301
|
Li W, Serpell LC, Carter WJ, Rubinsztein DC, Huntington JA. Expression and Characterization of Full-length Human Huntingtin, an Elongated HEAT Repeat Protein. J Biol Chem 2006; 281:15916-22. [PMID: 16595690 DOI: 10.1074/jbc.m511007200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is an inherited neurodegenerative disorder that is caused by expanded CAG trinucleotide repeats, resulting in a polyglutamine stretch of >37 on the N terminus of the protein huntingtin (htt). htt is a large (347 kDa), ubiquitously expressed protein. The precise functions of htt are not clear, but its importance is underscored by the embryonic lethal phenotype in htt knock-out mice. Despite the fact that the htt gene was cloned 13 years ago, little is known about the properties of the full-length protein. Here we report the expression and preliminary characterization of recombinant full-length wild-type human htt. Our results support a model of htt composed entirely of HEAT repeats that stack to form an elongated superhelix.
Collapse
Affiliation(s)
- Wei Li
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
302
|
Rubinsztein DC, Huntington JA. Paradoxical aggregation versus oligomerisation properties of mutant and wild-type huntingtin fragments. Exp Neurol 2006; 199:243-4. [PMID: 16631742 DOI: 10.1016/j.expneurol.2006.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/06/2006] [Indexed: 11/17/2022]
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2XY, UK.
| | | |
Collapse
|
303
|
Arango M, Holbert S, Zala D, Brouillet E, Pearson J, Régulier E, Thakur AK, Aebischer P, Wetzel R, Déglon N, Néri C. CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity. J Neurosci 2006; 26:4649-59. [PMID: 16641246 PMCID: PMC6674076 DOI: 10.1523/jneurosci.5409-05.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transcriptional dysregulation caused by expanded polyglutamines (polyGlns) in huntingtin (htt) may be central to cell-autonomous mechanisms for neuronal cell death in Huntington's disease (HD) pathogenesis. We hypothesized that these mechanisms may involve the dysfunction of the transcriptional regulator CA150, a putative modifier of onset age in HD, because it binds to htt and accumulates in an HD grade-dependent manner in striatal and cortical neurons. Consistently, we report herein that CA150 expression rescues striatal cell death in lentiviral overexpression (rats) and knock-in (mouse cells) conditions for mutant htt neurotoxicity. In both systems, rescue was dependent on the (Gln-Ala)38 repeat normally found in CA150. We excluded the possibility that rescue may be caused by the (Gln-Ala)38 repeat interacting with polyGlns and, by doing so, blocking mutant htt toxicity. In contrast, we found the (Gln-Ala)38 repeat is required for the nuclear restriction of exogenous CA150, suggesting that rescue requires nuclear CA150. Additionally, we found the (Gln-Ala)38 repeat was dispensable for CA150 transcriptional repression ability, suggesting further that CA150 localization is critical to rescue. Finally, rescue was associated with increased neuritic aggregation, with no reduction of nuclear inclusions, suggesting the solubilization and nuclear export of mutant htt. Together, our data indicate that mutant htt may induce CA150 dysfunction in striatal neurons and suggest that the restoration of nuclear protein cooperativity may be neuroprotective.
Collapse
|
304
|
Abstract
Molecular networks represent the backbone of molecular activity within the cell. Recent studies have taken a comparative approach toward interpreting these networks, contrasting networks of different species and molecular types, and under varying conditions. In this review, we survey the field of comparative biological network analysis and describe its applications to elucidate cellular machinery and to predict protein function and interaction. We highlight the open problems in the field as well as propose some initial mathematical formulations for addressing them. Many of the methodological and conceptual advances that were important for sequence comparison will likely also be important at the network level, including improved search algorithms, techniques for multiple alignment, evolutionary models for similarity scoring and better integration with public databases.
Collapse
Affiliation(s)
- Roded Sharan
- School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
305
|
Mirgorodskaya E, Wanker E, Otto A, Lehrach H, Gobom J. Method for qualitative comparisons of protein mixtures based on enzyme-catalyzed stable-isotope incorporation. J Proteome Res 2006; 4:2109-16. [PMID: 16335956 DOI: 10.1021/pr050219i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining which proteins are unique among one or several protein populations is an often-encountered task in proteomics. To this purpose, we present a new method based on trypsin-catalyzed incorporation of the stabile isotope (18)O in the C-termini of tryptic peptides, followed by LC-MALDI MS analysis. The analytical strategy was designed such that proteins unique to a given population out of several can be assigned in a single experiment by the isotopic signal intensity distributions of their tryptic peptides in the recorded mass spectra. The method is demonstrated for protein-protein interaction analysis, in which the differential isotope labeling was used to distinguish endogenous human brain proteins interacting with a recombinant bait protein from nonbiospecific background binders.
Collapse
|
306
|
Grelle G, Kostka S, Otto A, Kersten B, Genser KF, Müller EC, Wälter S, Böddrich A, Stelzl U, Hänig C, Volkmer-Engert R, Landgraf C, Alberti S, Höhfeld J, Strödicke M, Wanker EE. Identification of VCP/p97, Carboxyl Terminus of Hsp70-interacting Protein (CHIP), and Amphiphysin II Interaction Partners Using Membrane-based Human Proteome Arrays. Mol Cell Proteomics 2006; 5:234-44. [PMID: 16275660 DOI: 10.1074/mcp.m500198-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins mediate their biological function through interactions with other proteins. Therefore, the systematic identification and characterization of protein-protein interactions have become a powerful proteomic strategy to understand protein function and comprehensive cellular regulatory networks. For the screening of valosin-containing protein, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners, we utilized a membrane-based array technology that allows the identification of human protein-protein interactions with crude bacterial cell extracts. Many novel interaction pairs such as valosin-containing protein/autocrine motility factor receptor, CHIP/caytaxin, or amphiphysin II/DLP4 were identified and subsequently confirmed by pull-down, two-hybrid and co-immunoprecipitation experiments. In addition, assays were performed to validate the interactions functionally. CHIP e.g. was found to efficiently polyubiquitinate caytaxin in vitro, suggesting that it might influence caytaxin degradation in vivo. Using peptide arrays, we also identified the binding motifs in the proteins DLP4, XRCC4, and fructose-1,6-bisphosphatase, which are crucial for the association with the Src homology 3 domain of amphiphysin II. Together these studies indicate that our human proteome array technology permits the identification of protein-protein interactions that are functionally involved in neurodegenerative disease processes, the degradation of protein substrates, and the transport of membrane vesicles.
Collapse
Affiliation(s)
- Gerlinde Grelle
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Abstract
Whole-genome analyses become more and more necessary for pharmaceutical research. DNA chip hybridizations are an important tool for monitoring gene expression profiles during diseases or medical treatment. However, drug target identification and validation as well as an increasing number of antibodies and other polypeptides tested as potential drugs produce an increasing demand for genome-wide functional assays. Protein arrays are an important step into this direction. Peptide arrays and protein expression libraries are useful for the identification of antibodies and for epitope mapping. Antibody arrays allow protein quantification, protein binding studies, and protein phosphorylation assays. Tissue micro-arrays give a detailed information about the localization of macromolecules. More complex interactions can be addressed in cells spotted in array format. Finally, microfluidics chips enable us to describe the communication between cells in a tissue. In this review, possibilities, limitations and chances of different protein array techniques are discussed.
Collapse
Affiliation(s)
- Christian Maercker
- RZPD German Resource Center for Genome Research GmbH, Berlin-Heidelberg, Heidelberg, Germany.
| |
Collapse
|
308
|
Suopanki J, Götz C, Lutsch G, Schiller J, Harjes P, Herrmann A, Wanker EE. Interaction of huntingtin fragments with brain membranes--clues to early dysfunction in Huntington's disease. J Neurochem 2006; 96:870-84. [PMID: 16405500 DOI: 10.1111/j.1471-4159.2005.03620.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract Huntingtin is a large, multi-domain protein of unknown function in the brain. An abnormally elongated polyglutamine stretch in its N-terminus causes Huntington's disease (HD), a progressive neurodegenerative disorder. Huntingtin has been proposed to play a functional role in membrane trafficking via proteins involved in endo- and exocytosis. Here, we supply evidence for a direct association between huntingtin and membranes. In the brains of R6/2 mice with HD pathology, a 64 kDa N-terminal huntingtin fragment accumulated in postsynaptic membranes during the pre-symptomatic period of 4-8 weeks of age. In addition, an oligomeric fragment of approximately 200 kDa was detected at 8 weeks of age. Simultaneous progressive changes in distribution of amphiphysin, synaptojanin, and subunits of NMDA- and AMPA-receptors provide a strong indication of dysfunctional synaptic trafficking. Composition of the major phospholipids in the synaptic membranes was unaffected. In vitro, large unilamellar vesicles of brain lipids readily associated with soluble N-terminal huntingtin exon 1 fragments and stimulated fibrillogenesis of mutant huntingtin aggregates. Moreover, interaction of both mutant and wild-type huntingtin exon 1 fragments with brain lipids caused bilayer perturbation, mediated through a proline-rich region adjacent to the polyglutamines. This suggests that lipid interactions in vivo could influence misfolding of huntingtin and may play an early role in HD pathogenesis.
Collapse
Affiliation(s)
- Jaana Suopanki
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
In recent years the facile, yet powerful, genetics of the baker's yeast Saccharomyces cerevisiae has been appropriated for the study of amyloid toxicity. Several models of amyloid toxicity using this simple eukaryotic organism have been developed that faithfully recapitulate many disease-relevant phenotypes. Furthermore, these models have been exploited in genetic screens that have provided insight into conserved mechanisms of amyloid toxicity and identified potential therapeutic targets for disease. In this chapter, we discuss the strengths and weaknesses of yeast models of amyloid toxicity and how experiments with these models may be relevant to amyloid disorders. We suggest approaches for development of new yeast models of amyloid toxicity and provide an overview of screening protocols for genetic modifiers of amyloid toxicity by both random and systematic approaches.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Genetics, Univeristy of Leicester, Leicester, United Kingdom LE1 7RH
| | | |
Collapse
|
310
|
Lievens S, Lemmens I, Montoye T, Eyckerman S, Tavernier J. Two-hybrid and its recent adaptations. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:317-324. [PMID: 24980535 DOI: 10.1016/j.ddtec.2006.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Interactions between proteins play a pivotal role in virtually all cellular processes, and many of these interactions represent interesting targets for drug development. Among the wide array of interactor-hunting technologies that has emerged, genetic two-hybrid methods account for a large amount of the currently available interaction data and is being successfully applied in interactome-scale mapping projects. Reverse two-hybrid approaches have been developed that allow selected interactions to be assayed for disrupting compounds.:
Collapse
Affiliation(s)
- Sam Lievens
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Irma Lemmens
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Tony Montoye
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Sven Eyckerman
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Jan Tavernier
- Flanders Interuniversity Institute for Biotechnology (VIB), Department of Medical Protein Research, Ghent University, Faculty of Medicine and Health Sciences, A. Baertsoenkaai 3, 9000 Ghent, Belgium.
| |
Collapse
|
311
|
Premont RT. Once and future signaling: G protein-coupled receptor kinase control of neuronal sensitivity. Neuromolecular Med 2005; 7:129-47. [PMID: 16052042 DOI: 10.1385/nmm:7:1-2:129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/02/2005] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most numerous class of cell surface receptor, and substances acting through GPCRs mediate many critical signaling events and physiological processes. GPCR sensitivity and signaling is dynamic, responding rapidly to adjust to changes in the ambient level of stimulation of target cells. One important mediator of such receptor sensitivity is the family of GPCR kinases (GRKs). Like heterotrimeric G proteins, GRKs recognize agonist-bound, activated receptors, and this recognition promotes catalytic activation of GRKs, resulting in the preferential phosphorylation of activated receptors. GRK-phosphorylated receptors are then targeted by arrestin proteins, which bind to phosphorylated receptors. Arrestin-bound receptors are uncoupled from heterotrimeric G proteins, resulting in decreased sensitivity to further receptor stimulation (desensitization). Arrestin-bound receptors are also accelerated into internalization pathways and linked to distinct arrestin-mediated signaling pathways. GRKs thus serve as gatekeepers for receptors, terminating some signaling pathways and initiating others. One major outstanding question concerning GRKs understanding the mechanisms by which any particular receptor subtype (of the 800 or so in the body) is regulated by a specific GRK(s), and the consequences of this specificity. An understanding of this regulatory specificity could allow targeting of GRK function to ameliorate diseases involving GPCR dysregulation.
Collapse
Affiliation(s)
- Richard T Premont
- Liver Center, Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
312
|
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 2005; 6:919-30. [PMID: 16288298 DOI: 10.1038/nrn1806] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | |
Collapse
|
313
|
Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005; 122:957-68. [PMID: 16169070 DOI: 10.1016/j.cell.2005.08.029] [Citation(s) in RCA: 1701] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/18/2005] [Accepted: 08/26/2005] [Indexed: 12/26/2022]
Abstract
Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.
Collapse
Affiliation(s)
- Ulrich Stelzl
- Max Delbrueck Center for Molecular Medicine, 13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Zeniou-Meyer M, Borg JP, Vitale N. Le complexe GIT-PIX : Une plate-forme de régulation des GTPases ARF et Rac/Cdc42. Med Sci (Paris) 2005; 21:849-53. [PMID: 16197902 DOI: 10.1051/medsci/20052110849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently described that the tumor suppressor factor Scribble anchors the PIX exchange factor for Rac/Cdc42 and the ARF-GAP GIT proteins at the plasma membrane. Because it has been postulated that the GIT-PIX proteins dimerize and tightly self-assemble to form a high molecular weight complex, this nexus may be capable of linking together important signalling molecules to control cytosqueleton polymerization and membrane dynamics. To date, most studies that have tempted to unravel the function of these proteins have found their implication in a great variety of cellular functions (receptor recycling, endo-exocytosis, cell migration, synapse formation...) but have mostly neglected to consider the multimeric organization of this hub. There is no doubt that our comprehension of physiopathological disorders such as cancers will be improved when the nature of the complex pathways integrated by the GIT-PIX nodule will be understood.
Collapse
Affiliation(s)
- Maria Zeniou-Meyer
- CNRS UPR-2356, Neurotransmission et sécrétion neuroendocrine, Centre de neurochimie, Strasbourg, France
| | | | | |
Collapse
|
315
|
Ralser M, Goehler H, Wanker EE, Lehrach H, Krobitsch S. Generation of a yeast two-hybrid strain suitable for competitive protein binding analysis. Biotechniques 2005; 39:165-6, 168. [PMID: 16116786 DOI: 10.2144/05392bm01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Markus Ralser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | |
Collapse
|
316
|
Cusick ME, Klitgord N, Vidal M, Hill DE. Interactome: gateway into systems biology. Hum Mol Genet 2005; 14 Spec No. 2:R171-81. [PMID: 16162640 DOI: 10.1093/hmg/ddi335] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Protein-protein interactions are fundamental to all biological processes, and a comprehensive determination of all protein-protein interactions that can take place in an organism provides a framework for understanding biology as an integrated system. The availability of genome-scale sets of cloned open reading frames has facilitated systematic efforts at creating proteome-scale data sets of protein-protein interactions, which are represented as complex networks or 'interactome' maps. Protein-protein interaction mapping projects that follow stringent criteria, coupled with experimental validation in orthogonal systems, provide high-confidence data sets immanently useful for interrogating developmental and disease mechanisms at a system level as well as elucidating individual protein function and interactome network topology. Although far from complete, currently available maps provide insight into how biochemical properties of proteins and protein complexes are integrated into biological systems. Such maps are also a useful resource to predict the function(s) of thousands of genes.
Collapse
Affiliation(s)
- Michael E Cusick
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
317
|
Abstract
The Huntington disease gene was mapped to human chromosome 4p in 1983 and 10 years later the pathogenic mutation was identified as a CAG-repeat expansion. Our current understanding of the molecular pathogenesis of Huntington disease could never have been achieved without the recent progress in the field of molecular genetics. We are now equipped with powerful genetic models that continue to uncover new aspects of the pathogenesis of Huntington disease and will be instrumental for the development of therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, GKT School of Medicine, King's College London, 8th Floor Guy's Tower, Guy's Hospital, London SE1 9RT, United Kingdom.
| |
Collapse
|
318
|
Sauer S, Lange BMH, Gobom J, Nyarsik L, Seitz H, Lehrach H. Miniaturization in functional genomics and proteomics. Nat Rev Genet 2005; 6:465-76. [PMID: 15931170 DOI: 10.1038/nrg1618] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proteins are the key components of the cellular machinery responsible for processing changes that are ordered by genomic information. Analysis of most human proteins and nucleic acids is important in order to decode the complex networks that are likely to underlie many common diseases. Significant improvements in current technology are also required to dissect the regulatory processes in high-throughtput and with low cost. Miniaturization of biological assays is an important prerequisite to achieve these goals in the near future.
Collapse
Affiliation(s)
- Sascha Sauer
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
319
|
Abstract
Huntington's disease (HD) is a fatal autosomal-dominant disorder involving progressive motor, cognitive and psychiatric symptoms. HD is one of a large family of neurodegenerative diseases caused by a trinucleotide (CAG) repeat mutation, encoding an expanded tract of glutamines in the disease protein. HD was one of the first neurological disorders for which accurate transgenic models were created, allowing mechanisms of pathogenesis to be explored at molecular, cellular and behavioural levels. In the last decade, the understanding of molecular and cellular changes which occur in HD prior to onset of symptoms, and at early and late stages of disease progression, has been greatly expanded. A wide range of potential molecular targets for therapeutic intervention have been identified, associated with a variety of cellular processes including gene transcription, protein trafficking, protein degradation, protein-protein interactions, glutamatergic synaptic transmission, presynaptic signalling, postsynaptic signalling, synaptic plasticity, dopaminergic and neurotrophic modulation of synaptic function, experience-dependent neurogenesis, mitochondrial function and oxidative metabolism. Presymptomatic testing for the HD gene mutation necessitates future development of novel therapeutics aimed at delaying onset of symptoms, as well as slowing or reversing disease progression.
Collapse
Affiliation(s)
- Anthony J Hannan
- Howard Florey Institute, National Neuroscience Facility, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
320
|
Dächsel JC, Lücking CB, Deeg S, Schultz E, Lalowski M, Casademunt E, Corti O, Hampe C, Patenge N, Vaupel K, Yamamoto A, Dichgans M, Brice A, Wanker EE, Kahle PJ, Gasser T. Parkin interacts with the proteasome subunit α4. FEBS Lett 2005; 579:3913-9. [PMID: 15987638 DOI: 10.1016/j.febslet.2005.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 06/03/2005] [Indexed: 01/05/2023]
Abstract
Mutations in the parkin gene encoding an E3 ligase are responsible for autosomal recessive Parkinson's disease. Putative parkin substrates and interacting partners have been identified, but the molecular mechanism underlying parkin-related neurodegeneration is still unclear. We have identified the 20S proteasomal subunit alpha4 (synonyms: PSMA7, XAPC7, subunit alpha type 7) as a new interacting partner of parkin. The C-terminal IBR-RING domain of parkin and the C-terminal part of alpha4 were essential for the interaction. Biochemical studies revealed that alpha4 was not a substrate for parkin-dependent ubiquitylation. Putative functions of the interaction might therefore be substrate presentation to the proteasome or regulation of proteasomal activity. Full-length parkin and parkin lacking the N-terminal ubiquitin-like domain slightly increased the proteasomal activity in HEK 293T cells, in line with the latter hypothesis.
Collapse
Affiliation(s)
- J C Dächsel
- Labor für Molekulare Neurogenetik, Neurologische Klinik der Ludwig-Maximilians-Universität, Marchioninistr. 15, 81377 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 2005; 1:2005.0008. [PMID: 16729043 PMCID: PMC1681463 DOI: 10.1038/msb4100012] [Citation(s) in RCA: 404] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/04/2005] [Indexed: 12/15/2022] Open
Abstract
Interactions between short modified peptide motifs and modular protein domains are central events in cell signal-transduction. We determined interaction partners to all cytosolic tyrosine residues of the four members of the ErbB-receptor family in an unbiased fashion by quantitative proteomics using pull-down experiments with pairs of phosphorylated and nonphosphorylated synthetic peptides. Each receptor had characteristic preferences for interacting proteins and most interaction partners had multiple binding sites on each receptor. EGFR and ErbB4 had several docking sites for Grb2, while ErbB3 was characterized by six binding sites for PI3K. We identified STAT5 as a direct binding partner to EGFR and ErbB4 and discovered new recognition motifs for Shc and STAT5. The overall pattern of interaction partners of EGFR and ErbB4 suggests similar roles during signaling through their respective ligands. Phosphorylation kinetics of several tyrosine resides was measured by mass spectrometry and correlated with interaction partner preference. Our results demonstrate that system-wide mapping of peptide-protein interactions sites is possible, and suggest shared and unique roles of ErbB-receptor family members in downstream signaling.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
| | - Lei Deng
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
| | - Matthias Mann
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Tel: +45 6550 2364; Fax: +45 6593 3929; E-mail:
| |
Collapse
|
322
|
Affiliation(s)
- Jean-Philippe Lambert
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
323
|
Abstract
Analysis of protein-protein interaction networks has identified new proteins and interactions that might be involved in the pathogenesis of the neurodegenerative disorder Huntington's disease. Analysis of protein-protein interaction networks is becoming important for inferring the function of uncharacterized proteins. A recent study using this approach has identified new proteins and interactions that might be involved in the pathogenesis of the neurodegenerative disorder Huntington's disease, including a GTPase-activating protein that co-localizes with protein aggregates in Huntington's disease patients.
Collapse
Affiliation(s)
- Flaviano Giorgini
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Paul J Muchowski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
- The Center for Neurogenetics and Neurotherapeutics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
324
|
Bürkle L, Meyer S, Dortay H, Lehrach H, Heyl A. In vitro recombination cloning of entire cDNA libraries in Arabidopsis thaliana and its application to the yeast two-hybrid system. Funct Integr Genomics 2005; 5:175-83. [PMID: 15714319 DOI: 10.1007/s10142-005-0134-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 12/05/2004] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
In the postgenomic era many experiments rely on the availability of transcript sequence for cloning. As these clones usually originate from cDNA libraries, the quality of these libraries is crucial. If a good library is generated it is desirable to use a versatile cloning system suitable for many different kinds of applications. The cloning systems based on in vitro recombination proves fitting for this task. However, the use of this method for shuttling entire cDNA libraries between different vectors has not yet been studied in great detail. Here we describe the construction of four cDNA libraries from different tissues of Arabidopsis thaliana, the shuttling of the libraries into expression vectors, and evaluation of this method as well as its suitability for downstream applications. Libraries were constructed from seedlings, hormone treated seedlings, flowers, developing seeds and primary leaves in the "entry vector" of the Gateway cloning system. After initial characterization of the libraries, they were shuttled into an expression vector (a yeast two-hybrid prey vector). To monitor for a size bias generally assumed to be inherent to in vitro recombination methods, the libraries were characterized before and after the transfer into the expression vector. However no significant difference could be detected. The functionality of the in vitro recombination system for the shuttling of entire libraries was then further tested by protein-protein interaction screens. The results of the library characterization and of the yeast two-hybrid screens and their implications for large-scale proteomic approaches are discussed.
Collapse
Affiliation(s)
- Lukas Bürkle
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | |
Collapse
|
325
|
de Curtis I, Paris S. Assay and Properties of the GIT1/p95‐APP1 ARFGAP. Methods Enzymol 2005; 404:267-78. [PMID: 16413276 DOI: 10.1016/s0076-6879(05)04025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
GIT1/p95-APP1 is an adaptor protein with an aminoterminal ARFGAP domain involved in the regulation of ARF6 function. GIT1/p95-APP1 forms stable complexes with a number of proteins including downstream effectors and exchanging factors for members of the Rho family of small GTPases. This protein can also interact with other adaptor proteins implicated in the regulation of cell adhesion and synapse formation. The stability of the endogenous and reconstituted complexes after cell lysis allows the biochemical identification and characterization of the GIT1 complexes that can be isolated from different cell types. This article presents methods for the identification of the endogenous and reconstituted GIT1 complexes that can be utilized for the biochemical and functional characterization of the complexes from different tissue and cell types.
Collapse
Affiliation(s)
- Ivan de Curtis
- San Rafaele Scientific Institute, Department of Molecular Biology and Functional Genomics, Milano, Italy
| | | |
Collapse
|
326
|
Johnson MD, Yu LR, Conrads TP, Kinoshita Y, Uo T, McBee JK, Veenstra TD, Morrison RS. The Proteomics of Neurodegeneration. ACTA ACUST UNITED AC 2005; 5:259-70. [PMID: 16078862 DOI: 10.2165/00129785-200505040-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuing improvement and refinement of proteomic and bioinformatic tools has made it possible to obtain increasing amounts of structural and functional information about proteins on a global scale. The emerging field of neuroproteomics promises to provide powerful strategies for further characterizing neuronal dysfunction and cell loss associated with neurodegenerative diseases. Neuroproteomic studies have thus far revealed relatively comprehensive quantitative changes and post-translational modifications (mostly oxidative damage) of high abundance proteins, confirming deficits in energy production, protein degradation, antioxidant protein function, and cytoskeletal regulation associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. The identification of changes in low-abundance proteins and characterization of their functions based on protein-protein interactions still await further development of proteomic methodologies and more dedicated application of these technologies by neuroscientists. Once accomplished, however, the resulting information will certainly provide a truly comprehensive view of neurodegeneration-associated changes in protein expression, facilitating the identification of novel biomarkers for the early detection of neurodegenerative diseases and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark D Johnson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Abstract
Huntington's disease is caused by a polyglutamine expansion in the protein huntingtin. Several studies suggest that huntingtin and its associated protein HAP1 participate in intracellular trafficking and that polyglutamine expansion affects vesicular transport. A study now provides new evidence that HAP1 is also involved in the endocytosis of membrane receptors. These studies offer insight into the normal function of HAP1 and its involvement in Huntington's disease.
Collapse
Affiliation(s)
- Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
328
|
Monitor – biology. Drug Discov Today 2004. [DOI: 10.1016/s1359-6446(04)03191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|