301
|
van Groen T, Kadish I, Wyss JM. Efferent connections of the anteromedial nucleus of the thalamus of the rat. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:1-26. [PMID: 10407123 DOI: 10.1016/s0165-0173(99)00006-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The projections from the anteromedial nucleus of the thalamus (AM) were investigated using anterograde and retrograde tracing techniques. AM projects to nearly the entire rostrocaudal extent of limbic cortex and to visual cortex. Anteriorly, AM projects to medial orbital, frontal polar, precentral agranular, and infraradiata cortices. Posteriorly, AM projects to retrosplenial granular, entorhinal, perirhinal and presubicular cortices, and to the subiculum. Further, AM projects to visual cortical area 18b, and to the lateral and basolateral nuclei of the amygdala. AM projections are topographically organized, i.e., projections to different cortical areas arise from distinct parts of AM. The neurons projecting to rostral infraradiata cortex (IRalpha) are more caudally located in AM than the neurons projecting to caudal infraradiata cortex (IRbeta). The neuronal cell bodies that project to the terminal field in area 18b are located primarily in ventral and lateral parts of AM, whereas neurons projecting to perirhinal cortex and amygdala are more medially located in AM. Injections into the most caudal, medial part of AM (i.e., the interanteromedial [IAM] nucleus) label terminals in the rostral precentral agranular, caudal IRbeta, and caudal perirhinal cortices. Whereas most AM axons terminate in layers I and V-VI, exceptions to this pattern include area 18b (axons and terminals in layers I and IV-V), the retrosplenial granular cortex (axons and terminals in layers I and V), and the presubicular, perirhinal, and entorhinal cortices (axons and terminals predominantly in layer V). Together, these findings suggest that AM influences a widespread area of limbic cortex.
Collapse
Affiliation(s)
- T van Groen
- Department of Neuroscience and Neurology, University of Kuopio, Canthia Building, Kuopio, Finland
| | | | | |
Collapse
|
302
|
Rudkin TM, Sadikot AF. Thalamic input to parvalbumin-immunoreactive GABAergic interneurons: organization in normal striatum and effect of neonatal decortication. Neuroscience 1999; 88:1165-75. [PMID: 10336127 DOI: 10.1016/s0306-4522(98)00265-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neocortex and thalamus send dense glutaminergic projections to the neostriatum. The neocortex makes synaptic contact with spines of striatal projection neurons, and also targets a distinct class of GABAergic interneurons immunoreactive for the calcium-binding protein parvalbumin. We determined whether the parafascicular thalamic nucleus also targets striatal parvalbumin-immunoreactive interneurons. The anterograde tracer biotinylated dextranamine was injected into the parafascicular nucleus of adult rats. Double-labeled histochemistry/immunohistochemistry revealed overlapping thalamic fibers and parvalbumin-immunoreactive neurons in the neostriatum. Areas of overlap within the sensorimotor striatum were analysed by electron microscopy. Of 311 synaptic boutons originating from the parafascicular nucleus, 75.9% synapsed with unlabeled dendrites, 22.5% with unlabeled spines, and 1.3% had parvalbumin-immunoreactive dendrites as a postsynaptic target. Only 4% of all asymmetric synapses on parvalbumin-immunoreactive dendrites were derived from the parafascicular nucleus. A separate group of animals underwent bilateral neocortical deafferentation on the third postnatal day, prior to injection of anterograde tracer into the parafascicular nucleus of adult animals. These experiments were performed with the dual purpose of (i) reducing the possibility that thalamic inputs to parvalbumin-immunoreactive neurons are the result of transsynaptic uptake of tracer by a thalamo-cortico-striatal route, and (ii) determining whether competitive interactions between developing corticostriatal and thalamostriatal fibers may account for the relatively sparse thalamic input onto parvalbumin-immunoreactive interneurons. In decorticates, 219 striatal synaptic contacts derived from the parafascicular nucleus, out of which 77.2% were on unlabeled dendrites, 20.9% were upon unlabeled spines, and 0.9% targeted parvalbumin-immunoreactive dendrites. We conclude that the thalamic parafascicular nucleus indeed sends synaptic input to parvalbumin-immunoreactive striatal neurons. Parafascicular nucleus inputs to striatal parvalbumin-immunoreactive interneurons are sparse in comparison to other asymmetric inputs, most of which are likely to be of cortical origin. The synaptic profile of thalamostriatal inputs to parvalbumin-immunoreactive neurons and unlabeled elements is unchanged following neonatal decortication. This suggests that competitive interaction between developing thalamostriatal and corticostriatal projections is not a major mechanism determining synaptic input to striatal subpopulations.
Collapse
Affiliation(s)
- T M Rudkin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | | |
Collapse
|
303
|
Abstract
The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that responds strongly to exposure to various stressors. Many of the projection targets of PVT neurons, including the medial prefrontal cortex, nucleus accumbens, and central/basolateral nuclei of the amygdala, are also activated by stress. We sought to determine if PVT neurons that respond to stress are those that project to one or more of these forebrain sites. Retrograde tract tracing combined with immunohistochemical detection of Fos protein-like immunoreactivity was used to assess the activation of target-specific populations of PVT projection neurons by mild footshock stress in the rat. Stress markedly increased Fos protein-like immunoreactivity in PVT neurons, but without regard to the projection target of the thalamic neurons. Thus, the percentage of PVT cells that were retrogradely labeled from either the prefrontal cortex, nucleus accumbens, or amygdala, and that expressed Fos-like immunoreactivity did not differ substantially across the three forebrain sites. These data suggest that the PVT may have a role as a generalized relay for information relating to stress, and may serve an important role in the stress-induced activation of limbic forebrain areas.
Collapse
Affiliation(s)
- M Bubser
- Department of Psychiatry, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
304
|
Abstract
Angina pectoris often results from ischemic episodes that excite chemosensitive and mechanoreceptive receptors in the heart. Ischemic episodes release a collage of chemicals, including adenosine and bradykinin, that excites the receptors of the sympathetic and vagal afferent pathways. Sympathetic afferent fibers from the heart enter the upper thoracic spinal cord and synapse on cells of origin of ascending pathways. This review focuses on the spinothalamic tract, but other pathways are excited as well. Excitation of spinothalamic tract cells in the upper thoracic and lower cervical segments, except C7 and C8 segments, contributes to the anginal pain experienced in the chest and arm. Cardiac vagal afferent fibers synapse in the nucleus tractus solitarius of the medulla and then descend to excite upper cervical spinothalamic tract cells. This innervation contributes to the anginal pain experienced in the neck and jaw. The spinothalamic tract projects to the medial and lateral thalamus and, based on positron emission tomography studies, activates several cortical areas, including the anterior cingulate gyrus (BA 24 and 25), the lateral basal frontal cortex, and the mesiofrontal cortex.
Collapse
Affiliation(s)
- R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| |
Collapse
|
305
|
Bester H, Bourgeais L, Villanueva L, Besson JM, Bernard JF. Differential projections to the intralaminar and gustatory thalamus from the parabrachial area: A PHA-L study in the rat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990322)405:4<421::aid-cne1>3.0.co;2-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
306
|
Vale-Martínez A, Guillazo-Blanch G, Aldavert-Vera L, Segura-Torres P, Martí-Nicolovius M. Intracranial self-stimulation in the parafascicular nucleus of the rat. Brain Res Bull 1999; 48:401-6. [PMID: 10357072 DOI: 10.1016/s0361-9230(99)00017-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A behavioral analysis of intracranial self-stimulation was provided for parafascicular nucleus. To evaluate whether intracranial self-stimulation in this nucleus could be site-specific and to determine if the positive sites are the same parafascicular areas that facilitate learning when stimulated, rats were tested via monopolar electrodes situated throughout the parafascicular nucleus. Animals were trained to self-stimulate by pressing a lever in a conventional Skinner box (1-5 sessions). Twenty-two of the 42 animals included in the study, had the electrode at the parafascicular nucleus. Only two of them showed intracranial self-stimulation. Histological analyses indicated that the latter rats had the electrode implanted at the anterior area of the medial parafascicular. Other two animals also showed intracranial self-stimulation but they had the electrode in a more posterior brain region, between the Dark-schewitsch nucleus and the red nucleus. The animals implanted at the parafascicular showed higher response rates than the other two rats. These results confirm that: (a) the anterior region of the medial parafascicular is a positive site for stable and regular intracranial self-stimulation behavior, and (b) these positive sites do not coincide with the parafascicular regions related to learning improvement.
Collapse
Affiliation(s)
- A Vale-Martínez
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Facultat de Psicologia, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
307
|
Abstract
The mediodorsal thalamic nucleus (MD) receives convergent inputs from subcortical limbic structures that overlap with a dopaminergic (DA) innervation. In this study, we describe the effects of DA agonists on the basal and evoked electrophysiological activity of identified thalamic cells of rats recorded in vitro. Administration of the D1 agonist SFK 38393 (10 microM) did not produce a clear effect on the physiological properties of the thalamic cells recorded. In contrast, bath administration of the D2 agonist quinpirole (10 microM) resulted in an enhancement of membrane excitability, facilitation of the occurrence of low-threshold spikes (LTSs), and changes in the resting membrane potential of the thalamic cells tested. The quinpirole-mediated responses were reversed by administration of the D2 antagonist haloperidol. Results from experiments performed with different [K+] and K+ channel blockers suggest that the effects of quinpirole are mediated at least in part by changes in K+ conductances. The results from this study suggest that DA can modulate the excitability of thalamic cells and in turn may influence the way that the thalamocortical system integrates information.
Collapse
|
308
|
Abstract
Lesions of glutamatergic afferents to the nucleus accumbens have been reported to block psychostimulant-induced behavioral sensitization. However, thalamic glutamatergic projections to the nucleus accumbens have received little attention in the context of psychostimulant actions. We examined the effects of acute amphetamine and cocaine administration on expression of Fos protein in the thalamic paraventricular nucleus (PVT), which provides glutamatergic inputs to the nucleus accumbens and also receives dopaminergic afferents. Immunoblot and immunohistochemical studies revealed that both psychostimulants dose-dependently increased PVT Fos expression. PVT neurons retrogradely labeled from the nucleus accumbens were among the PVT cells that showed a Fos response to amphetamine. D2 family dopamine agonists, including low doses of the D3-preferring agonist 7-OH-DPAT, increased the numbers of Fos-like-immunoreactive neurons in the PVT. Conversely, the effects of cocaine and amphetamine on PVT Fos expression were blocked by pretreatment with the dopamine D2/3 antagonist raclopride. Because PVT neurons express D3 but not other dopamine receptor transcripts, it appears that psychostimulants induce Fos in PVT neurons through a D3 dopamine receptor. We suggest that the PVT may be an important part of an extended circuit subserving both the arousing properties and reinforcing aspects of psychostimulants.
Collapse
|
309
|
Yokoyama C, Sasaki K. Regional expressions of Fos-like immunoreactivity in rat cerebral cortex after stress; restraint and intraperitoneal lipopolysaccharide. Brain Res 1999; 816:267-75. [PMID: 9878776 DOI: 10.1016/s0006-8993(98)00927-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To demonstrate regional activation in the rat cerebral cortex related to stress-evoked neuroendocrine response, Fos expression in both the cerebral cortex and hypothalamic paraventricular nucleus (PVN) was immunohistochemically examined in two experimental groups; a lipopolysaccharide (LPS) intraperitoneally injected group for inflammatory stress and a restraint group for emotional stress. The LPS injection (100 microg/100 g b.w.) and restraint (for 30 min) had similar effect on Fos-like immunoreactivity (Fos-LI) in PVN with regard to the number of immunoreactive nuclei and their distribution pattern, while the times to maximize Fos-LI were different. Numerical analysis of cortical Fos-LI in untreated rats showed a distinct region-specific pattern. Statistical analysis revealed no significant increase in Fos-LI density in any cortical regions in the LPS group, but restraint resulted in a dramatic and region-specific increase. A significant increase was detected in the prefrontal cortex (the cingulate, orbital and agranular insular cortex), the frontal area 2, the agranular retrosplenial cortex, the parietal cortex, and the medial and lateral occipital area 2. These results indicate that cortical activation relevant to specific functions may be involved in stress-specific neural circuitry.
Collapse
Affiliation(s)
- C Yokoyama
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | | |
Collapse
|
310
|
Gioanni Y, Rougeot C, Clarke PB, Lepousé C, Thierry AM, Vidal C. Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 1999; 11:18-30. [PMID: 9987008 DOI: 10.1046/j.1460-9568.1999.00403.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modulatory influence of nicotinic acetylcholine receptor (nAChRs) on thalamocortical transmission was characterized in the prelimbic area (PrL) of the rat prefrontal cortex. In the first experiment, rats received a unilateral excitotoxic lesion centred on the mediodorsal thalamic nucleus (MD), and were sacrificed 1 week later. The lesion resulted in a 40% reduction of 3H-nicotine autoradiographic labelling in the ipsilateral prefrontal cortex, particularly in areas that are innervated by the MD. Electrophysiological experiments were subsequently performed in non-lesioned anaesthetized animals, in order to study modulation of short- and long-latency responses of PrL neurons evoked by electrical stimulation of the MD. The short-latency responses result from activation of the MD-PrL pathway and are mediated via AMPA-type glutamatergic receptors, whereas the long-latency responses reflect activation of the recurrent collaterals of cortical pyramidal neurons, Iontophoretic application of nicotinic agonists (nicotine, DMPP) facilitated both types of response. Local application of the nAChR antagonists dihydro-beta-erythroidine, mecamylamine and methyllycaconitine, prevented both kinds of facilitation. Finally, intracerebral microdialysis experiments were performed in order to test for nicotinic modulation of extracellular glutamate concentrations in the PrL. Direct application of nicotine via the dialysis probe increased glutamate levels in a dose-dependent manner. This effect was blocked by local perfusion of dihydro-beta-erythroidine. These findings therefore provide anatomical and functional evidence for nAChR-mediated modulation of thalamocortical input to the prefrontal cortex. Such a mechanism may be relevant to the cognitive effects of nicotine and nicotinic antagonists.
Collapse
Affiliation(s)
- Y Gioanni
- INSERM U114, Collège de France, Paris, France.
| | | | | | | | | | | |
Collapse
|
311
|
Van Der Werf YD, Weerts JG, Jolles J, Witter MP, Lindeboom J, Scheltens P. Neuropsychological correlates of a right unilateral lacunar thalamic infarction. J Neurol Neurosurg Psychiatry 1999; 66:36-42. [PMID: 9886448 PMCID: PMC1736166 DOI: 10.1136/jnnp.66.1.36] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To report on a patient with a lacunar infarction in the right intralaminar nuclei of the thalamus. The role of the thalamic intralaminar nuclei in cognitive function is as yet insufficiently known. The patient described has shown signs of apathy and loss of initiative, in combination with cognitive deficits, which have persisted essentially unaltered up to the present day since an abrupt onset 17 years ago. METHODS High resolution MRI was performed to show the extent of the lesion; a combination of published and experimental neuropsychological techniques was administered to show the nature of the cognitive defects; Single photon emission computed tomography (SPECT) was employed to obtain a measure of cortical perfusion. RESULTS Brain MRI disclosed an isolated lacunar infarction in the dorsal caudal intralaminar nuclei of the thalamus. Neuropsychological evaluation indicated problems with attention and concentration, executive disturbances, and memory deficits both in the visual and verbal domains. The memory deficits could not be attributed to problems in the early stages of information processing, and are hence regarded as resulting from a failure of retrieval rather than encoding or storage. Brain SPECT disclosed a hypoperfusion of the right frontal cortex. CONCLUSION The data indicate that the cognitive profile is the result of a dysfunction of executive functions. This is corroborated by the finding of decreased blood flow in the right frontal cortex, and by evidence from the neuroanatomical literature. Thus the dysexecutive symptoms are thought to be caused by disconnection of the prefrontal cortex from the brainstem activating nuclei through the strategic localisation of the right thalamic infarction.
Collapse
Affiliation(s)
- Y D Van Der Werf
- Department of Anatomy and Embryology, Graduate School for Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
312
|
Ji RR, Schlaepfer TE, Aizenman CD, Epstein CM, Qiu D, Huang JC, Rupp F. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci U S A 1998; 95:15635-40. [PMID: 9861022 PMCID: PMC28096 DOI: 10.1073/pnas.95.26.15635] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1998] [Indexed: 12/15/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.
Collapse
Affiliation(s)
- R R Ji
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
313
|
Deschênes M, Veinante P, Zhang ZW. The organization of corticothalamic projections: reciprocity versus parity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:286-308. [PMID: 9858751 DOI: 10.1016/s0165-0173(98)00017-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
All neocortical areas receive inputs from and project back to the thalamus. It is often said that the corticothalamic projections are organized in a way that reciprocates the spatial distribution of thalamocortical pathways. The present review examines to what extent this rule of reciprocity is actually supported by the most recent neuroanatomical data, particularly those relating to the central organization of the vibrissal sensory system in the rat. A critical survey of previous studies is made and new results are presented concerning the fine-grained organization of corticothalamic projections in this sensory system. Together, prior results and the present set of new data confirm the existence of both, reciprocal and nonreciprocal patterns of corticothalamic connectivity. This conclusion leads us to propose that the spatial organization of corticothalamic connections complies with a more fundamental rule, the rule of parity, from which reciprocity follows as a general, but not obligatory consequence. The rule of parity states that the distribution of corticothalamic projections across and within the thalamic nuclei is determined by the branching patterns of the different classes of prethalamic afferents. The anatomical, developmental and physiological consequences of this rule are discussed. The rule of parity suggests that, according to the behavioral context, both prethalamic and corticothalamic pathways may function in a feedback mode.
Collapse
Affiliation(s)
- M Deschênes
- Centre de Recherche Université Laval-Robert Giffard, Hôpital Robert Giffard, 2601 de la Canardière, Beauport, Québec, Canada.
| | | | | |
Collapse
|
314
|
Lebrand C, Cases O, Wehrlé R, Blakely RD, Edwards RH, Gaspar P. Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981130)401:4<506::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cecile Lebrand
- INSERM U106, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France
| | - Olivier Cases
- INSERM U106, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France
| | - Rosine Wehrlé
- INSERM U106, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France
| | - Randy D. Blakely
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232–6600
| | - Robert H. Edwards
- Department of Neurology, Physiology Graduate Programs in Neuroscience and Cell Biology, UCSF School of Medicine, San Francisco, California 94143–0435
| | - Patricia Gaspar
- INSERM U106, Hôpital de la Salpêtrière, 75651 Paris Cedex 13, France
| |
Collapse
|
315
|
Massanés-Rotger E, Aldavert-Vera L, Segura-Torres P, Martí-Nicolovius M, Morgado-Bernal I. Involvement of the parafascicular nucleus in the facilitative effect of intracranial self-stimulation on active avoidance in rats. Brain Res 1998; 808:220-31. [PMID: 9767168 DOI: 10.1016/s0006-8993(98)00845-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To evaluate whether parafascicular nucleus (PF) is involved in the facilitative effect of lateral hypothalamic intracranial self-stimulation (LH-ICSS) on two-way active avoidance acquisition (5 sessions, 10 trials each, one daily) and long-term retention (10 days), rats were lesioned bilaterally at the PF and implanted with an electrode aimed at the LH to obtain ICSS behavior. After each acquisition session rats were allowed to self-administer 2500 trains of LH-ICSS. The main results were: (1) LH-ICSS facilitated the acquisition and retention of conditioning; (2) PF lesions impaired both acquisition and retention of two-way active avoidance; (3) there was a positive relationship between PF lesions size and learning disruption, and (4) LH-ICSS failed to facilitate learning when PF was lesioned. We concluded that the lesion size is a critical variable to evaluate the effects of PF lesions on learning and memory, and that LH-ICSS treatment may exert their effects through the PF nucleus or, at least, the integrity of PF is required for LH-ICSS to improve clearly the task.
Collapse
Affiliation(s)
- E Massanés-Rotger
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
316
|
Bubser M, de Brabander JM, Timmerman W, Feenstra MG, Erdtsieck-Ernste EB, Rinkens A, van Uum JF, Westerink BH. Disinhibition of the mediodorsal thalamus induces fos-like immunoreactivity in both pyramidal and GABA-containing neurons in the medial prefrontal cortex of rats, but does not affect prefrontal extracellular GABA levels. Synapse 1998; 30:156-65. [PMID: 9723785 DOI: 10.1002/(sici)1098-2396(199810)30:2<156::aid-syn5>3.0.co;2-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stimulation of the mediodorsal and midline thalamic nuclei excites cortical neurons and induces c-fos expression in the prefrontal cortex. Data in the literature data suggest that pyramidal neurons are the most likely cellular targets. In order to determine whether cortical interneurons are also impacted by activation of mediodorsal/midline thalamic nuclei, we studied the effects of thalamic stimulation on (1) Fos protein expression in gamma-aminobutyric acid (GABA)-immunoreactive neurons and on (2) extracellular GABA levels in the prefrontal cortex of rats. Perfusion of the GABA-A receptor antagonist bicuculline for 20 minutes through a dialysis probe implanted into the mediodorsal thalamus induced Fos-like immunoreactivity (IR) approximately 1 hour later in the thalamus and in the medial prefrontal cortex of freely moving rats. Immunohistochemical double-labeling for Fos-like IR and GABA-like IR showed that about 8% of Fos-like IR nuclei in the prelimbic and infralimbic areas were located in GABA-like IR neurons. Fos-like IR was detected in three major subsets of GABAergic neurons defined by calbindin, parvalbumin, or vasoactive intestinal peptide (VIP)-like IR. Dual probe dialysis showed that the extracellular levels of GABA in the prefrontal cortex did not change in response to thalamic stimulation. These data indicate that activation of thalamocortical neurons indeed affects the activity of GABAergic neurons as shown by the induction of Fos-like IR but that these metabolic changes are not reflected in changes of extracellular GABA levels that are sampled by microdialysis.
Collapse
Affiliation(s)
- M Bubser
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Otake K, Nakamura Y. Single midline thalamic neurons projecting to both the ventral striatum and the prefrontal cortex in the rat. Neuroscience 1998; 86:635-49. [PMID: 9881876 DOI: 10.1016/s0306-4522(98)00062-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The midline thalamic nuclei have been known to send projection fibres to the ventral striatum and the autonomic/limbic-associated areas of the prefrontal cortex. In the present study, we sought to determine whether or not single midline thalamic neurons project both to the ventral striatum and to the cerebral cortical areas. Experiments were performed on chloral hydrate-anaesthetized male Sprague Dawley rats; two fluorescent retrograde tracers were centred on the medial or lateral part of the nucleus accumbens--the major part of the ventral striatum--and the medial or lateral prefrontal viscerolimbic cortex. Our retrograde double-labelling study revealed that a subset of midline thalamic neurons send projection fibres to both the nucleus accumbens and the cerebral cortex. Such neurons projecting to both targets were principally identified in the paraventricular thalamic nucleus. The majority of the dually-labelled neurons in the paraventricular thalamic nucleus projected to the lateral part of the nucleus accumbens and the medial wall of the prefrontal cortex. Dually-labelled neurons were additionally found in other midline nuclei, including the paratenial, intermediodorsal, rhomboid, and reuniens nuclei, as well as in the medial part of the parafascicular thalamic nucleus. Dually-projecting neurons identified in the present study may represent a potential link between the limbic striatum and the viscerolimbic-associated cortex, thus suggesting that non-discriminative information relayed to the prefrontal cortex might exert an influence through the same neurons on the nucleus accumbens implicated in affective behaviour.
Collapse
Affiliation(s)
- K Otake
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
318
|
Ruggiero DA, Anwar S, Kim J, Glickstein SB. Visceral afferent pathways to the thalamus and olfactory tubercle: behavioral implications. Brain Res 1998; 799:159-71. [PMID: 9666113 DOI: 10.1016/s0006-8993(98)00442-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The goal of this study was to support the hypothesis that visceral signals may integrate and influence behavior by way of direct pathways from the nucleus tractus solitarii (NTS) to the olfactory tubercle and the midline/intralaminar thalamus. An anterograde tracer, biotinylated dextran amine (BDA) was iontophoresed bilaterally into the caudal NTS to optimize terminal labeling. NTS-cortical projections traversed both limbs of the diagonal bands providing heavy innervation, and terminated lightly within layer 3 of the olfactory tubercle. NTS-thalamic projections terminated within anterior and, as previously shown, posterior divisions of nucleus paraventricularis thalami and avoided the adjoining mediodorsal thalamic nucleus. Heretofore unrecognized projections were traced to the parafascicular and reuniens thalamic nuclei, and the peripeduncular nucleus. Control experiments identified the nucleus gracilis as the principal source of ascending projections to ventroposterior lateral, posterior and intralaminar thalamic nuclei. Our data corroborate the supposition that olfactory signals may integrate with visceral stimuli in the striatal compartment of olfactory tubercle. NTS projections encompass thalamic nuclei that project topographically to the prefrontal cortex, hippocampus and ventral (limbic) striatum, regions activated by visceral stimulation. Structural data support the idea that compartments of the non-discriminative thalamus may contribute to perception and behavioral responses to visceral stimulation.
Collapse
Affiliation(s)
- D A Ruggiero
- Columbia University College of Physicians and Surgeons, Department of Psychiatry, New York State Psychiatric Institute, Annex Box 28, 722 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
319
|
Abstract
The integration of the whole cerebral cortex and thalamus during forebrain activities that underlie different states of consciousness, requires pathways for the dispersion of thalamic activity across many cortical areas. Past theories have relied on the intralaminar nuclei as the sources of diffuse thalamocortical projections that could facilitate spread of activity across the cortex. A case is made for the presence of a matrix of superficially-projecting cells, not confined to the intralaminar nuclei but extending throughout the whole thalamus. These cells are distinguished by immunoreactivity for the calcium-binding protein, D28K calbindin, are found in all thalamic nuclei of primates and have increased numbers in some nuclei. They project to superficial layers of the cerebral cortex over relatively wide areas, unconstrained by architectonic boundaries. They generally receive subcortical inputs that lack the topographic order and physiological precision of the principal sensory pathways. Superimposed upon the matrix in certain nuclei only, is a core of cells distinguished by immunoreactivity for another calcium-binding protein, parvalbumin, These project in highly ordered fashion to middle layers of the cortex in an area-specific manner. They are innervated by subcortical inputs that are topographically precise and have readily identifiable physiological properties. The parvalbumin cells form the basis for sensory and other inputs that are to be used as a basis for perception. The calbindin cells, especially when recruited by corticothalamic connections, can form a basis for the engagement of multiple cortical areas and thalamic nuclei that is essential for the binding of multiple aspects of sensory experience into a single framework of consciousness.
Collapse
Affiliation(s)
- E G Jones
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| |
Collapse
|
320
|
Usuda I, Tanaka K, Chiba T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res 1998; 797:73-93. [PMID: 9630528 DOI: 10.1016/s0006-8993(98)00359-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleus accumbens (Acb) of the rat has been divided immunohistochemically into shell and core, and further, it was subdivided into several portions in relation to functional significance. In this report, the efferent projection of each subdivision of the Acb was examined using biotinylated dextran amine as an anterograde tracer. In rostral Acb, the dorsomedial shell mainly projected to the dorsomedial ventral pallidum (VP), lateral hypothalamus (LH) and substantia nigra pars compacta (SNc), while the ventromedial shell projected to the ventromedial VP, lateral preoptic area, LH and ventral tegmental area (VTA). The dorsal core of rostral Acb projected to the caudate putamen, dorsolateral VP, globus pallidus (GP), LH, and substantia nigra pars reticulata (SNr). In the middle to caudal Acb, the dorsomedial shell mainly projected to the dorsomedial VP, LH and VTA, the ventromedial shell projected to the ventromedial VP, substantia innominata, VTA, SNc and retrorubral area, and the ventrolateral shell projected to the ventrolateral VP and SNc. Furthermore, the ventromedial shell projected to the parabrachial nucleus (PB). The dorsomedial core projected to the dorsal VP, LH, SNc and SNr, and the ventral and lateral core sent axons to the dorsolateral VP, GP and SNc. From the point of view of projection patterns, shell and core are distinct throughout the rostro-caudal extent of the Acb. The ventrolateral shell at the caudal Acb was clearly differentiated. A direct projection from the ventromedial shell of the Acb to PB was also recognised.
Collapse
Affiliation(s)
- I Usuda
- The Third Department of Anatomy, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260, Japan
| | | | | |
Collapse
|
321
|
Salin P, Kachidian P. Thalamo-striatal deafferentation affects preproenkephalin but not preprotachykinin gene expression in the rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 57:257-65. [PMID: 9675424 DOI: 10.1016/s0169-328x(98)00098-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examined the effects of thalamo-striatal deafferentation on preprotachykinin and preproenkephalin mRNA expression in the rat neostriatum, using quantitative in situ hybridization histochemistry. Unilateral ibotenate-induced intralaminar thalamic lesion produced a significant decrease in preproenkephalin mRNA levels (-27%) restricted to the ipsilateral striatum at 5 days post-lesion. At 12 days post-lesion, significant decreases in striatal preproenkephalin mRNA expression were found on both brain sides. This post-lesional response was more pronounced in the ipsilateral (-32%) than contralateral (-18%) striatum. All these changes were homogeneously distributed between the dorsolateral and ventromedial parts of the striatum. In parallel, no significant change in preprotachykinin mRNA expression was found at either 5 or 12 days after thalamic lesion, when considering the striatum as a whole. However, at 5 days post-lesion, the regional analysis revealed a slight decrease (-17%) in preprotachykinin mRNA expression, confined to the dorsolateral part of the ipsilateral striatum. These results show that thalamic lesion preferentially affects preproenkephalin vs. preprotachykinin gene expression in the striatum, suggesting, at the first site, a predominant influence of thalamo-striatal inputs on the enkephalin-containing striato-pallidal pathway. However, given that the thalamo-striatal projection is strictly ipsilateral, the bilateralization of the down-regulation of preproenkephalin mRNA expression at 12 days post-lesion suggests an involvement of interhemispheric adaptive mechanisms via cortical networks.
Collapse
Affiliation(s)
- P Salin
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, Marseille, France
| | | |
Collapse
|
322
|
Sukov W, Barth DS. Three-dimensional analysis of spontaneous and thalamically evoked gamma oscillations in auditory cortex. J Neurophysiol 1998; 79:2875-84. [PMID: 9636093 DOI: 10.1152/jn.1998.79.6.2875] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate interactions among laminar cell populations producing spontaneous and evoked high-frequency (approximately 40 Hz) gamma oscillations in auditory cortex. Electrocortical oscillations were recorded using a 64-channel epipial electrode array and a 16-channel linear laminar electrode array while electrical stimulation was delivered to the posterior intralaminar (PIL) nucleus. Spontaneous gamma oscillations, and those evoked by PIL stimulation, are confined to a location overlapping primary and secondary auditory cortex. Current source-density and principal components analysis of laminar recordings at this site indicate that the auditory evoked potential (AEP) complex is characterized by a stereotyped asynchronous activation of supra- and infragranular cell populations. Similar analysis of spontaneous and evoked gamma waves reveals a close spatiotemporal similarity to the laminar AEP, indicating rhythmic interactions between supra- and infragranular cell groups during these oscillatory phenomena. We conclude that neural circuit interactions producing the laminar AEP onset in auditory cortex are the same as those generating evoked and spontaneous gamma oscillations.
Collapse
Affiliation(s)
- W Sukov
- Department of Psychology, University of Colorado, Boulder, Colorado 80309-0345, USA
| | | |
Collapse
|
323
|
Vale-Martínez A, Martí-Nicolovius M, Guillazo-Blanch G, Morgado-Bernal I. Differential site-specific effects of parafascicular stimulation on active avoidance in rats. Behav Brain Res 1998; 93:107-18. [PMID: 9659993 DOI: 10.1016/s0166-4328(97)00149-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To study the effects of parafascicular intracranial electrical stimulation (PF ICS) on two-way active avoidance acquisition (five training sessions of ten trials each, one session per day) and long-term retention (one session of ten trials), two experiments were carried out. Experiment I tested if posttraining PF ICS can differentially affect the conditioning, depending on the stimulated region of the nucleus. Results indicated that rats stimulated at the posterior region of the parafascicular nucleus (PF) showed a better acquisition than those stimulated at the central one. Experiment II evaluated the effects of the stimulation at the medial, lateral and posterior parts of the PF area on the same task. Results showed that medial and lateral PF ICS disrupted two-way active avoidance, and that posterior PF ICS enhanced the long-term retention of the conditioning. These results suggest a possible role of the PF in modulatory processes of learning and memory, confirming that this nucleus is functionally heterogeneous. Potential facilitative effects are discussed in terms of the relations of the PF to the arousal system and the subparafascicular thalamic nucleus. Disruptive effects are discussed based on the relations of the PF with the 'motor' and 'associative-limbic' basal ganglia circuits.
Collapse
Affiliation(s)
- A Vale-Martínez
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Spain
| | | | | | | |
Collapse
|
324
|
Carlson CR, Reid KI, Curran SL, Studts J, Okeson JP, Falace D, Nitz A, Bertrand PM. Psychological and physiological parameters of masticatory muscle pain. Pain 1998; 76:297-307. [PMID: 9718248 DOI: 10.1016/s0304-3959(98)00063-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this research was to identify the psychological and physiological variables that differentiate persons reporting masticatory muscle pain (MMP) from normal controls (NC). This study examined the characteristics of 35 MMP patients in comparison to 35 age-, sex-, and weight-matched NCs. All subjects completed a series of standardized questionnaires prior to undergoing a laboratory evaluation consisting of a psychosocial stressor and pressure pain stimulation at multiple body sites. During the evaluation, subjects' emotional and physiological responses (heart rate, blood pressure, respiration, skin temperature, and muscle activity) were monitored. Results indicated that persons with MMP reported greater fatigue, disturbed sleep, depression, anxiety, menstrual symptoms, and less self-deception (P's < 0.05) than matched controls. At rest, MMPs had lower end tidal carbon dioxide levels (P < 0.04) and lower diastolic blood pressures than the NCs (P < 0.02). During laboratory challenge, both groups responded to the standard stressor with significant physiological activity and emotional responding consistent with an acute stress response (P < 0.01), but there were no differences between the MMPs and NCs. Muscle pain patients reported lower pressure pain thresholds than did NCs at the right/left masseter and right temporalis sites (P's < 0.05); there were no differences in pressure pain thresholds between MMPs and NCs for the left temporalis (P < 0.07) and right/left middle finger sites (P's > 0.93). These results are discussed in terms of the psychological and physiological processes that may account for the development of muscle pain in the masticatory system.
Collapse
Affiliation(s)
- Charles R Carlson
- Department of Psychology and Orofacial Pain Center, University of Kentucky, 112 Kastle Hall, University of Kentucky, Lexington, KY 40506-0044, USA Naval Dental School, National Naval Medical Center, Lexington, KY 40506-0044, USA
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Bubser M, Deutch AY. Thalamic paraventricular nucleus neurons collateralize to innervate the prefrontal cortex and nucleus accumbens. Brain Res 1998; 787:304-10. [PMID: 9518661 DOI: 10.1016/s0006-8993(97)01373-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prefrontal cortex and nucleus accumbens are primary recipients of medial thalamic inputs, prominently including projections from the thalamic paraventricular nucleus. It is not known if paraventricular neurons collateralize to innervate both the prefrontal cortex and nucleus accumbens. We used dual retrograde tract tracing methods to examine this question. A small population of paraventricular neurons was found to innervate the prefrontal cortex and medial nucleus accumbens. These data suggest that the thalamic paraventricular nucleus may coordinately influence activity in the prefrontal cortex and ventral striatum.
Collapse
Affiliation(s)
- M Bubser
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | | |
Collapse
|
326
|
Otake K, Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Regional localization of agmatine in the rat brain: an immunocytochemical study. Brain Res 1998; 787:1-14. [PMID: 9518530 DOI: 10.1016/s0006-8993(97)01200-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The distribution of agmatine (decarboxylated arginine) was mapped in the central nervous system (CNS) in the rat. Agmatine-like immunoreactivity was identified by light microscopy, exclusively in the cytoplasm of neuronal perikarya. Immunoreactive neurons were present in the cerebral cortex, predominantly within laminae VI and V and, to a lesser extent, III and mainly in retrosplenial, cingulate, primary somatosensory and auditory cortices, and the subiculum. In the lower brainstem, immunoreactivity was selectively localized to visceral relay nuclei: the nucleus tractus solitarii and pontine parabrachial complex, and periventricular areas including the laterodorsal nucleus, locus coeruleus and dorsal raphe. In the midbrain, immunolabeled cells were concentrated in the ventral tegmental area and periaqueductal gray. In the forebrain, subcortical neurons were labeled predominantly in the preoptic area, amygdala, septum, bed nucleus of the stria terminalis, midline thalamus, and the hypothalamus. Ultrastructural analysis of layer V of the somatosensory cortex demonstrated agmatine-immunoreactivity in neurons, primarily in large dense-core vesicles located in the cytoplasm. Agmatine immunoreactivity was also affiliated with endoplasmic reticulum and the plasmalemma. Cortical neurons and the subiculum were labeled in animals not administered the axonal transport inhibitor, colchicine; thus, may normally contain higher concentrations of the amine than other brain regions. The central distribution of agmatine is consistent with the hypothesis that the amine may be a novel neurotransmitter of neurons involved in behavioral and visceral control.
Collapse
Affiliation(s)
- K Otake
- Division of Neurobiology, Department of Neurology and Neuroscience, Cornell University Medical College, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
327
|
Kuroda M, Yokofujita J, Murakami K. An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol 1998; 54:417-58. [PMID: 9522395 DOI: 10.1016/s0301-0082(97)00070-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synaptic connectivity between the prefrontal cortex (PFC) and the mediodorsal thalamic nucleus (MD) of the rat has been investigated with the electron microscope after labeling both the pre- and postsynaptic elements. Prefrontal corticothalamic fibers end exclusively as small axon terminals with round synaptic vesicles (SR boutons), which make asymmetrical synaptic contacts with distal dendritic segments of MD neurons. Thalamocortical terminals from MD in PFC are also of the SR type and form asymmetrical synaptic contacts predominantly with dendritic spines arising from the apical or basal dendrites of pyramidal cells whose somata reside in layers III, V and VI. At least some pyramidal cells in layer III that receive MD afferents are callosal cells, whereas deep layer pyramidal cells projecting to MD receive directly some of the thalamocortical terminations from MD, suggesting that the recurrent loop to MD is monosynaptically mediated. Thus, taken together with recent evidence that both the PFC-MD and MD-PFC pathways are glutamatergic and excitatory, the cortical excitation exerted by afferent fibers from MD is transferred, not only back to MD itself through deep pyramidal cells, but also the contralateral prefrontal cortex via pyramidal cells in layer III of the ipsilateral prefrontal cortex. Concerning modulatory and inhibitory inputs, fibers to MD from the ventral pallidum and substantia nigra pars reticulata have been shown to be inhibitory and GABAergic. In addition, fibers from the ventral tegmental area preferentially make symmetrical membrane thickenings (i.e. inhibitory synapses) on deep pyramidal cells in PFC that receive synaptic endings from MD. From these morphological grounds, therefore, cells in the ventral pallidum, the substantia nigra pars reticulata and the ventral tegmental area may mediate, to some extent, an inhibitory effect on the reverberatory excitation between PFC and MD.
Collapse
Affiliation(s)
- M Kuroda
- Department of Anatomy, Toho University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
328
|
Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Immunocytochemical localization of an imidazoline receptor protein in the central nervous system. Brain Res 1998; 780:270-93. [PMID: 9507161 DOI: 10.1016/s0006-8993(97)01203-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imidazoline (I) receptors have been implicated in the regulation of arterial blood pressure and behavior although their distribution in the central nervous system (CNS) remains in question. Presumptive I- receptor sites were detected in the rat central nervous system with a polyclonal antibody to an imidazoline receptor protein (IRP) with binding characteristics of the native receptor. IRP-like immunoreactivity (LI) was detected in neurons and glia by light and electron microscopy. Spinal cord: processes were heavily labeled in superficial laminae I and II of the dorsal horn, lateral-cervical and -spinal nuclei and sympathetic cell column. Medulla: label was concentrated in the area postrema, rostral, subpostremal and central subnuclei of nucleus tractus solitarii, spinal trigeminal nucleus caudalis, and inferior olivary subnuclei. Visceromotor neurons in the dorsal vagal and ambigual nuclei were surrounded by high concentrations of immunoreactive processes. In reticular formation, label was light, though predominant in the intermediate reticular zone and ventrolateral medulla. Pons: label was detected in the neuropil of the periventricular gray, concentrated in the dorsal- and external-lateral subnuclei of lateral parabrachial nucleus, and present intracellularly in the mesencephalic trigeminal nucleus. Midbrain: IRP-LI was most heavily concentrated in the interpeduncular nucleus, nuclei interfascicularis and rostral-linearis, the subcommissural organ, central gray, and in glia surrounding the cerebral aqueduct. Diencephalon: high densities were detected in the medial habenular nucleus, nucleus paraventricularis thalami, other midline-intralaminar thalamic nuclei, the supramammillary and mediobasal hypothalamic nuclei. In the median eminence, immunolabeled processes were restricted to the lamina interna and lateral subependymal zone. Telencephalon: IRP-LI was concentrated in the central amygdaloid nucleus, bed nucleus of stria terminalis and globus pallidus, followed by moderate labeling of the medial amygdaloid nucleus, amygdalostriatal zone and caudoputamen, the hilus of the dentate gyrus, and stratum lacunosum-moleculare of field CA1 of Ammon's horn. The subfornical organ and organum vasculosum lamina terminalis were filled with diffuse granular immunoreactivity. Ultrastructural studies identified IRP-LI within glia and neurons including presynaptic processes. I-receptor(s) localize to a highly restricted network of neurons in the CNS and circumventricular regions lying outside of the blood-brain barrier. Putative imidazoline receptors have a unique distribution pattern, show partial overlap with alpha 2 adrenoreceptors and are heavily represented in sensory processing centers and the visceral nervous system.
Collapse
Affiliation(s)
- D A Ruggiero
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
329
|
Villanueva L, Desbois C, le Bars D, Bernard JF. Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A retrograde and anterograde tracer study in the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<133::aid-cne11>3.0.co;2-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
330
|
|
331
|
Smythies J. The functional neuroanatomy of awareness: with a focus on the role of various anatomical systems in the control of intermodal attention. Conscious Cogn 1997; 6:455-81. [PMID: 9479480 DOI: 10.1006/ccog.1997.0315] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review considers a number of recent theories on the neural basis of consciousness, with particular attention to the theories of Bogen, Crick, Llinás, Newman, and Changeux. These theories allot different roles to various key brain areas, in particular the reticular and intralaminar nuclei of the thalamus and the cortex. Crick's hypothesis is that awareness is a function of reverberating corticothalamic loops and that the spotlight of intramodal attention is controlled by the reticular nucleus of the thalamus. He also proposed different mechanisms for attention and intention ("will"). The current review presents a new hypothesis, based on elements from these hypotheses, including intermodal attention and olfaction and pain, which may pose problems for Crick's original theory. This work reviews the possible role in awareness and intermodal attention and intention of the cholinergic system in the basal forebrain and the tegmentum; the reticular, the intralaminar, and the dorsomedial thalamic nuclei; the raphe and locus coeruleus; the reticular formation; the ventral striatum and extended amygdala; insula cortex, and other selected cortical, areas. Both clinical and basic research data are covered. The conclusion is reached that the brain may work by largely nonlinear parallel processing and much intramodal shifts of attention may be effected by intracortical, or multiple corticothalamic mechanisms (small local "flashlights" rather than one major "searchlight"). But this is constrained by the functional anatomy of the circuits concerned and waking "awareness" is modulated by the many "nonspecific" systems (cholinergic from the basal forebrain, noradrenergic from the locus coeruleus, dopaminergic from the substantia nigra and ventral tegmentum, and serotoninergic from the raphe). But the principal agents for intermodal attention shifts, the "searchlight," may be two key nuclei of the cholinergic system in the mesencephalon. Clinical loss of consciousness results from damage to these nuclei but not from damage to the cholinergic nucleus basalis of the basal forebrain.
Collapse
Affiliation(s)
- J Smythies
- Department of Neuropsychiatry, Institute of Neurology, London, England.
| |
Collapse
|
332
|
Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 1997. [PMID: 9334431 DOI: 10.1523/jneurosci.17-21-08596.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To characterize how systemic morphine induces Fos protein in dorsomedial striatum and nucleus accumbens (NAc), we examined the role of receptors in striatum, substantia nigra (SN), and ventral tegmental area (VTA). Morphine injected into medial SN or into VTA of awake rats induced Fos in neurons in ipsilateral dorsomedial striatum and NAc. Morphine injected into lateral SN induced Fos in dorsolateral striatum and globus pallidus. The morphine infusions produced contralateral turning that was most prominent after lateral SN injections. Intranigral injections of [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), a mu opioid receptor agonist, and of bicuculline, a GABAA receptor antagonist, induced Fos in ipsilateral striatum. Fos induction in dorsomedial striatum produced by systemic administration of morphine was blocked by (1) SN and VTA injections of the mu1 opioid antagonist naloxonazine and (2) striatal injections of either MK 801, an NMDA glutamate receptor antagonist, or SCH 23390, a D1 dopamine receptor antagonist. Fos induction in dorsomedial striatum and NAc after systemic administration of morphine seems to be mediated by dopamine neurons in medial SN and VTA that project to medial striatum and NAc, respectively. Systemic morphine is proposed to act on mu opioid receptors located on GABAergic interneurons in medial SN and VTA. Inhibition of these GABA interneurons disinhibits medial SN and VTA dopamine neurons, producing dopamine release in medial striatum and NAc. This activates D1 dopamine receptors and coupled with the coactivation of NMDA receptors possibly from cortical glutamate input induces Fos in striatal and NAc neurons. The modulation of target gene expression by Fos could influence addictive behavioral responses to opiates.
Collapse
|
333
|
Risold PY, Thompson RH, Swanson LW. The structural organization of connections between hypothalamus and cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:197-254. [PMID: 9385455 DOI: 10.1016/s0165-0173(97)00007-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Motivated behavior requires coordinated somatic, autonomic, and endocrine responses, and may be divided into initiation, procurement, and consummatory phases (Swanson, L.W. and Mogenson, G.J., Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptative behavior, Brain Res. Rev., 3 (1981) 1-34). Obviously, such behavior may involve the entire central nervous system, although it is important to identify circuitry or systems that mediate the behavior directed toward specific goal objects. This problem has recently been clarified by the identification of hypothalamic subsystems important for the execution of instinctive behaviors related to ingestion, reproduction, and defense. These subsystems are modulated by sensory (reflex), central control (e.g., circadian), and voluntary (cortical) inputs. The latter are dominated by inputs from the ventral temporal lobe and medial prefrontal region, which are both direct and via associated parts of the basal nuclei (ganglia). Hypothalamic output is characterized by descending projections to brainstem and spinal motor systems, and by projections back to the cerebral cortex, which are both direct and via a continuous rostromedial part of the dorsal thalamus. This thalamic region includes the anterior, medial, and midline groups, which in turn innervate a continuous ring of cortex that includes the hippocampal formation and the cingulate, prefrontal, and insular regions. Parts of this thalamic region also innervate the ventral striatum, which receives a massive input from the cortical rings as well.
Collapse
Affiliation(s)
- P Y Risold
- Program for Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
334
|
Risold PY, Swanson LW. Connections of the rat lateral septal complex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:115-95. [PMID: 9385454 DOI: 10.1016/s0165-0173(97)00009-x] [Citation(s) in RCA: 501] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The organization of lateral septal connections has been re-examined with respect to its newly defined subdivisions, using anterograde (PHAL) and retrograde (fluorogold) axonal tracer methods. The results confirm that progressively more ventral transverse bands in the hippocampus (defined by the orientation of the trisynaptic circuit) innervate progressively more ventral, transversely oriented sheets in the lateral septum. In addition, hippocampal field CA3 projects selectively to the caudal part of the lateral septal nucleus, which occupies topologically lateral regions of the transverse sheets, whereas field CA1 and the subiculum project selectively to the rostral and ventral parts of the lateral septal nucleus, which occupy topologically medial regions of the transverse sheets. Finally, the evidence suggests that progressively more ventral hippocampal bands innervate progressively thicker lateral septal sheets. In contrast, ascending inputs to the lateral septum appear to define at least 20 vertically oriented bands or subdivisions arranged orthogonal to the hippocampal input (Risold, P.Y. and Swanson, L.W., Chemoarchitecture of the rat lateral septal nucleus, Brain Res. Rev., 24 (1997) 91-113). Hypothalamic nuclei forming parts of behavior-specific subsystems share bidirectional connections with specific subdivisions of the lateral septal nucleus (especially the rostral part), suggesting that specific domains in the hippocampus may influence specific hypothalamic behavioral systems. In contrast, the caudal part of the lateral septal nucleus projects to the lateral hypothalamus and to the supramammillary nucleus, which projects back to the hippocampus and receives its major inputs from brainstem cell groups thought to regulate behavioral state. The neural system mediating defensive behavior shows these features rather clearly, and what is known about its organization is discussed in some detail.
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
335
|
Jones MS, Barth DS. Sensory-evoked high-frequency (gamma-band) oscillating potentials in somatosensory cortex of the unanesthetized rat. Brain Res 1997; 768:167-76. [PMID: 9369313 DOI: 10.1016/s0006-8993(97)00639-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A 64-channel epipial electrode array was used to investigate high-frequency (gamma-band) oscillations in somatosensory cortex of the unanesthetized and unrestrained rat. Oscillations were evoked by manual stimulation of the vibrissae and mystacial pad. Stimulation of the contralateral vibrissae resulted in a significant increase in gamma-power during 128-ms epochs taken just following stimulus onset compared to the prestimulus baseline. Stimulation of the ipsilateral vibrissae was completely ineffective in evoking gamma-oscillations in any animals. Sensory evoked gamma-oscillations were constrained to primary (SI) and secondary (SII) somatosensory cortex. When averaged to an arbitrary reference of peak times in one of the channels, these oscillations exhibited a systematic temporal organization, propagating from the rostral portion of SI to the barrel field proper, and finally to SII. These spatiotemporal characteristics were probably produced by intracortical pathways within rodent somatosensory cortex. The rostrocaudal propagation of gamma-oscillations within the barrel field may also reflect whisking patterns observed when the vibrissae are used as a sensory array, suggesting that synchronized gamma-oscillations may play a role in assembling punctate afferent information provided by the vibrissae into a coherent representation of a somatosensory stimulus.
Collapse
Affiliation(s)
- M S Jones
- Department of Psychology, University of Colorado, Boulder 80309-0345, USA
| | | |
Collapse
|
336
|
Hsu MM, Shyu BC. Electrophysiological study of the connection between medial thalamus and anterior cingulate cortex in the rat. Neuroreport 1997; 8:2701-7. [PMID: 9295104 DOI: 10.1097/00001756-199708180-00013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We characterized the neuronal properties of the anterior cingulate cortex (ACC) evoked by electrical stimulation of the medial thalamus (MT). MT stimulation sites were found by their neuronal responses to noxious stimuli. Of 487 units identified histologically in the rat ACC, 94% were activated trans-synaptically at different areas of the ACC. Six percent of MT-evoked ACC units were activated antidromically and all of these units projected to a specific nucleus of MT. We suggest that MT nuclei mediate different aspects of nociceptive information to specific ACC areas, and that nociceptive information in the MT is modulated reciprocally by activities from the ACC.
Collapse
Affiliation(s)
- M M Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
337
|
García-Ojeda E, Alonso JR, Crespo C, Weruaga E, Briñón JG, Arévalo R, Aijón J. Transient expression of NADPH-diaphorase/nitric oxide synthase in the paratenial nucleus of the rat thalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:177-86. [PMID: 9263591 DOI: 10.1016/s0165-3806(97)00062-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution pattern of nitric oxide synthesizing neurons was studied in the paratenial nucleus throughout the rat development using the NADPH-diaphorase (ND) histochemical method and nitric oxide synthase (NOS) immunocytochemistry. The onset of ND/NOS activity in the paratenial nucleus was detected in the postnatal life day 1. Until the postnatal stage 4, a quick increase in the number and staining intensity of the ND/NOS positive neurons was observed. From postnatal day 4 to postnatal day 6, these variations continued slowly, whereas an increase in the neuronal size was evident. In these stages, densely packed ND/NOS-labeled neurons were observed. From stages 6 to 10, the ND/NOS-positive elements demonstrated similar number, size, and staining intensity. These cells had medium size, variable morphology and showed reaction product in the cell bodies and, at most, their proximal dendrites. After postnatal day 10, a quick decrease in the staining intensity and in the number of ND/NOS-labeled elements was detected, although no changes were observed in their morphological characteristics. Postnatal day 15 was the last developmental stage studied in which ND/NOS-positive elements were observed. Finally, the paratenial nucleus did not present ND/NOS-positive elements in adult animals. This transient expression of the ND/NOS-activity suggests a role of nitric oxide in the reorganization of the paratenial nucleus during the first postnatal fortnight.
Collapse
Affiliation(s)
- E García-Ojeda
- Departamento de Biología Celular y Patologia, Universidad de Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
Thalamocortical synapses inform the cerebral neocortex about the external and internal worlds. The thalamus produces myriad thalamocortical pathways that vary in morphological, physiological, pharmacological and functional properties. All these features are of great importance for understanding how information is acquired, integrated, processed, stored and retrieved by the thalamocortical system. This paper reviews the properties of the afferents from thalamus to cortex, and identifies some of the gaps in our knowledge of thalamocortical pathways.
Collapse
|
339
|
Abstract
Current hypotheses concerning the etiology of schizophrenia often invoke both an abnormal gene(s) and an environmental disturbance as necessary components to the vulnerability for this disorder. According to one model of schizophrenia presented here, the putative environmental factor may consist of stress and require both pre- and post-natal exposure for a "mis-wiring" of dopaminergic inputs to GABAergic neurons of the cortex to occur. Since the cortical dopamine system continues to mature until the start of the early adult period, the normal ingrowth of dopamine fibers during late adolescence and their formation of aberrant connections with abnormal intrinsic corticolimbic circuits could "trigger" the onset of symptoms in those who carry the constitutional vulnerability for schizophrenia.
Collapse
Affiliation(s)
- F M Benes
- Laboratory for Structural Neuroscience, McLean Hospital, Belmont, MA 02178, U.S.A
| |
Collapse
|
340
|
Bubser M, Feenstra MG, Erdtsieck-Ernste EB, Botterblom MH, Van Uum HF, Pool CW. Modulatory role of catecholamines in the transsynaptic expression of c-fos in the rat medial prefrontal cortex induced by disinhibition of the mediodorsal thalamus: a study employing microdialysis and immunohistochemistry. Brain Res 1997; 749:214-25. [PMID: 9138721 DOI: 10.1016/s0006-8993(96)01170-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the interaction of catecholaminergic and thalamic afferents of the medial prefrontal cortex (PFC) by analyzing the effects of catecholamine depletion on thalamus-induced c-fos expression in the PFC of freely moving rats. Thalamic projections to the PFC were pharmacologically activated by perfusing the GABA-A receptor antagonist bicuculline (0.03 mM or 0.1 mM) through a dialysis probe implanted into the mediodorsal thalamic nucleus. Bicuculline perfusion induced Fos-like immunoreactivity in the thalamic projection areas, including the PFC, and in the thalamic nuclei surrounding the dialysis probe. 6-Hydroxydopamine lesions of the ventral tegmental area causing a 70-80% depletion of catecholamines in the PFC did not influence the increase in the number of Fos-like immunoreactive nuclei in the prefrontal cortex in response to thalamic stimulation. However, densitometric image analysis revealed that the intensity of Fos-like immunoreactivity in the PFC of lesioned rats perfused with 0.1 mM bicuculline was higher than in correspondingly treated controls. The behavioral activity to bicuculline perfusion, an increase of non-ambulatory activity (0.03 mM) followed by locomotion and rearing (0.1 mM), was not changed in 6-hydroxydopamine-lesioned rats. It is suggested that the thalamically induced c-fos response is directly mediated by excitatory, presumably glutamatergic, transmission and not indirectly by an activation of catecholaminergic afferents of the PFC. The increase in the intensity of Fos-like immunostaining in strongly stimulated, catecholamine-depleted rats suggests that catecholamines modulate the degree to which thalamic activity can activate the PFC of awake animals.
Collapse
Affiliation(s)
- M Bubser
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | | | | | | | |
Collapse
|
341
|
Bon K, Lantéri-Minet M, de Pommery J, Michiels JF, Menétrey D. Cyclophosphamide cystitis as a model of visceral pain in rats: minor effects at mesodiencephalic levels as revealed by the expression of c-fos, with a note on Krox-24. Exp Brain Res 1997; 113:249-64. [PMID: 9063711 DOI: 10.1007/bf02450323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The evoked expression of the immediate-early gene-encoded proteins c-Fos and Krox-24 was used to study activation of mesodiencephalic structures as a function of the development of cyclophosphamide (CP) cystitis in behaving rats. This article is the third of a series and completes previously published data obtained at both spinal and hindbrain levels. CP-injected animals received a single dose of 100 mg/kg i.p. under transient volatile anesthesia and survived for 1-4 h in order to cover the entire postinjection period during which the disease develops. Survival times longer than 4 h were not used owing to ethical considerations. Results from CP-injected groups are compared with those from either noninjected controls or saline-injected animals having survived for the same times as CP-injected ones. Quantitative results come from c-fos expression. At mesodiencephalic levels a high and widespread basal c-fos expression was observed in control animals; maximum staining was observed at the midthalamic level. Four groups of nuclei were identified with regard to the density of staining. The first group included nuclei showing clustered, intensely labeled cells; these areas were restricted in extent and related to the maintenance of circadian rythms (intergeniculate leaf, suprachiasmatic nucleus, dorsal parts of either paraventricular thalamic nuclei or central gray), sleep-arousal cycle (supramamillary nucleus), or changes in arterial pressure (laterodorsal tegmental nucleus). The second group included nuclei showing scattered, moderately labeled cells; these areas were widespread at all rostrocaudal levels and related to either autonomic/neuroendocrine regulations (central gray, lateral habenula, hypothalamus) or motor behavior, orienting reflex and oculomotor coordination (unspecific subdivisions of both colliculi and their adjoining mesencephalic regions, zona incerta dorsal). The third group included nuclei with evenly distributed, faintly labeled cells; these areas, which, with few exceptions, covered almost the entire diencephalon, mainly concerned nuclei of multisensory convergence having functions in either discriminative tasks (laterodorsal and lateroposterior thalamic nuclei) or emotional responses (intralaminar and midline thalamic nuclei). The fourth group included nuclei free of labeling; these were areas that received the bulk of unimodal sensory/motor inputs (central inferior colliculus, pretectal optic nuclei, ventral medial geniculate nucleus, ventral anterior pretectal nucleus, dorsal lateral geniculate nucleus, ventrobasal complex; zona incerta ventral, parafascicular thalamic nucleus) and are thus the most discriminative regarding specific modalities. Variations in staining were of the same magnitude in both saline- and CP-injected animals. A sequential study spanning every postinjection hour revealed maximum staining at 1 h postinjection, which was followed by a progressive, time-related decrease. Increases in the number of labeled cells 1 h postinjection were significant in only a restricted number of nuclei showing low basal expression (Edinger-Westphal nucleus and paraventricular, supraoptic, and lateral hypothalamic nuclei); time-related reductions in staining that were correlated to sleep or quiescence behaviors finally resulted in staining equal to or below that seen in control animals. No structures showed significantly increased staining in relation to the full development of cystitis, i.e., with the increase of visceronociceptive inputs. Comparing the present results with those previously obtained at more caudal levels, it appears that subtelencephalic levels primarily driven by visceronociceptive inputs, i.e., those that increase and/or maintain their activity in parallel with the degree of nociception, are confined to brainstem-spinal cord junction levels and only comprise certain subdivisions of the nucleus of the solitary tract (nucleus medialis, nucleus commissuralis, and ventralmost part of area po
Collapse
Affiliation(s)
- K Bon
- Institut National de la Santé et de la Recherche Médicale Unité 161, Paris, France
| | | | | | | | | |
Collapse
|
342
|
Abstract
This study examines the projection of the reticular thalamic nucleus to the classic "nonspecific" dorsal thalamic nuclei of rats. Individual nuclei of the intralaminar (central-lateral, paracentral, central-medial, parafascicular) and the midline (reuniens/rhomboid, parataenial) nuclear groups, together with the reticular nucleus itself, were injected with the neuronal tracers biotinylated dextran or fluorescent latex microspheres (red or green). Reticular cells projecting to the intralaminar and midline nuclei are limited largely to the rostral pole of the nucleus. Within the rostral pole, most reticular cells projecting to the intralaminar and midline nuclear groups are found in largely distinct sectors; cells that project to the intralaminar nuclei tend to lie more laterally, whereas those projecting to the midline nuclei lie more medially within the pole. Among the individual nuclei of both the intralaminar and midline nuclear groups, however, the segregation is far less distinct. For instance, the reticular cells that project to the intralaminar central-lateral, central-medial, paracentral, and parafascicular nuclei are intermixed completely on the lateral edge of the rostral pole. After separate injections of different colored latex microspheres into individual intralaminar nuclei, the incidence of double-labelled reticular cells is about 37%, a percentage much higher than among the "specific" dorsal thalamic nuclei (< 1%). All the above-mentioned results refer to the reticular labelling seen on the side ipsilateral to the injection. After separate injections into the intralaminar central-medial nucleus, the midline nuclei, and the reticular nucleus itself, we also see a very small group of reticular cells labelled on the contralateral side. In general, our results indicate that the reticular projection to the intralaminar and midline nuclei is far more diffuse than the reticular projection to the specific dorsal thalamic nuclei.
Collapse
Affiliation(s)
- C I Kolmac
- Department of Anatomy and Histology, University of Sydney, Australia
| | | |
Collapse
|
343
|
Abstract
We briefly review the anatomy and functional properties of the intralaminar nuclei (ILN) of the thalamus and the neurological disorders associated with their dysfunction. The ILN project over a wide range of cortical territories and are connected to several subcortical structures that place the ILN within the distributed networks underlying arousal, attention, working memory, and gaze control. The temporal structure of the spike discharges of ILN neurons can be controlled by levels of arousal and visuomotor behavior. Taken together, the anatomy, cellular physiology, and clinical data suggest that in the state of wakefulness, the ILN neurons promote the formation of an “event-holding” function in the cortex. In the prefrontal cortex, this function facilitates the storage of target location in working memory. In the frontal eye fields, the function produces sustained activation that anticipates the onset of intended eye movements. In the posterior parietal cortex, the sustained activation can be boosted at the start of the intersaccadic interval and can operate as an attentional gate regulating the flow of information back to the prefrontal cortex. The attentional gate is of limited capacity, as is working memory, and is best utilized during the intersaccadic interval. The ILN may help to synchronize the eye movement commands of the frontal eye fields with the episodic dynamics of the attentional gate and working memory.
Collapse
Affiliation(s)
- Keith P. Purpura
- Department of Neurology and Neuroscience, Cornell University Medical College, New York Hospital-Cornell Medical Center, New York, New York
| | - Nicholas D. Schiff
- Department of Neurology and Neuroscience, Cornell University Medical College, New York Hospital-Cornell Medical Center, New York, New York
| |
Collapse
|
344
|
Groenewegen HJ, Wright CI, Uylings HB. The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. J Psychopharmacol 1997; 11:99-106. [PMID: 9208373 DOI: 10.1177/026988119701100202] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper briefly discusses the anatomical criteria that have been used to delineate the prefrontal cortex (PFC) from the (pre)motor cortical areas in the frontal lobe. Single anatomical criteria, such as cytoarchitecture, connectivity with the mediodorsal thalamic nucleus or a dopaminergic innervation, are insufficient to unequivocally define the PFC. It is argued that, with respect to a number of structural aspects, the prefrontal and the (pre)motor cortical areas must be viewed as a continuum, whereas a (functional) differentiation is based on the type of information that is being processed in different parts of the frontal lobe. The involvement of the PFC, like the premotor cortex, in a number of basal ganglia-thalamocortical circuits may be interpreted in the same way. The paper also summarizes the organization of the inputs from midline/intralaminar thalamic nuclei, the basal amygdaloid complex and the hippocampus into the PFC-ventral striatal system. The results of tracing studies in rats indicate that these thalamic and limbic inputs both at the level of the PFC and the ventral striatum show various patterns of convergence and segregation. This leads to the conclusion that the PFC-ventral striatal system consists of a number of smaller modules.
Collapse
Affiliation(s)
- H J Groenewegen
- Department of Anatomy and Embryology, Vrije Universiteit Amsterdam, The Netherlands.
| | | | | |
Collapse
|
345
|
Abstract
There is increasing speculation that individual neurones in the cerebellar nuclei are involved in the control of complex multi-joint movements rather than simple movements about a single-joint. These neurones project predominantly to the primary motor cortex after relaying in the motor thalamus. Given a) that localised regions of the motor cortex control individual muscles which generally act about single joints and b) the relatively tight topographical arrangement of thalamocortical connections, it is reasonable to hypothesise that if cerebellar output neurones control single-joint movements they are likely to project to localised areas of the motor thalamus, whereas if they project to more widespread regions they are likely to influence movements involving multiple joints. In this context, we have examined the ramifications and terminations of single anterogradely labelled axons in the cerebellothalamic pathway of the rat. A total of nine axons were traced (by using a 100 x oil objective) through serial sections from the caudal end of the thalamus to their terminations in the motor thalamus. Each of these axons gave off one or more collaterals which terminated in the intralaminar or other associated groups of thalamic nuclei, implying simultaneous activation of two functionally separate cerebellothalamic pathways. In the relay nucleus or motor thalamus, four axons formed either a single focal group of terminals or multiple groupings of terminals within a localised region, and five terminated over widespread regions including one which terminated bilaterally. These results show that a large proportion of cerebellar output neurones may be in a position to influence multi-joint or even bimanual movements.
Collapse
Affiliation(s)
- T D Aumann
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
346
|
Wright CI, Groenewegen HJ. Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience 1996; 73:359-73. [PMID: 8783254 DOI: 10.1016/0306-4522(95)00592-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regions of the prefrontal cortex that project to the nucleus accumbens in the rat receive input from midline thalamic and basal amygdaloid nuclei which also project to the same striatal region as their prefrontal cortical target. For example, the prelimbic cortex projects to the medial nucleus accumbens, and receives input from the paraventricular thalamic nucleus and the parvicellular basal amygdala. These latter two areas also project to the medial nucleus accumbens. It has been shown that afferents from the prelimbic cortex, the paraventricular thalamic nucleus and the parvicellular basal amygdala to the nucleus accumbens overlap or are separated in the nucleus accumbens, depending upon their position in the shell and core. The dorsal agranular insular cortex, the intermediodorsal thalamic nucleus and the magnocellular basal amygdaloid nucleus terminate in the lateral part of the nucleus accumbens and adjacent ventral part of the caudate-putamen. The intermediodorsal thalamic nucleus and the magnocellular basal amygdaloid nucleus reach both the dorsal agranular insular cortex and the lateral nucleus accumbens, and thus appear positioned to influence the prefrontal corticostriatal system at cortical and striatal levels. However, all three afferent systems have a heterogeneous distribution within this striatal region, and whether these projections actually reach the same areas is unknown. We investigated the patterns of separation and overlap in the nucleus accumbens between dorsal agranular insular cortical, magnocellular basal amygdaloid and intermediodorsal thalamic afferents with respect to the histochemical features of the nucleus. Techniques allowing the detection of two different anterograde tracers, or a single anterograde tracer and Calbindin-D28k immunoreactivity, in the same tissue sections were used. The results demonstrate that the afferents from the dorsal agranular insular area and the intermediodorsal thalamic nucleus avoid the shell of the lateral nucleus accumbens, which receives strong inputs from the magnocellular basal amygdala. In the matrix of the core and the ventral part of the caudate-putamen, fibers from the superficial layers of the dorsal agranular insular area overlap precisely with afferents from the intermediodorsal nucleus. In the patches, projections from the deep layers of the dorsal agranular insular cortex coincide with those from the magnocellular basal amygdala. The present findings have implications for the compartmental structure of the nucleus accumbens and provide novel insights into the organizational principles of prefrontal corticostriatal circuits.
Collapse
Affiliation(s)
- C I Wright
- Graduate School Neurosciences Amsterdam, Department of Anatomy and Embryology, Vrije Universiteit, The Netherlands
| | | |
Collapse
|
347
|
Deschenes M, Bourassa J, Parent A. Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience 1996; 72:679-87. [PMID: 9157314 DOI: 10.1016/0306-4522(96)00001-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Striatal and cortical projections arising from the central lateral thalamic nucleus were studied in rats by tracing the axons of small pools of neurons labeled anterogradely with biocytin. Cells of the central lateral nucleus have a morphology that conforms to the classic descriptions of the bushy cells which represent the main neuronal type of most thalamic nuclei. They display many short radiating dendrites studded with sessile spines, protrusions and grapelike appendages. The total extent of their dendritic fields is about 250 mu m. After leaving the nucleus, all central lateral axons course through the rostrolateral pole of the thalamic reticular nucleus, where they branch profusely, enter the striatum, where they distribute collaterals, and arborize in the motor cortex. At striatal level, central lateral fibers form a loosely organized network composed of varicose axonal branches that appear to contact en passant several striatal neurons. In the cortex. central lateral axons from multiple (four to five patches of terminations in layers Va and III aligned along the rostrocaudal extent of the motor area. The projection to layers I and II is very sparse, consisting of occasional branches which show few ramifications. Our results indicate that most, and perhaps all, central lateral relay neurons project to both the striatum and cerebral cortex. The patchy innervation of mid cortical layers of the frontal motor areas by central lateral afferents strongly argues against the nonspecific character of this projection. It is proposed that the central lateral nucleus, which receives a strong innervation from brainstem cholinergic afferents, takes part in a mechanism of attention related to the central initiation of directed patterns of movements.
Collapse
Affiliation(s)
- M Deschenes
- Centre de Recherche en Neurobiologie, Hospital de l'Enfant-Jesus, Universite Laval, Quebec City, Canada
| | | | | |
Collapse
|
348
|
Macchi G, Bentivoglio M, Minciacchi D, Molinari M. Trends in the anatomical organization and functional significance of the mammalian thalamus. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1996; 17:105-29. [PMID: 8797065 DOI: 10.1007/bf02000842] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The last decade has witnessed major changes in the experimental approach to the study of the thalamus and to the analysis of the anatomical and functional interrelations between thalamic nuclei and cortical areas. The present review focuses on the novel anatomical approaches to thalamo-cortical connections and thalamic functions in the historical framework of the classical studies on the thalamus. In the light of the most recent data it is here discussed that: a) the thalamus can subserve different functions according to functional changes in the cortical and subcortical afferent systems; b) the multifarious thalamic cellular entities play a crucial role in the different functional states.
Collapse
Affiliation(s)
- G Macchi
- Istituto di Neurologia, Università Cattolica, Roma, Italy
| | | | | | | |
Collapse
|
349
|
Lin RC, Nicolelis MA, Zhou HL, Chapin JK. Calbindin-containing non-specific thalamocortical projecting neurons in the rat. Brain Res 1996; 711:50-5. [PMID: 8680874 DOI: 10.1016/0006-8993(95)01381-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunoreactivity for calcium binding proteins was used to demonstrate the neurochemical profiles of non-specific thalamocortical neurons located in the ventromedial nucleus, the centrolateral nucleus, and the nucleus reuniens that project to the somatosensory cortex in the adult rat. Cortical injections of fluorescent tracers combined with immunohistochemistry for calcium binding proteins revealed that retrogradely labeled neurons in these three thalamic nuclei are immunoreactive for calbindin. The present results suggest the presence of a chemically distinct non-specific thalamocortical system which terminates in the neocortex.
Collapse
Affiliation(s)
- R C Lin
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19102-1192, USA
| | | | | | | |
Collapse
|
350
|
Mcdonald AJ, Mascagni F, Guo L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 1996; 71:55-75. [PMID: 8834392 DOI: 10.1016/0306-4522(95)00417-3] [Citation(s) in RCA: 481] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The projections of different subfields of the medial and lateral prefrontal cortices to the amygdala were studied in the rat using the sensitive Phaseolus vulgaris leucoagglutinin anterograde tract tracing technique. Injections into the infralimbic cortex produced anterograde labeling in the lateral capsular subdivision of the central nucleus, superficial (corticomedial) amygdaloid nuclei, lateral and accessory basal nuclei, and the anterior amygdaloid area. Injections into the caudal portion of the infralimbic cortex produced additional labeling in the intermediate subdivision of the central nucleus. The prelimbic cortex had projections to the medial portion of the magnocellular basal nucleus and adjacent portions of the lateral nucleus and lateral capsular subdivision of the central nucleus. The medial precentral cortex had projections to the rostromedial part of the magnocellular basal nucleus and adjacent portions of the lateral capsular subdivision of the central nucleus. Injections into the lateral orbital and ventral agranular insular cortices produced labeled fibers in the rostral part of the superficial amygdala, lateral capsular subdivision of the central nucleus, and the lateral and accessory basal nuclei. The dorsal agranular insular area had projections to several different subdivisions of the central nucleus as well as to the rostrolateral magnocellular basal nucleus; the latter projections were complementary to those originating in the prelimbic area. The present study indicates that each portion of the prefrontal cortex has a distinctive projection to the amygdala. The ventral areas of the lateral and medial prefrontal cortices, which receive olfactory projections, are the only prefrontal cortical areas with projections to the olfactory-related superficial amygdaloid nuclei. The more dorsally situated prefrontal areas, the dorsal agranular insular area and prelimbic cortex, have complementary projections to the basal nucleus, suggesting that they modulate separate prefrontal cortico-striatal-pallid circuits. The specificity of prefrontal cortico-amygdaloid projections is indicative of their involvement in discrete functions.
Collapse
Affiliation(s)
- A J Mcdonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia 29208, USA
| | | | | |
Collapse
|