301
|
Guerrouahen BS, Pasquier J, Kaoud NA, Maleki M, Beauchamp MC, Yasmeen A, Ghiabi P, Lis R, Vidal F, Saleh A, Gotlieb WH, Rafii S, Rafii A. Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther 2014; 13:3123-36. [PMID: 25319392 DOI: 10.1158/1535-7163.mct-13-1053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the second leading cause of cancer-related death in women worldwide. Despite optimal cytoreduction and adequate adjuvant therapies, initial tumor response is often followed by relapse suggesting the existence of a tumor niche. Targeted therapies have been evaluated in ovarian cancer to overcome resistant disease. Among them, antiangiogenic therapies inhibit new blood vessel growth, induce endothelial cell apoptosis, and block the incorporation of hematopoietic and endothelial progenitor cells into new blood vessels. Despite in vitro and in vivo successes, antivascular therapy with bevacizumab targeting VEGF-A has limited efficacy in ovarian cancer. The precise molecular mechanisms underlying clinical resistance to anti-VEGF therapies are not yet well understood. Among them, tumor and stromal heterogeneity might determine the treatment outcomes. The present study investigates whether abnormalities in the tumor endothelium may contribute to treatment resistance to bevacizumab and promote a residual microscopic disease. Here, we showed that ovarian cancer cells activate Akt phosphorylation in endothelial cells inducing resistance to bevacizumab leading to an autocrine loop based on FGF2 secretion. Altogether, our results point out the role of an activated endothelium in the resistance to bevacizumab and in the constitution of a niche for a residual disease.
Collapse
Affiliation(s)
- Bella S Guerrouahen
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Nadine Abu Kaoud
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mahtab Maleki
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Marie-Claude Beauchamp
- Department of Gynecologic Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Amber Yasmeen
- Department of Gynecologic Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pegah Ghiabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Raphael Lis
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ahmed Saleh
- National Center for Cancer Care and Research, Doha, Qatar
| | - Walter H Gotlieb
- Department of Gynecologic Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. Department of Genetic Medicine, Weill Cornell Medical College, New York, New York. Department of Gynecologic oncology, University Montpellier, Montpellier, France.
| |
Collapse
|
302
|
Debruin EJ, Hughes MR, Sina C, Liu A, Cait J, Jian Z, Lopez M, Lo B, Abraham T, McNagny KM. Podocalyxin regulates murine lung vascular permeability by altering endothelial cell adhesion. PLoS One 2014; 9:e108881. [PMID: 25303643 PMCID: PMC4193771 DOI: 10.1371/journal.pone.0108881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (Podxl(ΔEC) mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although Podxl(ΔEC) adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. Podxl(ΔEC) endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, Podxl(ΔEC) endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture.
Collapse
Affiliation(s)
- Erin J. Debruin
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Christina Sina
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Alex Liu
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhiqi Jian
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Lopez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bernard Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Abraham
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, Vancouver, BC, Canada
- Penn State College of Medicine, Penn State University, Hershey, Pennsylvania, United States of America
| | - Kelly M. McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
303
|
El Agha E, Bellusci S. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. SCIENTIFICA 2014; 2014:538379. [PMID: 25298902 PMCID: PMC4178922 DOI: 10.1155/2014/538379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
- Developmental Biology and Regenerative Program of the Saban Research Institute at Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
304
|
Takebe T, Kobayashi S, Suzuki H, Mizuno M, Chang YM, Yoshizawa E, Kimura M, Hori A, Asano J, Maegawa J, Taniguchi H. Transient vascularization of transplanted human adult-derived progenitors promotes self-organizing cartilage. J Clin Invest 2014; 124:4325-34. [PMID: 25202983 DOI: 10.1172/jci76443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/07/2014] [Indexed: 01/13/2023] Open
Abstract
Millions of patients worldwide are affected by craniofacial deformations caused by congenital defects or trauma. Current surgical interventions have limited therapeutic outcomes; therefore, methods that would allow cartilage restoration are of great interest. A number of studies on embryonic limb development have shown that chondrogenesis is initiated by cellular condensation, during which mesenchymal progenitors aggregate and form 3D structures. Here, we demonstrated efficient regeneration of avascular elastic cartilage from in vitro-grown mesenchymal condensation, which recapitulated the early stages of chondrogenesis, including transient vascularization. After transplantation of vascularized condensed progenitors into immunodeficient mice, we used an intravital imaging approach to follow cartilage maturation. We determined that endothelial cells are present inside rudimentary cartilage (mesenchymal condensation) prior to cartilage maturation. Recreation of endothelial interactions in culture enabled a recently identified population of adult elastic cartilage progenitors to generate mesenchymal condensation in a self-driven manner, without requiring the support of exogenous inductive factors or scaffold materials. Moreover, the culture-grown 3D condensed adult-derived progenitors were amenable to storage via simple freezing methods and efficiently reconstructed 3D elastic cartilage upon transplantation. Together, our results indicate that transplantation of endothelialized and condensed progenitors represents a promising approach to realizing a regenerative medicine treatment for craniofacial deformations.
Collapse
|
305
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
306
|
Ohkubo H, Ito Y, Minamino T, Eshima K, Kojo K, Okizaki SI, Hirata M, Shibuya M, Watanabe M, Majima M. VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS One 2014; 9:e105533. [PMID: 25162491 PMCID: PMC4146544 DOI: 10.1371/journal.pone.0105533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/22/2014] [Indexed: 01/19/2023] Open
Abstract
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.
Collapse
Affiliation(s)
- Hirotoki Ohkubo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tsutomu Minamino
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shin-ichiro Okizaki
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuhiro Hirata
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
307
|
Hogan BLM, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CCW, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014; 15:123-38. [PMID: 25105578 PMCID: PMC4212493 DOI: 10.1016/j.stem.2014.07.012] [Citation(s) in RCA: 652] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory disease is the third leading cause of death in the industrialized world. Consequently, the trachea, lungs, and cardiopulmonary vasculature have been the focus of extensive investigations. Recent studies have provided new information about the mechanisms driving lung development and differentiation. However, there is still much to learn about the ability of the adult respiratory system to undergo repair and to replace cells lost in response to injury and disease. This Review highlights the multiple stem/progenitor populations in different regions of the adult lung, the plasticity of their behavior in injury models, and molecular pathways that support homeostasis and repair.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke Medicine, Durham, NC 27705, USA
| | - Harold A Chapman
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Calle
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Andrew Le
- Department of Cell Biology, Duke Medicine, Durham, NC 27705, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason Rock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melinda Snitow
- Perleman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Krummel
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Barry R Stripp
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Thiennu Vu
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric S White
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey A Whitsett
- Section of Neonatology, Perinatal and Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward E Morrisey
- Departments of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
308
|
Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 2014; 20:822-32. [PMID: 25100528 PMCID: PMC4229034 DOI: 10.1038/nm.3642] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that the respiratory system has an extensive ability to respond to injury and regenerate lost or damaged cells. The unperturbed adult lung is remarkably quiescent, but after insult or injury progenitor populations can be activated or remaining cells can re-enter the cell cycle. Techniques including cell-lineage tracing and transcriptome analysis have provided novel and exciting insights into how the lungs and trachea regenerate in response to injury and have allowed the identification of pathways important in lung development and regeneration. These studies are now informing approaches for modulating the pathways that may promote endogenous regeneration as well as the generation of exogenous lung cell lineages from pluripotent stem cells. The emerging advances, highlighted in this Review, are providing new techniques and assays for basic mechanistic studies as well as generating new model systems for human disease and strategies for cell replacement.
Collapse
Affiliation(s)
- Darrell N Kotton
- 1] Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA. [2] Pulmonary Center, Boston University, Boston, Massachusetts, USA. [3] Department of Medicine, Boston University, Boston, Massachusetts, USA
| | - Edward E Morrisey
- 1] Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [2] Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [3] Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA. [4] Institute for Regenerative Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| |
Collapse
|
309
|
Géraud C, Koch PS, Goerdt S. Vaskuläre Nischen: Endothelzellen als multifunktionale gewebe- und standortspezifische Teamplayer im gesunden und erkrankten Organismus. J Dtsch Dermatol Ges 2014. [DOI: 10.1111/ddg.12402_suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cyrill Géraud
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University; Mannheim Germany
| | - Philipp-S. Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University; Mannheim Germany
| |
Collapse
|
310
|
Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 2014; 511:312-8. [PMID: 25030167 PMCID: PMC4159670 DOI: 10.1038/nature13547] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/03/2014] [Indexed: 12/19/2022]
Abstract
Generating engraftable human hematopoietic cells from autologous tissues promises new therapies for blood diseases. Directed differentiation of pluripotent stem cells yields hematopoietic cells that poorly engraft. Here, we devised a method to phenocopy the vascular-niche microenvironment of hemogenic cells, thereby enabling reprogramming of human endothelial cells (ECs) into engraftable hematopoietic cells without transition through a pluripotent intermediate. Highly purified non-hemogenic human umbilical vein-ECs (HUVECs) or adult dermal microvascular ECs (hDMECs) were transduced with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of hematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPP). These reprogrammed ECs- into human-MPPs (rEC-hMPPs) acquire colony-forming cell (CFC) potential and durably engraft in immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (NK, B) progeny. Conditional expression of FGRS transgenes, combined with vascular-induction, activates endogenous FGRS genes endowing rEC-hMPPs with a transcriptional and functional profile similar to self-renewing MPPs. Our approach underscores the role of inductive cues from vascular-niche in orchestrating and sustaining hematopoietic specification and may prove useful for engineering autologous hematopoietic grafts to treat inherited and acquired blood disorders.
Collapse
|
311
|
Mondrinos MJ, Jones PL, Finck CM, Lelkes PI. Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A 2014; 20:2892-907. [PMID: 24825442 DOI: 10.1089/ten.tea.2014.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induction of morphogenesis by competent lung progenitor cells in a 3D environment is a central goal of pulmonary tissue engineering, yet little is known about the microenvironmental signals required to induce de novo assembly of alveolar-like tissue in vitro. In extending our previous reports of alveolar-like tissue formation by fetal pulmonary cells stimulated by exogenous fibroblast growth factors (FGFs), we identified some of the key endogenous mediators of FGF-driven morphogenesis (organoid assembly), for example, epithelial sacculation, endothelial network assembly, and epithelial-endothelial interfacing. Sequestration of endogenously secreted vascular endothelial growth factor-A (VEGF-A) potently inhibited endothelial network formation, with little or no effect on epithelial morphogenesis. Inhibition of endogenous sonic hedgehog (SHH) partially attenuated FGF-driven endothelial network formation, while the addition of exogenous SHH in the absence of FGFs was able to induce epithelial and endothelial morphogenesis, although with distinct morphological characteristics. Notably, SHH-induced endothelial networks exhibited fewer branch points, reduced sprouting behavior, and a periendothelial extracellular matrix (ECM) virtually devoid of tenascin-C (TN-C). By contrast, focal deposition of endogenous TN-C was observed in the ECM-surrounding endothelial networks of FGF-induced organoids, especially around sprouting tips. In the FGF-induced organoids, TN-C was also observed in the clefts of sacculated epithelium and at the epithelial-endothelial interface. In support of a critical role in the formation of alveolar-like tissue in vitro, TN-C blocking inhibited endothelial network formation and epithelial sacculation. Upon engraftment of in-vitro-generated pulmonary organoids beneath the renal capsule of syngeneic mice, robust neovascularization occurred in 5 days with a large contribution of patent vessels from engrafted organoids, providing proof of principle for exploring intrapulmonary engraftment of prevascularized hydrogel constructs. Expression of proSpC, VEGF-A, and TN-C following 1 week in vivo mirrored the patterns observed in vitro. Taken together, these findings advance our understanding of endogenous growth factor and ECM signals important for de novo formation of pulmonary tissue structures in vitro and demonstrate the potential of an organoid-based approach to lung tissue augmentation.
Collapse
Affiliation(s)
- Mark J Mondrinos
- 1 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
312
|
Affiliation(s)
- Yosif Manavski
- From the Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
313
|
Abstract
Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony-forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For these reasons, adoptive transfer of endothelial progenitor cells is being used in more than 150 ongoing clinical trials of diverse cardiovascular diseases. Attempts to rejuvenate this cell population either ex vivo or in situ are emerging. The progress in this field is paramount to regenerate the injured kidney.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, Department of Pharmacology, and Department of Physiology, Renal Research Institute, New York Medical College, Valhalla, NY.
| |
Collapse
|
314
|
Lund DK, Mouly V, Cornelison DDW. MMP-14 is necessary but not sufficient for invasion of three-dimensional collagen by human muscle satellite cells. Am J Physiol Cell Physiol 2014; 307:C140-9. [PMID: 24898588 DOI: 10.1152/ajpcell.00032.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The twenty-five known matrix metalloproteases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteases (TIMPs), mediate cell invasion through the extracellular matrix (ECM). In a comparative three-dimensional assay, we analyzed human and mouse satellite cells' competence to invade an artificial ECM (collagen I). We identified a single MMP that 1) is expressed by human muscle satellite cells; 2) is induced at the mRNA/protein level by adhesion to collagen I; and 3) is necessary for invasion into a collagen I matrix. Interestingly, murine satellite cells neither express this MMP, nor invade the collagen matrix. However, exogenous human MMP-14 is not sufficient to induce invasion of a collagen matrix by murine cells, emphasizing species differences.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biology and Bond Life Sciences Center, University of Missouri, Columbia, Missouri; and
| | - Vincent Mouly
- Institut de Myologie, Université Pierre et Marie Curie, Paris, France
| | - D D W Cornelison
- Division of Biology and Bond Life Sciences Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
315
|
Watanabe-Takano H, Takano K, Sakamoto A, Matsumoto K, Tokuhisa T, Endo T, Hatano M. DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation. Proc Natl Acad Sci U S A 2014; 111:E2291-300. [PMID: 24843139 PMCID: PMC4050578 DOI: 10.1073/pnas.1321574111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alveolar formation is coupled to the spatiotemporally regulated differentiation of alveolar myofibroblasts (AMYFs), which contribute to the morphological changes of interalveolar walls. Although the Ras-ERK signaling pathway is one of the key regulators for alveolar formation in developing lungs, the intrinsic molecular and cellular mechanisms underlying its role remain largely unknown. By analyzing the Ras-ERK signaling pathway during postnatal development of lungs, we have identified a critical role of DA-Raf1 (DA-Raf)-a dominant-negative antagonist for the Ras-ERK signaling pathway-in alveolar formation. DA-Raf-deficient mice displayed alveolar dysgenesis as a result of the blockade of AMYF differentiation. DA-Raf is predominantly expressed in type 2 alveolar epithelial cells (AEC2s) in developing lungs, and DA-Raf-dependent MEK1/2 inhibition in AEC2s suppresses expression of tissue inhibitor of matalloprotienase 4 (TIMP4), which prevents a subsequent proteolytic cascade matrix metalloproteinase (MMP)14-MMP2. Furthermore, MMP14-MMP2 proteolytic cascade regulates AMYF differentiation and alveolar formation. Therefore, DA-Raf-dependent inhibition of the Ras-ERK signaling pathway in AEC2s is required for alveolar formation via triggering MMP2 activation followed by AMYF differentiation. These findings reveal a pivotal role of the Ras-ERK signaling pathway in the dynamic regulation of alveolar development.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Departments of Biomedical Science andDepartment of Biology, Graduate School of Science andJapan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan; and
| | - Kazunori Takano
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Akemi Sakamoto
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takeshi Tokuhisa
- Developmental Genetics, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science andGraduate School of Advanced Integration Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522, Japan;
| | | |
Collapse
|
316
|
Wagner DE, Bonvillain RW, Jensen T, Girard ED, Bunnell BA, Finck CM, Hoffman AM, Weiss DJ. Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology 2014; 18:895-911. [PMID: 23614471 DOI: 10.1111/resp.12102] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/06/2023]
Abstract
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells towards the goal of regenerating functional tissues. Several decellularization strategies have been employed for lungs; however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
318
|
Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 2014; 156:1-10. [DOI: 10.1093/jb/mvu031] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
319
|
Woik N, Dietz CT, Schäker K, Kroll J. Kelch-like ECT2-interacting protein KLEIP regulates late-stage pulmonary maturation via Hif-2α in mice. Dis Model Mech 2014; 7:683-92. [PMID: 24785085 PMCID: PMC4036475 DOI: 10.1242/dmm.014266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory distress syndrome (RDS) caused by preterm delivery is a major clinical problem with limited mechanistic insight. Late-stage embryonic lung development is driven by hypoxia and the hypoxia-inducible transcription factors Hif-1α and Hif-2α, which act as important regulators for lung development. Expression of the BTB-and kelch-domain-containing (BTB-kelch) protein KLEIP (Kelch-like ECT2-interacting protein; also named Klhl20) is controlled by two hypoxia response elements, and KLEIP regulates stabilization and transcriptional activation of Hif-2α. Based on the available data, we hypothesized an essential role for KLEIP in murine lung development and function. Therefore, we have performed a functional, histological, mechanistic and interventional study in embryonic and neonatal KLEIP−/− mice. Here, we show that about half of the KLEIP−/− neonates die due to respiratory failure that is caused by insufficient aeration, reduced septal thinning, reduced glycogenolysis, type II pneumocyte immaturity and reduced surfactant production. Expression analyses in embryonic day (E) 18.5 lungs identified KLEIP in lung capillaries, and showed strongly reduced mRNA and protein levels for Hif-2α and VEGF; such reduced levels are associated with embryonic endothelial cell apoptosis and lung bleedings. Betamethasone injection in pregnant females prevented respiratory failure in KLEIP−/− neonates, normalized lung maturation, vascularization, aeration and function, and increased neonatal Hif-2α expression. Thus, the experimental study shows that respiratory failure in KLEIP−/− neonates is determined by insufficient angiocrine Hif-2α–VEGF signaling and that betamethasone activates this newly identified signaling cascade in late-stage embryonic lung development.
Collapse
Affiliation(s)
- Nicole Woik
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Christian T Dietz
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Kathrin Schäker
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany. Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany.
| |
Collapse
|
320
|
Calle EA, Ghaedi M, Sundaram S, Sivarapatna A, Tseng MK, Niklason LE. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng 2014; 61:1482-96. [PMID: 24691527 PMCID: PMC4126648 DOI: 10.1109/tbme.2014.2314261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function.
Collapse
Affiliation(s)
- Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Mahboobe Ghaedi
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Sumati Sundaram
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Michelle K. Tseng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Laura E. Niklason
- Department of Anesthesia and Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| |
Collapse
|
321
|
Fan Y, Potdar AA, Gong Y, Eswarappa SM, Donnola S, Lathia JD, Hambardzumyan D, Rich JN, Fox PL. Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1α accumulation. Nat Cell Biol 2014; 16:445-56. [PMID: 24747440 PMCID: PMC4036069 DOI: 10.1038/ncb2954] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
The tumour vascular microenvironment supports tumorigenesis not only by supplying oxygen and diffusible nutrients but also by secreting soluble factors that promote tumorigenesis. Here we identify a feedforward mechanism in which endothelial cells (ECs), in response to tumour-derived mediators, release angiocrines driving aberrant vascularization and glioblastoma multiforme (GBM) progression through a hypoxia-independent induction of hypoxia-inducible factor (HIF)-1α. Phosphorylation of profilin-1 (Pfn-1) at Tyr 129 in ECs induces binding to the tumour suppressor protein von Hippel-Lindau (VHL), and prevents VHL-mediated degradation of prolyl-hydroxylated HIF-1α, culminating in HIF-1α accumulation even in normoxia. Elevated HIF-1α induces expression of multiple angiogenic factors, leading to vascular abnormality and tumour progression. In a genetic model of GBM, mice with an EC-specific defect in Pfn-1 phosphorylation exhibit reduced tumour angiogenesis, normalized vasculature and improved survival. Moreover, EC-specific Pfn-1 phosphorylation is associated with tumour aggressiveness in human glioma. These findings suggest that targeting Pfn-1 phosphorylation may offer a selective strategy for therapeutic intervention of malignant solid tumours.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania, USA 19104
| | - Alka A. Potdar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, USA 44106
| | - Yanqing Gong
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania, USA 19104
| | - Sandeepa M. Eswarappa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Shannon Donnola
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Justin D. Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Dolores Hambardzumyan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| |
Collapse
|
322
|
Vadivel A, Alphonse RS, Etches N, van Haaften T, Collins JJP, O'Reilly M, Eaton F, Thébaud B. Hypoxia-inducible factors promote alveolar development and regeneration. Am J Respir Cell Mol Biol 2014; 50:96-105. [PMID: 23962064 DOI: 10.1165/rcmb.2012-0250oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Understanding how alveoli and the underlying capillary network develop and how these mechanisms are disrupted in disease states is critical for developing effective therapies for lung regeneration. Recent evidence suggests that lung angiogenesis promotes lung development and repair. Vascular endothelial growth factor (VEGF) preserves lung angiogenesis and alveolarization in experimental O2-induced arrested alveolar growth in newborn rats, but combined VEGF+angiopoietin 1 treatment is necessary to correct VEGF-induced vessel leakiness. Hypoxia-inducible factors (HIFs) are transcription factors that activate multiple O2-sensitive genes, including those encoding for angiogenic growth factors, but their role during postnatal lung growth is incompletely understood. By inducing the expression of a range of angiogenic factors in a coordinated fashion, HIF may orchestrate efficient and safe angiogenesis superior to VEGF. We hypothesized that HIF inhibition impairs alveolarization and that HIF activation regenerates irreversible O2-induced arrested alveolar growth. HIF inhibition by intratracheal dominant-negative adenovirus (dnHIF-1α)-mediated gene transfer or chetomin decreased lung HIF-1α, HIF-2α, and VEGF expression and led to air space enlargement and arrested lung vascular growth. In experimental O2-induced arrested alveolar growth in newborn rats, the characteristic features of air space enlargement and loss of lung capillaries were associated with decreased lung HIF-1α and HIF-2α expression. Intratracheal administration of Ad.HIF-1α restored HIF-1α, endothelial nitric oxide synthase, VEGF, VEGFR2, and Tie2 expression and preserved and rescued alveolar growth and lung capillary formation in this model. HIFs promote normal alveolar development and may be useful targets for alveolar regeneration.
Collapse
Affiliation(s)
- Arul Vadivel
- 1 Department of Pediatrics, School of Human Development, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Lee JH, Bhang DH, Beede A, Huang TL, Stripp BR, Bloch KD, Wagers AJ, Tseng YH, Ryeom S, Kim CF. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 2014; 156:440-55. [PMID: 24485453 DOI: 10.1016/j.cell.2013.12.039] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/24/2013] [Accepted: 12/27/2013] [Indexed: 11/29/2022]
Abstract
Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal 3D cocultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell cocultures. Gain- and loss-of-function experiments showed that BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1 null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide tools to understand the mechanisms of respiratory diseases at the single-cell level.
Collapse
Affiliation(s)
- Joo-Hyeon Lee
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Ha Bhang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Beede
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Barry R Stripp
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth D Bloch
- Anesthesia Center for Critical Care Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Joslin Diabetes Center, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
324
|
Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, O'Reilly M, Ohls RK, McConaghy S, Eaton F, Zhong S, Yoder M, Thébaud B. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation 2014; 129:2144-57. [PMID: 24710033 DOI: 10.1161/circulationaha.114.009124] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia and emphysema are life-threatening diseases resulting from impaired alveolar development or alveolar destruction. Both conditions lack effective therapies. Angiogenic growth factors promote alveolar growth and contribute to alveolar maintenance. Endothelial colony-forming cells (ECFCs) represent a subset of circulating and resident endothelial cells capable of self-renewal and de novo vessel formation. We hypothesized that resident ECFCs exist in the developing lung, that they are impaired during arrested alveolar growth in experimental bronchopulmonary dysplasia, and that exogenous ECFCs restore disrupted alveolar growth. METHODS AND RESULTS Human fetal and neonatal rat lungs contain ECFCs with robust proliferative potential, secondary colony formation on replating, and de novo blood vessel formation in vivo when transplanted into immunodeficient mice. In contrast, human fetal lung ECFCs exposed to hyperoxia in vitro and neonatal rat ECFCs isolated from hyperoxic alveolar growth-arrested rat lungs mimicking bronchopulmonary dysplasia proliferated less, showed decreased clonogenic capacity, and formed fewer capillary-like networks. Intrajugular administration of human cord blood-derived ECFCs after established arrested alveolar growth restored lung function, alveolar and lung vascular growth, and attenuated pulmonary hypertension. Lung ECFC colony- and capillary-like network-forming capabilities were also restored. Low ECFC engraftment and the protective effect of cell-free ECFC-derived conditioned media suggest a paracrine effect. Long-term (10 months) assessment of ECFC therapy showed no adverse effects with persistent improvement in lung structure, exercise capacity, and pulmonary hypertension. CONCLUSIONS Impaired ECFC function may contribute to arrested alveolar growth. Cord blood-derived ECFC therapy may offer new therapeutic options for lung diseases characterized by alveolar damage.
Collapse
Affiliation(s)
- Rajesh S Alphonse
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Arul Vadivel
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Moses Fung
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - William Chris Shelley
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Paul John Critser
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Lavinia Ionescu
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Megan O'Reilly
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Robin K Ohls
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Suzanne McConaghy
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Farah Eaton
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Shumei Zhong
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Merv Yoder
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.)
| | - Bernard Thébaud
- From the Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada (R.S.A., M.F., L.I. M.O., F.E.); Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada (A.V., S.Z., B.T.); Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN (W.C.S., P.J.C., M.Y.); and Department of Pediatrics, University of New Mexico, Albuquerque, NM (R.K.O., S.M.). bthebaud@ohri
| |
Collapse
|
325
|
Affiliation(s)
- Stella Kourembanas
- From the Division of Newborn Medicine, Boston Children's Hospital, Boston, MA (S.K.); and Department of Pediatrics, Harvard Medical School, Boston, MA (S.K.).
| |
Collapse
|
326
|
Camargo CA, Budinger GRS, Escobar GJ, Hansel NN, Hanson CK, Huffnagle GB, Buist AS. Promotion of lung health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc 2014; 11 Suppl 3:S125-38. [PMID: 24754821 PMCID: PMC4112505 DOI: 10.1513/annalsats.201312-451ld] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/04/2014] [Indexed: 12/17/2022] Open
Abstract
Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes "health promotion" (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate "normal" age-related declines-not only for spirometry but across multiple measures of lung health. In developing a successful strategy, a "life course" approach is important. Unfortunately, we are unable to achieve the full benefit of this approach until we have better measures of lung health and an improved understanding of the normal trajectory, both over an individual's life span and possibly across generations. We discuss key questions in lung health promotion, with an emphasis on the upper (healthier) end of the distribution of lung functioning and resiliency and briefly summarize the few interventions that have been studied to date. We conclude with suggestions regarding the most promising future research for this important, but largely neglected, area of lung research.
Collapse
Affiliation(s)
- Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | | | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Center, Baltimore, Maryland
| | - Corrine K. Hanson
- School of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gary B. Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - A. Sonia Buist
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
327
|
Johansson HM, Newman DR, Sannes PL. Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro. PLoS One 2014; 9:e93413. [PMID: 24690998 PMCID: PMC3972118 DOI: 10.1371/journal.pone.0093413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/05/2014] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that the surfactant-producing pulmonary alveolar epithelial type II (AT2) cell acts as the progenitor of the type I (AT1) cell, but the regulatory mechanisms involved in this relationship remain the subject of active investigation. While previous studies have established a number of specific markers that are expressed during transdifferentiation from AT2 to AT1 cells, we hypothesized that additional, previously unrecognized, signaling pathways and relevant cellular functions are transcriptionally regulated at early stages of AT2 transition. In this study, a discovery-based gene expression profile analysis was undertaken of freshly isolated human AT2 (hAT2) cells grown on extracellular matrix (ECM) substrata known to either support (type I collagen) or retard (Matrigel) the early transdifferentiation process into hAT1-like cells over the first three days. Cell type-specific expression patterns analyzed by Illumina Human HT-12 BeadChip yielded over 300 genes that were up- or down-regulated. Candidate genes significantly induced or down-regulated during hAT2 transition to hAT1-like cells compared to non-transitioning hAT2 cells were identified. Major functional groups were also recognized, including those of signaling and cytoskeletal proteins as well as genes of unknown function. Expression of established signatures of hAT2 and hAT1 cells, such as surfactant proteins, caveolin-1, and channels and transporters, was confirmed. Selected novel genes further validated by qRT-PCR, protein expression analysis, and/or cellular localization included SPOCK2, PLEKHO1, SPRED1, RAB11FIP1, PTRF/CAVIN-1 and RAP1GAP. These results further demonstrate the utility of genome-wide analysis to identify relevant, novel cell type-specific signatures of early ECM-regulated alveolar epithelial transdifferentiation processes in vitro.
Collapse
Affiliation(s)
- Helena Morales Johansson
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Donna R. Newman
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Philip L. Sannes
- Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
328
|
Thane K, Ingenito EP, Hoffman AM. Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 2014; 163:363-76. [PMID: 24316173 DOI: 10.1016/j.trsl.2013.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Lung regeneration research is yielding data with increasing translational value. The classical models of lung development, postnatal alveolarization, and postpneumonectomy alveolarization have contributed to a broader understanding of the cellular participants including stem-progenitor cells, cell-cell signaling pathways, and the roles of mechanical deformation and other physiologic factors that have the potential to be modulated in human and animal patients. Although recent information is available describing the lineage fate of lung fibroblasts, genetic fate mapping, and clonal studies are lacking in the study of lung regeneration and deserve further examination. In addition to increasing knowledge concerning classical alveolarization (postnatal, postpneumonectomy), there is increasing evidence for remodeling of the adult lung after partial pneumonectomy. Though limited in scope, compelling data have emerged describing restoration of lung tissue mass in the adult human and in large animal models. The basis for this long-term adaptation to pneumonectomy is poorly understood, but investigations into mechanisms of lung regeneration in older animals that have lost their capacity for rapid re-alveolarization are warranted, as there would be great translational value in modulating these mechanisms. In addition, quantitative morphometric analysis has progressed in conjunction with developments in advanced imaging, which allow for longitudinal and nonterminal evaluation of pulmonary regenerative responses in animals and humans. This review focuses on the cellular and molecular events that have been observed in animals and humans after pneumonectomy because this model is closest to classical regeneration in other mammalian systems and has revealed several new fronts of translational research that deserve consideration.
Collapse
Affiliation(s)
- Kristen Thane
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass
| | - Edward P Ingenito
- Division of Pulmonary, Critical Care, and Sleep Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Andrew M Hoffman
- Department of Clinical Sciences, Regenerative Medicine Laboratory, Tufts University Cummings School of Veterinary Medicine, North Grafton, Mass.
| |
Collapse
|
329
|
Benitez PL, Heilshorn SC. Recombinant Protein Hydrogels for Cell Injection and Transplantation. HYDROGELS IN CELL-BASED THERAPIES 2014. [DOI: 10.1039/9781782622055-00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As found in nature, full-length proteins consist of a genetically specified sequence of the 20 canonical amino acids, of a defined length. This sequence of chemically diverse functional groups enables the many highly controlled interactions with other molecules found in natural proteins. Recombinant proteins can be engineered to incorporate some of nature's palette of protein functionality into hydrogels for cell delivery. Current work demonstrates how this level of molecular precision can be used to address challenges in cell therapies, such as post-implantation viability, localization, and control, via specified gelation mechanics and tailored bioactive domains. Leveraging recombinant technology, including protein engineering, gene synthesis, expression, and purification, materials scientists have appropriated and modified naturally occurring proteins to achieve hydrogels that combine defined gelation mechanics with specified bioactive protein chemistries. Here, we specifically review recent developments in recombinant protein hydrogels that are either inspired by native extracellular matrix proteins (e.g. elastin, collagen, and resilin) or designed from non-matrix peptides (e.g. mixing-induced two-component hydrogels). In many of these case studies, domain- and sequence-level engineering enables a broad range of biochemical activity and mechanical control via gelation. Despite the remaining challenges of scalability and forward-designed predictability, hydrogels made of recombinant proteins offer exciting possibilities for sophisticated delivery of therapeutic cells, including multifactorial control, native-like mechanics, and sensitivity to signals from delivered cells or host tissues.
Collapse
Affiliation(s)
| | - Sarah C. Heilshorn
- Materials Science and Engineering McCullough Building, 476 Lomita Mall Stanford CA USA
| |
Collapse
|
330
|
Cao Z, Ding BS, Guo P, Lee SB, Butler JM, Casey SC, Simons M, Tam W, Felsher DW, Shido K, Rafii A, Scandura JM, Rafii S. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 2014; 25:350-65. [PMID: 24651014 PMCID: PMC4017921 DOI: 10.1016/j.ccr.2014.02.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/04/2013] [Accepted: 02/14/2014] [Indexed: 01/27/2023]
Abstract
Tumor endothelial cells (ECs) promote cancer progression in ways beyond their role as conduits supporting metabolism. However, it is unknown how vascular niche-derived paracrine factors, defined as angiocrine factors, provoke tumor aggressiveness. Here, we show that FGF4 produced by B cell lymphoma cells (LCs) through activating FGFR1 upregulates the Notch ligand Jagged1 (Jag1) on neighboring ECs. In turn, upregulation of Jag1 on ECs reciprocally induces Notch2-Hey1 in LCs. This crosstalk enforces aggressive CD44(+)IGF1R(+)CSF1R(+) LC phenotypes, including extranodal invasion and chemoresistance. Inducible EC-selective deletion of Fgfr1 or Jag1 in the Eμ-Myc lymphoma model or impairing Notch2 signaling in mouse and human LCs diminished lymphoma aggressiveness and prolonged mouse survival. Thus, targeting the angiocrine FGF4-FGFR1/Jag1-Notch2 loop inhibits LC aggressiveness and enhances chemosensitivity.
Collapse
MESH Headings
- Animals
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Drug Resistance, Neoplasm
- Endothelial Cells/metabolism
- Enzyme Activation
- Fibroblast Growth Factor 4/metabolism
- Genes, myc
- Humans
- Hyaluronan Receptors/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Neoplasm Invasiveness
- RNA Interference
- RNA, Small Interfering
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, IGF Type 1/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptor, Notch2/metabolism
- Serrate-Jagged Proteins
- Signal Transduction/genetics
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Zhongwei Cao
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Peipei Guo
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sharrell B Lee
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason M Butler
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Michael Simons
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wayne Tam
- Department of Pathology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dean W Felsher
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Koji Shido
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Arash Rafii
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph M Scandura
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Howard Hughes Medical Institute, Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
331
|
Lal CV, Schwarz MA. Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II). ACTA ACUST UNITED AC 2014; 100:180-8. [PMID: 24619875 DOI: 10.1002/bdra.23234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/25/2014] [Accepted: 02/04/2014] [Indexed: 01/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co-dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis.
Collapse
Affiliation(s)
- Charitharth Vivek Lal
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | | |
Collapse
|
332
|
|
333
|
Collins JJP, Thébaud B. Progenitor cells of the distal lung and their potential role in neonatal lung disease. ACTA ACUST UNITED AC 2014; 100:217-26. [PMID: 24619857 DOI: 10.1002/bdra.23227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common adverse outcome in extreme preterm neonates (born before 28 weeks gestation). BPD is characterized by interrupted lung growth and may predispose to early-onset emphysema and poor lung function in later life. At present, there is no treatment for BPD. Recent advances in stem/progenitor cell biology have enabled the exploration of endogenous lung progenitor populations in health and disease. In parallel, exogenous stem/progenitor cell administration has shown promise in protecting the lung from injury in the experimental setting. This review will provide an outline of the progenitor populations that have currently been identified in all tissue compartments of the distal lung and how they may be affected in BPD. A thorough understanding of the lung's endogenous progenitor populations during normal development, injury and repair may one day allow us to harness their regenerative capacity.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
334
|
Brissova M, Aamodt K, Brahmachary P, Prasad N, Hong JY, Dai C, Mellati M, Shostak A, Poffenberger G, Aramandla R, Levy SE, Powers AC. Islet microenvironment, modulated by vascular endothelial growth factor-A signaling, promotes β cell regeneration. Cell Metab 2014; 19:498-511. [PMID: 24561261 PMCID: PMC4012856 DOI: 10.1016/j.cmet.2014.02.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/05/2013] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
Pancreatic islet endocrine cell and endothelial cell (EC) interactions mediated by vascular endothelial growth factor-A (VEGF-A) signaling are important for islet differentiation and the formation of highly vascularized islets. To dissect how VEGF-A signaling modulates intra-islet vasculature, islet microenvironment, and β cell mass, we transiently increased VEGF-A production by β cells. VEGF-A induction dramatically increased the number of intra-islet ECs but led to β cell loss. After withdrawal of the VEGF-A stimulus, β cell mass, function, and islet structure normalized as a result of a robust, but transient, burst in proliferation of pre-existing β cells. Bone marrow-derived macrophages (MΦs) recruited to the site of β cell injury were crucial for the β cell proliferation, which was independent of pancreatic location and circulating factors such as glucose. Identification of the signals responsible for the proliferation of adult, terminally differentiated β cells will improve strategies aimed at β cell regeneration and expansion.
Collapse
Affiliation(s)
- Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Kristie Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Priyanka Brahmachary
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Biology, University of Alabama, Huntsville, Huntsville, AL 35899, USA
| | - Ji-Young Hong
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mahnaz Mellati
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Radhika Aramandla
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
335
|
Hu J, Srivastava K, Wieland M, Runge A, Mogler C, Besemfelder E, Terhardt D, Vogel MJ, Cao L, Korn C, Bartels S, Thomas M, Augustin HG. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 2014; 343:416-9. [PMID: 24458641 DOI: 10.1126/science.1244880] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver regeneration requires spatially and temporally precisely coordinated proliferation of the two major hepatic cell populations, hepatocytes and liver sinusoidal endothelial cells (LSECs), to reconstitute liver structure and function. The underlying mechanisms of this complex molecular cross-talk remain elusive. Here, we show that the expression of Angiopoietin-2 (Ang2) in LSECs is dynamically regulated after partial hepatectomy. During the early inductive phase of liver regeneration, Ang2 down-regulation leads to reduced LSEC transforming growth factor-β1 production, enabling hepatocyte proliferation by releasing an angiocrine proliferative brake. During the later angiogenic phase of liver regeneration, recovery of endothelial Ang2 expression enables regenerative angiogenesis by controlling LSEC vascular endothelial growth factor receptor 2 expression. The data establish LSECs as a dynamic rheostat of liver regeneration, spatiotemporally orchestrating hepatocyte and LSEC proliferation through angiocrine- and autocrine-acting Ang2, respectively.
Collapse
Affiliation(s)
- Junhao Hu
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), DKFZ-Center for Molecular Biology Alliance, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014; 507:190-4. [PMID: 24499815 DOI: 10.1038/nature12930] [Citation(s) in RCA: 746] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/03/2013] [Indexed: 12/28/2022]
Abstract
Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.
Collapse
Affiliation(s)
- Tushar J Desai
- 1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | - Douglas G Brownfield
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| |
Collapse
|
337
|
Pasquier J, Thawadi HA, Ghiabi P, Abu-Kaoud N, Maleki M, Guerrouahen BS, Vidal F, Courderc B, Ferron G, Martinez A, Al Sulaiti H, Gupta R, Rafii S, Rafii A. Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation. CANCER MICROENVIRONMENT 2014; 7:41-59. [PMID: 24424657 PMCID: PMC4150875 DOI: 10.1007/s12307-013-0142-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/15/2013] [Indexed: 12/14/2022]
Abstract
The tumor stroma plays an essential role in tumor growth, resistance to therapy and occurrence of metastatic phenotype. Tumor vessels have been considered as passive conducts for nutrients but several studies have demonstrated secretion of pro-tumoral factors by endothelial cells. The failure of anti-angiogenic therapies to meet expectations raised by pre-clinical studies prompt us to better study the cross-talk between endothelial and cancer cells. Here, we hypothesized that tumor cells and the endothelium secrete bio-active microparticles (MPs) participating to a functional cross-talk. We characterized the cancer cells MPs, using breast and ovarian cancer cell lines (MCF7, MDA-MB231, SKOV3, OVCAR3 and a primary cell lines, APOCC). Our data show that MPs from mesenchymal-like cell lines (MDA-MB231, SKOV3 and APOCC) were able to promote an activation of endothelial cells through Akt phosphorylation, compared to MPs from epithelial-like cell lines (OVCAR3 and MCF7). The MPs from mesenchymal-like cells contained increased angiogenic molecules including PDGF, IL8 and angiogenin. The endothelial activation was associated to increased Arf6 expression and MPs secretion. Endothelial activation functionalized an MP dependent pro-tumoral vascular niche promoting cancer cells proliferation, invasiveness, stem cell phenotype and chemoresistance. MPs from cancer and endothelial cells displayed phenotypic heterogeneity, and participated to a functional cross-talk where endothelial activation by cancer MPs resulted in increased secretion of EC-MPs sustaining tumor cells. Such cross-talk may play a role in perfusion independent role of the endothelium.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, Silver RB, Jiang XC, Worgall S. Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med 2014; 5:186ra67. [PMID: 23698380 DOI: 10.1126/scitranslmed.3005765] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Asthma is a clinically heterogeneous genetic disease, and its pathogenesis is incompletely understood. Genome-wide association studies link ORM (yeast)-Like protein isoform 3 [corrected] (ORMDL3), a member of the ORM gene family, to nonallergic childhood-onset asthma. Orm proteins negatively regulate sphingolipid (SL) synthesis by acting as homeostatic regulators of serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme of de novo SL synthesis, but it is not known how SPT activity or SL synthesis is related to asthma. The present study analyzes the effect of decreased de novo SL synthesis in the lung on airway reactivity after administration of myriocin, an inhibitor of SPT, and in SPT heterozygous knockout mice. We show that, in both models, decreased de novo SL synthesis increases bronchial reactivity in the absence of inflammation. Decreased SPT activity affected intracellular magnesium homeostasis and altered the bronchial sensitivity to magnesium. This functionally links decreased de novo SL synthesis to asthma and so identifies this metabolic pathway as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Leeman KT, Fillmore CM, Kim CF. Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 2014; 107:207-233. [PMID: 24439808 DOI: 10.1016/b978-0-12-416022-4.00008-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of cell surface markers, these cells can also be isolated from murine and human lung and tested in 3D culture systems and in vivo transplant assays. The pathology of devastating lung diseases, including lung cancers, is likely in part due to dysregulation and dysfunction of lung stem cells. More precise characterization of stem cells with identification of new, unique markers; improvement in isolation and transplant techniques; and further development of functional assays will ultimately lead to new therapies for a host of human lung diseases. In particular, lung cancer biology may be greatly informed by findings in normal lung stem cell biology as evidence suggests that lung cancer is a disease that begins in, and may be driven by, neoplastic lung stem cells.
Collapse
Affiliation(s)
- Kristen T Leeman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine M Fillmore
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
340
|
Dassah M, Almeida D, Hahn R, Bonaldo P, Worgall S, Hajjar KA. Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells. J Cell Sci 2013; 127:828-44. [PMID: 24357721 DOI: 10.1242/jcs.137802] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The annexins are an evolutionarily conserved family of phospholipid-binding proteins of largely unknown function. We observed that the AnxA2(-/-) lung basement membrane specifically lacks collagen VI (COL6), and postulated that ANXA2 directs bronchial epithelial cell secretion of COL6, an unusually large multimeric protein. COL6 serves to anchor cells to basement membranes and, unlike other collagens, undergoes multimerization prior to secretion. Here, we show that AnxA2(-/-) mice have reduced exercise tolerance with impaired lung tissue elasticity, which was phenocopied in Col6a1(-/-) mice. In vitro, AnxA2(-/-) fibroblasts retained COL6 within intracellular vesicles and adhered poorly to their matrix unless ANXA2 expression was restored. In vivo, AnxA2(-/-) bronchial epithelial cells underwent apoptosis and disadhesion. Immunoprecipitation and immunoelectron microscopy revealed that ANXA2 associates with COL6 and the SNARE proteins SNAP-23 and VAMP2 at secretory vesicle membranes of bronchial epithelial cells, and that absence of ANXA2 leads to retention of COL6 in a late-Golgi, VAMP2-positive compartment. These results define a new role for ANXA2 in the COL6 secretion pathway, and further show that this pathway establishes cell-matrix interactions that underlie normal pulmonary function and epithelial cell survival.
Collapse
Affiliation(s)
- Maryann Dassah
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
341
|
Paisley D, Bevan L, Choy KJ, Gross C. The pneumonectomy model of compensatory lung growth: insights into lung regeneration. Pharmacol Ther 2013; 142:196-205. [PMID: 24333263 DOI: 10.1016/j.pharmthera.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
Pneumonectomy (PNX) in experimental animals leads to a species- and age-dependent compensatory growth of the remaining lung lobes. PNX mimics the loss of functional gas exchange units observed in a number of chronic destructive lung diseases. However, unlike in disease models, this tissue loss is well defined, reproducible and lacks accompanying inflammation. Furthermore, compensatory responses to the tissue loss can be easily quantified. This makes PNX a potentially useful model for the study of the cellular and molecular events which occur during realveolarisation. It may therefore help to get a better understanding of how to manipulate these pathways, in order to promote the generation of new alveolar tissue as therapies for destructive lung diseases. This review will explore the insights that experimental PNX has provided into the physiological factors which promote compensatory lung growth as well as the importance of age and species in the rate and extent of compensation. In addition, more recent studies which are beginning to uncover the key cellular and molecular pathways involved in realveolarisation will be discussed. The potential relevance of experimental pneumonectomy to novel therapeutic strategies which aim to promote lung regeneration will also be highlighted.
Collapse
Affiliation(s)
- Derek Paisley
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom.
| | - Luke Bevan
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katherine J Choy
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Carina Gross
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
342
|
Li X, Rossen N, Sinn PL, Hornick AL, Steines BR, Karp PH, Ernst SE, Adam RJ, Moninger TO, Levasseur DN, Zabner J. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease. PLoS One 2013; 8:e83624. [PMID: 24349537 PMCID: PMC3861522 DOI: 10.1371/journal.pone.0083624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 11/10/2013] [Indexed: 12/21/2022] Open
Abstract
To develop stem/progenitor cell-based therapy for cystic fibrosis (CF) lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs) serotypes, AAV2 and AAV8, capable of transducing α6β4+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4+ epithelial cells significantly rescued defects in Cl- transport. Therefore, targeting the α6β4+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (XL); (JZ)
| | - Nathan Rossen
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew L. Hornick
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin R. Steines
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Philip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Dana N. Levasseur
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (XL); (JZ)
| |
Collapse
|
343
|
Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 2013; 505:97-102. [PMID: 24256728 PMCID: PMC4142699 DOI: 10.1038/nature12681] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/16/2013] [Indexed: 02/07/2023]
Abstract
Chemical or traumatic damage to the liver is frequently associated with aberrant healing(fibrosis) that overrides liver regeneration1–5. The mechanism by which hepatic niche cells differentially modulate regeneration and fibrosis during liver repair remains to be defined6–8. Hepatic vascular niche predominantly represented by liver sinusoidal endothelial cells (LSECs), deploys paracrine trophogens, known as angiocrine factors, to stimulate regeneration9–15. Nevertheless, it remains unknown how pro-regenerative angiocrine signals from LSECs is subverted to promote fibrosis16,17. Here, by combining inducible endothelial cell (EC)-specific mouse gene deletion strategy and complementary models of acute and chronic liver injury, we revealed that divergent angiocrine signals from LSECs elicit regeneration after immediateinjury and provoke fibrosis post chronic insult. The pro-fibrotic transition of vascular niche results from differential expression of stromal derived factor-1 (SDF-1) receptors, CXCR7 and CXCR418–21in LSECs. After acute injury, CXCR7 upregulation in LSECs acts in conjunction with CXCR4 to induce transcription factor Id1, deploying pro-regenerative angiocrine factors and triggering regeneration. Inducible deletion of Cxcr7 in adult mouse LSECs (Cxcr7iΔEC/iΔEC) impaired liver regeneration by diminishing Id1-mediated production of angiocrine factors9–11. By contrast, after chronic injury inflicted by iterative hepatotoxin (carbon tetrachloride) injection and bile duct ligation, constitutive FGFR1 signaling in LSECs counterbalanced CXCR7-dependent pro-regenerative response and augmented CXCR4 expression. This predominance of CXCR4 over CXCR7 expression shifted angiocrine response of LSECs, stimulating proliferation of desmin+hepatic stellate-like cells22,23 and enforcing a pro-fibrotic vascular niche. EC-specific ablation of either Fgfr1 (Fgfr1iΔEC/iΔEC) or Cxcr4 (Cxcr4iΔEC/iΔEC) in mice restored pro-regenerative pathway and prevented FGFR1-mediated maladaptive subversion of angiocrine factors. Similarly, selective CXCR7 activation in LSECs abrogated fibrogenesis. Thus, we have demonstrated that in response to liver injury, differential recruitment of pro-regenerative CXCR7/Id1 versus pro-fibrotic FGFR1/CXCR4 angiocrine pathways in vascular niche balances regeneration and fibrosis. These results provide a therapeutic roadmap to achieve hepatic regeneration without provoking fibrosis1,2,4.
Collapse
|
344
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
345
|
Jones RC, Capen DE. Mechanisms of growth of a pulmonary capillary network in adult lung. Ultrastruct Pathol 2013; 38:34-44. [PMID: 24144103 DOI: 10.3109/01913123.2013.833561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study provides new insight into structural processes remodeling pulmonary capillaries in adult lung. The data highlight mechanisms underlying the expansion and increased density of capillary segments on return to air breathing (FiO2 0.21) after injury in high oxygen (FiO2 0.75). As segments expand and increase in number, endothelial cells extend their processes to bridge the lumen and support the walls of developing interluminal structures (ILSs); endothelial-epithelial surfaces infold as a single unit (sheet) into the lumen, increasing the length of each surface and subdividing segments by loop formation and by the formation of ILSs; segments further increase in number as lumen subdivision proceeds by intussusceptive microvascular growth (IMG).
Collapse
Affiliation(s)
- Rosemary C Jones
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and
| | | |
Collapse
|
346
|
Vasko R, Xavier S, Chen J, Lin CHS, Ratliff B, Rabadi M, Maizel J, Tanokuchi R, Zhang F, Cao J, Goligorsky MS. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence. J Am Soc Nephrol 2013; 25:276-91. [PMID: 24136919 DOI: 10.1681/asn.2013010069] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sirtuin 1 (SIRT1) depletion in vascular endothelial cells mediates endothelial dysfunction and premature senescence in diverse cardiovascular and renal diseases. However, the molecular mechanisms underlying these pathologic effects remain unclear. Here, we examined the phenotype of a mouse model of vascular senescence created by genetically ablating exon 4 of Sirt1 in endothelial cells (Sirt1(endo-/-)). Under basal conditions, Sirt1(endo-/-) mice showed impaired endothelium-dependent vasorelaxation and angiogenesis, and fibrosis occurred spontaneously at low levels at an early age. In contrast, induction of nephrotoxic stress (acute and chronic folic acid-induced nephropathy) in Sirt1(endo-/-) mice resulted in robust acute renal functional deterioration followed by an exaggerated fibrotic response compared with control animals. Additional studies identified matrix metalloproteinase-14 (MMP-14) as a target of SIRT1. In the kidneys of Sirt1(endo-/-) mice, impaired angiogenesis, reduced matrilytic activity, and retention of the profibrotic cleavage substrates tissue transglutaminase and endoglin accompanied MMP-14 suppression. Furthermore, restoration of MMP-14 expression in SIRT1-depeleted mice improved angiogenic and matrilytic functions of the endothelium, prevented renal dysfunction, and attenuated nephrosclerosis. Our findings establish a novel mechanistic molecular link between endothelial SIRT1 depletion, downregulation of MMP-14, and the development of nephrosclerosis.
Collapse
Affiliation(s)
- Radovan Vasko
- Departments of Medicine, Pharmacology, and Physiology, Renal Research Institute, New York Medical College, Valhalla, New York
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Paxson JA, Gruntman AM, Davis AM, Parkin CM, Ingenito EP, Hoffman AM. Age dependence of lung mesenchymal stromal cell dynamics following pneumonectomy. Stem Cells Dev 2013; 22:3214-25. [PMID: 23895415 DOI: 10.1089/scd.2012.0477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aging is a critical determinant of regenerative capacity in many organ systems, but it remains unresolved in the lung. This study examines murine lung cell dynamics during age-dependent lung regeneration. Proliferation of lung progenitor cells (EpCAM(neg)/Sca-1(high) lung mesenchymal stromal cells - LMSCs, EpCAM(pos)/Sca-1(low) epithelial progenitor cells, proSP-C(pos) alveolar type II epithelial cells - AECII, and CD31(pos) - endothelial cells) was tracked to day 3 or 7 after pneumonectomy (PNX) or SHAM surgery in 3, 9, and 17 month mice. In 3 month mice, post-PNX LMSC proliferation peaked early (3 days), with 50%-80% more BrdU-positive cells than the other cell types, which peaked later (4-7 days). In older mice (9 and 17 month), abundance and post-PNX proliferation of LMSCs at day 3 were reduced (40%-80%). In both young and old mice, LMSCs were isolated and compared phenotypically with whole lung non-LMSCs. Donor age had no qualitative effect on the phenotype (LMSC vs. non-LMSC), with increased expression of CD90/Thy1, CD105/Eng, CD106/Vcam, CD146/Mcam, and Pdgfrα, and up-regulation of mRNA encoding Fap, Eln, Col1a1, Col3a1, Aldh1a3, Arhgef25, Dner, Fgfr1, and Midkine. However, compared with LMSCs isolated from young mice, LMSCs from older mice exhibited reduced mRNA expression of retinoic acid (Aldh1a3, Rbp4), Fgf/Wnt (Fgfr1, Sfrp1, Wnt2, and Ctnnb1), and elastogenesis (Col1a1, Eln, Fbn1, and Sdc2) pathway genes. Isolated LMSCs from older mice also demonstrated lower colony-forming units (-67%), growth potential (-60% by day 7), ALDH activity (-49%), and telomerase activity (-47%). Therefore, age is associated with declining proliferative potential and regenerative functions of LMSCs in the lung.
Collapse
Affiliation(s)
- Julia A Paxson
- 1 Biology Department, College of the Holy Cross , Worcester, Massachusetts
| | | | | | | | | | | |
Collapse
|
348
|
Abstract
Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.
Collapse
|
349
|
Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 2013; 26:204-19. [PMID: 23871589 DOI: 10.1016/j.devcel.2013.06.017] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/01/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
Abstract
Microvascular endothelial cells (ECs) within different tissues are endowed with distinct but as yet unrecognized structural, phenotypic, and functional attributes. We devised EC purification, cultivation, profiling, and transplantation models that establish tissue-specific molecular libraries of ECs devoid of lymphatic ECs or parenchymal cells. These libraries identify attributes that confer ECs with their organotypic features. We show that clusters of transcription factors, angiocrine growth factors, adhesion molecules, and chemokines are expressed in unique combinations by ECs of each organ. Furthermore, ECs respond distinctly in tissue regeneration models, hepatectomy, and myeloablation. To test the data set, we developed a transplantation model that employs generic ECs differentiated from embryonic stem cells. Transplanted generic ECs engraft into regenerating tissues and acquire features of organotypic ECs. Collectively, we demonstrate the utility of informational databases of ECs toward uncovering the extravascular and intrinsic signals that define EC heterogeneity. These factors could be exploited therapeutically to engineer tissue-specific ECs for regeneration.
Collapse
Affiliation(s)
- Daniel J Nolan
- Department of Genetic Medicine, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Vaughan AE, Chapman HA. Regenerative activity of the lung after epithelial injury. Biochim Biophys Acta Mol Basis Dis 2013; 1832:922-30. [DOI: 10.1016/j.bbadis.2012.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
|