liver tissue. RESULTS 1. CLINICAL OBSERVATION After one month administration, the patient's body weight, BMI, 2 h oral glucose tolerance test (2hOGTT), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) decreased significantly, and the indicators of liver damage AST and ALT also decreased significantly. 2. Animal experiments: JSH can significantly reduce body weight and abdominal fat area, improve glucose and lipid metabolism, and also reduce plasma IL-6, IL-1β and TNF-α content in obese rats, and improve oxidative stress; HE staining and oil red O staining also showed that JSH can alleviate liver damage and lipid deposition in the liver. Further observations of liver cell ultrastructure showed that JSH can ameliorate the reduction of liver mitochondria caused by a high-fat diet and promote the expression of indicators of mitochondrial biogenesis related to PGC-1α, NRF1, and TFAM. Moreover, JSH could promote the expression of MFN2 and DRP1, decrease Bcl-2 and increase Bax in the liver. CONCLUSIONS 1. CLINICAL OBSERVATION JSH can reduce body weight, serum glucose, serum lipid, and liver injury in overweight/obese patients. 2. Animal experiments: JSH regulates PGC-1α/NRF1/TFAM signaling pathway promotes liver mitochondrial biogenesis, improves glucose and lipid metabolism in obese rats, and regulates mitochondrial dependent apoptosis indicators Bcl-2/Bax to reduce liver injury.
Collapse
Affiliation(s)
- Wenkai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shanshan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuting Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Guangyi Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weihao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xiao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Tingting Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Huifen Zhang
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Huanhuan Huang
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Yuqing Zhou
- Department of Endocrinology, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan Traditional Chinese Medicine Hospital, Dongguan, 523000, China.
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Chuanquan Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
311
|
Guo Y, Sun Q, Wang S, Zhang M, Lei Y, Wu J, Wang X, Hu W, Meng H, Li Z, Xu L, Huang F, Qiu Z. Corydalis saxicola Bunting total alkaloids improve NAFLD by suppressing de novo lipogenesis through the AMPK-SREBP1 axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117162. [PMID: 37690477 DOI: 10.1016/j.jep.2023.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Along with the gradually increasing incidence, nonalcoholic fatty liver disease (NAFLD) has already been influencing the health of more and more people in the world. Corydalis saxicola Bunting (CSB), a valuable folk medicine, is the dried whole grass of a perennial herb, Yanhuanglian (Papaveraceae), which has significant effects on various hepatitis, liver fibrosis, cirrhosis and other liver diseases. Corydalis saxicola Bunting total alkaloids (CSBTA), a mixture of alkaloids extracted from CSB, exhibit widely-accepted hepatoprotective effects. AIM OF THE STUDY This study aimed to explore the therapeutic potential of CSBTA on NAFLD and the underlying mechanism. MATERIALS AND METHODS A mice model was established by high fat and high cholesterol diet (HFHCD) to study the benefits of CSBTA on the progression of NAFLD. The efficacy of CSBTA on NAFLD was revealed systematically via RNA-sequencing analysis. Further efficacy and molecular mechanism study were explored in mouse primary hepatocytes and HepG2 cells stimulated with high energy with or without pharmacological inhibition or gene silencing. RESULTS CSBTA effectively improved the major hallmarks of NAFLD including liver lipid accumulation, liver injury, inflammation and fibrosis in HFHCD-fed mice. RNA sequencing and targeted qPCR analysis jointly evidenced CSBTA significantly suppressed the expression of Srebf1, Acc1 and Fasn which are the genes responsible for fatty acid biosynthesis. Moreover, stable isotope tracer test denoted CSBTA reduced lipid accumulation via interrupting fatty acid biosynthesis in hepatocytes or the liver. Mechanistically, CSBTA could impede SREBP1 maturation via AMPK activation, thereby reducing DNL-derived lipid accumulation in hepatocytes. CONCLUSIONS CSBTA protected against hepatic steatosis and other hallmarks of NAFLD induced by HFHCD via suppressing DNL, through modulating the AMPK-SREBP1 axis. CSBTA may therefore have a therapeutic potential for NAFLD treatment.
Collapse
Affiliation(s)
- Yating Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Shijiao Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Mengdi Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yuanyuan Lei
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Jiejie Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xinhong Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Wenjun Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Haitao Meng
- Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
312
|
Vargas M, Cardoso Toniasso SDC, Riedel PG, Baldin CP, Dos Reis FL, Pereira RM, Brum MCB, Joveleviths D, Alvares-da-Silva MR. Metabolic disease and the liver: A review. World J Hepatol 2024; 16:33-40. [PMID: 38313243 PMCID: PMC10835488 DOI: 10.4254/wjh.v16.i1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, with an estimated prevalence of 31% in Latin America. The presence of metabolic comorbidities coexisting with liver disease varies substantially among populations. It is acknowledged that obesity is boosting the type 2 diabetes mellitus "epidemic," and both conditions are significant contributors to the increasing number of patients with MASLD. Non-alcoholic steatohepatitis represents a condition of chronic liver inflammation and is considered the most severe form of MASLD. MASLD diagnosis is based on the presence of steatosis, noninvasive scores and altered liver tests. Noninvasive scores of liver fibrosis, such as serum biomarkers, which should be used in primary care to rule out advanced fibrosis, are simple, inexpensive, and widely available. Currently, guidelines from international hepatology societies recommend using noninvasive strategies to simplify case finding and management of high-risk patients with MASLD in clinical practice. Unfortunately, there is no definite pharmacological treatment for the condition. Creating public health policies to treat patients with risk factors for MASLD prevention is essential.
Collapse
Affiliation(s)
- Márcia Vargas
- Program of Graduate Science in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Rio Grande do Sul, Brazil
| | | | - Patricia G Riedel
- School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Camila Pereira Baldin
- Program of Graduate Science in Gastroenterology and Hepatology, Clinicas Hospital of Porto Alegre, Porto Alegre 90410000, Brazil
| | | | - Robson Martins Pereira
- Medicine Faculty Federal University of Rio Grande do Sul, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | | | - Dvora Joveleviths
- Program of Graduate Science in Gastroenterology and Hepatology, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Rio Grande do Sul, Brazil.
| | - Mario Reis Alvares-da-Silva
- Division of Gastroenterology and Hepatology, Clinicas Hospital of Porto Alegre, Porto Alegre 90035007, Brazil
| |
Collapse
|
313
|
Zanini B, Benini F, Marullo M, Simonetto A, Rossi A, Cavagnoli P, Bonalumi A, Marconi S, Pigozzi MG, Gilioli G, Valerio A, Donato F, Castellano M, Ricci C. Mediterranean-Oriented Dietary Intervention Is Effective to Reduce Liver Steatosis in Patients with Nonalcoholic Fatty Liver Disease: Results from an Italian Clinical Trial. Int J Clin Pract 2024; 2024:8861126. [PMID: 38303926 PMCID: PMC10834092 DOI: 10.1155/2024/8861126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Results One hundred and fifty five subjects aged 20-59 years underwent (i) liver ultrasound (US), (ii) clinical and anthropometric evaluations, (iii) blood tests, and (iv) assessment of dietary habits. According to US evaluation, 73 of them had severe, moderate, or mild liver steatosis (NAFLD patients) and 82 had no liver steatosis (healthy controls). Fifty-eight NAFLD patients and 73 controls completed the study. Among NAFLD patients, 26 (45%) downgraded steatosis severity, 12 of which achieved complete steatosis regression (21%). Three of the healthy controls developed NAFLD. The NAFLD patients improved their dietary habits and reduced BMI and waist circumference, during the study period, more than healthy controls. Liver steatosis remission/regression was independent of changes in BMI or liver enzymes and was more frequent among patients with mild steatosis at baseline. Conclusions Mediterranean dietary advices, without a personalised meal planning, were efficient in reducing/remitting NAFLD, especially among patients with mild disease, which argues in favour of early identification and lifestyle intervention. This trial is registered with NCT03300661.
Collapse
Affiliation(s)
- Barbara Zanini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Federica Benini
- Department of Medicine, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | - Monica Marullo
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Anna Simonetto
- Department of Civil Engineering, Architecture, Land and Environment, and Mathematics, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Angelo Rossi
- Health Protection Agency, ATS Brescia, Lombardy, Italy
| | - Paola Cavagnoli
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessia Bonalumi
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Silvia Marconi
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Marie Graciella Pigozzi
- Department of Medicine, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | - Gianni Gilioli
- Department of Civil Engineering, Architecture, Land and Environment, and Mathematics, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Francesco Donato
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Castellano
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Medicine, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Medicine, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, Brescia, Italy
| |
Collapse
|
314
|
Willett RA, Tryndyak VP, Beland FA, Pogribny IP. Cellular and molecular alterations in a human hepatocellular in vitro model of nonalcoholic fatty liver disease development and stratification. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:74-92. [PMID: 38105681 DOI: 10.1080/26896583.2023.2293493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The rapidly increasing incidence of nonalcoholic fatty liver disease (NAFLD) is a growing health crisis worldwide. If not detected early, NAFLD progression can lead to irreversible pathological states, including liver fibrosis and cirrhosis. Using in vitro models to understand the molecular pathogenesis has been extremely beneficial; however, most studies have utilized only short-term exposures, highlighting a limitation in current research to model extended fat-induced liver injury. We treated Hep3B cells continuously with a low dose of oleic and palmitic free fatty acids (FFAs) for 7 or 28 days. Transcriptomic analysis identified dysregulated molecular pathways and differential expression of 984 and 917 genes after FFA treatment for 7 and 28 days respectively. DNA methylation analysis of altered DNA methylated regions (DMRs) found 7 DMRs in common. Pathway analysis of differentially expressed genes (DEGs) revealed transcriptomic changes primarily involved in lipid metabolism, small molecule biochemistry, and molecular transport. Western blot analysis revealed changes in PDK4 and CPT1A protein levels, indicative of mitochondrial stress. In line with this, there was mitochondrial morphological change demonstrating breakdown of the mitochondrial network. This in vitro model of human NAFL mimics results observed in human patients and may be used as a pre-clinical model for drug intervention.
Collapse
Affiliation(s)
- Rose A Willett
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
315
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J, Wang X. Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol 2024; 15:1343193. [PMID: 38313314 PMCID: PMC10834658 DOI: 10.3389/fphar.2024.1343193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Pathological progression from non-alcoholic fatty liver disease (NAFLD) to liver fibrosis (LF) to hepatocellular carcinoma (HCC) is a common dynamic state in many patients. Curcumin, a dietary supplement derived from the turmeric family, is expected to specifically inhibit the development of this progression. However, there is a lack of convincing evidence. Methods: The studies published until June 2023 were searched in PubMed, Web of Science, Embase, and the Cochrane Library databases. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) approach was used to evaluate the certainty of evidence. StataSE (version 15.1) and Origin 2021 software programs were used to analyze the critical indicators. Results: Fifty-two studies involving 792 animals were included, and three disease models were reported. Curcumin demonstrates a significant improvement in key indicators across the stages of NAFLD, liver fibrosis, and HCC. We conducted a detailed analysis of common inflammatory markers IL-1β, IL-6, and TNF-α, which traverse the entire disease process. The research results reveal that curcumin effectively hinders disease progression at each stage by suppressing inflammation. Curcumin exerted hepatoprotective effects in the dose range from 100 to 400 mg/kg and treatment duration from 4 to 10 weeks. The mechanistic analysis reveals that curcumin primarily exerts its hepatoprotective effects by modulating multiple signaling pathways, including TLR4/NF-κB, Keap1/Nrf2, Bax/Bcl-2/Caspase 3, and TGF-β/Smad3. Conclusion: In summary, curcumin has shown promising therapeutic effects during the overall progression of NAFLD-LF-HCC. It inhibited the pathological progression by synergistic mechanisms related to multiple pathways, including anti-inflammatory, antioxidant, and apoptosis regulation.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qianrong Li
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi Yu
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbin Wu
- Health Care Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyin Wang
- Department of Obstetrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
316
|
Kumazoe M, Miyamoto E, Oka C, Kondo M, Yoshitomi R, Onda H, Shimada Y, Fujimura Y, Tachibana H. miR-12135 ameliorates liver fibrosis accompanied with the downregulation of integrin subunit alpha 11. iScience 2024; 27:108730. [PMID: 38235326 PMCID: PMC10792239 DOI: 10.1016/j.isci.2023.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Cirrhosis is becoming one of the most common diseases worldwide. Abnormal upregulation of transforming growth factor β (TGF-β) signaling plays a pivotal role in the excess activation of hepatic stellate cells. However, an efficient countermeasure against abnormal hepatic stellate cell activation is yet to be established because TGF-β signaling is involved in several biological processes. Herein, we demonstrated the antifibrotic effect of miR-12135, a microRNA with unknown function upregulated by isoflavone. Comprehensive transcriptome assay demonstrated that miR-12135 suppressed Integrin Subunit Alpha 11 (ITGA11) and that ITGA11 expression is correlated with alpha smooth muscle actin expression in patients with cirrhosis. miR-12135 suppressed the expression level of ITGA11 and liver fibrosis. Importantly, ITGA11 is overexpressed in activated hepatic stellate cells, whereas ITGA11 knockout mice are viable and fertile. In conclusions, the miR-12135/ITGA11 axis can be an ideal therapeutic target to suppress fibrosis by precisely targeting abnormally upregulated TGF-β signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emi Miyamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chihiro Oka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyuki Kondo
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
317
|
Zhao E, Wen X, Qiu W, Zhang C. Association between body roundness index and risk of ultrasound-defined non-alcoholic fatty liver disease. Heliyon 2024; 10:e23429. [PMID: 38170062 PMCID: PMC10758814 DOI: 10.1016/j.heliyon.2023.e23429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Objectives While several indicators have been studied, the association of body roundness index (BRI) with non-alcoholic fatty liver disease (NAFLD) remains unclear. We aimed to explore the association between BRI and ultrasound-defined NAFLD. Methods The sample dataset was extracted from the National Health and Nutrition Examination Survey (NHANES) during the period of 2017-2018. The diagnosis of NAFLD was determined based on the controlled attenuated parameter (CAP≥248 dB/m) score of liver ultrasound transient elastography (LUTE). Participants with excessive alcohol use and viral hepatitis were excluded. To delve deeper into the relationship, Multivariable logistic regression with adjustment for confounding variables and smoothing curve analysis was used to investigate the association and nonlinear relationships between BRI and NAFLD. Results Among 4210 individuals aged 20 years or older included in the study, 28.2 % had NAFLD. Compared to the first tertile, BRI notably increased the risk of NAFLD 3.53-fold [95 % confidence interval (CI) = 2.73-4.57] in the second tertile and 7.00-fold (95%CI = 5.29-9.27) in the third tertile after adjusting for multiple covariates (P for trend <0.001). Furthermore, when BRI was treated as a continuous variable, one unit of increment in BRI was associated with 41 % higher odds of NAFLD [adjusted odds ratio (aOR) = 1.41; 95%CI = 1.34-1.48; P < 0.001]. The associations of BRI with NAFLD persisted in all subgroup analyses. A smoothing curve fitting demonstrated that the relationship between BRI and NAFLD was a nonlinear connection. The risk of NAFLD increased significantly when BRI was lower than 4.82, after which the curve showed a modest ascent. Conclusion Higher BRI was consistently associated with an increased risk of NAFLD in US adults. BRI is a risk factor for NAFLD, and there is an imperative to give more attention to lowering the BRI.
Collapse
Affiliation(s)
- Enfa Zhao
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Xiaolin Wen
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Wenqian Qiu
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Chaoxue Zhang
- Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| |
Collapse
|
318
|
Ferretti S, Barreyro FJ. Worldwide Increasing Prevalence of Non-alcoholic Steatohepatitis as an Indication of Liver Transplantation: Epidemiological View and Implications. CURRENT HEPATOLOGY REPORTS 2024; 23:193-203. [DOI: 10.1007/s11901-023-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/05/2025]
|
319
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [PMID: 37482263 DOI: 10.1016/j.jep.2023.116933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria-coptis herb couple (SC) is a classic herbal pair used in many Traditional Chinese Medicine (TCM) formulations in the treatment of endocrine and metabolic deseases. Diabetes mellitus and non-alcoholic steatohepatitis (NASH) are both endocrine and metabolic diseases. Previous studies have shown that SC has anti-diabetic effects. However, the effect and mechanism of SC against NASH remains unclear. AIM OF THE STUDY This study aimed to demonstrate the effect and mechanism of SC against NASH through the nuclear factor-erythroid 2-related factor 2 (Nrf2) and farnesoid X receptor (FXR) dual signaling pathways in vivo and in vitro. MATERIALS AND METHODS The high fat diet-fed rat model, and HepG2 and RAW264.7 cell models were used. Serum biochemical indexes and liver histopathological changes were examined. Metabolomics, transcriptomics, and flow cytometry were performed. RT-qPCR and western blot analysis were performed to provide expression of NRF2 and FXR pathway signal molecules during SC's anti-NASH treatment in vivo and in vitro. RESULTS SC had anti-NASH effects in vivo with significantly improvement of serum NASH biochemical index and hepatopathological structure; meanwhile, SC significantly elevated the expression levels of FXR protein in liver and intestinal tissues, and cholesterol 7a-hydroxylase (CYP7A1) protein in liver. The mRNA expression levels of Takeda G protein receptor 5 (TGR5), CYP7A1, fibroblast growth factor receptor-4 (FGFR4), FXR, small heterodimer partner (SHP), fibroblast growth factor 15/19 (FGF15/19) and glucagon-like peptide-1 (GLP-1) were significantly elevated by SC. SC reduced the levels of NorCA, isoLCA and α-MCA in the feces of NAFLD rats. In vitro, SC-containing serum (SC-CS) was found to significantly reduce intracellular lipid deposition, inhibit ROS production, reduce intracellular Malondialdehyde (MDA) and IL-1β levels, and enhance the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Six differential genes closely related to oxidative stress and Nrf2 were identified by transcriptomic analysis. SC-CS up-regulated the expression of NRF2, and reduced the expression of TXNIP and Caspase-1 genes in RAW264.7 cells. In addition, SC-CS reduced the expression of Keap1 and NF-κB, and up-regulated the expression of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), and SOD; SC-CS elevated the protein level of NRF2, and reduced the protein level of TXNIP in HepG2 cells. CONCLUSIONS the mechanisms of SC action against NASH was closely related to the simultaneous activations of both NRF2 and FXR signaling pathways. These findings provide a new insight into the anti-NASH application of SC in clinical settings and demonstrate the potential of SC in the treatment of NASH.
Collapse
Affiliation(s)
- Yanan Xue
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Yue Wei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Lan Cao
- Research Center of Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, PR China
| | - Min Shi
- College of Life Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Junqing Sheng
- College of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Qin Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ziwen Cheng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Tao Luo
- First Affiliated Hospital of Nanchang University, 330006, PR China
| | - Quanhui Jiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Ailan Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China; Nanchang Research Institute, Sun Yat-sen University, Jiangxi, 330096, PR China.
| |
Collapse
|
320
|
Yang CR, Lin WJ, Shen PC, Liao PY, Dai YC, Hung YC, Lai HC, Mehmood S, Cheng WC, Ma WL. Phenotypic and metabolomic characteristics of mouse models of metabolic associated steatohepatitis. Biomark Res 2024; 12:6. [PMID: 38195587 PMCID: PMC10777576 DOI: 10.1186/s40364-023-00555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) is metabolic disease that may progress to cirrhosis and hepatocellular carcinoma. Mouse models of diet-induced MASH, which is characterized by the high levels of fats, sugars, and cholesterol in diets, are commonly used in research. However, mouse models accurately reflecting the progression of MASH in humans remain to be established. Studies have explored the potential use of serological metabolites as biomarkers of MASH severity in relation to human MASH. METHODS We performed a comparative analysis of three mouse models of diet-induced MASH in terms of phenotypic and metabolomic characteristics; MASH was induced using different diets: a high-fat diet; a Western diet; and a high-fat, high-cholesterol diet. Liver cirrhosis was diagnosed using standard clinical approaches (e.g., METAVIR score, hyaluronan level, and collagen deposition level). Mouse serum samples were subjected to nuclear magnetic resonance spectroscopy-based metabolomic profiling followed by bioinformatic analyses. Metabolomic analysis of a retrospective cohort of patients with hepatocellular carcinoma was performed; the corresponding cirrhosis scores were also evaluated. RESULTS Using clinically relevant quantitative diagnostic methods, the severity of MASH was evaluated. Regarding metabolomics, the number of lipoprotein metabolites increased with both diet and MASH progression. Notably, the levels of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) significantly increased with fibrosis progression. During the development of diet-induced MASH in mice, the strongest upregulation of expression was noted for VLDL receptor. Metabolomic analysis of a retrospective cohort of patients with cirrhosis indicated lipoproteins (e.g., VLDL and LDL) as predominant biomarkers of cirrhosis. CONCLUSIONS Our findings provide insight into the pathophysiology and metabolomics of experimental MASH and its relevance to human MASH. The observed upregulation of lipoprotein expression reveals a feedforward mechanism for MASH development that may be targeted for the development of noninvasive diagnosis.
Collapse
Affiliation(s)
- Cian-Ru Yang
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Jen Lin
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Chun Shen
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Pei-Yin Liao
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Chang Dai
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Yao-Ching Hung
- Department of Gynecology and Obstetrics, Asia University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shiraz Mehmood
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Wen-Lung Ma
- Program for Health Science and Industry, Graduate Institute of Biomedical Sciences, and Department of Medicine, and Tumor Biology Center, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, Department of Gynecology and Obstetrics, and Department of Gastroenterology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
321
|
Yen FS, Hou MC, Wei JCC, Shih YH, Hwu CM, Hsu CC. Effects of glucagon-like peptide-1 receptor agonists on liver-related and cardiovascular mortality in patients with type 2 diabetes. BMC Med 2024; 22:8. [PMID: 38172833 PMCID: PMC10765623 DOI: 10.1186/s12916-023-03228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Patients with type 2 diabetes (T2D) tend to have nonalcoholic fatty liver disease (NAFLD) with poorer prognosis. We performed this research to compare the risks of cardiovascular diseases, cirrhosis, liver-related mortality, and cardiovascular mortality between glucagon-like peptide-1 receptor agonist (GLP-1 RA) use and no-use in patients with T2D without viral hepatitis. METHODS From January 1, 2008, to December 31, 2018, we used propensity-score matching to identify 31,183 pairs of GLP-1 RA users and nonusers from Taiwan's National Health Insurance Research Database. Multivariable-adjusted Cox proportional hazards models were used to examine the outcomes between the study and control groups. RESULTS The median (Q1, Q3) follow-up time for GLP-1 RA users and nonusers were 2.19 (1.35, 3.52) and 2.14 (1.19, 3.68) years, respectively. The all-cause mortality incidence rate was 5.67 and 13.06 per 1000 person-years for GLP-1 RA users and nonusers, respectively. Multivariable-adjusted analysis showed that GLP-1 RA use had significantly lower risks of all-cause mortality (aHR 0.48, 95%CI 0.43-0.53), cardiovascular events (aHR 0.92, 95%CI 0.86-0.99), cardiovascular death (aHR 0.57, 95%CI 0.45-0.72), and liver-related death (aHR 0.32, 95%CI 0.13-0.75). However, there was no significant difference in the risk of liver cirrhosis development, hepatic failure, and hepatocellular carcinoma compared to GLP-1 RA no-use. CONCLUSIONS This nationwide cohort study showed that GLP-1 RA use was associated with a significantly lower risk of all-cause mortality, cardiovascular events, and cardiovascular death in patients with T2D among Taiwan population. More prospective studies are warranted to verify our results.
Collapse
Affiliation(s)
- Fu-Shun Yen
- Dr. Yen's Clinic, No. 15, Shanying Road, Gueishan District, Taoyuan, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Hsiu Shih
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung City, Taiwan
| | - Chii-Min Hwu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan.
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin, Taiwan.
| |
Collapse
|
322
|
Saldarriaga OA, Wanninger TG, Arroyave E, Gosnell J, Krishnan S, Oneka M, Bao D, Millian DE, Kueht ML, Moghe A, Jiao J, Sanchez JI, Spratt H, Beretta L, Rao A, Burks JK, Stevenson HL. Heterogeneity in intrahepatic macrophage populations and druggable target expression in patients with steatotic liver disease-related fibrosis. JHEP Rep 2024; 6:100958. [PMID: 38162144 PMCID: PMC10757256 DOI: 10.1016/j.jhepr.2023.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
Background & Aims Clinical trials for reducing fibrosis in steatotic liver disease (SLD) have targeted macrophages with variable results. We evaluated intrahepatic macrophages in patients with SLD to determine if activity scores or fibrosis stages influenced phenotypes and expression of druggable targets, such as CCR2 and galectin-3. Methods Liver biopsies from controls or patients with minimal or advanced fibrosis were subject to gene expression analysis using nCounter to determine differences in macrophage-related genes (n = 30). To investigate variability among individual patients, we compared additional biopsies by staining them with multiplex antibody panels (CD68/CD14/CD16/CD163/Mac387 or CD163/CCR2/galectin-3/Mac387) followed by spectral imaging and spatial analysis. Algorithms that utilize deep learning/artificial intelligence were applied to create cell cluster plots, phenotype profile maps, and to determine levels of protein expression (n = 34). Results Several genes known to be pro-fibrotic (e.g. CD206, TREM2, CD163, and ARG1) showed either no significant differences or significantly decreased with advanced fibrosis. Although marked variability in gene expression was observed in individual patients with cirrhosis, several druggable targets and their ligands (e.g. CCR2, CCR5, CCL2, CCL5, and LGALS3) were significantly increased when compared to patients with minimal fibrosis. Antibody panels identified populations that were significantly increased (e.g. Mac387+), decreased (e.g. CD14+), or enriched (e.g. interactions of Mac387) in patients that had progression of disease or advanced fibrosis. Despite heterogeneity in patients with SLD, several macrophage phenotypes and druggable targets showed a positive correlation with increasing NAFLD activity scores and fibrosis stages. Conclusions Patients with SLD have markedly varied macrophage- and druggable target-related gene and protein expression in their livers. Several patients had relatively high expression, while others were like controls. Overall, patients with more advanced disease had significantly higher expression of CCR2 and galectin-3 at both the gene and protein levels. Impact and implications Appreciating individual differences within the hepatic microenvironment of patients with SLD may be paramount to developing effective treatments. These results may explain why such a small percentage of patients have responded to macrophage-targeting therapies and provide additional support for precision medicine-guided treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy G. Wanninger
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph Gosnell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Santhoshi Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Morgan Oneka
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Bao
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michael L. Kueht
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Akshata Moghe
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Spratt
- Department of Biostatistics and Data Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Departmen of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Rice University, Ann Arbor, MI, USA
| | - Jared K. Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
323
|
Berry K, Ruck JM, Barry F, Shui AM, Cortella A, Kent D, Seetharaman S, Wong R, VandeVrede L, Lai JC. Prevalence of cognitive impairment in liver transplant recipients. Clin Transplant 2024; 38:e15229. [PMID: 38113284 PMCID: PMC10842727 DOI: 10.1111/ctr.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Liver transplant (LT) recipients have a high burden of cognitive impairment risk factors identified in other populations, yet little work has explored cognition in the United States LT population. We characterized prevalence of cognitive impairment (CI) in LT recipients pre-LT and ≥3 months post-LT. Adult LT recipients with cirrhosis but without active pre-LT hepatic encephalopathy (HE) were screened for CI using the Montreal Cognitive Assessment (MoCA) for CI (MoCA <24) both pre-LT and ≥3 months post-LT. The association between cognitive performance and recipient characteristics was assessed using logistic regression. Of 107 LT recipients, 36% had pre-LT CI and 27% had post-LT CI [median (Q1-Q3) MoCA 26 (23-28)]. Each 1-point increase in pre-LT MoCA was associated with 26% lower odds of post-LT cognitive impairment (aOR .74, 95% CI .63-.87, p < .001), after adjusting for recipient age, history of HE, and time since LT. In this study of cirrhosis recipients without active pre-LT HE, cognitive impairment was prevalent before LT and remained prevalent ≥3 months after LT (27%), long after effects of portal hypertension on cognition would be expected to have resolved. Our data expose an urgent need for more comprehensive neurologic examination of LT recipients to better identify, characterize, and address predictors of post-LT cognitive impairment.
Collapse
Affiliation(s)
- Kacey Berry
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jessica M Ruck
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fawzy Barry
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Amy M Shui
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Aly Cortella
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Dorothea Kent
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Srilakshmi Seetharaman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Randi Wong
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Jennifer C Lai
- Department of Medicine, Division of Gastroenterology and Hepatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
324
|
Rives C, Martin CMP, Evariste L, Polizzi A, Huillet M, Lasserre F, Alquier-Bacquie V, Perrier P, Gomez J, Lippi Y, Naylies C, Levade T, Sabourdy F, Remignon H, Fafournoux P, Chassaing B, Loiseau N, Guillou H, Ellero-Simatos S, Gamet-Payrastre L, Fougerat A. Dietary Amino Acid Source Elicits Sex-Specific Metabolic Response to Diet-Induced NAFLD in Mice. Mol Nutr Food Res 2024; 68:e2300491. [PMID: 37888831 DOI: 10.1002/mnfr.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Prunelle Perrier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Jelskey Gomez
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Thierry Levade
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Frédérique Sabourdy
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
- INP-ENSAT, Toulouse University, Castanet-Tolosan, 31320, France
| | - Pierre Fafournoux
- INRAE center, Proteostasis Tim, Saint Genes Champanelle, 63122, France
| | - Benoit Chassaing
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Paris Cité University, Paris, 75014, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| |
Collapse
|
325
|
Canivet CM, Faure S. [Diagnosis and evaluation of metabolic dysfunction associated steatotic liver disease (MASLD)]. Rev Med Interne 2024; 45:41-47. [PMID: 38158295 DOI: 10.1016/j.revmed.2023.10.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) or recently called Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD), is the leading cause of liver disease, with an estimated worldwide prevalence of 25%. MASLD is suspected, in a metabolic condition, in the presence of hepatic steatosis, moderate hepatic cytolysis or hyperferritinemia. The severity of the disease depends on the stage of liver fibrosis, which can be suspected in clinical practice by simple blood tests such as the FIB-4 or NAFLD fibrosis Score. The treatment is based on lifestyle intervention combining weight loss, increased physical activity and a Mediterranean-style diet. Only a small minority of patients with MASLD will develop advanced liver disease and require liver specialist. Given the high prevalence of MASLD, the identification of these patients cannot be envisaged without the taking part in the screening of all physicians (general practitioners and specialists).
Collapse
Affiliation(s)
- C M Canivet
- Service d'hépato-gastroentérologie et oncologie digestive, CHU d'Angers, Angers, France; Laboratoire HIFIH, UPRES EA3859, SFR 4208, université d'Angers, Angers, France
| | - S Faure
- Service d'hépato-gastroentérologie et oncologie digestive, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
326
|
Zeng Q, Liu CH, Ampuero J, Wu D, Jiang W, Zhou L, Li H, Bai L, Romero-Gómez M, Tang H. Circular RNAs in non-alcoholic fatty liver disease: Functions and clinical significance. RNA Biol 2024; 21:1-15. [PMID: 38113132 PMCID: PMC10761141 DOI: 10.1080/15476286.2023.2290769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 12/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which affects approximately 25% of the global population, is an urgent health issue leading to various metabolic comorbidities. Circular RNAs (circRNAs), covalently closed RNA molecules, are characterized by ubiquity, diversity, stability, and conservatism. Indeed, they participate in various biological processes via distinct mechanisms that could modify the natural history of NAFLD. In this review, we briefly introduce the biogenesis, characteristics, and biological functions of circRNAs. Furthermore, we summarize circRNAs expression profiles in NAFLD by intersecting seven sequencing data sets and describe the cellular roles of circRNAs and their potential advantages as biomarkers of NAFLD. In addition, we emphatically discuss the exosomal non-coding RNA sorting mechanisms and possible functions in recipient cells. Finally, we extensively discuss the potential application of targeting disease-related circRNAs and competing endogenous RNA networks through gain-of-function and loss-of-function approaches in targeted therapy of NAFLD.
Collapse
Affiliation(s)
- Qingmin Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Javier Ampuero
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Virgen del Rocío University Hospital. SeLiver group at Institute of Biomedicine of Seville (IBIS: HUVRocío/CSIC/US). University of Seville, Seville, Spain
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
327
|
Xue Y, Wei Y, Cao L, Shi M, Sheng J, Xiao Q, Cheng Z, Luo T, Jiao Q, Wu A, Chen C, Zhong L, Zhang C. Protective effects of scutellaria-coptis herb couple against non-alcoholic steatohepatitis via activating NRF2 and FXR pathways in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116933. [DOI: https:/doi.org/10.1016/j.jep.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
328
|
Narayanan AK, Surendran S, Balakrishnan D, Gopalakrishnan U, Malick S, Valsan A, Philips CA, Watson CJE. A Short Review on Obeticholic Acid: An Effective Modulator of Farnesoid X Receptor. Curr Rev Clin Exp Pharmacol 2024; 19:225-233. [PMID: 38708917 DOI: 10.2174/0127724328239536230919070001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 05/07/2024]
Abstract
Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late '90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.
Collapse
Affiliation(s)
- Anila Kutty Narayanan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Sudhindran Surendran
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Dinesh Balakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Unnikrishnan Gopalakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Shweta Malick
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Arun Valsan
- Department of Gastroenterology & Hepatology, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Cyriac Abby Philips
- Department of Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, Kerala, India
| | - Christopher John Edward Watson
- University of Cambridge and Honorary Consultant Surgeon, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| |
Collapse
|
329
|
Strzepka J, Schwartz BA, Ritz EM, Aloman C, Reau N. Patients With Autoimmune Hepatitis and Nonalcoholic Fatty Liver Disease: Characteristics, Treatment, and Outcomes. J Clin Gastroenterol 2024; 58:91-97. [PMID: 36729430 DOI: 10.1097/mcg.0000000000001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/12/2022] [Indexed: 02/03/2023]
Abstract
GOAL The objective of this study was to characterize an autoimmune hepatitis (AIH)/nonalcoholic fatty liver disease (NAFLD) overlap cohort, determine if they received standard of care treatment, and delineate their outcomes in comparison with patients with AIH or NAFLD alone. BACKGROUND AIH is a relatively rare and heterogeneously presenting liver disease of unknown etiology. NAFLD is a leading cause of liver disease worldwide. AIH treatment includes steroids, which have adverse metabolic effects that can worsen NAFLD. No treatment guidelines are available to mitigate this side on AIH/NAFLD overlap patients. Few studies to date have examined these patients' characteristics, management practices, and outcomes. MATERIALS AND METHODS A single-center, retrospective chart review study examining biopsy-proven AIH/NAFLD, AIH, and NAFLD patients. Characteristics, treatment, and 1- and 3-year outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) were evaluated. RESULTS A total of 72 patients (36.1% AIH/NAFLD, 34.7% AIH, and 29.2% NAFLD) were included. AIH/NAFLD patients were found to be more often Hispanic/Latino, female, and with lower liver aminotransaminases, immunoglobulin G, and anti-smooth muscle antibody positivity. AIH/NAFLD patients were less likely to receive standard of care treatment. No significant differences in outcomes were seen between AIH/NAFLD and either AIH or NAFLD. CONCLUSIONS Our study demonstrated that AIH/NAFLD patients have unique characteristics and are less likely to receive standard of care treatment compared with patients with AIH alone. Despite this, no difference in outcomes (all-cause mortality, need for liver transplantation, or decompensated cirrhosis) was seen. Given NAFLD's rising prevalence, AIH/NAFLD cases will likely increase, and may benefit from alternative treatment guidelines to prevent worsening of NAFLD.
Collapse
Affiliation(s)
- Jessica Strzepka
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Benjamin A Schwartz
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Ethan M Ritz
- Bioinformatics and Biostatistics Core, Rush University Medical Center, Chicago, IL
| | - Costica Aloman
- Department of Hepatology, Rush University Medical Center, Chicago, IL; Department of Hepatology, Rush University Medical Center, Chicago, IL
| | - Nancy Reau
- Department of Hepatology, Rush University Medical Center, Chicago, IL; Department of Hepatology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
330
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
331
|
Brown RDR, Green CD, Weigel C, Ni B, Celi FS, Proia RL, Spiegel S. Overexpression of ORMDL3 confers sexual dimorphism in diet-induced non-alcoholic steatohepatitis. Mol Metab 2024; 79:101851. [PMID: 38081412 PMCID: PMC10772294 DOI: 10.1016/j.molmet.2023.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
OBJECTIVE The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) accumulate with overnutrition and have been implicated in non-alcoholic steatohepatitis (NASH) development. ORMDL3, a negative regulator of the rate-limiting step in ceramide biosynthesis, has been identified as an obesity-related gene. Therefore, we assessed the role of ORMDL3 in diet-induced obesity and development of NASH. METHODS Globally overexpressing Ormdl3-Flag transgenic mice (ORMDL3TG) were fed a western high-fat, carbohydrate and cholesterol enriched diet, with high fructose-glucose drinking water. Physiological, biochemical and sphingolipidomic analyses were employed to measure the effect of ORMDL3 overexpression on NASH development. RESULTS ORMDL3TG male but not female mice fed a western high-fat diet and sugar water had exacerbated adipocyte hypertrophy together with increased severity of white adipose inflammation and fibrosis. Hepatic steatosis, dyslipidemia, impaired glucose homeostasis, hyperinsulinemia, and insulin resistance were significantly more severe only in obese ORMDL3TG male mice that accompanied dramatic liver fibrosis, inflammation, and formation of hepatic crown-like structures, which are unique features of human and murine NASH. Obesogenic diet induces ORMDL expression in male mice but reduces it in females. Mechanistically, overexpression of Ormdl3 lowered the levels of S1P and ceramides only in obese female mice and antithetically increased them in tissues of obese males. ORMDL3TG male mice exhibited a much greater induction of the UPR, propagating ER stress that contributed to their early development of NASH. CONCLUSIONS This study uncovered a previously unrecognized role for ORMDL3 in sexual dimorphism important for the development and progression of NASH.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Ni
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S Celi
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
332
|
Cheng PN, Chen WJ, Hou CJY, Lin CL, Chang ML, Wang CC, Chang WT, Wang CY, Lin CY, Hung CL, Peng CY, Yu ML, Chao TH, Huang JF, Huang YH, Chen CY, Chiang CE, Lin HC, Li YH, Lin TH, Kao JH, Wang TD, Liu PY, Wu YW, Liu CJ. Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases. Clin Mol Hepatol 2024; 30:16-36. [PMID: 37793641 PMCID: PMC10776290 DOI: 10.3350/cmh.2023.0315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD.
Collapse
Affiliation(s)
- Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chih-Lin Lin
- Department of Gastroenterology, Renai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Ling Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Lieh Hung
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chern-En Chiang
- General Clinical Research Center, and Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzung-Dau Wang
- Cardiovascular Center, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center, Department of Internal Medicine and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
333
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
334
|
Kadi D, Loomba R, Bashir MR. Diagnosis and Monitoring of Nonalcoholic Steatohepatitis: Current State and Future Directions. Radiology 2024; 310:e222695. [PMID: 38226882 DOI: 10.1148/radiol.222695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease, with a worldwide prevalence of 25%. NAFLD is a spectrum that includes nonalcoholic fatty liver defined histologically by isolated hepatocytes steatosis without inflammation and nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of NAFLD and is associated with disease progression, development of cirrhosis, and increased rates of liver-specific and overall mortality. The differentiation between NAFLD and NASH as well as staging NASH are important yet challenging clinical problems. Liver biopsy is currently the standard for disease diagnosis and fibrosis staging. However, this procedure is invasive, costly, and cannot be used for longitudinal monitoring. Therefore, several noninvasive quantitative imaging biomarkers have been proposed that can estimate the severity of hepatic steatosis and fibrosis. Despite this, noninvasive diagnosis of NASH and accurate risk stratification remain unmet needs. In this work, the most relevant available imaging biomarkers are reviewed and their application in patients with NAFLD are discussed.
Collapse
Affiliation(s)
- Diana Kadi
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Rohit Loomba
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| | - Mustafa R Bashir
- From the Department of Radiology (D.K., M.R.B.), Center for Advanced Magnetic Resonance Development (M.R.B.), Department of Pathology (M.R.B.), and Division of Hepatology (M.R.B.), Duke University Medical Center, Durham, NC 27705; and Division of Gastroenterology, Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, Calif (R.L.)
| |
Collapse
|
335
|
Bu Q, Deng Y, Wang Q, Deng R, Hu S, Pei Z, Zhang Y. STC2 is a potential biomarker of hepatocellular carcinoma with its expression being upregulated in Nrf1α-deficient cells, but downregulated in Nrf2-deficient cells. Int J Biol Macromol 2023; 253:127575. [PMID: 37866563 DOI: 10.1016/j.ijbiomac.2023.127575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Nrf1 (encoded by Nfe2l1) and Nrf2 (encoded by Nfe2l2), as two key members of the CNC-bZIP transcription factor, exhibit significant functional differences in their pathophysiology. Our previous findings demonstrated that loss of Nrf1α (i.e., a full-length isoform of Nrf1) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft tumor is significantly suppressed by knockout of Nrf2. To gain insights into the mechanism underlying such marked distinctions in their pathologic phenotypes, we mined transcriptome data from liver cancer in the TCGA database to establish a prognostic model and calculate predicted risk scores for each cell line. The results revealed that knockout of Nrf1α markedly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Notably, stanniocalcin 2 (STC2), a biomarker associated with liver cancer, that is upexpressed in hepatocellular carcinoma (HCC) tissues with a reduction in the overall survival ratio of those patients. We observed increased expression levels of STC2 in Nrf1α-/- cells but decreased expression in Nrf2-/- cells. These findings suggested that STC2 may play a role in mediating the distinction between Nrf1α-/- and Nrf2-/-. Such potential function of STC2 was further corroborated through a series of experiments combined with transcriptomic sequencing. The results revealed that STC2 functions as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma cells and malgrowth of relevant xenograft tumor were almost completely abolished in STC2-/- cells. Together, these demonstrate that STC2 could be paved as a potential therapeutic target, albeit as a diagnostic marker, for HCC.
Collapse
Affiliation(s)
- Qiqi Bu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yangxu Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Qing Wang
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Rongzhen Deng
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- Bioengineering College, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Zhigang Pei
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
336
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
337
|
Tsoneva DK, Ivanov MN, Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J Clin Transl Hepatol 2023; 11:1520-1541. [PMID: 38161500 PMCID: PMC10752811 DOI: 10.14218/jcth.2023.00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 01/03/2024] Open
Abstract
Liver diseases are a major burden worldwide, the scope of which is expected to further grow in the upcoming years. Clinically relevant liver dysfunction-related blood markers such as alanine aminotransferase and aspartate aminotransferase have limited accuracy. Nowadays, liver biopsy remains the gold standard for several liver-related pathologies, posing a risk of complication due to its invasive nature. Liquid biopsy is a minimally invasive approach, which has shown substantial potential in the diagnosis, prognosis, and monitoring of liver diseases by detecting disease-associated particles such as proteins and RNA molecules in biological fluids. Histones are the core components of the nucleosomes, regulating essential cellular processes, including gene expression and DNA repair. Following cell death or activation of immune cells, histones are released in the extracellular space and can be detected in circulation. Histones are stable in circulation, have a long half-life, and retain their post-translational modifications. Here, we provide an overview of the current research on histone-mediated liquid biopsy methods for liver diseases, with a focus on the most common detection methods.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
338
|
Tarcău BM, Vicaș LG, Filip L, Maghiar F, Șandor M, Pallag A, Jurca T, Mureșan ME, Marian E. Emerging Perspectives on the Set of Conditions That Lead to the Emergence of Metabolic Syndrome. J Pers Med 2023; 14:32. [PMID: 38248733 PMCID: PMC10820431 DOI: 10.3390/jpm14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic syndrome, as a medical condition, presents multifactorial complexity that is characterized by the resulting damage from genetic, environmental, and lifestyle factors (presence or absence of physical activity, food choices). Thus, metabolic syndrome qualifies unequivocally as a medical condition in which there are, simultaneously, several independent metabolic risk factors, namely, abdominal obesity, high triglyceride level, low HDL cholesterol level, arterial hypertension, and high glycemic level. Although age, sex, socio-economic status, and the precise definition of metabolic syndrome all influence the prevalence and risk of developing the condition, clinical and epidemiological studies clearly show that central obesity, as measured by an increased abdominal circumference, is the main risk factor. Thus, due to the growing global incidence of obesity, there has been an increase in the incidence of metabolic syndrome. Starting with obesity, all other metabolic risk factors are influenced: for example, as a result of insulin resistance with hyperglycemia, diabetes is linked to an increased risk of cardiovascular disease due to increased abdominal circumference. Through this review, we aimed to highlight the latest research studies and dietary nutritional interventions useful in the prevention of this disease but also implementation strategies for primary prevention among the healthy population.
Collapse
Affiliation(s)
- Bogdan M. Tarcău
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Laura G. Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Florin Maghiar
- Medical Department, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Mircea Șandor
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| | - Mariana Eugenia Mureșan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st December Square, 410073 Oradea, Romania;
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (A.P.); (T.J.); (E.M.)
| |
Collapse
|
339
|
Sun Y, Sun C, Hu G, Shen Y. Editorial: Exercise, diabetes and metabolic-associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1347458. [PMID: 38192420 PMCID: PMC10773808 DOI: 10.3389/fendo.2023.1347458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- Yang Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yun Shen
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
340
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
341
|
Lee NH, Jeong SJ, Wang JH, Choi YJ, Oh HM, Cho JH, Ahn YC, Son CG. The Clinical Diagnosis-Based Nationwide Epidemiology of Metabolic Dysfunction-Associated Liver Disease in Korea. J Clin Med 2023; 12:7634. [PMID: 38137703 PMCID: PMC10744038 DOI: 10.3390/jcm12247634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Although most epidemiological studies have been conducted using a relatively small population or subjects who had medical screenings, the present study aimed to investigate the incidence and prevalence of MASLD (formerly NAFLD) in Korea using nationwide registry data provided by the Health Insurance Review and Assessment Service (HIRA). METHODS Using nationwide medical records provided by HIRA, we analyzed the entire dataset of patients with MASL (KCD10-K76.0) and MASH (KCD10-K75.8) from 2010 to 2021 and calculated the incidence and prevalence by year, age, and gender. The prevalence and incidence rates were calculated by analyzing the HIRA data covering almost the entire population of Korea for 12 years, from 2010 to 2021, with an average population of 50,856,244 during this period. Statistical analyses included calculating confidence intervals using Ulm's formula and conducting sex- and age-specific analyses with a Cochran-Armitage test for trends. RESULTS The annual incidence of MASL/MASH increased significantly from 9.71/0.37 in 2010 to 13.95/5.52 per 1000 persons in 2021 (p < 0.01). The annual prevalence of MASL increased from 15.69 in 2010 to 34.23 per 1000 persons in 2021, while the annual prevalence of MASH increased from 0.49 to 9.79 per 1000 persons between 2010 and 2021 (p < 0.01). Regarding the sex-dimorphic feature of MASLD, there was a male predominance in those < 50 years old but a female predominance in those ≥ 50 years old for the incidence and prevalence of MASL and the incidence of MASH. CONCLUSION The incidence of MASL increased by 3% to 4% every year, while the incidence of MASH increased 14.91-fold from 2010 to 2021. The increasing trend is noteworthy compared with previous reports.
Collapse
Affiliation(s)
- Nam-Hun Lee
- East-West Cancer Center, Cheonan Korean Medical Hospital, Daejeon University, 4 Notaesan-ro, Seobuk-gu, Cheonan-si 31099, Republic of Korea;
| | - Seok-Ju Jeong
- Health Insurance Review & Assessment Service, Dunsanbuk-ro 121, Seo-gu, Daejeon 35236, Republic of Korea;
| | - Jing-Hua Wang
- Liver-Immunology Research Center, Daejeon University, 176 Daedeok-daero, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (Y.-J.C.); (H.-M.O.); (J.-H.C.)
| | - Yu-Jin Choi
- Liver-Immunology Research Center, Daejeon University, 176 Daedeok-daero, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (Y.-J.C.); (H.-M.O.); (J.-H.C.)
| | - Hyeon-Muk Oh
- Liver-Immunology Research Center, Daejeon University, 176 Daedeok-daero, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (Y.-J.C.); (H.-M.O.); (J.-H.C.)
| | - Jung-Hyo Cho
- Liver-Immunology Research Center, Daejeon University, 176 Daedeok-daero, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (Y.-J.C.); (H.-M.O.); (J.-H.C.)
| | - Yo-Chan Ahn
- Department of Health Service Management, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 35620, Republic of Korea;
| | - Chang-Gue Son
- Liver-Immunology Research Center, Daejeon University, 176 Daedeok-daero, Seo-gu, Daejeon 35235, Republic of Korea; (J.-H.W.); (Y.-J.C.); (H.-M.O.); (J.-H.C.)
| |
Collapse
|
342
|
Chu H, Zhang W, Tan Y, Diao Z, Li P, Wu Y, Xie L, Sun J, Yang K, Li P, Xie C, Li P, Hua Q, Xu X. Qing-Zhi-Tiao-Gan-Tang (QZTGT) prevents nonalcoholic steatohepatitis (NASH) by expression pattern correction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116665. [PMID: 37279813 DOI: 10.1016/j.jep.2023.116665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Zhi-Tiao-Gan-Tang or Qing-Zhi-Tiao-Gan Decoction (QZTGT) is based on the compatibility theory of traditional Chinese medicine (TCM), that is a combination of three classical formulae for the treatment of nonalcoholic fatty liver disease (NAFLD). Its pharmacodynamic material basis is made up of quinones, flavanones, and terpenoids. AIM OF THE STUDY This study aimed to look for a promising recipe for treating nonalcoholic steatohepatitis (NASH), a more advanced form of NAFLD, and to use a transcriptome-based multi-scale network pharmacological platform (TMNP) to find its therapy targets. MATERIALS AND METHODS A classical dietary model of NASH was established using MCD (Methionine- and choline-deficient) diet-fed mice. Liver coefficients like ALT, AST, serum TC, and TG levels were tested following QZTGT administration. A transcriptome-based multi-scale network pharmacological platform (TMNP) was used to further analyze the liver gene expression profile. RESULTS The composition of QZTGT was analyzed by HPLC-Q-TOF/MS, a total of 89 compounds were separated and detected and 31 of them were found in rat plasma. QZTGT improved liver morphology, inflammation and fibrosis in a classical NASH model. Transcriptomic analysis of liver samples from NASH animal model revealed that QZTGT was able to correct gene expression. We used transcriptome-based multi-scale network pharmacological platform (TMNP) to predicted molecular pathways regulated by QZTGT to improve NASH. Further validation indicated that "fatty acid degradation", "bile secretion" and "steroid biosynthesis" pathways were involved in the improvement of NASH phenotype by QZTGT. CONCLUSIONS Using HPLC-Q-TOF/MS, the compound composition of QZTGT, a Traditional Chinese prescription, was separated, analyzed and identified systematically. QZTGT mitigated NASH symptoms in a classical dietary model of NASH. Transcriptomic and network pharmacology analysis predicted the potential QZTGT regulated pathways. These pathways could be used as therapeutic targets for NASH.
Collapse
Affiliation(s)
- Hang Chu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhipeng Diao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Peng Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yapeng Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Like Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jianguo Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ke Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
343
|
Pei E, Wang H, Li Z, Xie X, Cai L, Lin M. Endoplasmic reticulum stress inhibitor may substitute for sleeve gastrectomy to alleviate metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2023; 47:102229. [PMID: 37865225 DOI: 10.1016/j.clinre.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming the most common form of chronic liver disease worldwide. We explored the potential mechanisms responsible for the protective role of sleeve gastrectomy (SG) on MASLD in a high-fat diet (HFD) rat model. METHODS Rats were fed with HFD for 12 weeks to generate MASLD model that were subjected to SG or sham surgery. The endoplasmic reticulum stress (ERS) inhibitor 4-phenylbutyric acid (4-PBA) was injected intraperitoneally every day for 4 weeks after surgery to identify the impact of ERS. RESULTS The MASLD rat model was generated successfully, as indicated by significant upregulation of metabolic parameters. Fibroblast growth factor 21 (FGF21) and ERS-related proteins were increased in HFD rats, while expression of fibroblast growth factor receptor 1 was decreased as expected. An HFD also induced swelling and blurring of the endoplasmic reticulum and mitochondria in hepatocytes, and the above transformation could be relieved by SG and 4-PBA. SG and an ERS inhibitor both inhibited MASLD, but their combined treatment had no additional benefit. CONCLUSIONS Dysfunction of the FGF21 signaling pathway and hepatic steatosis and inflammation could be induced by an HFD, potentially causing MASLD. Bariatric surgery and ERS inhibition could alleviate MASLD by relieving ERS-mediated impairment of FGF21 signal transduction. These findings provide a new insight into the use of ERS inhibitors to treat MASLD, especially in patients who prefer to avoid surgery.
Collapse
Affiliation(s)
- Erli Pei
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhihong Li
- Department of General Surgery, Zhoupu Hospital, Shanghai, China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Cai
- Department of Science and Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
344
|
Han C, Li Z, Liu R, Zhao Z, Wang Y, Zuo X, Zhang Y, Geng Z, Huang H, Pan X, Li W. Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5'-monophosphate-activated protein kinase pathway and reshaping gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7721-7738. [PMID: 37439182 DOI: 10.1002/jsfa.12854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver cirrhosis and cancer. Lonicerae flos polysaccharides (LPs) have been shown to be effective in treating metabolic diseases; however, the therapeutic effects and underlying molecular mechanisms of LPs in NAFLD remain unclear. PURPOSE The objective of this study was to investigate the morphological characterization of Lonicerae flos polysaccharides (LPs) and the mechanism of LPs in relieving NAFLD. METHODS The morphology of LPs was observed using atomic force microscopy (AFM), X-ray diffraction (XRD), thermal weight (TG), and thermal weight derivative (DTG); NAFLD mice were treated with LPs at the same time as they were induced with a Western diet, and then the indexes related to glycolipid metabolism, fibrosis, inflammation, and autophagy in the serum and liver of the mice were detected. RESULTS The atomic force microscope analysis results indicated that the LPs displayed sugar-chain aggregates, exhibited an amorphous structure, and were relatively stable in thermal cracking at 150 °C. It was also found that LPs exerted therapeutic effects in NAFLD. The LPs prevented high-fat and -cholesterol diet-induced NAFLD progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, fibrosis, and autophagy. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor compound C abrogated LP-induced hepatoprotection in mice with NAFLD. The LPs further treated NAFLD by reshaping the structure of the gut microbiota, in which Desulfovibrio bacteria plays a key roles. CONCLUSION Lonicerae flos polysaccharides exert protective effects against NAFLD in mice by improving the structure of the intestinal flora and activating the AMPK signaling pathway. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zongshuo Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xuli Zuo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yushi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Geng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Houyu Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuzhen Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weidong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
345
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
346
|
Cao J, Qiu W, Lin Y, Liu T, Dou Z, Chen Z. Appropriate sleep duration modifying the association of insulin resistance and hepatic steatosis is varied in different status of metabolic disturbances among adults from the United States, NHANES 2017-March 2020. Prev Med Rep 2023; 36:102406. [PMID: 37744738 PMCID: PMC10511803 DOI: 10.1016/j.pmedr.2023.102406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/20/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Steatosis is the hepatic manifestation of metabolic syndrome (MetS) and its developing is closely associated with insulin resistance. Shortened sleep has adverse effects on hepatic steatosis and the underlying mechanism remains unknown. We conceived to evaluate whether sleep duration was a lifestyle factor modifying the association between insulin resistance and hepatic steatosis and whether it was varied in different status of metabolic disturbances. We performed a cross-sectional analysis on 2264 adults of United States representing a population of 138,319,512 with MetS or pre-MetS from National Health and Nutrition Examination Survey (NHANES) 2017-March 2020. Participants underwent hepatic transient elastography and laboratory tests. The sleep duration was obtained from interviews. Results showed that insulin resistance was significantly associated with hepatic steatosis among participants with metabolic disturbances (OR = 1.85, 95% CI: 1.30-2.65). Significant moderation of sleep duration on the association between insulin resistance and hepatic steatosis was observed when sleep duration was dichotomized by 6.5- (P = 0.042) or 9.5-hour (P = 0.031). The risk of hepatic steatosis associated with insulin resistance was increased when sleep duration was ≤ 6.5 h and > 9.5 h. Furthermore, the moderation effect of 6.5-hour sleeping was only significant among participants with pre-MetS while that of 9.5-hour sleeping was only significant among participants with MetS. In conclusion, insufficient or excessive sleep increased the risk of hepatic steatosis associated with insulin resistance. Appropriate sleep duration was advocated and varied in different status of metabolic disturbances. Ensuring adequate sleep should be highlighted before MetS occurs and excessive sleep should be prevented for participants with MetS.
Collapse
Affiliation(s)
- Junyan Cao
- Department of Medical Ultrasonics, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Weihong Qiu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Yuwei Lin
- Peking University Clinical Research Institute, Peking University, China
| | - Tianyu Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Zhaocong Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
| |
Collapse
|
347
|
de Mathelin P, Noblet V, Trog A, Paul C, Cusumano C, Faitot F, Bachellier P, Addeo P. Volumetric Remodeling of the Left Liver After Right Hepatectomy: Analysis of Factors Predicting Degree of Hypertrophy and Post-hepatectomy Liver Failure. J Gastrointest Surg 2023; 27:2752-2762. [PMID: 37884754 DOI: 10.1007/s11605-023-05804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND This study investigated the volumetric remodeling of the left liver after right hepatectomy looking for factors predicting the degree of hypertrophy and severe post-hepatectomy liver failure (PHLF). METHODS In a cohort of 121 right hepatectomies, we performed CT volumetrics study of the future left liver remnant (FLR) preoperatively and postoperatively. Factors influencing FLR degree of hypertrophy and severe PHLF were identified by multivariate analysis. RESULTS After right hepatectomy, the mean degree of hypertrophy and kinetic growth rate of the left liver remnant were 25% and 3%/day respectively. The mean liver volume recovery rate was 77%. Liver remodeling volume was distributed for 79% on segments 2 and 3 and 21% on the segment 4 (p<0.001). Women showed a greater hypertrophy of segments 2 and 3 compared with men (p=0.002). The degree of hypertrophy of segment 4 was lower in case of middle hepatic vein resection (p=0.004). Left liver remnant kinetic growth rate was associated with the standardized future liver remnant (sFLR) (p<0.001) and a two-stage hepatectomy (p=0.023). Severe PHLF were predicted by intraoperative transfusion (p=0.009), biliary tumors (p=0.013), and male gender (p=0.022). CONCLUSIONS Volumetric remodeling of the left liver after right hepatectomy is not uniform and is mainly influenced by gender and sacrifice of middle hepatic vein. Male gender, intraoperative transfusion, and biliary tumors increase the risk of postoperative liver failure after right hepatectomy.
Collapse
Affiliation(s)
- Pierre de Mathelin
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France
- ICube, Université de Strasbourg, CNRS UMR 7357, Illkirch, France
| | - Vincent Noblet
- ICube, Université de Strasbourg, CNRS UMR 7357, Illkirch, France
| | - Arnaud Trog
- ICube, Université de Strasbourg, CNRS UMR 7357, Illkirch, France
| | - Chloé Paul
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France
| | - Caterina Cusumano
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France
| | - François Faitot
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France
- ICube, Université de Strasbourg, CNRS UMR 7357, Illkirch, France
| | - Philippe Bachellier
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France
| | - Pietro Addeo
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre-Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France 1, Avenue Moliere, 67098, Strasbourg, France.
- ICube, Université de Strasbourg, CNRS UMR 7357, Illkirch, France.
| |
Collapse
|
348
|
Nadolsky K, Cryer DR, Articolo A, Fisher T, Schneider J, Rinella M. Nonalcoholic steatohepatitis diagnosis and treatment from the perspective of patients and primary care physicians: a cross-sectional survey. Ann Med 2023; 55:2211349. [PMID: 37171239 PMCID: PMC10184582 DOI: 10.1080/07853890.2023.2211349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The global prevalence of nonalcoholic steatohepatitis (NASH) is rising. Despite this, NASH is underdiagnosed and does not yet have approved pharmacological treatments. We sought to understand the path to diagnosis, patient interactions with healthcare professionals, treatment regimens, and disease management for patients with NASH. METHODS Cross-sectional online surveys of patients with a self-reported diagnosis of NASH and healthcare professionals treating patients with NASH were conducted from 10th November 2020, to 1st January 2021. This manuscript focuses on responses from 152 patients with NASH and 101 primary care physicians (PCPs). RESULTS Patients (n = 152, mean age = 40, SD = 11) and healthcare professionals (n = 226) were located throughout the US. In the most common patient journey, 72% of patients had initial discussions about symptoms with a PCP but only 30% report receiving their NASH diagnosis from a PCP. Almost half of PCPs (47%) were not aware of any clinical practice guidelines for diagnosis and management of NASH. For ongoing management of NASH, PCPs most frequently prescribed lifestyle changes such as exercise (89%), lifestyle changes focused on diet (79%), and/or metformin (57%). Other healthcare professionals rarely referred patients to PCPs for treatment, but when they did, the primary reasons were patients struggling with lifestyle modifications (58%), needing to lose weight (46%), and needing treatment of comorbidities (42%). CONCLUSIONS PCPs may benefit from greater awareness of NASH and guidelines for its diagnosis and treatment. Given the absence of pharmacological treatments approved for NASH, PCPs can offer support in obesity management, comorbidity management, and risk stratification for liver disease progression.
Collapse
Affiliation(s)
- Karl Nadolsky
- MI State University College of Human Medicine, Holland Hospital Endocrinology, Obesity & Diabetes, Holland, MI, USA
| | | | | | | | | | - Mary Rinella
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
349
|
Shou D, Luo Q, Tang W, Cao C, Huang H, Chen H, Zhou Y. Hepatobiliary and pancreatic: Multi-donor fecal microbiota transplantation attenuated high-fat diet-induced hepatic steatosis in mice by remodeling the gut microbiota. J Gastroenterol Hepatol 2023; 38:2195-2205. [PMID: 37787118 DOI: 10.1111/jgh.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND AND AIMS Fecal microbiota transplantation (FMT) can improve the symptoms of nonalcoholic fatty liver disease (NAFLD) by restoring the gut microbiota. This study was aimed to evaluate the therapeutic effects of single-donor (SD) or multi-donor (MD) FMT in a mouse model of hepatic steatosis and explore the underlying mechanisms. METHODS Fecal samples were collected from NAFLD patients and healthy controls with similar baseline characteristics, with gut microbiota analyzed. Mice were fed either a normal-chow diet (NCD) or a high-fat diet (HFD) for 3 weeks and then administered fecal microbiota collected from healthy SDs or MDs for 12 weeks. RESULTS Fecal samples from NAFLD patients showed significantly lower microbial diversity than those from healthy controls. MD-FMT reduced liver fat accumulation and body weight and significantly improved serum and liver biochemical indices in HFD-fed mice. Compared to untreated HFD-fed mice, MD-FMT significantly decreased the relative expression of IL-1β, IL-6, TNF-α, IFN-γ, and IL-1β mRNAs in the liver. The relative protein level of intestinal barrier components, including claudin-1, occludin, and E-cadherin, as well as serum lipopolysaccharide (LPS) level in mice, were found to be improved following MD-FMT intervention. Furthermore, FMT reversed HFD-induced gut dysbiosis and increased the abundance of beneficial bacteria such as Blautia and Akkermansia. CONCLUSION NAFLD patients and healthy controls showed distinct gut microbiota. Likewise, HFD altered gut microbiota in mice compared to NCD-fed controls. MD-FMT restored gut dysbiosis in HFD-fed mice and attenuated liver steatosis, and should be considered as an effective treatment option for NAFLD.
Collapse
Affiliation(s)
- Diwen Shou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Qingling Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Wenjuan Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
350
|
Han D, Kim D, Kim H, Lee J, Lyu J, Kim JS, Shin J, Kim JS, Kim DK, Park HW. Methylsulfonylmethane ameliorates metabolic-associated fatty liver disease by restoring autophagy flux via AMPK/mTOR/ULK1 signaling pathway. Front Pharmacol 2023; 14:1302227. [PMID: 38099147 PMCID: PMC10720622 DOI: 10.3389/fphar.2023.1302227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Metabolism-associated fatty liver disease (MAFLD) is a global health concern because of its association with obesity, insulin resistance, and other metabolic abnormalities. Methylsulfonylmethane (MSM), an organic sulfur compound found in various plants and animals, exerts antioxidant and anti-inflammatory effects. Here, we aimed to assess the anti-obesity activity and autophagy-related mechanisms of Methylsulfonylmethane. Method: Human hepatoma (HepG2) cells treated with palmitic acid (PA) were used to examine the effects of MSM on autophagic clearance. To evaluate the anti-obesity effect of MSM, male C57/BL6 mice were fed a high-fat diet (HFD; 60% calories) and administered an oral dose of MSM (200 or 400 mg/kg/day). Moreover, we investigated the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin complex 1 (mTORC1)/UNC-51-like autophagy-activating kinase 1 (ULK1) signaling pathway to further determine the underlying action mechanism of MSM. Results: Methylsulfonylmethane treatment significantly mitigated PA-induced protein aggregation in human hepatoma HepG2 cells. Additionally, Methylsulfonylmethane treatment reversed the PA-induced impairment of autophagic flux. Methylsulfonylmethane also enhanced the insulin sensitivity and significantly suppressed the HFD-induced obesity and hepatic steatosis in mice. Western blotting revealed that Methylsulfonylmethane improved ubiquitinated protein clearance in HFD-induced fatty liver. Remarkably, Methylsulfonylmethane promoted the activation of AMPK and ULK1 and inhibited mTOR activity. Conclusion: Our study suggests that MSM ameliorates hepatic steatosis by enhancing the autophagic flux via an AMPK/mTOR/ULK1-dependent signaling pathway. These findings highlight the therapeutic potential of MSM for obesity-related MAFLD treatment.
Collapse
Affiliation(s)
- Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Deokryong Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Haeil Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeonga Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeong Sig Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|