301
|
Song L, Xiong D, Kang X, Yang Y, Wang J, Guo Y, Xu H, Chen S, Peng D, Pan Z, Jiao X. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin. BMC Biotechnol 2015; 15:79. [PMID: 26286143 PMCID: PMC4544785 DOI: 10.1186/s12896-015-0195-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Background A novel influenza virus, subtype H7N9, circulated through China in 2013–2014. Its higher rates of human infection in a wide range of locations within China and the associated increased likelihood of human-to-human transmission have caused global concern. Recombinant subunit vaccines provide safe and targeted protection against viral infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than vaccines made from whole viruses. Studies have shown that bacterial flagellin has strong adjuvant activity and induces protective immune responses. Results In this study, we used overlap-PCR to generate an H7N9 influenza recombinant subunit vaccine that fused the globular head domain (HA1-2, aa 62–284) of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, Salmonella typhimurium flagellin (fliC). The resulting fusion protein, HA1-2-fliC, was efficiently expressed in an Escherichia coli prokaryotic expression system, and Western blotting and TLR5-stimulating activity analysis confirmed that the HA1-2-fliC moiety could be faithfully refolded to take on the native HA and fliC conformations. In a C3H/HeJ mouse model of intraperitoneal vaccination, the fusion protein elicited significant and robust HA1-2-specific serum IgG titers, maintaining high levels for at least 3 months in the vaccinated animals, and induced similar levels of HA1-2-specific IgG1 and IgG2a that were detectable 12 days after the third immunization. HA1-2-fliC was also found to be capable of triggering the production of neutralizing antibodies, as assessed by measuring hemagglutination inhibition titers. Conclusions We conclude that immunization with HA1-2-fliC induces potent HA1-2-specific responses, offering significant promise for the development of a successful recombinant subunit vaccine for avian influenza A (H7N9).
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yun Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jing Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Hui Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
302
|
Nithichanon A, Rinchai D, Gori A, Lassaux P, Peri C, Conchillio-Solé O, Ferrer-Navarro M, Gourlay LJ, Nardini M, Vila J, Daura X, Colombo G, Bolognesi M, Lertmemonkolchai G. Sequence- and Structure-Based Immunoreactive Epitope Discovery for Burkholderia pseudomallei Flagellin. PLoS Negl Trop Dis 2015. [PMID: 26222657 PMCID: PMC4519301 DOI: 10.1371/journal.pntd.0003917] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium responsible for melioidosis, a serious and often fatal infectious disease that is poorly controlled by existing treatments. Due to its inherent resistance to the major antibiotic classes and its facultative intracellular pathogenicity, an effective vaccine would be extremely desirable, along with appropriate prevention and therapeutic management. One of the main subunit vaccine candidates is flagellin of Burkholderia pseudomallei (FliCBp). Here, we present the high resolution crystal structure of FliCBp and report the synthesis and characterization of three peptides predicted to be both B and T cell FliCBp epitopes, by both structure-based in silico methods, and sequence-based epitope prediction tools. All three epitopes were shown to be immunoreactive against human IgG antibodies and to elicit cytokine production from human peripheral blood mononuclear cells. Furthermore, two of the peptides (F51-69 and F270-288) were found to be dominant immunoreactive epitopes, and their antibodies enhanced the bactericidal activities of purified human neutrophils. The epitopes derived from this study may represent potential melioidosis vaccine components. Melioidosis is an infectious disease caused by Burkolderia pseudomallei that poses a major public health problem in Southeast Asia and northern Australia. This bacterium is difficult to treat due to its intrinsic resistance to antibiotics, poor diagnosis, and the lack of a licensed vaccine. Vaccine safety is a prime concern, therefore recombinant protein subunit and/or peptide vaccine components, may represent safer alternatives. In this context, we targeted one of the main subunit vaccine candidates tested to date, flagellin from B. pseudomallei (FliCBp) that comprises the flagellar filament that mediates bacterial motility. Based on the knowledge that activation of both cell-mediated and antibody-mediated responses must be addressed in a melioidosis vaccine, we identified B and T cell immunoreactive peptides from FliCBp, using both sequence-based and structure-based computational prediction programs, for further in vitro immunological testing. Our data confirm the accuracy of sequence-based epitope prediction tools, and two structure-based methods applied to the FliCBp crystal structure (here-described), in predicting both T- and B-cell epitopes. Moreover, we identified two epitope peptides with significant joint T-cell and B-cell activities for further development as melioidosis vaccine components.
Collapse
Affiliation(s)
- Arnone Nithichanon
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Darawan Rinchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Patricia Lassaux
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Oscar Conchillio-Solé
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mario Ferrer-Navarro
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Louise J. Gourlay
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Marco Nardini
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Jordi Vila
- Department of Clinical Microbiology, Hospital Clinic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, CIMAINA and CNR Institute of Biophysics, University of Milan, Milan, Italy
| | - Ganjana Lertmemonkolchai
- The Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
303
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 560] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
304
|
Willems MMJHP, Zom GG, Meeuwenoord N, Khan S, Ossendorp F, Overkleeft HS, van der Marel GA, Filippov DV, Codée JDC. Lipophilic Muramyl Dipeptide-Antigen Conjugates as Immunostimulating Agents. ChemMedChem 2015; 11:190-8. [PMID: 26059481 DOI: 10.1002/cmdc.201500196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/09/2022]
Abstract
Muramyl dipeptide (MDP) is the smallest peptidoglycan fragment capable of triggering the innate immune system through interaction with the intracellular NOD2 receptor. To develop synthetic vaccine modalities composed of an antigenic entity (typically a small peptide) and a molecular adjuvant with well-defined activity, we previously assembled covalent MDP-antigen conjugates. Although these were found to be capable of stimulating the NOD2 receptor and were processed by dendritic cells (DCs) leading to effective antigen presentation, DC maturation--required for an apt immune response--could not be achieved with these conjugates. To improve the efficacy of these vaccine modalities, we equipped the MDP moiety with lipophilic tails, well-known modifications to enhance the immune-stimulatory activity of MDPs. Herein we report the design and synthesis of a lipophilic MDP-antigen conjugate and show that it is a promising vaccine modality capable of stimulating the NOD2 receptor, maturing DCs, and delivering antigen cargo into the MHC-I cross-presentation pathway.
Collapse
Affiliation(s)
- Marian M J H P Willems
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijs G Zom
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Selina Khan
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Ferry Ossendorp
- Leiden University Medical Centre, Albinusdreef 2, 2300 RC, Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
305
|
Abstract
Antigen- and adjuvant-based bioconjugates that can stimulate the immune system play an important role in vaccine applications. Bioconjugates have demonstrated unique physicochemical and biological properties, enabling vaccines to be delivered to key immune cells, to target specific intracellular pathways, or to mimic immunogenic properties of natural pathogens. In this Review we highlight recent advances in such molecular immunomodulators, with an emphasis on the structure-function relationships that provide the foundation for rational design of safe and effective vaccines and immunotherapies.
Collapse
Affiliation(s)
- Haipeng Liu
- †Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- ‡Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- §Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Darrell J Irvine
- ▼Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
306
|
Yan L, Xiao H, Han M, Zhang Q. Diagnostic value of T-SPOT. TB interferon-γ release assays for active tuberculosis. Exp Ther Med 2015; 10:345-351. [PMID: 26170960 DOI: 10.3892/etm.2015.2463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/13/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the diagnostic value of interferon-γ release assays for the detection of active tuberculosis (ATB) in patients previously vaccinated with Bacillus Calmette-Guérin (BCG). In total, 540 patients underwent the T-SPOT.TB test, including 295 patients with active pulmonary TB (PTB), 52 patients with active extrapulmonary TB (EPTB), 11 individuals with inactive TB and 182 non-TB cases. Simultaneously, 186 patients with ATB, including PTB and EPTB cases, and 125 non-TB patients underwent tuberculin skin tests (TST). Associations between the sensitivity of the T-SPOT.TB assays and lung lesion severity, positive smear grade, disease site and the duration of anti-TB treatment were evaluated. The sensitivity and specificity values of the T-SPOT.TB assay for diagnosing ATB were 76.66 and 76.37%, respectively, and the positive rate in the inactive TB test results was significantly lower (23.63%; P<0.001). The diagnostic sensitivity was higher in the PTB cases when compared with the EPTB cases (P=0.01). Furthermore, the diagnostic sensitivity of the ATB cases undergoing anti-TB treatment was significantly lower when compared with the cases not undergoing treatment (P=0.002), and the sensitivity gradually decreased with the treatment duration (P=0.01). In addition, a statistically significant difference was identified in the specificity between the T-SPOT.TB assay and the TST (76.37 vs. 51.15%; P<0.001), whereas the sensitivity values did not differ significantly (76.66 vs. 75.56%). Therefore, the results indicated that the T-SPOT.TB assay is a promising diagnostic test for active PTB in a BCG-vaccinated population, and should replace the TST. As the administration of anti-TB treatment resulted in a lower sensitivity to the diagnostic test, the T-SPOT.TB assay may also be suitable for the assessment of treatment outcomes.
Collapse
Affiliation(s)
- Liping Yan
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Heping Xiao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Min Han
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Qing Zhang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| |
Collapse
|
307
|
Wang T, Zhen Y, Ma X, Wei B, Wang N. Phospholipid bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6391-6. [PMID: 25780860 DOI: 10.1021/acsami.5b00348] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The phospholipid bilayer-coated aluminum nanoparticles (PLANs), formed via chemisorption, were prepared by reverse ethanol injection-lyophilization (REIL) utilizing the phosphophilicity of aluminum. The anhydrous antigen-loaded PLANs obtained by REIL proved stable, satisfying using the controlled-temperature-chain instead of the integrated cold-chain for distribution, and could be rehydrated to reconstitute instantly an aqueous suspension of the antigen-PLANs, which were more readily taken up by antigen-presenting cells and, when given subcutaneously to mice, induced more robust antigen-specific humoral and cellular immunoresponses but less local inflammation than the antigen-alum. Thus, the PLANs are a useful vaccine adjuvant-delivery system with advantages over the widely used naked alum.
Collapse
Affiliation(s)
- Ting Wang
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Yuanyuan Zhen
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Xiaoyu Ma
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Biao Wei
- †School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ning Wang
- ‡School of Medical Engineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| |
Collapse
|
308
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
309
|
Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S. Current status of viral expression systems in plants and perspectives for oral vaccines development. PLANT MOLECULAR BIOLOGY 2015; 87:203-17. [PMID: 25560432 DOI: 10.1007/s11103-014-0279-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.
Collapse
Affiliation(s)
- Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | |
Collapse
|
310
|
Lee SE, Nguyen CT, Kim SY, Thi TN, Rhee JH. Tetanus toxin fragment C fused to flagellin makes a potent mucosal vaccine. Clin Exp Vaccine Res 2015; 4:59-67. [PMID: 25649002 PMCID: PMC4313110 DOI: 10.7774/cevr.2015.4.1.59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Recombinant subunit vaccines provide safe and targeted protection against microbial infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than the whole cell vaccines, especially when they are administered through mucosal routes. We have reported that a bacterial flagellin has strong mucosal adjuvant activity to induce protective immune responses. In this study, we tested whether FlaB could be used as a fusion partner of subunit vaccine for tetanus. MATERIALS AND METHODS We constructed fusion proteins consisted with tetanus toxin fragment C (TTFC), the nontoxic C-terminal portion of tetanus toxin, and a Toll-like receptor 5 agonist from Vibrio vulnificus (FlaB). Mice were intranasally administered with fusion protein and protective immune responses of the vaccinated mice were analyzed. RESULTS FlaB-TTFC recombinant protein induced strong tetanus-specific antibody responses in both systemic and mucosal compartments and prolonged the survival of mice after challenge with a supra-lethal dose of tetanus toxin. CONCLUSION This study establishes FlaB as a successful fusion partner for recombinant subunit tetanus vaccine applicable through mucosal route, and it further endorses our previous observations that FlaB could be a stable adjuvant partner for mucosal vaccines.
Collapse
Affiliation(s)
- Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Chung Truong Nguyen
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Thinh Nguyen Thi
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
311
|
Oscherwitz J, Cease KB. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin. PLoS One 2015; 10:e0116882. [PMID: 25635901 PMCID: PMC4311967 DOI: 10.1371/journal.pone.0116882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/16/2014] [Indexed: 02/07/2023] Open
Abstract
The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha toxin could facilitate the development of an epitope-focused vaccine against S. aureus.
Collapse
Affiliation(s)
- Jon Oscherwitz
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America; VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, Michigan, 48105, United States of America
| | - Kemp B Cease
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America; VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, Michigan, 48105, United States of America
| |
Collapse
|
312
|
Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 2015; 12:653-62. [PMID: 25531528 PMCID: PMC4319694 DOI: 10.1021/mp500520r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is problematic, directly and indirectly impacting the lives of millions, and yet existing therapies are inadequate and usually ineffective. A cocaine vaccine would be a promising alternative therapeutic option, but efficacy is hampered by variable production of anticocaine antibodies. Thus, new tactics and strategies for boosting cocaine vaccine immunogenicity must be explored. Flagellin is a bacterial protein that stimulates the innate immune response via binding to extracellular Toll-like receptor 5 (TLR5) and also via interaction with intracellular NOD-like receptor C4 (NLRC4), leading to production of pro-inflammatory cytokines. Reasoning that flagellin could serve as both carrier and adjuvant, we modified recombinant flagellin protein to display a cocaine hapten termed GNE. The resulting conjugates exhibited dose-dependent stimulation of anti-GNE antibody production. Moreover, when adjuvanted with alum, but not with liposomal MPLA, GNE-FliC was found to be better than our benchmark GNE-KLH. This work represents a new avenue for exploration in the use of hapten-flagellin conjugates to elicit antihapten immune responses.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Departments of Chemistry, Integrative Structural and Computational Biology, and Immunology and Microbial Science, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol 2014; 67:426-49. [DOI: 10.1111/jphp.12352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/12/2014] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
To review the state of the art and assess future potential in the use of inorganic particulates as vaccine adjuvants.
Key findings
An adjuvant is an entity added to a vaccine formulation to ensure that robust immunity to the antigen is inculcated. The inclusion of an adjuvant is typically vital for the efficacy of vaccines using inactivated organisms, subunit and DNA antigens. With increasing research efforts being focused on subunit and DNA antigens because of their improved safety profiles, the development of appropriate adjuvants is becoming ever more crucial. Despite this, very few adjuvants are licensed for use in humans (four by the FDA, five by the European Medicines Agency). The most widely used adjuvant, alum, has been used for nearly 90 years, yet its mechanism of action remains poorly understood. In addition, while alum produces a powerful antibody Th2 response, it does not provoke the cellular immune response required for the elimination of intracellular infections or cancers. New adjuvants are therefore needed, and inorganic systems have attracted much attention in this regard.
Summary
In this review, the inorganic adjuvants currently in use are considered, and the efforts made to date to understand their mechanisms of action are summarised. We then move on to survey the literature on inorganic particulate adjuvants, focusing on the most interesting recent developments in this area and their future potential.
Collapse
|
314
|
A novel method for synthetic vaccine construction based on protein assembly. Sci Rep 2014; 4:7266. [PMID: 25434527 PMCID: PMC4248271 DOI: 10.1038/srep07266] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/13/2014] [Indexed: 01/05/2023] Open
Abstract
In the history of vaccine development, the synthetic vaccine is a milestone that is in stark contrast with traditional vaccines based on live-attenuated or inactivated microorganisms. Synthetic vaccines not only are safer than attenuated or inactivated microorganisms but also provide the opportunity for vaccine design for specific purposes. The first generation of synthetic vaccines has been largely based on DNA recombination technology and genetic manipulation. This de novo generation is occasionally time consuming and costly, especially in the era of genomics and when facing pandemic outbreaks of infectious diseases. To accelerate and simplify the R&D process for vaccines, we developed an improved method of synthetic vaccine construction based on protein assembly. We optimized and employed the recently developed SpyTag/SpyCatcher technique to establish a protein assembly system for vaccine generation from pre-prepared subunit proteins. As proof of principle, we chose a dendritic cell (DC)-targeting molecule and specific model antigens to generate desired vaccines. The results demonstrated that a new vaccine generated in this way does not hamper the individual function of different vaccine components and is efficient in inducing both T and B cell responses. This protein assembly strategy may be especially useful for high-throughput antigen screening or rapid vaccine generation.
Collapse
|
315
|
A perspective on the use of Pleurotus for the development of convenient fungi-made oral subunit vaccines. Vaccine 2014; 33:25-33. [PMID: 25444808 DOI: 10.1016/j.vaccine.2014.10.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/15/2023]
Abstract
This review provides an outlook of the medical applications of immunomodulatory compounds taken from Pleurotus and proposes this fungus as a convenient host for the development of innovative vaccines. Although some fungal species, such as Saccharomyces and Pichia, occupy a relevant position in the biopharmaceutical field, these systems are essentially limited to the production of conventional expensive vaccines. Formulations made with minimally processed biomass constitute the ideal approach for developing low cost vaccines, which are urgently needed by low-income populations. The use of edible fungi has not been explored for the production and delivery of low cost vaccines, despite these organisms' attractive features. These include the fact that edible biomass can be produced at low costs in a short period of time, its high biosynthetic capacity, its production of immunomodulatory compounds, and the availability of genetic transformation methods. Perspectives associated to this biotechnological application are identified and discussed.
Collapse
|
316
|
Fernández-Tejada A, Chea EK, George C, Gardner JR, Livingston PO, Ragupathi G, Tan DS, Gin DY. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol. Bioorg Med Chem 2014; 22:5917-23. [PMID: 25284254 PMCID: PMC4410046 DOI: 10.1016/j.bmc.2014.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
Immunoadjuvants are used to potentiate the activity of modern subunit vaccines that are based on molecular antigens. An emerging approach involves the combination of multiple adjuvants in a single formulation to achieve optimal vaccine efficacy. Herein, to investigate such potential synergies, we synthesized novel adjuvant conjugates based on the saponin natural product QS-21 and the aldehyde tucaresol via chemoselective acylation of an amine at the terminus of the acyl chain domain in QS saponin variants. In a preclinical mouse vaccination model, these QS saponin-tucaresol conjugates induced antibody responses similar to or slightly higher than those generated with related QS saponin variants lacking the tucaresol motif. The conjugates retained potent adjuvant activity, low toxicity, and improved activity-toxicity profiles relative to QS-21 itself and induced IgG subclass profiles similar to those of QS-21, indicative of both Th1 cellular and Th2 humoral immune responses. This study opens the door to installation of other substituents at the terminus of the acyl chain domain to develop additional QS saponin conjugates with desirable immunologic properties.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Eric K Chea
- Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Constantine George
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jeffrey R Gardner
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Philip O Livingston
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Govind Ragupathi
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Derek S Tan
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - David Y Gin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
317
|
Neimert-Andersson T, Binnmyr J, Enoksson M, Langebäck J, Zettergren L, Hällgren AC, Franzén H, Lind Enoksson S, Lafolie P, Lindberg A, Al-Tawil N, Andersson M, Singer P, Grönlund H, Gafvelin G. Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine 2014; 32:5967-74. [DOI: 10.1016/j.vaccine.2014.08.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022]
|
318
|
Goodwin D, Simerska P, Chang CH, Mansfeld FM, Varamini P, D’Occhio MJ, Toth I. Active immunisation of mice with GnRH lipopeptide vaccine candidates: Importance of T helper or multi-dimer GnRH epitope. Bioorg Med Chem 2014; 22:4848-54. [DOI: 10.1016/j.bmc.2014.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
319
|
Abstract
To date, over 100 noncanonical amino acids (ncAAs) have been genetically encoded in living cells in order to expand the functional repertoire of the canonical 20 amino acids. More recently, this technology has been expanded to the field of protein therapeutics, where traditional chemical methods typically result in heterogeneous mixtures of proteins. The site-specific incorporation of ncAAs with orthogonal chemical groups allows unprecedented control over the site of conjugation and the stoichiometry, thus facilitating the rational optimization of the biological functions and/or pharmacokinetics of biologics. Herein, we discuss the recent contribution of ncAA technology in enhancing the pharmacological properties of current protein therapeutics as well as developing novel therapeutic modalities.
Collapse
Affiliation(s)
- Sophie B. Sun
- Dr. S.B. Sun, Prof. P.G. Schultz, Dr. C.H. Kim, California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037
| | - Peter G. Schultz
- Dr. S.B. Sun, Prof. P.G. Schultz, Dr. C.H. Kim, California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037
- Prof. P.G. Schultz, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, California 92037
| | - Chan Hyuk Kim
- Dr. S.B. Sun, Prof. P.G. Schultz, Dr. C.H. Kim, California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, California 92037
| |
Collapse
|
320
|
Willems MMJHP, Zom GG, Khan S, Meeuwenoord N, Melief CJM, van der Stelt M, Overkleeft HS, Codée JDC, van der Marel GA, Ossendorp F, Filippov DV. N-tetradecylcarbamyl lipopeptides as novel agonists for Toll-like receptor 2. J Med Chem 2014; 57:6873-8. [PMID: 25019313 DOI: 10.1021/jm500722p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New analogues (UPam) of triacylated lipopeptide Pam3CysSK4, a popular agonist of Toll-like receptor 2 (TLR2), were designed making use of the cocrystal structure of a TLR2 heterodimer (with TLR1) with Pam3CysSK4. Twenty-two UPam derivatives that feature an N-tetradecylcarbamyl chain to mimic the native N-palmitoyl moiety and various small amino acids residues at the penultimate N-terminal position were prepared via solid-phase synthesis. In vitro evaluation of immunostimulatory properties revealed new potent TLR2 ligands.
Collapse
Affiliation(s)
- Marian M J H P Willems
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Willems MMJHP, Zom GG, Meeuwenoord N, Ossendorp FA, Overkleeft HS, van der Marel GA, Codée JDC, Filippov DV. Design, automated synthesis and immunological evaluation of NOD2-ligand-antigen conjugates. Beilstein J Org Chem 2014; 10:1445-53. [PMID: 24991299 PMCID: PMC4077378 DOI: 10.3762/bjoc.10.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/24/2014] [Indexed: 12/13/2022] Open
Abstract
The covalent attachment of an innate immune system stimulating agent to an antigen can provide active vaccine modalities capable of eliciting a potent immune response against the incorporated antigen. Here we describe the design, automated synthesis and immunological evaluation of a set of four muramyl dipeptide-peptide antigen conjugates. Muramyl dipeptide (MDP) represents a well-known ligand for the intracellular NOD2 receptor and our study shows that covalently linking an MDP-moiety to an antigenic peptide can lead to a construct that is capable of stimulating the NOD2 receptor if the ligand is attached at the anomeric center of the muramic acid. The constructs can be processed by dendritic cells (DCs) and the conjugation does not adversely affect the presentation of the incorporated SIINFEKL epitope on MHC-I molecules. However, stimulation of the NOD2 receptor in DCs was not sufficient to provide a strong immunostimulatory signal.
Collapse
Affiliation(s)
- Marian M J H P Willems
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gijs G Zom
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, P. O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ferry A Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, P. O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
322
|
Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 2014; 6:635-43. [PMID: 24950335 PMCID: PMC4215704 DOI: 10.1038/nchem.1963] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.
Collapse
|
323
|
Wang N, Wang T, Zhang M, Chen R, Niu R, Deng Y. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 2014; 88:194-206. [PMID: 24769065 DOI: 10.1016/j.ejpb.2014.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Abstract
To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, Hefei, China; Department of Pharmacy, Jining Medical College, Sunshine City, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Ruowen Niu
- Department of Pharmacy, Anhui Medical University, Hefei, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
324
|
Junqueira-Kipnis AP, Marques Neto LM, Kipnis A. Role of Fused Mycobacterium tuberculosis Immunogens and Adjuvants in Modern Tuberculosis Vaccines. Front Immunol 2014; 5:188. [PMID: 24795730 PMCID: PMC4005953 DOI: 10.3389/fimmu.2014.00188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/09/2014] [Indexed: 11/13/2022] Open
Abstract
Several approaches have been developed to improve or replace the only available vaccine for tuberculosis (TB), BCG (Bacille Calmette Guerin). The development of subunit protein vaccines is a promising strategy because it combines specificity and safety. In addition, subunit protein vaccines can be designed to have selected immune epitopes associated with immunomodulating components to drive the appropriate immune response. However, the limited antigens present in subunit vaccines reduce their capacity to stimulate a complete immune response compared with vaccines composed of live attenuated or killed microorganisms. This deficiency can be compensated by the incorporation of adjuvants in the vaccine formulation. The fusion of adjuvants with Mycobacterium tuberculosis (Mtb) proteins or immune epitopes has the potential to become the new frontier in the TB vaccine development field. Researchers have addressed this approach by fusing the immune epitopes of their vaccines with molecules such as interleukins, lipids, lipoproteins, and immune stimulatory peptides, which have the potential to enhance the immune response. The fused molecules are being tested as subunit vaccines alone or within live attenuated vector contexts. Therefore, the objectives of this review are to discuss the association of Mtb fusion proteins with adjuvants; Mtb immunogens fused with adjuvants; and cytokine fusion with Mtb proteins and live recombinant vectors expressing cytokines. The incorporation of adjuvant molecules in a vaccine can be complex, and developing a stable fusion with proteins is a challenging task. Overall, the fusion of adjuvants with Mtb epitopes, despite the limited number of studies, is a promising field in vaccine development.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - Lázaro Moreira Marques Neto
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia , Brazil
| |
Collapse
|
325
|
Moyle PM, Dai W, Zhang Y, Batzloff MR, Good MF, Toth I. Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjug Chem 2014; 25:965-78. [DOI: 10.1021/bc500108b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Peter M. Moyle
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Wei Dai
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Yingkai Zhang
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Michael R. Batzloff
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Michael F. Good
- Institute
for Glycomics, Griffith University, Southport 4222, Queensland, Australia
| | - Istvan Toth
- School
of Pharmacy, The University of Queensland, Woolloongabba 4102, Queensland, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
326
|
Wang N, Wang T, Zhang M, Chen R, Deng Y. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 2014; 468:39-49. [PMID: 24704308 DOI: 10.1016/j.ijpharm.2014.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Using a procedure of emulsification-lyophilization (PEL), adjuvant lipid A-cochleates (LACs) were prepared as a carrier for model antigen bovine serum albumin (BSA). With phosphatidylserine and lipid A as emulsifiers dissolved in oil phase (O), sucrose and CaCl2 in the inner water phase (W1), and BSA, sucrose and PEG2000 in the outer water phase (W2), the W1/O/W2 emulsions were prepared and subsequently lyophilized to form a dry product which was stable enough to be stored at room temperature. Upon rehydration of the dry products, cochleates formed with a size of 800 nm and antigen association rates of 38%. After vaccination of mice through oral mucosal (o.m.) administration, LACs showed no side effects but induced potent immune responses as evidenced by high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. In addition, high levels of IgG2a and IFN-γ in the sera or culture supernatants of splenocytes of the immunized mice were also detected. These results revealed that LACs induced a mixed Th1/Th2 response against the loaded antigens. Thus, the LACs prepared by PEL were able to induce both systemic and mucosal immune responses and may act as a potent cold-chain-free oral mucosal vaccine adjuvant delivery system (VADS).
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Administration, Oral
- Animals
- Cells, Cultured
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Stability
- Emulsions
- Excipients/chemistry
- Female
- Freeze Drying
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Lipid A/administration & dosage
- Lipid A/chemistry
- Lipid A/immunology
- Mice
- Mouth Mucosa/drug effects
- Mouth Mucosa/immunology
- Particle Size
- Phagocytosis/drug effects
- Powders
- Serum Albumin, Bovine/administration & dosage
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Technology, Pharmaceutical/methods
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Ning Wang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ting Wang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China; Department of Pharmacy, Jining Medical College, 669 Xueyuan Road, Sunshine City, Shandong Province 276826, China.
| | - Meiling Zhang
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Ruonan Chen
- Department of Pharmacy, Anhui Medical University, 81 Mei Hill Road, Hefei, Anhui Province 230032, China
| | - Yihui Deng
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
327
|
Hussein WM, Liu TY, Skwarczynski M, Toth I. Toll-like receptor agonists: a patent review (2011 - 2013). Expert Opin Ther Pat 2014; 24:453-70. [PMID: 24456079 DOI: 10.1517/13543776.2014.880691] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Toll-like receptors (TLRs) are a crucial part of the innate immunity and present the first line of defense against pathogens. In humans, there are ten TLRs, with TLR3, 7, 8 and 9 located in intracellular vesicles and the remaining expressed on the cell surface. These transmembrane protein receptors recognize a wide range of pathogen components. A large number of TLR agonists, either derived from pathogen components or modified synthetic molecules, were developed and investigated for their ability to stimulate an immune response. AREAS COVERED This review includes an updated summary (2011 - 2013) of TLR agonists that have been published in patent applications and/or progressed to clinical studies, with an emphasis on their chemical structure, immune response, prophylactic and therapeutic outcomes. EXPERT OPINION A number of factors have contributed to the design and development of TLR agonists such as solving the crystal structures of TLR bound to their ligands, improvements in our understanding of the signaling pathway activated after TLR stimulation and the identification of the native ligands of all human TLRs. Some of the TLR agonists have been approved for human use by the FDA while others have reached clinical studies in Phases I, II and III. Generally, immunotherapy based on TLR agonists is very promising for the prevention and/or treatment of several disorders including cancer, allergy and microbial infections. However, many TLR agonists were withdrawn from further studies as they either lacked efficacy or caused serious side effects.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences , St. Lucia, Brisbane, Qld 4072 , Australia
| | | | | | | |
Collapse
|
328
|
Mancini RJ, Tom JK, Esser-Kahn AP. Covalently Coupled Immunostimulant Heterodimers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
329
|
Mancini RJ, Tom JK, Esser-Kahn AP. Covalently coupled immunostimulant heterodimers. Angew Chem Int Ed Engl 2013; 53:189-92. [PMID: 24259411 DOI: 10.1002/anie.201306551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/16/2013] [Indexed: 02/02/2023]
Abstract
We report increased stimulation of dendritic cells via heterodimers of immunostimulants formed at a discrete molecular distance. Many vaccines present spatially organized agonists to immune cell receptors. These receptors cluster suggesting that signaling is increased by spatial organization and receptor proximity, but this has not been directly tested for multiple, unique receptors. In this study we probe the spatial aspect of immune cell activation using heterodimers of two covalently attached immunostimulants.
Collapse
Affiliation(s)
- Rock J Mancini
- Department of Chemistry, University of California, Irvine, 3038A Frederick Reines Hall, Irvine, CA 92697-2025 (USA)
| | | | | |
Collapse
|
330
|
A subunit vaccine candidate derived from a classic H5N1 avian influenza virus in China protects fowls and BALB/c mice from lethal challenge. Vaccine 2013; 31:5398-404. [DOI: 10.1016/j.vaccine.2013.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022]
|
331
|
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem Rev 2013; 114:901-26. [DOI: 10.1021/cr400031z] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miriam Góngora-Benítez
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Judit Tulla-Puche
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
- Department
of Organic Chemistry, University of Barcelona, Barcelona, 08028 Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
332
|
Van Braeckel-Budimir N, Haijema BJ, Leenhouts K. Bacterium-like particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications. Front Immunol 2013; 4:282. [PMID: 24062748 PMCID: PMC3775300 DOI: 10.3389/fimmu.2013.00282] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.
Collapse
|
333
|
Bonnac LF, Mansky LM, Patterson SE. Structure–Activity Relationships and Design of Viral Mutagens and Application to Lethal Mutagenesis. J Med Chem 2013; 56:9403-14. [DOI: 10.1021/jm400653j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laurent F. Bonnac
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| | - Louis M. Mansky
- Institute for Molecular Virology,
Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E. Patterson
- Center for Drug Design, Academic
Health Center, University of Minnesota,
Minneapolis, Minnesota 55455, United States
| |
Collapse
|
334
|
Anergic pulmonary tuberculosis is associated with contraction of the Vd2+T cell population, apoptosis and enhanced inhibitory cytokine production. PLoS One 2013; 8:e71245. [PMID: 23936496 PMCID: PMC3732239 DOI: 10.1371/journal.pone.0071245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Objective To study the association of anergic pulmonary tuberculosis with Vδ2+ T cells and related cytokine levels. Methods 82 pulmonary tuberculosis patients were divided into two groups according to their purified protein derivative tuberculin skin test (TST) results: 39 with TST-negative anergic pulmonary tuberculosis and 43 with TST-positive pulmonary tuberculosis, while 40 healthy volunteers were used as control. Based on chest X-ray results, the tuberculosis lesions were scored according to their severity, with a score of ≤ 2.5 ranking as mild, 2.5-6 as moderate and ≥ 6 as severe. The Vδ2+ T cell percentage and their expression levels of the apoptosis-related membrane surface molecule FasL in peripheral blood and bronchoalveolar lavage fluids (BALF) were analyzed by flow cytometry, while IL-2, IL-4, IL-6 and IL-10 cytokine and γ-interferon (γ-IFN) concentrations in peripheral blood were determined by ELISA. Results Most of the patients with chest X-ray lesion scores higher than 6 belonged to the anergic tuberculosis group (P<0.05). Anergic pulmonary tuberculosis patients displayed reduced peripheral blood Vδ2+ T cell counts (P<0.05) and higher FasL expression in peripheral blood Vδ2 + T cells (P <0.05). The Vδ2+ T cell percentages in the BALF of all tuberculosis patients were lower than in their peripheral blood (P <0.05), and IL-4 and IL-10 concentrations in peripheral blood of anergic tuberculosis patients were higher than in TST-positive tuberculosis patients and healthy controls (P <0.05). Conclusion Anergic pulmonary tuberculosis is accompanied by reduced Vδ2+ T cell percentage, and elevated Vδ2+ T cell FasL expression as well as enhanced IL-4 and IL-10 levels in peripheral blood.
Collapse
|
335
|
Bergmann-Leitner ES, Hosie H, Trichilo J, Deriso E, Ranallo RT, Alefantis T, Savranskaya T, Grewal P, Ockenhouse CF, Venkatesan MM, Delvecchio VG, Angov E. Self-adjuvanting bacterial vectors expressing pre-erythrocytic antigens induce sterile protection against malaria. Front Immunol 2013; 4:176. [PMID: 23847617 PMCID: PMC3701146 DOI: 10.3389/fimmu.2013.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022] Open
Abstract
Genetically inactivated, Gram-negative bacteria that express malaria vaccine candidates represent a promising novel self-adjuvanting vaccine approach. Antigens expressed on particulate bacterial carriers not only target directly to antigen-presenting cells but also provide a strong danger signal thus circumventing the requirement for potent extraneous adjuvants. E. coli expressing malarial antigens resulted in the induction of either Th1 or Th2 biased responses that were dependent on both antigen and sub-cellular localization. Some of these constructs induced higher quality humoral responses compared to recombinant protein and most importantly they were able to induce sterile protection against sporozoite challenge in a murine model of malaria. In light of these encouraging results, two major Plasmodium falciparum pre-erythrocytic malaria vaccine targets, the Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS) fused to the Maltose-binding protein in the periplasmic space and the Circumsporozoite Protein (CSP) fused to the Outer membrane (OM) protein A in the OM were expressed in a clinically relevant, attenuated Shigella strain (Shigella flexneri 2a). This type of live-attenuated vector has previously undergone clinical investigations as a vaccine against shigellosis. Using this novel delivery platform for malaria, we find that vaccination with the whole-organism represents an effective vaccination alternative that induces protective efficacy against sporozoite challenge. Shigella GeMI-Vax expressing malaria targets warrant further evaluation to determine their full potential as a dual disease, multivalent, self-adjuvanting vaccine system, against both shigellosis, and malaria.
Collapse
|
336
|
The ocular conjunctiva as a mucosal immunization route: a profile of the immune response to the model antigen tetanus toxoid. PLoS One 2013; 8:e60682. [PMID: 23637758 PMCID: PMC3637207 DOI: 10.1371/journal.pone.0060682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/01/2013] [Indexed: 11/30/2022] Open
Abstract
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Collapse
|
337
|
Skwarczynski M, Kowapradit J, Ziora ZM, Toth I. pH-triggered peptide self-assembly into fibrils: a potential peptide-based subunit vaccine delivery platform. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2052-9341-1-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|