301
|
Janks L, Sharma CVR, Egan TM. A central role for P2X7 receptors in human microglia. J Neuroinflammation 2018; 15:325. [PMID: 30463629 PMCID: PMC6247771 DOI: 10.1186/s12974-018-1353-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The ATP-gated ionotropic P2X7 receptor (P2X7R) has the unusual ability to function as a small cation channel and a trigger for permeabilization of plasmalemmal membranes. In murine microglia, P2X7R-mediated permeabilization is fundamental to microglial activation, proliferation, and IL-1β release. However, the role of the P2X7R in primary adult human microglia is poorly understood. METHODS We used patch-clamp electrophysiology to record ATP-gated current in cultured primary human microglia; confocal microscopy to measure membrane blebbing; fluorescence microscopy to demonstrate membrane permeabilization, caspase-1 activation, phosphatidylserine translocation, and phagocytosis; and kit-based assays to measure cytokine levels. RESULTS We found that ATP-gated inward currents facilitated with repetitive applications of ATP as expected for current through P2X7Rs and that P2X7R antagonists inhibited these currents. P2X7R antagonists also prevented the ATP-induced uptake of large cationic fluorescent dyes whereas drugs that target pannexin-1 channels had no effect. In contrast, ATP did not induce uptake of anionic dyes. The uptake of cationic dyes was blocked by drugs that target Cl- channels. Finally, we found that ATP activates caspase-1 and inhibits phagocytosis, and these effects are blocked by both P2X7R and Cl- channel antagonists. CONCLUSIONS Our results demonstrate that primary human microglia in culture express functional P2X7Rs that stimulate both ATP-gated cationic currents and uptake of large molecular weight cationic dyes. Importantly, our data demonstrate that hypotheses drawn from work on murine immune cells accurately predict the essential role of P2X7Rs in a number of human innate immune functions such as phagocytosis and caspase-1 activation. Therefore, the P2X7R represents an attractive target for therapeutic intervention in human neuroinflammatory disorders.
Collapse
Affiliation(s)
- Laura Janks
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO, 63104, USA
| | | | - Terrance M Egan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO, 63104, USA.
| |
Collapse
|
302
|
Greene LE, Lincoln R, Cosa G. Spatio-temporal monitoring of lipid peroxyl radicals in live cell studies combining fluorogenic antioxidants and fluorescence microscopy methods. Free Radic Biol Med 2018; 128:124-136. [PMID: 29649566 DOI: 10.1016/j.freeradbiomed.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022]
Abstract
Lipid peroxidation of polyunsaturated fatty acids in cells may occur via their catalytic autoxidation through peroxyl radicals under oxidative stress conditions. Lipid peroxidation is related to a number of pathologies, and may be invoked in new forms of regulated cell death, yet it may also have beneficial roles in cell signaling cascades. Antioxidants are a natural line of defense against lipid peroxidation, and may accordingly impact the biological outcome associated with the redox chemistry of lipid peroxidation. Critical to unraveling the physiological and pathological role of lipid peroxidation is the development of novel probes with the partition, chemical sensitivity and more importantly, molecular specificity, enabling the spatial and temporal imaging of peroxyl radicals in the lipid membranes of live cells, reporting on the redox status of the cell membrane. This review describes our recent progress to visualize lipid peroxidation in model membrane systems and in live cell studies. Our work portrays the mechanistic insight leading to the development of a highly sensitive probe to monitor lipid peroxyl radicals (LOO•). It also describes technical aspects including reagents and fluorescence microscopy methodologies to consider in order to achieve the much sought after monitoring of rates of lipid peroxyl radical production in live cell studies, be it under oxidative stress but also under cell homeostasis. This review seeks to bring attention to the study of lipid redox reactions and to lay the groundwork for the adoption of fluorogenic antioxidant probeshancement and maximum intensity recorded in turn provide a benchmark to estimate, when compared to the control BODIPY dye lacking the intramolecular PeT based switch, the overall exte and related fluorescence microscopy methods toward gaining rich spatiotemporal information on lipid peroxidation in live cells.
Collapse
Affiliation(s)
- Lana E Greene
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM/CQMF), McGill University, 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8.
| |
Collapse
|
303
|
Shen F, Song C, Liu Y, Zhang J, Wei Song S. IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res 2018; 1704:174-186. [PMID: 30347220 DOI: 10.1016/j.brainres.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Neural stem cells (NSCs) give rise to the central nervous system (CNS) and persist in certain areas of adult brains for replenishing damaged differentiated cells. The loss of the balance between NSC self-renewal and differentiation could lead to tumor formation such as the occurrence of glioblastoma (GBM), the most common and deadly human brain tumor, which could be derived from neural stem or stem-like cells. Early studies showed that insulin-like growth factor binding protein 2 (IGFBP2) mRNA levels were maintained high during the fetal brain development but decreased in the adult brains. We previously reported that IGFBP2 was frequently overexpressed in GBMs, which was correlated with GBM recurrence and poor survival and promoted glioma progression. However, the role of IGFBP2 in the CNS was not investigated yet, whose understanding will help elucidate IGFBP2 functions in GBM. In the study, we identify IGFBP2 as a critical molecule for mouse NSC maintenance. IGFBP2 is highly expressed in NSCs, and its expression exhibits an apical-basal pattern in the neural tube with a higher apical level and decreased with NSC differentiation during the CNS development. IGFBP2 promotes NSC self-renewal and proliferation but inhibits its differentiation to neurons and astrocytes. The knockdown of IGFBP2 significantly affected the expression of cell cycle, Notch pathway, and neural stemness and differentiation genes in NSCs. Further, the expression of IGFBP2-regulated cell cycle genes is significantly correlated with IGFBP2 expression in non-Mesenchymal GBM subtypes including Classical, Proneural, and Neural subtypes and of its Notch pathway genes differentially associated in the four GBM subtypes, altogether suggesting its critical and similar functions in NSCs and GBM cells.
Collapse
Affiliation(s)
- Faping Shen
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Daqing Oil Field General Hospital, No. 9, Middle Kang Street, Saertu District, Daqing 163000, Heilongjiang, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| | - Chunyan Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Yunmian Liu
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Jing Zhang
- Institute for Cancer Genetics, Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Sonya Wei Song
- Center for Brain Disorders Research, Capital Medical University, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Beijing 100069, China; Beijing Neurosurgical Institute, Capital Medical University, No. 6, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
304
|
Hu J, Zhou Y, Obayemi JD, Du J, Soboyejo WO. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. J Mech Behav Biomed Mater 2018; 86:1-13. [DOI: 10.1016/j.jmbbm.2018.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/30/2022]
|
305
|
Han L, Yuan B, Shimada R, Hayashi H, Si N, Zhao HY, Bian B, Takagi N. Cytocidal effects of arenobufagin and hellebrigenin, two active bufadienolide compounds, against human glioblastoma cell line U-87. Int J Oncol 2018; 53:2488-2502. [PMID: 30272276 PMCID: PMC6203163 DOI: 10.3892/ijo.2018.4567] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most common and lethal intracranial tumor type, characterized by high angiogenic and infiltrative capacities. To provide a novel insight into therapeutic strategies against glioblastoma, the cytotoxicity of arenobufagin and hellebrigenin was investigated in the human glioblastoma cell line, U-87. Similar dose-dependent cytotoxicity was observed in the cells, whereas no detectable toxicity was confirmed in mouse primary astrocytes. Treatment with each drug downregulated the expression levels of Cdc25C, Cyclin B1 and survivin, which occurred in parallel with G2/M phase arrest. Necrotic-like cell death was only observed in the cells treated with a relatively high concentration (>100 ng/ml). These results indicate that the two drugs exhibited distinct cytotoxicity against cancerous glial cells with high potency and selectivity, suggesting that growth inhibition associated with G2/M phase arrest and/or necrosis were attributed to their toxicities. Activation of the p38 mitogen activated protein kinase (MAPK) signaling pathway was also observed in treated cells. Notably, a specific inhibitor of p38 MAPK, SB203580, itself caused a significant decrease in cell viability, and further enhanced the cytotoxicity of the two drugs, suggesting an important pro-survival role for p38 MAPK. Given that p38 MAPK serves an essential role in promoting glioblastoma cell survival, developing a novel combination regimen of arenobufagin/hellebrigenin plus a p38 MAPK inhibitor may improve the efficacy of the two drugs, and may provide more therapeutic benefits to patients with glioblastoma. The qualitative assessment demonstrated the existence of arenobufagin in the cerebrospinal fluid of arenobufagin-treated rats, supporting its clinical application.
Collapse
Affiliation(s)
- Lingyu Han
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Ryota Shimada
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy & Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
306
|
Hasanpourghadi M, Abdul Majid N, Rais Mustafa M. The role of miRNAs 34a, 146a, 320a and 542 in the synergistic anticancer effects of methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC) with doxorubicin in breast cancer cells. PeerJ 2018; 6:e5577. [PMID: 30245930 PMCID: PMC6147144 DOI: 10.7717/peerj.5577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.
Collapse
Affiliation(s)
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
307
|
Jones MC, Askari JA, Humphries JD, Humphries MJ. Cell adhesion is regulated by CDK1 during the cell cycle. J Cell Biol 2018; 217:3203-3218. [PMID: 29930204 PMCID: PMC6122981 DOI: 10.1083/jcb.201802088] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
In most tissues, anchorage-dependent growth and cell cycle progression are dependent on cells engaging extracellular matrices (ECMs) via integrin-receptor adhesion complexes. In a highly conserved manner, cells disassemble adhesion complexes, round up, and retract from their surroundings before division, suggestive of a primordial link between the cell cycle machinery and the regulation of cell adhesion to the ECM. In this study, we demonstrate that cyclin-dependent kinase 1 (CDK1) mediates this link. CDK1, in complex with cyclin A2, promotes adhesion complex and actin cytoskeleton organization during interphase and mediates a large increase in adhesion complex area as cells transition from G1 into S. Adhesion complex area decreases in G2, and disassembly occurs several hours before mitosis. This loss requires elevated cyclin B1 levels and is caused by inhibitory phosphorylation of CDK1-cyclin complexes. The inactivation of CDK1 is therefore the trigger that initiates remodeling of adhesion complexes and the actin cytoskeleton in preparation for rapid entry into mitosis.
Collapse
Affiliation(s)
- Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| |
Collapse
|
308
|
Kalimutho M, Sinha D, Jeffery J, Nones K, Srihari S, Fernando WC, Duijf PH, Vennin C, Raninga P, Nanayakkara D, Mittal D, Saunus JM, Lakhani SR, López JA, Spring KJ, Timpson P, Gabrielli B, Waddell N, Khanna KK. CEP55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med 2018; 10:e8566. [PMID: 30108112 PMCID: PMC6127888 DOI: 10.15252/emmm.201708566] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022] Open
Abstract
The centrosomal protein, CEP55, is a key regulator of cytokinesis, and its overexpression is linked to genomic instability, a hallmark of cancer. However, the mechanism by which it mediates genomic instability remains elusive. Here, we showed that CEP55 overexpression/knockdown impacts survival of aneuploid cells. Loss of CEP55 sensitizes breast cancer cells to anti-mitotic agents through premature CDK1/cyclin B activation and CDK1 caspase-dependent mitotic cell death. Further, we showed that CEP55 is a downstream effector of the MEK1/2-MYC axis. Blocking MEK1/2-PLK1 signaling therefore reduced outgrowth of basal-like syngeneic and human breast tumors in in vivo models. In conclusion, high CEP55 levels dictate cell fate during perturbed mitosis. Forced mitotic cell death by blocking MEK1/2-PLK1 represents a potential therapeutic strategy for MYC-CEP55-dependent basal-like, triple-negative breast cancers.
Collapse
Affiliation(s)
- Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
- School of Natural Sciences, Griffith University, Nathan, Qld, Australia
| | - Debottam Sinha
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
- School of Natural Sciences, Griffith University, Nathan, Qld, Australia
| | - Jessie Jeffery
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | - Sriganesh Srihari
- Computational Systems Biology Laboratory, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, Australia
| | | | - Pascal Hg Duijf
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Claire Vennin
- Cancer Division, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Prahlad Raninga
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | | | - Deepak Mittal
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Jodi M Saunus
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
- Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia
| | - Sunil R Lakhani
- Centre for Clinical Research, The University of Queensland, Herston, Qld, Australia
- School of Medicine, The University of Queensland, Herston, Qld, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, Qld, Australia
| | - J Alejandro López
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
- School of Natural Sciences, Griffith University, Nathan, Qld, Australia
| | - Kevin J Spring
- Liverpool Clinical School, University of Western Sydney, Liverpool, NSW, Australia
- Ingham Institute, Liverpool Hospital, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
| | - Paul Timpson
- Cancer Division, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Brian Gabrielli
- University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| |
Collapse
|
309
|
Chen J, Lee J, Bao C, Kim JT, Lee HJ. 6,7,4′-Trihydroxyisoflavone suppressed the estrogen receptor negative breast cancer growth via regulating glycogen synthase kinase-3β/β-catenin signaling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
310
|
Soleja N, Manzoor O, Khan I, Ahmad A, Mohsin M. Role of green fluorescent proteins and their variants in development of FRET-based sensors. J Biosci 2018; 43:763-784. [PMID: 30207321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Since the last decade, a lot of advancement has been made to understand biological processes involving complex intracellular pathways. The major challenge faced was monitoring and trafficking of metabolites in real time. Although a range of quantitative and imaging techniques have been developed so far, the discovery of green fluorescent proteins (GFPs) has revolutionized the advancement in the field of metabolomics. GFPs and their variants have enabled researchers to 'paint' a wide range of biological molecules. Fluorescence resonance energy transfer (FRET)-based genetically encoded sensors is a promising technology to decipher the real-time monitoring of the cellular events inside living cells. GFPs and their variants, due to their intrinsic fluorescence properties, are extensively being used nowadays in cell-based assays. This review focuses on structure and function of GFP and its derivatives, mechanism emission and their use in the development of FRET-based sensors for metabolites.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110 025, India
| | | | | | | | | |
Collapse
|
311
|
Chohan TA, Qayyum A, Rehman K, Tariq M, Akash MSH. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed Pharmacother 2018; 107:1326-1341. [PMID: 30257348 DOI: 10.1016/j.biopha.2018.08.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 01/16/2023] Open
Abstract
Cancer denotes a pathological manifestation that is characterized by hyperproliferation of cells. It has anticipated that a better understanding of disease pathogenesis and the role of cell-cycle regulators may provide an opportunity to develop an effective cancer therapeutic agents. Specifically, the cyclin-dependent kinases (CDKs) which regulate the transition of cell-cycle through different phases; have been identified as fundamental targets for therapeutic advances. It is an evident from experimental studies that several events leading to tumor growth occur by exacerbation of CDK4/CDK6 in G1-phase of cell division cycle. Additionally, the characteristics of S- and G2/M-phase regulated by CDK1/CDK2 are pivotal events that may lead to abrupt the cell division. Although, previously reported CDK inhibitors have shown remarkable results in pre-clinical studies, but have not yielded appreciable clinical results yet. Therefore, the development of clinically potent CDK inhibitors has remained to be a challenging task. However, continuous efforts has led to the development of some novel CDKs inhibitors that have emerged as a potent strategy for the treatment of advanced cancers. In this article, we have summarized the role of CDKs in cell-cycle regulation and tumorigenesis and recent advances in the development of CDKs inhibitors as a promising therapy for the treatment of advanced cancer. In addition, we have also performed a comparison of crystallographic studies to get valuable insight into the interaction mode differences of inhibitors, binding to CDK isoforms with apparently similar binding sites. The knowledge of ligand-specific recognition towards a particular CDK isoform may be applied as a key tool in future for the designing of isoform-specific inhibitors.
Collapse
Affiliation(s)
- Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aisha Qayyum
- Department of Paediatrics Medicine, Sabzazar Hospital, Lahore, Pakistan
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Pakistan
| | | |
Collapse
|
312
|
Manigrasso MB, Friedman RA, Ramasamy R, D'Agati V, Schmidt AM. Deletion of the formin Diaph1 protects from structural and functional abnormalities in the murine diabetic kidney. Am J Physiol Renal Physiol 2018; 315:F1601-F1612. [PMID: 30132346 DOI: 10.1152/ajprenal.00075.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diaphanous 1 (DIAPH1), a member of the formin family, binds to the cytoplasmic domain of the receptor for advanced glycation end products (RAGE) and is required for RAGE signal transduction. Experiments employing genetic overexpression or deletion of Ager (the gene encoding RAGE) or its pharmacological antagonism implicate RAGE in the pathogenesis of diabetes-associated nephropathy. We hypothesized that DIAPH1 contributes to pathological and functional derangements in the kidneys of diabetic mice. We show that DIAPH1 is expressed in the human and murine diabetic kidney, at least in part in the tubulointerstitium and glomerular epithelial cells or podocytes. To test the premise that DIAPH1 is linked to diabetes-associated derangements in the kidney, we rendered male mice globally devoid of Diaph1 ( Diaph1-/-) or wild-type controls (C57BL/6 background) diabetic with streptozotocin. Control mice received equal volumes of citrate buffer. After 6 mo of hyperglycemia, diabetic Diaph1-/- mice displayed significantly reduced mesangial sclerosis, podocyte effacement, glomerular basement thickening, and urinary albumin-to-creatinine ratio compared with diabetic mice expressing Diaph1. Analysis of whole kidney cortex revealed that deletion of Diaph1 in diabetic mice significantly reduced expression of genes linked to fibrosis and inflammation. In glomerular isolates, expression of two genes linked to podocyte stress, growth arrest-specific 1 ( Gas1) and cluster of differentiation 36 ( Cd36), was significantly attenuated in diabetic Diaph1-/- mice compared with controls, in parallel with significantly higher levels of nestin (Nes) mRNA, a podocyte marker. Collectively, these data implicate DIAPH1 in the pathogenesis of diabetes-associated nephropathy and suggest that the RAGE-DIAPH1 axis is a logical target for therapeutic intervention in this disorder.
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center , New York, New York
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University , New York, New York
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| |
Collapse
|
313
|
Soleja N, Manzoor O, Khan I, Ahmad A, Mohsin M. Role of green fluorescent proteins and their variants in development of FRET-based sensors. J Biosci 2018. [DOI: 10.1007/s12038-018-9783-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
314
|
Fu DJ, Yang JJ, Li P, Hou YH, Huang SN, Tippin MA, Pham V, Song L, Zi X, Xue WL, Zhang LR, Zhang SY. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur J Med Chem 2018; 157:50-61. [PMID: 30075402 DOI: 10.1016/j.ejmech.2018.07.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Novel bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment as antiproliferative agents by targeting tubulin were synthesized and their preliminary structure activity relationships (SARs) were explored. Among all these chemical agents, 2-(Benzo[d]oxazol-2-ylthio)-N-(4-methoxybenzyl)-N-(3,4,5-trimethoxyphenyl)acetamide (4d) exhibited the potent antiproliferative activity against MGC-803 cells with an IC50 value of 0.45 μM by induction of G2/M pahse arrest and cell apoptosis. In addition, 4d could change the membrane potential (ΔΨ) of the mitochondria against MGC-803 cells. Importantly, 4d acted as a novel tubulin polymerization inhibitor binding to colchicine site with an IC50 value of 3.35 μM.
Collapse
Affiliation(s)
- Dong-Jun Fu
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Jia Yang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ping Li
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Hui Hou
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Sheng-Nan Huang
- School of Pharmaceutical Sciences & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | | | - Victor Pham
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Wei-Li Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Li-Rong Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
315
|
Castillo-Azofeifa D, Seidel K, Gross L, Golden EJ, Jacquez B, Klein OD, Barlow LA. SOX2 regulation by hedgehog signaling controls adult lingual epithelium homeostasis. Development 2018; 145:dev.164889. [PMID: 29945863 DOI: 10.1242/dev.164889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Adult tongue epithelium is continuously renewed from epithelial progenitor cells, a process that requires hedgehog (HH) signaling. In mice, pharmacological inhibition of the HH pathway causes taste bud loss within a few weeks. Previously, we demonstrated that sonic hedgehog (SHH) overexpression in lingual progenitors induces ectopic taste buds with locally increased SOX2 expression, suggesting that taste bud differentiation depends on SOX2 downstream of HH. To test this, we inhibited HH signaling in mice and observed a rapid decline in Sox2 and SOX2-GFP expression in taste epithelium. Upon conditional deletion of Sox2, differentiation of both taste and non-taste epithelial cells was blocked, and progenitor cell number increased. In contrast to basally restricted proliferation in controls, dividing cells were overabundant and spread to suprabasal epithelial layers in mutants. SOX2 loss in progenitors also led non-cell-autonomously to taste cell apoptosis, dramatically shortening taste cell lifespans. Finally, in tongues with conditional Sox2 deletion and SHH overexpression, ectopic and endogenous taste buds were not detectable; instead, progenitor hyperproliferation expanded throughout the lingual epithelium. In summary, we show that SOX2 functions downstream of HH signaling to regulate lingual epithelium homeostasis.
Collapse
Affiliation(s)
- David Castillo-Azofeifa
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94131, USA
| | - Lauren Gross
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Erin J Golden
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belkis Jacquez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,BRAIN Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94131, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA 94131, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94131, USA
| | - Linda A Barlow
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA .,Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.,BRAIN Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
316
|
Qi F, Chen Q, Chen H, Yan H, Chen B, Xiang X, Liang C, Yi Q, Zhang M, Cheng H, Zhang Z, Huang J, Wang F. WAC Promotes Polo-like Kinase 1 Activation for Timely Mitotic Entry. Cell Rep 2018; 24:546-556. [PMID: 30021153 DOI: 10.1016/j.celrep.2018.06.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/22/2018] [Accepted: 06/20/2018] [Indexed: 12/26/2022] Open
Abstract
The key mitotic regulator Polo-like kinase 1 (Plk1) is activated during G2 phase by Aurora A kinase (AurkA)-mediated phosphorylation of its activation loop, which is important for timely mitotic entry. The mechanism for Plk1 activation remains incompletely understood. Here, we report that the activation of Plk1 requires WAC, a WW domain-containing adaptor protein with a coiled-coil region that predominantly localizes to the nucleus in interphase. Cyclin-dependent kinase 1 (Cdk1) phosphorylates WAC, priming its direct interaction with the polo-box domain of Plk1. Knockdown of WAC compromises Plk1 activity and delays mitotic entry. These defects are rescued by exogenous expression of wild-type WAC, but not the Plk1-binding-deficient mutant. WAC also binds AurkA and can enhance Plk1 phosphorylation by AurkA in vitro. Taken together, these results indicate an important role for WAC in promoting Plk1 activation and the timely entry into mitosis.
Collapse
Affiliation(s)
- Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Binbin Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Hankun Cheng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
317
|
Wang JN, Zhang ZR, Che Y, Yuan ZY, Lu ZL, Li Y, Li N, Wan J, Sun HD, Sun N, Puno PT, He J. Acetyl-macrocalin B, an ent-kaurane diterpenoid, initiates apoptosis through the ROS-p38-caspase 9-dependent pathway and induces G2/M phase arrest via the Chk1/2-Cdc25C-Cdc2/cyclin B axis in non-small cell lung cancer. Cancer Biol Ther 2018; 19:609-621. [PMID: 29565730 PMCID: PMC5989808 DOI: 10.1080/15384047.2018.1449613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, and novel effective drugs against NSCLC are urgently needed. Isodon species are rich in ent-kaurane diterpenoids that have been reported to have antitumor bioactivity. Acetyl-macrocalin B (A-macB) is a novel ent-kaurane diterpenoid isolated from Isodon silvatica, and its antitumor efficacy against NSCLC and the underlying mechanisms were scrutinized in depth. The viability of cells treated with A-macB was detected by CCK-8 and colony formation assays. Apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms were investigated by detecting ROS and performing western blotting and verification experiments with specific inhibitors. The in vivo effect of A-macB was explored in a nude mouse xenograft model. A-macB effectively inhibited H1299 and A549 cell viability, triggered apoptosis and delayed cells in the G2/M phase. A-macB induced cellular ROS production and then activated the p38 MAPK-mediated, caspase 9-dependent apoptotic pathway. Both the ROS scavenger NAC and the specific p38 inhibitor SB203580 inactivated the function of p38 induced by A-macB, thus preventing cells from apoptosis. A-macB activated the Chk1/2-Cdc25C-Cdc2/cyclin B1 axis to induce G2/M phase arrest. AZD7762 abrogated the function of Chk1/2, abolished the G2/M delay and enhanced the cytotoxicity of A-macB. Moreover, A-macB efficiently suppressed tumor growth in a mouse xenograft model without noticeable toxicity to normal tissues. Having both efficacy and relative safety, A-macB is a potential lead compound that is worthy of further exploration for development as an anticancer agent.
Collapse
Affiliation(s)
- Jing-Nan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhi-Rong Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zu-Yang Yuan
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhi-Liang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
318
|
Do DV, Strauss B, Cukuroglu E, Macaulay I, Wee KB, Hu TX, Igor RDLM, Lee C, Harrison A, Butler R, Dietmann S, Jernej U, Marioni J, Smith CWJ, Göke J, Surani MA. SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discov 2018; 4:33. [PMID: 29928511 PMCID: PMC6006335 DOI: 10.1038/s41421-018-0032-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023] Open
Abstract
The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.
Collapse
Affiliation(s)
- Dang Vinh Do
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Bernhard Strauss
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Engin Cukuroglu
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH UK
| | - Keng Boon Wee
- Department Fluid Dynamics, Institute of High Performance Computing, 1 Fusionopolis Way, Singapore, 138632 Singapore
- Biomolecular Function Discovery Division, Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671 Singapore
| | - Tim Xiaoming Hu
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, Cambridge, UK
| | | | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| | - Andrew Harrison
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Sabine Dietmann
- Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR UK
| | - Ule Jernej
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - John Marioni
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Christopher W. J. Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | - Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY UK
| |
Collapse
|
319
|
Reorganization of Destabilized Nodes of Ranvier in β IV Spectrin Mutants Uncovers Critical Timelines for Nodal Restoration and Prevention of Motor Paresis. J Neurosci 2018; 38:6267-6282. [PMID: 29907663 DOI: 10.1523/jneurosci.0515-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
Disorganization of nodes of Ranvier is associated with motor and sensory dysfunctions. Mechanisms that allow nodal recovery during pathological processes remain poorly understood. A highly enriched nodal cytoskeletal protein βIV spectrin anchors and stabilizes the nodal complex to actin cytoskeleton. Loss of murine βIV spectrin allows the initial nodal organization, but causes gradual nodal destabilization. Mutations in human βIV spectrin cause auditory neuropathy and impairment in motor coordination. Similar phenotypes are caused by nodal disruption due to demyelination. Here we report on the precise timelines of nodal disorganization and reorganization by following disassembly and reassembly of key nodal proteins in βIV spectrin mice of both sexes before and after βIV spectrin re-expression at specifically chosen developmental time points. We show that the timeline of nodal restoration has different outcomes in the PNS and CNS with respect to nodal reassembly and functional restoration. In the PNS, restoration of nodes occurs within 1 month regardless of the time of βIV spectrin re-expression. In contrast, the CNS nodal reorganization and functional restoration occurs within a critical time window; after that, nodal reorganization diminishes, leading to less efficient motor recovery. We demonstrate that timely restoration of nodes can improve both the functional properties and the ultrastructure of myelinated fibers affected by long-term nodal disorganization. Our studies, which indicate a critical timeline for nodal restoration together with overall motor performance and prolonged life span, further support the idea that nodal restoration is more beneficial if initiated before any axonal damage, which is critically relevant to demyelinating disorders.SIGNIFICANCE STATEMENT Nodes of Ranvier are integral to efficient and rapid signal transmission along myelinated fibers. Various demyelinating disorders are characterized by destabilization of the nodal molecular complex, accompanied by severe reduction in nerve conduction and the onset of motor and sensory dysfunctions. This study is the first to report in vivo reassembly of destabilized nodes with sequential improvement in overall motor performance. Our study reveals that nodal restoration is achievable before any axonal damage, and that long-term nodal destabilization causes irreversible axonal structural changes that prevent functional restoration. Our studies provide significant insights into timely restoration of nodal domains as a potential therapeutic approach in treatment of demyelinating disorders.
Collapse
|
320
|
Genomic integration and ligand-dependent activation of the human estrogen receptor α in the crustacean Daphnia magna. PLoS One 2018; 13:e0198023. [PMID: 29883470 PMCID: PMC5993276 DOI: 10.1371/journal.pone.0198023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
The freshwater crustacean Daphnia have a long history in water quality assessments and now lend themselves to detection of targeted chemicals using genetically encoded reporter gene due to recent progress in the development of genome editing tools. By introducing human genes into Daphnia, we may be able to detect chemicals that affect the human system, or even apply it to screening potentially useful chemicals. Here, we aimed to develop a transgenic line of Daphnia magna that contains the human estrogen receptor alpha (hERα) and shows a fluorescence response to exposure of estrogens. We designed plasmids to express hERα in Daphnia (EF1α1:esr1) and to report estrogenic activity via red fluorescence (ERE:mcherry) under the control of estrogen response element (ERE). After confirmation of functionality of the plasmids by microinjection into embryos, the two plasmids were joined, a TALE site was added and integrated into the D. magna genome using TALEN. When the resulting transgenic Daphnia named the ES line was exposed to Diethylstilbestrol (DES) or 17β-Estradiol (E2), the ES line could reliably expressed red fluorescence derived from mCherry in a ligand-dependent manner, indicating that an estrogen-responsive line of D. magna was established. This is the first time a human gene was expressed in Daphnia, showcasing potential for further research.
Collapse
|
321
|
Hayashi Y, Fujimura A, Kato K, Udagawa R, Hirota T, Kimura K. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry. SCIENCE ADVANCES 2018; 4:eaap7777. [PMID: 29881774 PMCID: PMC5990311 DOI: 10.1126/sciadv.aap7777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G2/M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Rina Udagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
322
|
Zhu X, Li Z, Li T, Long F, Lv Y, Liu L, Liu X, Zhan Q. Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma. Biomed Pharmacother 2018; 102:502-509. [DOI: 10.1016/j.biopha.2018.03.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/17/2022] Open
|
323
|
Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 2018; 7:34959. [PMID: 29708497 PMCID: PMC5976437 DOI: 10.7554/elife.34959] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. Before a cell divides, it creates a copy of its genetic material (DNA) and evenly distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle. This complex is made of long cable-like protein chains called microtubules. To ensure that each daughter cell receives an equal amount of DNA, structures known as centrosomes organize the microtubules during the division process. Centrosomes have two rigid cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar material. It is from this material that the microtubules are organized. The pericentriolar material is a dynamic structure and changes its size by assembling and disassembling its protein components. The larger the pericentriolar material, the more microtubules can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A protein called pericentrin initiates the maturation by helping to recruit other proteins to the centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the centrosome in a matter of minutes. We do not yet know how this happens. To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as templates to build proteins. These feed into protein factories called ribosomes, which assemble the building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the cell moves the active factories to the centrosome with the help of a molecular motor called dynein. By the time the pericentrin molecules are completely made by ribosomes, they are already at the centrosome, ready to help with the recruitment of other proteins during centrosome maturation. These findings improve our understanding of centrosome maturation. The next step is to find out how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is also possible that the cell uses similar processes to deliver other proteins to different parts of the cell.
Collapse
Affiliation(s)
- Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis School of Veterinary Medicine, Davis, United States
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Tingyoung Ou
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Noemi M Castro
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lana N Christensen
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lee Cheung
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Daniel Yoon
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
324
|
Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation? CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
325
|
Ren J, Tang CZ, Li XD, Niu ZB, Zhang BY, Zhang T, Gao MJ, Ran XZ, Su YP, Wang FC. Identification of G2/M phase transition by sequential nuclear and cytoplasmic changes and molecular markers in mice intestinal epithelial cells. Cell Cycle 2018; 17:780-791. [PMID: 29338545 DOI: 10.1080/15384101.2018.1426416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Although the regulatory network of G2/M phase transition has been intensively studied in mammalian cell lines, the identification of morphological and molecular markers to identify G2/M phase transition in vivo remains elusive. In this study, we found no obvious morphological changes between the S phase and G2 phase in mice intestinal epithelial cells. The G2 phase could be identified by Brdu incorporation resistance, marginal and scattered foci of histone H3 phosphorylated at Ser10 (pHH3), and relatively intact Golgi ribbon. Prophase starts with nuclear transformation in situ, which was identified by a series of prophase markers including nuclear translocation of cyclinB1, fragmentation of the Golgi complex, and a significant increase in pHH3. The nucleus started to move upwards in the late prophase and finally rounded up at the apical surface. Then, metaphase was initiated as the level of pHH3 peaked. During anaphase and telophase, pHH3 sharply decreased, while Ki67 was obviously bound to chromosomes, and PCNA was distributed throughout the whole cell. Based on the aforementioned markers and Brdu pulse labeling, it was estimated to take about one hour for most crypt cells to go through the G2 phase and about two hours to go through the G2-M phase. It took much longer for crypt base columnar (CBC) stem cells to undergo G2-prophase than rapid transit amplifying cells. In summary, a series of sequentially presenting markers could be used to indicate the progress of G2/M events in intestinal epithelial cells and other epithelial systems in vivo.
Collapse
Affiliation(s)
- Jiong Ren
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Cai-Zhi Tang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xu-Dong Li
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Zhi-Bin Niu
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Bo-Yang Zhang
- b Batallion 2 of Student Brigade , Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Tao Zhang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Mei-Jiao Gao
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Xin-Ze Ran
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Yong-Ping Su
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| | - Feng-Chao Wang
- a Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University , Gaotanyan Street 30#, Shapingba , Chongqing 400038 , China
| |
Collapse
|
326
|
Deneke VE, Di Talia S. Chemical waves in cell and developmental biology. J Cell Biol 2018; 217:1193-1204. [PMID: 29317529 PMCID: PMC5881492 DOI: 10.1083/jcb.201701158] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Many biological events, such as the propagation of nerve impulses, the synchronized cell cycles of early embryogenesis, and collective cell migration, must be coordinated with remarkable speed across very large distances. Such rapid coordination cannot be achieved by simple diffusion of molecules alone and requires specialized mechanisms. Although active transport can provide a directed and efficient way to travel across subcellular structures, it cannot account for the most rapid examples of coordination found in biology. Rather, these appear to be driven by mechanisms involving traveling waves of chemical activities that are able to propagate information rapidly across biological or physical systems. Indeed, recent advances in our ability to probe the dynamics of signaling pathways are revealing many examples of coordination of cellular and developmental processes through traveling chemical waves. Here, we will review the theoretical principles underlying such waves; highlight recent literature on their role in different contexts, ranging from chemotaxis to development; and discuss open questions and future perspectives on the study of chemical waves as an essential feature of cell and tissue physiology.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
327
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
328
|
Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR. Mechanisms of the anti-tumor activity of Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1 H-benzo[d]imidazole-5-carboxylate against breast cancer in vitro and in vivo. Oncotarget 2018; 8:28840-28853. [PMID: 28392503 PMCID: PMC5438696 DOI: 10.18632/oncotarget.16263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
Microtubule Targeting Agents (MTAs) induce cell death through mitotic arrest, preferentially affecting rapidly dividing cancer cells over slowly proliferating normal cells. Previously, we showed that Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) acts as a potential MTA. In this study, we demonstrated that MBIC exhibits greater toxicity towards non-aggressive breast cancer cell-line, MCF-7 (IC50 = 0.73 ± 0.0 μM) compared to normal fibroblast cell-line, L-cells (IC50 = 59.6 ± 2.5 μM). The IC50 of MBIC against the aggressive breast cancer cell-line, MDA-MB-231 was 20.4 ± 0.2 μM. We hypothesized that the relatively high resistance of MDA-MB-231 cells to MBIC is associated with p53 mutation. We investigated p53 and three of its downstream proteins: survivin, cyclin dependent kinase (Cdk1) and cyclin B1. Following treatment with MBIC, survivin co-immunoprecipitated with caspases with higher affinity in MDA-MB-231 compared to MCF-7 cells. Furthermore, silencing survivin caused a 4.5-fold increase in sensitivity of MDA-MB-231 cells to MBIC (IC50 = 4.4 ± 0.3). In addition, 4 weeks of MBIC administration in MDA-MB-231 cells inoculated BALB/c nude mice resulted in 79.7% reduction of tumor volume compared to the untreated group with no severe sign of toxicity. Our results demonstrated MBIC has multiple anti-tumor actions and could be a potential drug in breast cancer therapy.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
329
|
Affiliation(s)
- Patrick L. Ferree
- Department of Cell Biology; Duke University Medical Center; Durham NC USA
| | - Stefano Di Talia
- Department of Cell Biology; Duke University Medical Center; Durham NC USA
| |
Collapse
|
330
|
Audrito V, Managò A, La Vecchia S, Zamporlini F, Vitale N, Baroni G, Cignetto S, Serra S, Bologna C, Stingi A, Arruga F, Vaisitti T, Massi D, Mandalà M, Raffaelli N, Deaglio S. Nicotinamide Phosphoribosyltransferase (NAMPT) as a Therapeutic Target in BRAF-Mutated Metastatic Melanoma. J Natl Cancer Inst 2018; 110:290-303. [DOI: 10.1093/jnci/djx198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sofia La Vecchia
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnologies and Health Science, University of Turin, Italy
| | - Gianna Baroni
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Simona Cignetto
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Cinzia Bologna
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Aureliano Stingi
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
331
|
Lynnyk A, Lunova M, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Lunov O, Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541521 PMCID: PMC5846531 DOI: 10.1364/boe.9.001283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.
Collapse
Affiliation(s)
- Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | | | | | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
332
|
Liu Y, Lucas-Hahn A, Petersen B, Li R, Hermann D, Hassel P, Ziegler M, Larsen K, Niemann H, Callesen H. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods. Cell Reprogram 2018; 19:171-179. [PMID: 28557623 DOI: 10.1089/cell.2016.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
Collapse
Affiliation(s)
- Ying Liu
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Andrea Lucas-Hahn
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Bjoern Petersen
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Rong Li
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Doris Hermann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Petra Hassel
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Maren Ziegler
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Knud Larsen
- 3 Department of Molecular Biology and Genetics, Aarhus University (Foulum) , Tjele, Denmark
| | - Heiner Niemann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Henrik Callesen
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| |
Collapse
|
333
|
Eldabah N, Nembo EN, Penner M, Semmler J, Swelem R, Hassab A, Molcanyi M, Hescheler J, Nguemo F. Altered Functional Expression of β-Adrenergic Receptors in Rhesus Monkey Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2018; 27:336-346. [PMID: 29233068 DOI: 10.1089/scd.2017.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells have demonstrated the potential to generate large numbers of functional cardiomyocytes (CMs) from different cell sources. Besides Wnt signaling, additional pathways are involved in early cardiac development and function. To date however, no study exists showing the effects of perturbing the canonical Wnt pathway using nonhuman primate embryonic stem (ES) cells. In this study, we investigated the effect of canonical Wnt inhibition during differentiation of nonhuman primate ES cell-derived CMs under defined, growth factor conditions. Rhesus monkey ES (rES) cells were differentiated into spontaneously beating CMs in the absence (control) or presence (treated) of Wnt inhibitor Dickkopf1 (DKK1), vascular endothelial growth factor, and basic fibroblast growth factor combined or added in a sequential manner during differentiation. Quantification and functional characterization of CMs were assessed by molecular and electrophysiological techniques. Analysis revealed no difference in average ratio of spontaneously beating clusters in both control and treated groups. However, the percentage of CMs was significantly reduced and the expressions of specific cardiac markers tested were also decreased in the treated group. Interestingly, we found that in CMs obtained from treated group, β-adrenergic receptors (β-ARs) were less expressed, their function was altered and electrophysiological studies revealed differences in action potential responsiveness to β-AR stimulation. We demonstrated that the Wnt/β-catenin pathway inhibitor, DKK1 associated with other growth factors repressed functional expression of β-ARs in rES cell-derived CMs. Thus, control of this pathway in each cell line and source is important for proper basic research and further cell therapy applications.
Collapse
Affiliation(s)
- Nermeen Eldabah
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany .,2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | | | - Marina Penner
- 3 Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne, Germany
| | - Judith Semmler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Rania Swelem
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Amina Hassab
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Marek Molcanyi
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Jürgen Hescheler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Filomain Nguemo
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| |
Collapse
|
334
|
Alipanah L, Winge P, Rohloff J, Najafi J, Brembu T, Bones AM. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS One 2018; 13:e0193335. [PMID: 29474408 PMCID: PMC5825098 DOI: 10.1371/journal.pone.0193335] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.
Collapse
Affiliation(s)
- Leila Alipanah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javad Najafi
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tore Brembu
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
335
|
Lu Y, Shi C, Qiu S, Fan Z. Identification and validation of COX-2 as a co-target for overcoming cetuximab resistance in colorectal cancer cells. Oncotarget 2018; 7:64766-64777. [PMID: 27074568 PMCID: PMC5323114 DOI: 10.18632/oncotarget.8649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/26/2016] [Indexed: 01/05/2023] Open
Abstract
Cetuximab, an epidermal growth factor receptor (EGFR)-blocking antibody, was approved for treatment of metastatic colorectal cancer over a decade ago; however, patients' responses to cetuximab vary substantially due to intrinsic and acquired resistance to cetuximab. Here, we report our findings using Affymetrix HG-U133A array to examine changes in global gene expression between DiFi, a human colorectal cancer cell line that is highly sensitive to cetuximab, and two other cell lines: DiFi5, a DiFi subline with acquired resistance to cetuximab, and DiFi-AG, a DiFi subline with acquired resistance to the EGFR tyrosine kinase inhibitor AG1478 but sensitivity to cetuximab. We identified prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2 (COX-2), as the gene with the greatest difference between the cetuximab-resistant DiFi5 cells and the cetuximab-sensitive DiFi cells and DiFi-AG cells. Reverse transcription polymerase chain reaction and Western blotting validated upregulation of COX-2 in DiFi5 but not in DiFi or DiFi-AG cells. We developed COX-2 knockdown stable clones from DiFi5 cells and demonstrated that genetic knockdown of COX-2 partially re-sensitized DiFi5 cells to cetuximab. We further confirmed that cetuximab in combination with a COX-2 inhibitor led to cell death via apoptosis or autophagy not only in DiFi5 cells but also in another colorectal cancer cell line naturally resistant to cetuximab. Our findings support further evaluation of the strategy of combining cetuximab and a COX-2 inhibitor for treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Yang Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunmei Shi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Songbo Qiu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Fan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
336
|
Welburn JPI, Jeyaprakash AA. Mechanisms of Mitotic Kinase Regulation: A Structural Perspective. Front Cell Dev Biol 2018; 6:6. [PMID: 29459892 PMCID: PMC5807344 DOI: 10.3389/fcell.2018.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Protein kinases are major regulators of mitosis, with over 30% of the mitotic proteome phosphorylated on serines, threonines and tyrosines. The human genome encodes for 518 kinases that have a structurally conserved catalytic domain and includes about a dozen of cell division specific ones. Yet each kinase has unique structural features that allow their distinct substrate recognition and modes of regulation. These unique regulatory features determine their accurate spatio-temporal activation critical for correct progression through mitosis and are exploited for therapeutic purposes. In this review, we will discuss the principles of mitotic kinase activation and the structural determinants that underlie functional specificity.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
337
|
Cervone N, Monica RD, Serpico AF, Vetrei C, Scaraglio M, Visconti R, Grieco D. Evidence that PP2A activity is dispensable for spindle assembly checkpoint-dependent control of Cdk1. Oncotarget 2018; 9:7312-7321. [PMID: 29484112 PMCID: PMC5800904 DOI: 10.18632/oncotarget.23329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Progression through mitosis, the cell cycle phase deputed to segregate replicated chromosomes, is granted by a protein phosphorylation wave that follows an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1, the major mitosis-promoting enzyme. To ensure correct chromosome segregation, the safeguard mechanism spindle assembly checkpoint (SAC) delays Cdk1 inactivation by preventing cyclin B degradation until mitotic spindle assembly. At the end of mitosis, reversal of bulk mitotic protein phosphorylation, downstream Cdk1 inactivation, is required to complete mitosis and crucially relies on the activity of major protein phosphatases like PP2A. A role for PP2A, however, has also been suggested in spindle assembly and SAC-dependent control of Cdk1. Indeed, PP2A was found in complex with SAC proteins while small interfering RNAs (siRNAs)-mediated downregulation of PP2A holoenzyme components affected mitosis completion in mammalian cells. However, whether the SAC-dependent control of Cdk1 required the catalytic activity of PP2A has never been directly assessed. Here, using two PP2A inhibitors, okadaic acid and LB-100, we provide evidence that PP2A activity is dispensable for SAC control of Cdk1 in human cells.
Collapse
Affiliation(s)
- Nando Cervone
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Cinzia Vetrei
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mario Scaraglio
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
338
|
Sun L, Zhang Y, Wang Y, Yang Y, Zhang C, Weng X, Zhu S, Yuan X. Real-time subcellular imaging based on graphene biosensors. NANOSCALE 2018; 10:1759-1765. [PMID: 29308810 DOI: 10.1039/c7nr07479d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-invasive living cell microscopy in real time is essential for a wide variety of biomedical research. Here, we present a subcellular refractive index imaging technique for living cells based on a graphene biosensor system. Owing to the optical reflectivity differences of graphene to s- and p-polarizations, a 45° generalized-cylindrical-vector-polarized laser beam is employed to demodulate the reflected cylindrical vector beam for differential detecting. Benefitting from the vector beam-enabled common-path graphene biosensor, the imaging spatial resolution and refractive index sensitivity are noticeably improved. Subcellular refractive index mapping of live human colonic cancer cells is perfectly achieved without inducing any cell damage. Furthermore, real-time monitoring of an individual cell is also performed with the disassembly of the cell nucleolus clearly observed. This technique would be a promising tool for the study of living cell morphology, kinetics, and pathology, and for other biomedical research.
Collapse
Affiliation(s)
- Lixun Sun
- Institute of Modern Optics, Nankai University, Tianjin, 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Mchedlishvili N, Matthews HK, Corrigan A, Baum B. Two-step interphase microtubule disassembly aids spindle morphogenesis. BMC Biol 2018; 16:14. [PMID: 29361957 PMCID: PMC5778756 DOI: 10.1186/s12915-017-0478-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entry into mitosis triggers profound changes in cell shape and cytoskeletal organisation. Here, by studying microtubule remodelling in human flat mitotic cells, we identify a two-step process of interphase microtubule disassembly. RESULTS First, a microtubule-stabilising protein, Ensconsin/MAP7, is inactivated in prophase as a consequence of its phosphorylation downstream of Cdk1/cyclin B. This leads to a reduction in interphase microtubule stability that may help to fuel the growth of centrosomally nucleated microtubules. The peripheral interphase microtubules that remain are then rapidly lost as the concentration of tubulin heterodimers falls following dissolution of the nuclear compartment boundary. Finally, we show that a failure to destabilise microtubules in prophase leads to the formation of microtubule clumps, which interfere with spindle assembly. CONCLUSIONS This analysis highlights the importance of the step-wise remodelling of the microtubule cytoskeleton and the significance of permeabilisation of the nuclear envelope in coordinating the changes in cellular organisation and biochemistry that accompany mitotic entry.
Collapse
Affiliation(s)
- Nunu Mchedlishvili
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen K Matthews
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adam Corrigan
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
340
|
Costa-Almeida R, Berdecka D, Rodrigues MT, Reis RL, Gomes ME. Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. J Cell Biochem 2018; 119:3653-3662. [PMID: 29231990 DOI: 10.1002/jcb.26573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Poor clinical outcomes of tendon repair, together with limited regenerative capacity of the tissue, have triggered the search for alternative regenerative medicine strategies. Human adipose-derived stem cells (hASCs) are being investigated as a promising cell source in contributing for tendon repopulation and reconstruction. However, the mechanisms involved in a potential beneficial effect in tendon regeneration are still to be uncovered. To gain further insights on the bi-directional crosstalk occurring between stem cells and the native tendon niche, it was used an indirect (trans-well) system for co-culturing human tendon explants and hASCs. The maintenance of tissue architecture was studied up to 14 days by histological techniques. The secretion of MMPs was evaluated at day 3. The behavior of hASCs was assessed regarding cell elongation and extracellular matrix (ECM) production. The paracrine communication enhanced collagenolytic activity of MMPs in co-cultures at day 3, in comparison to hASCs alone or tendon explants alone, suggesting that ECM remodeling is triggered early in culture. Moreover, hASCs were spontaneously more elongated in co-cultures and the deposition of collagen type III and tenascin-C by hASCs in co-culture was observed at a lower extent after 7 days, in comparison to hASCs alone, being lately recovered at day 14. Overall, explant co-cultures established herein may constitute a tool for replicating the first steps in tendon healing and help uncovering the bi-directional communication occurring between hASCs and the native tendon niche.
Collapse
Affiliation(s)
- Raquel Costa-Almeida
- 3B's Research Group, -Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Dominika Berdecka
- 3B's Research Group, -Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, -Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, -Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, -Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| |
Collapse
|
341
|
Wang J, Zhang Z, Che Y, Yuan Z, Lu Z, Li Y, Wan J, Sun H, Chen Z, Pu J, He J. Rabdocoestin B exhibits antitumor activity by inducing G2/M phase arrest and apoptosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol 2018; 81:469-481. [PMID: 29308536 DOI: 10.1007/s00280-017-3507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is generally resistant to chemotherapy. In the present study, the cytotoxic activity of Rabdocoestin B (Rabd-B) against ESCC and the underlying mechanisms were investigated. METHODS The inhibitory effect of Rabd-B on KYSE30 and KYSE450 was evaluated by Cell Counting Kit-8 (CCK8) and colony formation assays in vitro. The cell cycle distribution and apoptosis of cells treated with Rabd-B were determined by flow cytometry. The mechanisms underlying the effects of Rabd-B were systematically examined by Western blot. The in vivo anti-tumor ability of Rabd-B was measured in mouse xenograft models and cisplatin (DDP) was used as positive control. RESULTS Rabd-B efficiently induced G2/M phase arrest in ESCC cells by upregulating the Chk1/Chk2-Cdc25C axis to inhibit the G2→M transition facilitated by Cdc2/Cyclin B1. Furthermore, Rabd-B suppressed ATM/ATR phosphorylation, thereby inhibiting BRCA1-mediated DNA repair, which resulted in mitotic catastrophe and induced cell apoptosis. Rabd-B also decreased the activity of the Akt and NF-κB survival signaling pathways and ultimately initiated the caspase-9-dependent intrinsic apoptotic pathway in ESCC cells. The apoptosis induced by Rabd-B could be partially reversed by a caspase-9-specific inhibitor (Z-LEHD-FMK) and a pan-caspase inhibitor (Z-VAD-FMK). Moreover, Rabd-B effectively suppressed tumor growth in mouse xenografts which was comparable to that of DDP without significant injuries to the mice. CONCLUSION Taken together, these findings indicate that Rabd-B is a promising precursor compound that may be useful as a treatment for ESCC and thus warrants further investigation.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhirong Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zuyang Yuan
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Jianxin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
342
|
Strauss B, Harrison A, Coelho PA, Yata K, Zernicka-Goetz M, Pines J. Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis. J Cell Biol 2018; 217:179-193. [PMID: 29074707 PMCID: PMC5748970 DOI: 10.1083/jcb.201612147] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
There is remarkable redundancy between the Cyclin-Cdk complexes that comprise the cell cycle machinery. None of the mammalian A-, D-, or E-type cyclins are required in development until implantation, and only Cdk1 is essential for early cell divisions. Cyclin B1 is essential for development, but whether it is required for cell division is contentious. Here, we used a novel imaging approach to analyze Cyclin B1-null embryos from fertilization onward. We show that Cyclin B1-/- embryos arrest in G2 phase after just two divisions. This is the earliest arrest of any Cyclin known and places Cyclin B1 with cdk1 as the essential regulators of the cell cycle. We reintroduced mutant proteins into this genetically null background to determine why Cyclin B1 is constantly exported from the nucleus. We found that Cyclin B1 must be exported from the nucleus for the cell to prevent premature entry to mitosis, and retaining Cyclin B1-Cdk1 at the plasma membrane precludes entry to mitosis.
Collapse
Affiliation(s)
- Bernhard Strauss
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | - Andrew Harrison
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | | | - Keiko Yata
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
| | - Magdalena Zernicka-Goetz
- The Gurdon Institute, Cambridge, England, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Jonathon Pines
- The Gurdon Institute, Cambridge, England, UK
- Department of Zoology, University of Cambridge, Cambridge, England, UK
- The Institute of Cancer Research, London, England, UK
| |
Collapse
|
343
|
Makiyama T, Higashi S, Sakane H, Nogami S, Shirataki H. γ-Taxilin temporally regulates centrosome disjunction in a Nek2A-dependent manner. Exp Cell Res 2018; 362:412-423. [DOI: 10.1016/j.yexcr.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
|
344
|
Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases. Genetics 2017; 208:655-672. [PMID: 29254995 PMCID: PMC5788529 DOI: 10.1534/genetics.117.300594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
Loss of V-ATPase activity in organelles triggers compensatory endocytic downregulation of the plasma membrane proton pump Pma1. Here, Velivela and Kane... Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase (vma) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae. We have previously determined that the α-arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of ∼50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control.
Collapse
|
345
|
Lunova M, Prokhorov A, Jirsa M, Hof M, Olżyńska A, Jurkiewicz P, Kubinová Š, Lunov O, Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci Rep 2017; 7:16049. [PMID: 29167516 PMCID: PMC5700114 DOI: 10.1038/s41598-017-16447-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrey Prokhorov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry AS CR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
346
|
Shiu PK, Hunter CP. Early Developmental Exposure to dsRNA Is Critical for Initiating Efficient Nuclear RNAi in C. elegans. Cell Rep 2017; 18:2969-2978. [PMID: 28329688 DOI: 10.1016/j.celrep.2017.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 11/17/2022] Open
Abstract
RNAi has enabled researchers to study the function of many genes. However, it is not understood why some RNAi experiments succeed while others do not. Here, we show in C. elegans that pharyngeal muscle is resistant to RNAi when initially exposed to double-stranded RNA (dsRNA) by feeding but sensitive to RNAi in the next generation. Investigating this observation, we find that pharyngeal muscle cells as well as vulval muscle cells require nuclear rather than cytoplasmic RNAi. Further, we find in these cell types that nuclear RNAi silencing is most efficiently triggered during early development, defining a critical period for initiating nuclear RNAi. Finally, using heat-shock-induced dsRNA expression, we show that synMuv B class mutants act in part to extend this critical window. The synMuv-B-dependent early-development-associated critical period for initiating nuclear RNAi suggests that mechanisms that restrict developmental plasticity may also restrict the initiation of nuclear RNAi.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
347
|
Su KC, Barry Z, Schweizer N, Maiato H, Bathe M, Cheeseman IM. A Regulatory Switch Alters Chromosome Motions at the Metaphase-to-Anaphase Transition. Cell Rep 2017; 17:1728-1738. [PMID: 27829144 PMCID: PMC5130098 DOI: 10.1016/j.celrep.2016.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/09/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
To achieve chromosome segregation during mitosis, sister chromatids must undergo a dramatic change in their behavior to switch from balanced oscillations at the metaphase plate to directed poleward motion during anaphase. However, the factors that alter chromosome behavior at the metaphase-to-anaphase transition remain incompletely understood. Here, we perform time-lapse imaging to analyze anaphase chromosome dynamics in human cells. Using multiple directed biochemical, genetic, and physical perturbations, our results demonstrate that differences in the global phosphorylation states between metaphase and anaphase are the major determinant of chromosome motion dynamics. Indeed, causing a mitotic phosphorylation state to persist into anaphase produces dramatic metaphase-like oscillations. These induced oscillations depend on both kinetochore-derived and polar ejection forces that oppose poleward motion. Thus, our analysis of anaphase chromosome motion reveals that dephosphorylation of multiple mitotic substrates is required to suppress metaphase chromosome oscillatory motions and achieve directed poleward motion for successful chromosome segregation.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Zachary Barry
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nina Schweizer
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúdem, Universidade do Porto, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúdem, Universidade do Porto, 4200-135 Porto, Portugal; Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Iain McPherson Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
348
|
Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. eLife 2017; 6:e29303. [PMID: 29154753 PMCID: PMC5706962 DOI: 10.7554/elife.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Collapse
Affiliation(s)
- Ana Maria G Dumitru
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Scott F Rusin
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Amber E M Clark
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Duane A Compton
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| |
Collapse
|
349
|
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging (Albany NY) 2017; 8:1759-80. [PMID: 27514077 PMCID: PMC5032694 DOI: 10.18632/aging.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
Collapse
Affiliation(s)
- Thuy T Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel W Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - William E Zackert
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - James D West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shijun Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua P Fessel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
350
|
Iwahori S, Kalejta RF. Phosphorylation of transcriptional regulators in the retinoblastoma protein pathway by UL97, the viral cyclin-dependent kinase encoded by human cytomegalovirus. Virology 2017; 512:95-103. [PMID: 28946006 DOI: 10.1016/j.virol.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/11/2023]
Abstract
Human cytomegalovirus (HCMV) encodes a viral cyclin-dependent kinase (v-CDK), the UL97 protein. UL97 phosphorylates Rb, p107 and p130, thereby inactivating all three retinoblastoma (Rb) family members. Rb proteins function through regulating the activity of transcription factors to which they bind. Therefore, we examined whether the UL97-mediated regulation of the Rb tumor suppressors also extended to their binding partners. We observed that UL97 phosphorylates LIN52, a component of p107- and p130-assembled transcriptionally repressive DREAM complexes that control transcription during the G0/G1 phases, and the Rb-associated E2F3 protein that activates transcription through G1 and S phases. Intriguingly, we also identified FoxM1B, a transcriptional regulator during the S and G2 phases, as a UL97 substrate. This survey extends the influence of UL97 beyond simply the Rb proteins themselves to their binding partners, as well as past the G1/S transition into later stages of the cell cycle.
Collapse
Affiliation(s)
- Satoko Iwahori
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States
| | - Robert F Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|