301
|
Abstract
The reaction of thioamino acids and N-terminal peptides, mediated by hindered isonitriles and hydroxybenzotriazole, gives rise to peptide bonds. In one pathway, oxytocin was synthesized by eight such reiterative amidations. In another stereospecific track, oxytocin was constructed by native chemical ligation, wherein the two building blocks were assembled by thioacid amine amidation. The NMR spectra of oxytocin and dihydrooxytocin suggest a high level of preorganization in the latter, perhaps favoring oxidative folding.
Collapse
Affiliation(s)
- Ting Wang
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
| | - Samuel J. Danishefsky
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065
- Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027
| |
Collapse
|
302
|
Love TM, Enoch MA, Hodgkinson CA, Pecina M, Mickey B, Koeppe RA, Stohler CS, Goldman D, Zubieta JK. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol Psychiatry 2012; 72:198-206. [PMID: 22418012 PMCID: PMC3392442 DOI: 10.1016/j.biopsych.2012.01.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 01/13/2012] [Accepted: 01/26/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxytocin, classically involved in social and reproductive activities, is increasingly recognized as an antinociceptive and anxiolytic agent, effects which may be mediated via oxytocin's interactions with the dopamine system. Thus, genetic variation within the oxytocin gene (OXT) is likely to explain variability in dopamine-related stress responses. As such, we examined how OXT variation is associated with stress-induced dopaminergic neurotransmission in a healthy human sample. METHODS Fifty-five young healthy volunteers were scanned using [¹¹C]raclopride positron emission tomography while they underwent a standardized physical and emotional stressor that consisted of moderate levels of experimental sustained deep muscle pain, and a baseline, control state. Four haplotype tagging single nucleotide polymorphisms located in regions near OXT were genotyped. Measures of pain, affect, anxiety, well-being and interpersonal attachment were also assessed. RESULTS Female rs4813625 C allele carriers demonstrated greater stress-induced dopamine release, measured as reductions in receptor availability from baseline to the pain-stress condition relative to female GG homozygotes. No significant differences were detected among males. We also observed that female rs4813625 C allele carriers exhibited higher attachment anxiety, higher trait anxiety and lower emotional well-being scores. In addition, greater stress-induced dopamine release was associated with lower emotional well-being scores in female rs4813625 C allele carriers. CONCLUSIONS Our results suggest that variability within the oxytocin gene appear to explain interindividual differences in dopaminergic responses to stress, which are shown to be associated with anxiety traits, including those linked to attachment style, as well as emotional well-being in women.
Collapse
Affiliation(s)
| | - Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda MD
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda MD
| | - Marta Pecina
- Molecular and Behavioral Neuroscience Institute, Ann Arbor
| | - Brian Mickey
- Molecular and Behavioral Neuroscience Institute, Ann Arbor,Department of Psychiatry, University of Michigan, Ann Arbor
| | | | | | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda MD
| | - Jon-Kar Zubieta
- Molecular and Behavioral Neuroscience Institute, Ann Arbor,Department of Psychiatry, University of Michigan, Ann Arbor
| |
Collapse
|
303
|
Hicks C, Jorgensen W, Brown C, Fardell J, Koehbach J, Gruber CW, Kassiou M, Hunt GE, McGregor IS. The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats. J Neuroendocrinol 2012; 24:1012-29. [PMID: 22420322 PMCID: PMC3399775 DOI: 10.1111/j.1365-2826.2012.02311.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V(1a) R) pharmacology and regional patterns of c-Fos expression. Binding data for WAY 267,464 and oxytocin were obtained by displacement binding assays on cellular membranes, while functional receptor data were generated by luciferase reporter assays. For behavioural testing, adolescent rats were tested in a social preference paradigm, the elevated plus-maze (EPM) and for locomotor activity changes following WAY 267,464 (10 and 100 mg/kg, i.p.) or oxytocin (0.1 and 1 mg/kg, i.p.). The higher doses were also examined for their effects on regional c-Fos expression. Results showed that WAY 267,464 had higher affinity (K(i) ) at the V(1a) R than the OTR (113 versus 978 nm). However, it had no functional response at the V(1a) R and only a weak functional effect (EC(50) ) at the OTR (881 nm). This suggests WAY 267,464 is an OTR agonist with weak affinity and a possible V(1a) R antagonist. Oxytocin showed high binding at the OTR (1.0 nm) and V(1a) R (503 nm), with a functional EC(50) of 9.0 and 59.7 nm, respectively, indicating it is a potent OTR agonist and full V(1a) R agonist. WAY 267,464 (100 mg/kg), but not oxytocin, significantly increased the proportion of time spent with a live rat, over a dummy rat, in the social preference test. Neither compound affected EPM behaviour, whereas the higher doses of WAY 267,464 and oxytocin suppressed locomotor activity. WAY 267,464 and oxytocin produced similar c-Fos expression in the paraventricular hypothalamic nucleus, central amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, suggesting a commonality of action at the OTR with the differential doses employed. However, WAY 267,464 caused greater c-Fos expression in the medial amygdala and the supraoptic nucleus than oxytocin, and lesser effects in the locus coeruleus. Overall, our results confirm the differential effects of WAY 267,464 and oxytocin and suggest that this may reflect contrasting actions of WAY 267,464 and oxytocin at the V(1a) R. Antagonism of the V(1a) R by WAY 267,464 could underlie some of the prosocial effects of this drug either through a direct action or through disinhibition of oxytocin circuitry that is subject to vasopressin inhibitory influences.
Collapse
Affiliation(s)
- C. Hicks
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| | - W. Jorgensen
- School of Chemistry, University of Sydney, Sydney, Australia
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - C. Brown
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| | - J. Fardell
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| | - J. Koehbach
- Medical University of Vienna, Centre for Physiology and Pharmacology, Vienna, Austria
| | - C. W. Gruber
- Medical University of Vienna, Centre for Physiology and Pharmacology, Vienna, Austria
| | - M. Kassiou
- School of Chemistry, University of Sydney, Sydney, Australia
- Brain and Mind Research Institute, University of Sydney, Sydney, Australia
- Discipline of Medical Radiation Sciences, University of Sydney, Sydney, Australia
| | - G. E. Hunt
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Concord Hospital, Sydney, Australia
| | - I. S. McGregor
- School of Psychology, Brennan MacCallum Building, University of Sydney, Sydney, Australia
| |
Collapse
|
304
|
Test of association between 10 single nucleotide polymorphisms in the oxytocin receptor gene and conduct disorder. Psychiatr Genet 2012; 22:99-102. [PMID: 21934640 DOI: 10.1097/ypg.0b013e32834c0cb2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Animal and human studies have implicated oxytocin in affiliative and prosocial behaviors. We tested whether genetic variation in the oxytocin receptor (OXTR) gene is associated with conduct disorder (CD). Utilizing a family-based sample of adolescent probands recruited from an adolescent substance abuse treatment program, control probands and their families (total sample, n=1750), we conducted three tests of association with CD and 10 single nucleotide polymorphisms (SNPs) in the OXTR gene: (a) family-based comparison utilizing the entire sample; (b) within-Whites, case-control comparison of adolescent patients with CD and controls without CD; and (c) within-Whites case-control comparison of parents of patients and parents of controls. Family-based association tests failed to show significant results (no results P<0.05). While strictly correcting for the number of tests (α=0.002), adolescent patients with CD did not differ significantly from adolescent controls in genotype frequency for the OXTR SNPs tested; similarly, comparison of OXTR genotype frequencies for parents failed to differentiate patient and control family type, except a trend association for rs237889 (P=0.004). We concluded that in this sample, 10 SNPs in the OXTR gene were not significantly associated with CD.
Collapse
|
305
|
Blum K, Werner T, Carnes S, Carnes P, Bowirrat A, Giordano J, Oscar-Berman M, Gold M. Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms. J Psychoactive Drugs 2012; 44:38-55. [PMID: 22641964 DOI: 10.1080/02791072.2012.662112] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The nucleus accumbens, a site within the ventral striatum, plays a prominent role in mediating the reinforcing effects of drugs of abuse, food, sex, and other addictions. Indeed, it is generally believed that this structure mandates motivated behaviors such as eating, drinking, and sexual activity, which are elicited by natural rewards and other strong incentive stimuli. This article focuses on sex addiction, but we hypothesize that there is a common underlying mechanism of action for the powerful effects that all addictions have on human motivation. That is, biological drives may have common molecular genetic antecedents, which if impaired, lead to aberrant behaviors. Based on abundant scientific support, we further hypothesize that dopaminergic genes, and possibly other candidate neurotransmitter-related gene polymorphisms, affect both hedonic and anhedonic behavioral outcomes. Genotyping studies already have linked gene polymorphic associations with alcohol and drug addictions and obesity, and we anticipate that future genotyping studies of sex addicts will provide evidence for polymorphic associations with specific clustering of sexual typologies based on clinical instrument assessments. We recommend that scientists and clinicians embark on research coupling the use of neuroimaging tools with dopaminergic agonistic agents to target specific gene polymorphisms systematically for normalizing hyper- or hypo-sexual behaviors.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610-0256, USA.
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Wu Y, Lu W, Lin W, Leng G, Feng J. Bifurcations of emergent bursting in a neuronal network. PLoS One 2012; 7:e38402. [PMID: 22685566 PMCID: PMC3369873 DOI: 10.1371/journal.pone.0038402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/04/2012] [Indexed: 11/23/2022] Open
Abstract
Complex neuronal networks are an important tool to help explain paradoxical phenomena observed in biological recordings. Here we present a general approach to mathematically tackle a complex neuronal network so that we can fully understand the underlying mechanisms. Using a previously developed network model of the milk-ejection reflex in oxytocin cells, we show how we can reduce a complex model with many variables and complex network topologies to a tractable model with two variables, while retaining all key qualitative features of the original model. The approach enables us to uncover how emergent synchronous bursting can arise from a neuronal network which embodies known biological features. Surprisingly, the bursting mechanisms are similar to those found in other systems reported in the literature, and illustrate a generic way to exhibit emergent and multiple time scale oscillations at the membrane potential level and the firing rate level.
Collapse
Affiliation(s)
- Yu Wu
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, China
- Centre for Scientific Computing and Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Wenlian Lu
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Mathematics for Nonlinear Science, Fudan University and Ministry of Education of China, Shanghai, China
- Centre for Scientific Computing and Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Wei Lin
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Mathematics for Nonlinear Science, Fudan University and Ministry of Education of China, Shanghai, China
| | - Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jianfeng Feng
- Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, China
- Centre for Scientific Computing and Department of Computer Science, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
307
|
Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. Neuropsychopharmacology 2012; 37:1474-82. [PMID: 22278094 PMCID: PMC3327852 DOI: 10.1038/npp.2011.333] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intranasal application of oxytocin (OT) has been shown to influence behavioral and neural correlates of social processing. These effects are probably mediated by genetic variations within the OT system. One potential candidate could be the CD38 gene, which codes for a transmembrane protein engaged in OT secretion processes. A common variation in this gene (rs3796863) was recently found to be associated with autism spectrum disorders (ASD). Using an imaging genetics approach, we studied differential effects of an intranasal OT application on neural processing of social stimuli in 55 healthy young men depending on their CD38 gene variant in a double-blind placebo-controlled crossover design. Genotype had a significant influence on both behavioral and neuronal measures of social processing. Homozygotic risk allele carriers showed slower reaction times (RT) and higher activation of left fusiform gyrus during visual processing of social stimuli. Under OT activation differences between genotypes were more evident (though not statistically significantly increased) and RT were accelerated in homozygotic risk allele carriers. According to our data, rs3796863 mainly influences fusiform gyrus activation, an area which has been widely discussed in ASD research. OT seems to modulate this effect by enhancing activation differences between allele groups, which suggests an interaction between genetic makeup and OT availability on fusiform gyrus activation. These results support recent approaches to apply OT as a pharmacological treatment of ASD symptoms.
Collapse
|
308
|
The animal and human neuroendocrinology of social cognition, motivation and behavior. Nat Neurosci 2012; 15:681-8. [PMID: 22504348 DOI: 10.1038/nn.3084] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extensive animal and recent human research have helped inform neuroendocrinological models of social cognition, motivation and behavior. In this review, we first summarize important findings regarding oxytocin, arginine vasopressin and testosterone in the domains of affiliation, social cognition, aggression and stress/anxiety. We then suggest ways in which human research can continue to profit from animal research, particularly by exploring the interactive nature of neuromodulatory effects at neurochemical, organismic and contextual levels. We further propose methods inspired by the animal literature for the ecologically valid assessment of affiliative behavior in humans. We conclude with suggestions for how human research could advance by directly assessing specific social cognitive and motivational mechanisms as intermediate variables. We advocate a more comprehensive look at the distinct networks identified by social neuroscience and the importance of a motivational state, in addition to approach and avoidance, associated with quiescence and homeostatic regulation.
Collapse
|
309
|
Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 2012; 24:609-28. [PMID: 22375852 PMCID: PMC3490377 DOI: 10.1111/j.1365-2826.2012.02303.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 01/08/2023]
Abstract
We recently reviewed the status of peptide and nonpeptide agonists and antagonists for the V(1a), V(1b) and V(2) receptors for arginine vasopressin (AVP) and the oxytocin receptor for oxytocin (OT). In the present review, we update the status of peptides and nonpeptides as: (i) research tools and (ii) therapeutic agents. We also present our recent findings on the design of fluorescent ligands for V(1b) receptor localisation and for OT receptor dimerisation. We note the exciting discoveries regarding two novel naturally occurring analogues of OT. Recent reports of a selective VP V(1a) agonist and a selective OT agonist point to the continued therapeutic potential of peptides in this field. To date, only two nonpeptides, the V(2) /V(1a) antagonist, conivaptan and the V(2) antagonist tolvaptan have received Food and Drug Administration approval for clinical use. The development of nonpeptide AVP V(1a), V(1b) and V(2) antagonists and OT agonists and antagonists has recently been abandoned by Merck, Sanofi and Pfizer. A promising OT antagonist, Retosiban, developed at Glaxo SmithKline is currently in a Phase II clinical trial for the prevention of premature labour. A number of the nonpeptide ligands that were not successful in clinical trials are proving to be valuable as research tools. Peptide agonists and antagonists continue to be very widely used as research tools in this field. In this regard, we present receptor data on some of the most widely used peptide and nonpeptide ligands, as a guide for their use, especially with regard to receptor selectivity and species differences.
Collapse
Affiliation(s)
- M Manning
- Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614-2598, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Herzmann G, Young B, Bird CW, Curran T. Oxytocin can impair memory for social and non-social visual objects: a within-subject investigation of oxytocin's effects on human memory. Brain Res 2012; 1451:65-73. [PMID: 22424787 DOI: 10.1016/j.brainres.2012.02.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 11/30/2022]
Abstract
Oxytocin is important to social behavior and emotion regulation in humans. Oxytocin's role derives in part from its effect on memory performance. More specifically, previous research suggests that oxytocin facilitates recognition of social (e.g., faces), but not of non-social stimuli (e.g., words, visual objects). We conducted the first within-subject study to this hypothesis in a double-blind, placebo-controlled design. We administered oxytocin (24IU) and placebo (saline) in two separate sessions and in randomized order to healthy men. To obtain a baseline measure for session-dependent memory effects, which are caused by proactive interference, an additional group of male subjects in each session received placebo unbeknownst to them and the experimenter. After administration, participants studied faces and houses. Exactly one day after each study session, participants were asked to make memory judgments of new and old items. In the first study-test session, participants administered with oxytocin showed reduced recollection of previously studied faces and houses. Oxytocin also interacted with proactive-interference effects. By impeding memory in the first session, it reduced proactive interference in the second. But oxytocin contributed additionally to the memory-reducing effect of proactive interference when administered in the second session. These results demonstrate that oxytocin can have a memory-impairing effect on both social and non-social visual objects. The present study also emphasizes the necessity of including a non-treated, baseline group in within-subject designs when investigating oxytocin's effects on human memory.
Collapse
Affiliation(s)
- Grit Herzmann
- Department of Psychology and Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
311
|
Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Young WS, Lee HJ, Blanchard DC, Blanchard RJ. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm Behav 2012; 61:436-44. [PMID: 22100185 PMCID: PMC3373312 DOI: 10.1016/j.yhbeh.2011.10.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/25/2011] [Indexed: 12/16/2022]
Abstract
A wealth of studies has implicated oxytocin (Oxt) and its receptors (Oxtr) in the mediation of social behaviors and social memory in rodents. It has been suggested that failures in this system contribute to deficits in social interaction that characterize autism spectrum disorders (ASD). In the current analyses, we investigated the expression of autism-related behaviors in mice that lack the ability to synthesize the oxytocin receptor itself, Oxtr knockout (KO) mice, as compared to their wild-type (WT) littermates. In the visible burrow system, Oxtr KO mice showed robust reductions in frontal approach, huddling, allo-grooming, and flight, with more time spent alone, and in self-grooming, as compared to WT. These results were corroborated in the three-chambered test: unlike WT, Oxtr KO mice failed to spend more time in the side of the test box containing an unfamiliar CD-1 mouse. In the social proximity test, Oxtr KO mice showed clear reductions in nose to nose and anogenital sniff behaviors oriented to an unfamiliar C57BL/6J (B6) mouse. In addition, our study revealed no differences between Oxtr WT and KO genotypes in the occurrence of motor and cognitive stereotyped behaviors. A significant genotype effect was found in the scent marking analysis, with Oxtr KO mice showing a decreased number of scent marks, as compared to WT. Overall, the present data indicate that the profile for Oxtr KO mice, including consistent social deficits, and reduced levels of communication, models multiple components of the ASD phenotype. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii,1993 East-west Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | |
Collapse
|
312
|
Ophir AG, Gessel A, Zheng DJ, Phelps SM. Oxytocin receptor density is associated with male mating tactics and social monogamy. Horm Behav 2012; 61:445-53. [PMID: 22285648 PMCID: PMC3312950 DOI: 10.1016/j.yhbeh.2012.01.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/21/2022]
Abstract
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Alexander G Ophir
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
313
|
Walum H, Lichtenstein P, Neiderhiser JM, Reiss D, Ganiban JM, Spotts EL, Pedersen NL, Anckarsäter H, Larsson H, Westberg L. Variation in the oxytocin receptor gene is associated with pair-bonding and social behavior. Biol Psychiatry 2012; 71:419-26. [PMID: 22015110 PMCID: PMC3266986 DOI: 10.1016/j.biopsych.2011.09.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/08/2011] [Accepted: 09/05/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND In specific vole and primate species the neuropeptide oxytocin plays a central role in the regulation of pair-bonding behavior. Here we investigate the extent to which genetic variants in the oxytocin receptor gene (OXTR) are associated with pair-bonding and related social behaviors in humans. METHODS We first genotyped twelve single nucleotide polymorphisms (SNPs) in the TOSS (Twin and Offspring Study in Sweden) (n = 2309) and the TCHAD (Swedish Twin Study of Child and Adolescent Development) (n = 1240), comprising measures of self-reported pair-bonding behavior. In the TOSS sample we further investigated one of the SNPs for measures of marital status and quality. Moreover, in the TCHAD sample we explored the longitudinal relationship between precursors of pair-bonding during childhood and subsequent behavior in romantic relationships. Finally, in the TCHAD study and in the Child and Adolescent Twin Study of Sweden (CATSS) (n = 1771), the association between the same SNP and childhood behaviors was investigated. RESULTS One SNP (rs7632287) in OXTR was associated with traits reflecting pair-bonding in women in the TOSS and TCHAD samples. In girls the rs7632287 SNP was further associated with childhood social problems, which longitudinally predicted pair-bonding behavior in the TCHAD sample. This association was replicated in the CATSS sample in which an association between the same SNP and social interaction deficit symptoms from the autism spectrum was detected. CONCLUSION These results suggest an association between variation in OXTR and human pair-bonding and other social behaviors, possibly indicating that the well-described influence of oxytocin on affiliative behavior in voles could also be of importance for humans.
Collapse
Affiliation(s)
- Hasse Walum
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, S-171 77 Stockholm, Sweden
| | - Jenae M. Neiderhiser
- Department of Psychology, The Pennsylvania State University, 222 Moore Building, University Park, PA16802, USA
| | - David Reiss
- Yale Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT06520, USA
| | - Jody M. Ganiban
- Department of Psychology, The George Washington University, Building GG 2125 G. St NW, Washington DC 20052, USA
| | - Erica L. Spotts
- Division of Behavioral & Social Research, National Institute on Aging, 7201 Wisconsin Avenue, #533 Bethesda, MD 20892-9205, USA
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, S-171 77 Stockholm, Sweden
| | - Henrik Anckarsäter
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Lillhagsparken 3, S-422 50 Hisings Backa, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, S-171 77 Stockholm, Sweden
| | - Lars Westberg
- Institute of Neuroscience and Physiology, Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Box 431, S-405 30 Gothenburg, Sweden
| |
Collapse
|
314
|
Childhood aggression, callous-unemotional traits and oxytocin genes. Eur Child Adolesc Psychiatry 2012; 21:125-32. [PMID: 22294460 DOI: 10.1007/s00787-012-0240-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/07/2012] [Indexed: 12/24/2022]
Abstract
Given the known behavior effects of oxytocin,and in particular its putative effect on trust, affiliation and anxiety, we hypothesized that oxytocin may be involved in the development and expression of callous-unemotional traits in children with aggressive antisocial behavior. We recruited 162 children between the ages of 6 and 16. The majority of subjects were Caucasian (84.0%) compared to African-Canadian (4.9%) and others (11.1%). The oxytocin and oxytocin receptor gene polymorphisms were genotyped and analyzed for possible association with child aggression in a case–control study design as well as with callous-unemotional traits in a within cases analysis. We did not have significant findings with our tested OXTR markers in the case–control analysis. We found the OXTR_rs237885 AA genotype carriers to score higher than AC or CC genotype carriers on the callous-unemotional traits. This result remained significant following correction for multiple testing. No other markers were found to be significant. However, the haplotype consisting of the OXTR_rs237885 A allele and OXTR_rs2268493 A allele was associated with significantly higher callous-unemotionals cores than other haplotypes. This is the first known study to show a significant association between callous unemotional traits in children and adolescents with extreme, persistent pervasive aggression and a polymorphism on the oxytocin receptor. Given the small sample size and the possibility of false positive effects, the need to replicate and verify these findings is required.
Collapse
|
315
|
Panguluri SK, Kuwabara N, Kang Y, Cooper N, Lundy RF. Conditioned taste aversion dependent regulation of amygdala gene expression. Physiol Behav 2012; 105:996-1006. [PMID: 22119580 PMCID: PMC3260345 DOI: 10.1016/j.physbeh.2011.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/05/2023]
Abstract
The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning.
Collapse
Affiliation(s)
- Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Nobuyuki Kuwabara
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Yi Kang
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis MO
| | - Nigel Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville KY
| |
Collapse
|
316
|
Krueger F, Parasuraman R, Moody L, Twieg P, de Visser E, McCabe K, O'Hara M, Lee MR. Oxytocin selectively increases perceptions of harm for victims but not the desire to punish offenders of criminal offenses. Soc Cogn Affect Neurosci 2012; 8:494-8. [PMID: 22368214 DOI: 10.1093/scan/nss026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The neuropeptide oxytocin functions as a hormone and neurotransmitter and facilitates complex social cognition and approach behavior. Given that empathy is an essential ingredient for third-party decision-making in institutions of justice, we investigated whether exogenous oxytocin modulates empathy of an unaffected third-party toward offenders and victims of criminal offenses. Healthy male participants received intranasal oxytocin or placebo in a randomized, double-blind, placebo-controlled, between-subjects design. Participants were given a set of legal vignettes that described an event during which an offender engaged in criminal offenses against victims. As an unaffected third-party, participants were asked to rate those criminal offenses on the degree to which the offender deserved punishment and how much harm was inflicted on the victim. Exogenous oxytocin selectively increased third-party decision-makers' perceptions of harm for victims but not the desire to punish offenders of criminal offenses. We argue that oxytocin promoted empathic concern for the victim, which in turn increased the tendency for prosocial approach behavior regarding the interpersonal relationship between an unaffected third-party and a fictional victim in the criminal scenarios. Future research should explore the context- and person-dependent nature of exogenous oxytocin in individuals with antisocial personality disorder and psychopathy, in whom deficits in empathy feature prominently.
Collapse
Affiliation(s)
- Frank Krueger
- Department of Molecular Neuroscience, George Mason University, 4400 University Drive, Mail Stop 2A1, Fairfax, VA 22030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Fields RL, Ponzio TA, Kawasaki M, Gainer H. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo. PLoS One 2012; 7:e32085. [PMID: 22363799 PMCID: PMC3283729 DOI: 10.1371/journal.pone.0032085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/23/2012] [Indexed: 12/13/2022] Open
Abstract
The magnocellular neurons (MCNs) in the hypothalamus selectively express either oxytocin (OXT) or vasopressin (AVP) neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV) vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON). Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.
Collapse
Affiliation(s)
| | | | | | - Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
318
|
Krueger F, Parasuraman R, Iyengar V, Thornburg M, Weel J, Lin M, Clarke E, McCabe K, Lipsky RH. Oxytocin receptor genetic variation promotes human trust behavior. Front Hum Neurosci 2012; 6:4. [PMID: 22347177 PMCID: PMC3270329 DOI: 10.3389/fnhum.2012.00004] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/16/2012] [Indexed: 11/13/2022] Open
Abstract
Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR) gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A)/guanine (G) transition (rs53576) has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students (n = 108) with the administration of a trust game experiment. Our results show that a common occurring genetic variation (rs53576) in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG) showed higher trust behavior than individuals with A allele carriers (AA/AG). Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors.
Collapse
Affiliation(s)
- Frank Krueger
- Department of Molecular Neuroscience, George Mason University Fairfax, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Abstract
Sociability consists of behaviors that bring animals together and those that keep animals apart. Remarkably, while the neural circuitry that regulates these two "faces" of sociability differ from one another, two neurohormones, oxytocin (Oxt) and vasopressin (Avp), have been consistently implicated in the regulation of both. In this chapter the the structure and function of the Oxt and Avp systems, the ways in which affiliative and aggressive behavior are studied and the roles of Oxt and Avp in the regulation of sociability will be briefly reviewed. Finally, work implicating Oxt and Avp in sociability in humans, with a focus on neuropsychiatric disorders will be highlighted.
Collapse
Affiliation(s)
- Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Ohio, USA.
| |
Collapse
|
320
|
Tops M, Buisman-Pijlman FTA, Boksem MAS, Wijers AA, Korf J. Cortisol-induced increases of plasma oxytocin levels predict decreased immediate free recall of unpleasant words. Front Psychiatry 2012; 3:43. [PMID: 22623919 PMCID: PMC3353157 DOI: 10.3389/fpsyt.2012.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/20/2012] [Indexed: 11/23/2022] Open
Abstract
Cortisol and oxytocin have been shown to interact in both the regulation of stress responses and in memory function. In the present study we administered cortisol to 35 healthy female subjects in a within-subject double-blind placebo-controlled design, while measuring oxytocin levels, adrenocorticotropic hormone (ACTH) levels, and free recall of pleasant and of unpleasant words. We found that cortisol administration suppressed ACTH levels and (1) induced a decrease in oxytocin associated with ACTH suppression and (2) an increase in oxytocin that was independent from ACTH suppression. This cortisol-induced increase in plasma oxytocin was associated with a selective decrease in immediate free recall of unpleasant words from primacy positions. The present results add to evidence that cortisol-induced increases in oxytocin could mediate some of the effects of stress and cortisol on memory, and possibly play a role in the regulation of the hypothalamo-pituitary-adrenal stress response. This mechanism could significantly impact affective and social behaviors, in particular during times of stress.
Collapse
Affiliation(s)
- Mattie Tops
- Centre for Child and Family Studies, University of Leiden Leiden, Netherlands
| | | | | | | | | |
Collapse
|
321
|
Narver HL. Oxytocin in the treatment of dystocia in mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2012; 51:10-7. [PMID: 22330862 PMCID: PMC3276960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/09/2011] [Accepted: 07/22/2011] [Indexed: 05/31/2023]
Abstract
Physicians and veterinarians often prescribe oxytocin to treat dystocia. However, oxytocin administration to pregnant women or animals is not without risk. In the venue of laboratory animal medicine, the use of oxytocin may present confounding variables to research. Although oxytocin has been studied extensively, many of its physiologic effects and interactions with other hormones remain unclear. Investigator concerns about adverse and confounding effects of oxytocin in their research mice prompted the current review of oxytocin and its use to treat murine dystocia. Well-controlled studies of oxytocin in dystocic mice have not been conducted. However, in humans and other animals, inconsistent and adverse effects are well-documented. Limited knowledge of the complex physiologic and molecular mechanisms of action of oxytocin and scant support for the efficacy of oxytocin in dystocic mice fail to meet the standards of evidence-based veterinary medical practice. The administration of oxytocin is contraindicated in many cases of dystocia in research mice, and its use in dystocic mice may be unfounded. A brief review of oxytocin and the physiologic mechanisms of parturition are provided to support this conclusion. Alternative treatments for murine dystocia are discussed, and a holistic approach is advocated to better serve animal welfare and to safeguard the integrity of valuable research. Laboratory animal veterinarians overseeing the development of guidelines or standard operating procedures for technician or investigator treatment of dystocic mice should understand the effects of oxytocin administration in light of relevant research.
Collapse
Affiliation(s)
- Heather L Narver
- Animal Health Care Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
322
|
Mok SI, Munasinghe JP, Young WS. Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain. Brain Struct Funct 2012; 217:107-14. [PMID: 21597966 PMCID: PMC3242156 DOI: 10.1007/s00429-011-0324-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
Abstract
Manganese-enhanced magnetic resonance imaging is a technique that employs the divalent ion of the paramagnetic metal manganese (Mn(2+)) as an effective contrast agent to visualize, in vivo, the mammalian brain. As total achievable contrast is directly proportional to the net amount of Mn(2+) accumulated in the brain, there is a great interest in optimizing administration protocols to increase the effective delivery of Mn(2+) to the brain while avoiding the toxic effects of Mn(2+) overexposure. In this study, we investigated outcomes following continuous slow systemic infusion of manganese chloride (MnCl(2)) into the mouse via mini-osmotic pump administration. The effects of increasing fractionated rates of Mn(2+) infusion on signal enhancement in regions of the brain were analyzed in a three-treatment study. We acquired whole-brain 3-D T1-weighted images and performed region of interest quantitative analysis to compare mean normalized signal in Mn(2+) treatments spanning 3, 7, or 14 days of infusion (rates of 1, 0.5, and 0.25 μL/h, respectively). Evidence of Mn(2+) transport at the conclusion of each infusion treatment was observed throughout the brains of normally behaving mice. Regions of particular Mn(2+) accumulation include the olfactory bulbs, cortex, infralimbic cortex, habenula, thalamus, hippocampal formation, amygdala, hypothalamus, inferior colliculus, and cerebellum. Signals measured at the completion of each infusion treatment indicate comparable means for all examined fractionated rates of Mn(2+) infusion. In this current study, we achieved a significantly higher dose of Mn(2+) (180 mg/kg) than that employed in previous studies without any observable toxic effects on animal physiology or behavior.
Collapse
Affiliation(s)
- Stephanie I Mok
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, DHHS, 9000 Rockville Pike, Building 49, Room 5A51, Bethesda, MD 20892-4483, USA
| | | | | |
Collapse
|
323
|
Yin P, Bousquet-Moore D, Annangudi SP, Southey BR, Mains RE, Eipper BA, Sweedler JV. Probing the production of amidated peptides following genetic and dietary copper manipulations. PLoS One 2011; 6:e28679. [PMID: 22194882 PMCID: PMC3241674 DOI: 10.1371/journal.pone.0028679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022] Open
Abstract
Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.
Collapse
Affiliation(s)
- Ping Yin
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Danielle Bousquet-Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Suresh P. Annangudi
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bruce R. Southey
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Betty A. Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (JVS); (BAE)
| | - Jonathan V. Sweedler
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (JVS); (BAE)
| |
Collapse
|
324
|
Hobo S, Hayashida KI, Eisenach JC. Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg 2011; 114:442-9. [PMID: 22104073 DOI: 10.1213/ane.0b013e31823b1bc8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lumbar intrathecal injection of oxytocin produces antinociception in rats and analgesia in humans. Classically, oxytocin receptors couple to stimulatory G proteins, increase inositol-3-phosphate production, and result in neuronal excitation. Most work to date has focused on a spinal site of oxytocin to excite γ-aminobutyric acid interneurons to produce analgesia. Here we ask whether oxytocin might also affect primary sensory afferents by modulating high voltage-gated calcium channels, such as it does in the brain. METHODS Dorsal root ganglion cells from adult rats were acutely dissociated and cultured, and changes in intracellular calcium determined by fluorescent microscopy using an indicator dye. The effects of oxytocin alone and in the presence of transient depolarization from increased extracellular KCl concentration were determined, and the pharmacology of these effects were studied. Cells from injured dorsal root ganglion cells after spinal nerve ligation were also studied. RESULTS Oxytocin produced a concentration-dependent inhibition of the increase in intracellular calcium from membrane depolarization, an effect blocked more efficiently by oxytocin- than vasopressin-receptor selective antagonists. Oxytocin-induced inhibition was present in cells responding to capsaicin, and when internal stores of calcium were depleted with thapsigargin. Oxytocin produced similar inhibition in cells from animals with spinal nerve ligation. CONCLUSIONS These data suggest that oxytocin produces antinociception after intrathecal delivery in part by reducing excitatory neurotransmitter release from the central terminals of nociceptors.
Collapse
Affiliation(s)
- Shotaro Hobo
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
325
|
Schroll AL, Hondal RJ, Flemer S. 2,2'-Dithiobis(5-nitropyridine) (DTNP) as an effective and gentle deprotectant for common cysteine protecting groups. J Pept Sci 2011; 18:1-9. [PMID: 22083608 DOI: 10.1002/psc.1403] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 11/09/2022]
Abstract
Of all the commercially available amino acid derivatives for solid phase peptide synthesis, none has a greater abundance of side-chain protection diversity than cysteine. The high reactivity of the cysteine thiol necessitates its attenuation during peptide construction. Moreover, the propensity of cysteine residues within a peptide or protein sequence to form disulfide connectivity allows the opportunity for the peptide chemist to install these disulfides iteratively as a post-synthetic manipulation through the judicious placement of orthogonal pairs of cysteine S-protection within the peptide's architecture. It is important to continuously discover new vectors of deprotection for these different blocking protocols in order to achieve the highest degree of orthogonality between the removal of one species in the presence of another. We report here a complete investigation of the scope and limitations of the deprotective potential of 2,2'-dithiobis(5-nitropyridine) (DTNP) on a selection of commercially available Cys S-protecting groups. The gentle conditions of DTNP in a TFA solvent system show a remarkable ability to deprotect some cysteine blocking functionality traditionally removable only by more harsh or forcing conditions. Beyond illustrating the deprotective ability of this reagent cocktail within a cysteine-containing peptide sequence, the utility of this method was further demonstrated through iterative disulfide formation in oxytocin and apamin test peptides. It is shown that this methodology has high potential as a stand-alone cysteine deprotection technique or in further manipulation of disulfide architecture within a more complex cysteine-containing peptide template.
Collapse
Affiliation(s)
- Alayne L Schroll
- Department of Chemistry, One Winooski Park, Saint Michael's College, Colchester, VT 05439, USA
| | | | | |
Collapse
|
326
|
Zhang G, Cai D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am J Physiol Endocrinol Metab 2011; 301:E1004-E1012. [PMID: 21828335 PMCID: PMC3214005 DOI: 10.1152/ajpendo.00196.2011] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/09/2011] [Indexed: 01/09/2023]
Abstract
The obesity pandemic can be viewed as a result of an imbalanced reaction to changing environmental factors. Recent research has linked circadian arrhythmicity to obesity and related diseases; however, the underlying mechanisms are still unclear. In this study, we found that high-fat diet (HFD) feeding strikingly promoted daytime rather than nighttime caloric intake in mice, leading to feeding circadian arrhythmicity. Using scheduled feeding with a defined amount of daily HFD intake, we found that an increase in the ratio of daytime to nighttime feeding promoted weight gain, whereas a decrease of this ratio rebalanced energy expenditure to counteract obesity. In identifying the underlying mechanism, we found that hypothalamic release of anorexigenic neuropeptide oxytocin displayed a diurnal rhythm of daytime rise and nighttime decline, which negatively correlated with the diurnal feeding activities of normal chow-fed mice. In contrast, chronic HFD feeding abrogated oxytocin diurnal rhythmicity, primarily by suppressing daytime oxytocin rise. Using pharmacological experiments with hypothalamic injection of oxytocin or oxytocin antagonist, we showed that daytime manipulation of oxytocin can change feeding circadian patterns to reprogram energy expenditure, leading to attenuation or induction of obesity independently of 24-h caloric intake. Also importantly, we found that peripheral injection of oxytocin activated hypothalamic oxytocin neurons to release oxytocin, and exerted metabolic effects similar to central oxytocin injection, thus offering a practical clinical avenue to use oxytocin in obesity control. In conclusion, resting-stage oxytocin release and feeding activity represent a critical circadian mechanism and therapeutic target for obesity.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
327
|
Kwiatkowska A, Ptach M, Borovičková L, Slaninová J, Lammek B, Prahl A. Design, synthesis and biological activity of new neurohypophyseal hormones analogues conformationally restricted in the N-terminal part of the molecule. Highly potent OT receptor antagonists. Amino Acids 2011; 43:617-27. [PMID: 22038179 PMCID: PMC3397136 DOI: 10.1007/s00726-011-1109-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/26/2011] [Indexed: 10/25/2022]
Abstract
In this study we present the synthesis and some pharmacological properties of fourteen new analogues of neurohypophyseal hormones conformationally restricted in the N-terminal part of the molecule. All new peptides were substituted at position 2 with cis-1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc). Moreover, one of the new analogues: [cis-Apc(2), Val(4)]AVP was also prepared in N-acylated forms with various bulky acyl groups. All the peptides were tested for pressor, antidiuretic, and in vitro uterotonic activities. We also determined the binding affinity of the selected compounds to human OT receptor. Our results showed that introduction of cis -Apc(2) in position 2 of either AVP or OT resulted in analogues with high antioxytocin potency. Two of the new compounds, [Mpa(1),cis-Apc(2)]AVP and [Mpa(1),cis-Apc(2),Val(4)]AVP, were exceptionally potent antiuterotonic agents (pA(2) = 8.46 and 8.40, respectively) and exhibited higher affinities for the human OT receptor than Atosiban (K (i) values 5.4 and 9.1 nM). Moreover, we have demonstrated for the first time that N -terminal acylation of AVP analogue can improve its selectivity. Using this approach, we obtained compound Aba[cis-Apc(2),Val(4)]AVP (XI) which turned out to be a moderately potent and exceptionally selective OT antagonist (pA(2) = 7.26).
Collapse
Affiliation(s)
- Anna Kwiatkowska
- Faculty of Chemistry, Institute of Organic Synthesis, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
328
|
Abstract
Oxytocin has been best known for its roles in female reproduction. It is released in large amounts during labor, and after stimulation of the nipples. It is a facilitator for childbirth and breastfeeding. However, recent studies have begun to investigate oxytocin's role in various behaviors, including orgasm, social recognition, bonding, and maternal behaviors. This small nine amino acid peptide is now believed to be involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterine contraction, milk ejection, maternal behavior, social bonding, stress and probably many more, which makes oxytocin and its receptor potential candidates as targets for drug therapy. From an innocuous agent as an aid in labor and delivery, oxytocin has come a long way in being touted as the latest party drug. The hormone of labor during the course of the last 100 years has had multiple orgasms to be the hormone of love. Many more shall be seen in the times to come!
Collapse
Affiliation(s)
- Navneet Magon
- Department of Obstetrics and Gynaecology, Air Force Hospital, Kanpur, Uttar Pradesh, India
| | | |
Collapse
|
329
|
Healy A, Rush R, Ocain T. Fragile X syndrome: an update on developing treatment modalities. ACS Chem Neurosci 2011; 2:402-10. [PMID: 22860169 DOI: 10.1021/cn200019z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 11/28/2022] Open
Abstract
Intellectual disability (ID; mental retardation) is considered an immutable condition. Current medical practices are aimed at relieving symptoms and not at altering the underlying cognitive deficits. Scientific advancements from the past decade have led to the exciting possibility that ID may now be treatable. Moreover, pharmaceutical therapies targeting the most common form of inherited ID, Fragile X syndrome (FXS), may become the new benchmark for central nervous system (CNS) drug discovery: seeking cures for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aileen Healy
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Roger Rush
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| | - Timothy Ocain
- Seaside Therapeutics, 840 Memorial Drive, Cambridge, Masssachusetts 02139, United States
| |
Collapse
|
330
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
331
|
Rutherford HJV, Williams SK, Moy S, Mayes LC, Johns JM. Disruption of maternal parenting circuitry by addictive process: rewiring of reward and stress systems. Front Psychiatry 2011; 2:37. [PMID: 21779252 PMCID: PMC3133875 DOI: 10.3389/fpsyt.2011.00037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
Addiction represents a complex interaction between the reward and stress neural circuits, with increasing drug use reflecting a shift from positive reinforcement to negative reinforcement mechanisms in sustaining drug dependence. Preclinical studies have indicated the involvement of regions within the extended amygdala as subserving this transition, especially under stressful conditions. In the addictive situation, the reward system serves to maintain habitual behaviors that are associated with the relief of negative affect, at the cost of attenuating the salience of other rewards. Therefore, addiction reflects the dysregulation between core reward systems, including the prefrontal cortex (PFC), ventral tegmental area (VTA), and nucleus accumbens (NAc), as well as the hypothalamic-pituitary-adrenal axis and extended amygdala of the stress system. Here, we consider the consequences of changes in neural function during or following addiction on parenting, an inherently rewarding process that may be disrupted by addiction. Specifically, we outline the preclinical and human studies that support the dysregulation of reward and stress systems by addiction and the contribution of these systems to parenting. Increasing evidence suggests an important role for the hypothalamus, PFC, VTA, and NAc in parenting, with these same regions being those dysregulated in addiction. Moreover, in addicted adults, we propose that parenting cues trigger stress reactivity rather than reward salience, and this may heighten negative affect states, eliciting both addictive behaviors and the potential for child neglect and abuse.
Collapse
Affiliation(s)
| | - Sarah K. Williams
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
| | - Sheryl Moy
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina-Chapel HillChapel Hill, NC, USA
| | - Linda C. Mayes
- Yale Child Study Center, Yale UniversityNew Haven, CT, USA
| | - Josephine M. Johns
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina-Chapel HillChapel Hill, NC, USA
| |
Collapse
|
332
|
Pagani JH, Lee HJ, Young WS. Postweaning, forebrain-specific perturbation of the oxytocin system impairs fear conditioning. GENES BRAIN AND BEHAVIOR 2011; 10:710-9. [PMID: 21668734 DOI: 10.1111/j.1601-183x.2011.00709.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oxytocin (Oxt) and vasopressin (Avp) are important for a wide variety of behaviors and the use of transgenic mice lacking the peptides or their receptors, particularly when their loss is spatially and temporally manipulated, offers an opportunity to closely examine their role in a particular behavior. We used a cued fear conditioning paradigm to examine associative learning in three lines of transgenic mice: mice that constitutively lack vasopressin 1a (Avpr1a(-/-)) or Oxt receptors (Oxtr(-/-)) and mice that have Oxt receptor loss restricted to the forebrain that begins postweaning (Oxtr(FB/FB)). Oxtr(-/-) and Avpr1a(-/-) mice have normal conditioned freezing. Oxtr(FB/FB) mice have a reduction in freezing behavior during acquisition, as well as during context and cue retention. In addition to reduction of Oxtr in the central nucleus of the amygdala, in vitro receptor autoradiography showed that the Oxtr(FB/FB) mice have significantly reduced levels of Avpr1a only in that structure. Our results show that postweaning alteration of the distribution of Oxtr receptors is critically important for fear behavior, an effect mirrored in the neural structures that mediate it. While constitutive knockouts of Oxtr and Avpr1a are useful for identifying the neural underpinnings of some behaviors, compensatory mechanisms within some circuits may obscure other behavioral roles.
Collapse
Affiliation(s)
- J H Pagani
- Section on Neural Gene Expression, NIMH, NIH, DHHS, Bethesda, MD 20892-4483, USA
| | | | | |
Collapse
|
333
|
Saltzman W, Maestripieri D. The neuroendocrinology of primate maternal behavior. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1192-204. [PMID: 20888383 PMCID: PMC3072435 DOI: 10.1016/j.pnpbp.2010.09.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
In nonhuman primates and humans, similar to other mammals, hormones are not strictly necessary for the expression of maternal behavior, but nevertheless influence variation in maternal responsiveness and parental behavior both within and between individuals. A growing number of correlational and experimental studies have indicated that high circulating estrogen concentrations during pregnancy increase maternal motivation and responsiveness to infant stimuli, while effects of prepartum or postpartum estrogens and progestogens on maternal behavior are less clear. Prolactin is thought to play a role in promoting paternal and alloparental care in primates, but little is known about the relationship between this hormone and maternal behavior. High circulating cortisol levels appear to enhance arousal and responsiveness to infant stimuli in young, relatively inexperienced female primates, but interfere with the expression of maternal behavior in older and more experienced mothers. Among neuropeptides and neurotransmitters, preliminary evidence indicates that oxytocin and endogenous opioids affect maternal attachment to infants, including maintenance of contact, grooming, and responses to separation. Brain serotonin affects anxiety and impulsivity, which in turn may affect maternal behaviors such as infant retrieval or rejection of infants' attempts to make contact with the mother. Although our understanding of the neuroendocrine correlates of primate maternal behavior has grown substantially in the last two decades, very little is known about the mechanisms underlying these effects, e.g., the extent to which these mechanisms may involve changes in perception, emotion, or cognition.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
334
|
Swain JE. The human parental brain: in vivo neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1242-54. [PMID: 21036196 PMCID: PMC4329016 DOI: 10.1016/j.pnpbp.2010.10.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 11/26/2022]
Abstract
Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants' current and future behavior. Indeed, the parent-infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust-likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain-from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic-midbrain-limbic-paralimbic-cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health.
Collapse
|
335
|
Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 2011; 8:1277-96. [PMID: 21619468 DOI: 10.1517/17425247.2011.588204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Among the range of therapeutic protein candidates for new generation treatments of neurological diseases, neurotrophic factors and recombinant antibodies hold the greatest potential. However, major difficulties in their safe and effective delivery to the brain severely limit these applications. The BBB restricts the exchange of proteins between the plasma and the CNS. Moreover, therapeutic proteins often need to be selectively targeted to the brain, while minimizing their biodistribution to systemic compartments, to avoid peripheral side effects. The intranasal delivery of proteins has recently emerged as a non-invasive, safe and effective method to target proteins to the CNS, bypassing the BBB and minimizing systemic exposure. AREAS COVERED We critically summarize the main experimental and mechanistic facts about the simple and non-invasive nasal delivery approach, which provides a promising strategy and a potential solution for the severe unmet medical need of safely and effectively delivering protein therapeutics to the brain. EXPERT OPINION The intranasal route for the effective delivery of recombinant therapeutic proteins represents an emerging and promising non-invasive strategy. Future studies will achieve a detailed understanding of pharmacokinetic and mechanisms of delivery to optimize formulations and fully exploit the nose-to-brain interface in order to deliver proteins for the treatment of neurological diseases. This expanding research area will most likely produce exciting results in the near future towards new therapeutical approaches for the CNS.
Collapse
|
336
|
Michopoulos V, Checchi M, Sharpe D, Wilson ME. Estradiol effects on behavior and serum oxytocin are modified by social status and polymorphisms in the serotonin transporter gene in female rhesus monkeys. Horm Behav 2011; 59:528-35. [PMID: 21316367 PMCID: PMC3081406 DOI: 10.1016/j.yhbeh.2011.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 12/17/2022]
Abstract
Despite the well-documented relation between estradiol (E2) and behavior, exposure to stressors may modify sensitivity to E2. The effects of E2 on behavior are, in part, likely related to their modulation of the serotonin (5HT) and oxytocin systems. The short allele (s-variant) polymorphism found in the promoter region of the SLC6A4 gene that encodes the 5HT transporter (5HTT) modulates responsivity to stressors. The current study used ovariectomized adult female rhesus monkeys to evaluate how exposure to the psychosocial stressor of social subordination and polymorphisms in the gene encoding 5HTT influence the behavioral effects of E2 and immunoreactive serum oxytocin. Dominant females had higher levels of oxytocin than subordinate animals even though E2 increased immunoreactive serum oxytocin in all females. E2 increased affiliative behaviors in all animals, with even more of these prosocial behaviors directed at dominant females. S-variant females, regardless of social status, were more aggressive toward more subordinate cage mates and these behaviors too were increased by E2. Subordinate s-variant females are most often involved in agonistic behavior, less affiliative behavior, and were less responsive to the anxiolytic action of E2. The results show that the short allele of the 5HTT gene synergizes with psychosocial stress exposure to affect the behavioral efficacy of E2 while confirming the actions of E2 for producing generalized behavioral arousal in females. Whether differences in the central action of 5HT and/or oxytocin are responsible for this effect requires further study.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
337
|
Macbeth AH, Stepp JE, Lee HJ, Young WS, Caldwell HK. Normal maternal behavior, but increased pup mortality, in conditional oxytocin receptor knockout females. Behav Neurosci 2011; 124:677-85. [PMID: 20939667 DOI: 10.1037/a0020799] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr-/-) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr-/- females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr-/- and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed.
Collapse
Affiliation(s)
- Abbe H Macbeth
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
338
|
Sobrian SK, Holson RR. Social behavior of offspring following prenatal cocaine exposure in rodents: a comparison with prenatal alcohol. Front Psychiatry 2011; 2:66. [PMID: 22144967 PMCID: PMC3227113 DOI: 10.3389/fpsyt.2011.00066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 11/11/2011] [Indexed: 11/13/2022] Open
Abstract
Clinical and experimental reports suggest that prenatal cocaine exposure (PCE) alters the offsprings' social interactions with caregivers and conspecifics. Children exposed to prenatal cocaine show deficits in caregiver attachment and play behavior. In animal models, a developmental pattern of effects that range from deficits in play and social interaction during adolescence, to aggressive reactions during competition in adulthood is seen. This review will focus primarily on the effects of PCE on social behaviors involving conspecifics in animal models. Social relationships are critical to the developing organism; maternally directed interactions are necessary for initial survival. Juvenile rats deprived of play behavior, one of the earliest forms of non-mother directed social behaviors in rodents, show deficits in learning tasks and sexual competence. Social behavior is inherently complex. Because the emergence of appropriate social skills involves the interplay between various conceptual and biological facets of behavior and social information, it may be a particularly sensitive measure of prenatal insult. The social behavior surveyed include social interactions, play behavior/fighting, scent marking, and aggressive behavior in the offspring, as well as aspects of maternal behavior. The goal is to determine if there is a consensus of results in the literature with respect to PCE and social behaviors, and to discuss discrepant findings in terms of exposure models, the paradigms, and dependent variables, as well as housing conditions, and the sex and age of the offspring at testing. As there is increasing evidence that deficits in social behavior may be sequelae of developmental exposure alcohol, we compare changes in social behaviors reported for prenatal alcohol with those reported for prenatal cocaine. Shortcomings in the both literatures are identified and addressed in an effort to improve the translational value of future experimentation.
Collapse
Affiliation(s)
- Sonya K Sobrian
- Department of Pharmacology, College of Medicine, Howard University Washington, DC, USA
| | | |
Collapse
|
339
|
Thompson RJ, Parker KJ, Hallmayer JF, Waugh CE, Gotlib IH. Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 2011; 36:144-7. [PMID: 20708845 PMCID: PMC2997902 DOI: 10.1016/j.psyneuen.2010.07.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/08/2010] [Accepted: 07/06/2010] [Indexed: 12/22/2022]
Abstract
The nonapeptide oxytocin and its receptor have been implicated in the regulation of mammalian social behavior and stress physiology. Evidence is accumulating that the quality of the parental environment is associated with oxytocin biology in children. The present study was designed to examine the interaction of the single nucleotide polymorphism (SNP) rs2254298 within the oxytocin receptor (OXTR) gene and quality of parental environment in predicting children's psychosocial functioning. More specifically, in a sample of 92 Caucasian adolescent girls (9-14 years old), we examined whether adverse parental environment, operationalized as mothers' history of recurrent major depressive disorder, interacts with the rs2254298 SNP on the OXTR gene to predict daughters' symptoms of depression and anxiety. Caucasian girls who both were heterozygous for the OXTR rs2254298 polymorphism and had high early adversity reported the highest levels of symptoms of depression, physical anxiety, and social anxiety. These findings highlight the potential importance of this OXTR gene polymorphism in the etiology of depression and anxiety disorders.
Collapse
Affiliation(s)
- Renee J. Thompson
- Psychology Department, Stanford University, Stanford, CA,Correspondence concerning this article should be addressed to Renee J. Thompson; Jordan Hall, Bldg 420; Stanford, CA 94305; fax: 650.725.5699, phone: 217.637.3696,
| | - Karen J. Parker
- Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA
| | | | | | - Ian H. Gotlib
- Psychology Department, Stanford University, Stanford, CA
| |
Collapse
|
340
|
Adewale HB, Todd KL, Mickens JA, Patisaul HB. The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat. Neurotoxicology 2011; 32:38-49. [PMID: 20696184 PMCID: PMC3030630 DOI: 10.1016/j.neuro.2010.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/29/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022]
Abstract
Now under intense scrutiny, due to its endocrine disrupting properties, the potential threat the plastics component bisphenol-A (BPA) poses to human health remains unclear. Found in a multitude of polycarbonate plastics, food and beverage containers, and medical equipment, BPA is thought to bind to estrogen receptors (ERs), thereby interfering with estrogen-dependent processes. Our lab has previously shown that exposure to BPA (50mg/kg bw or 50μg/kg bw) during the neonatal critical period is associated with advancement of puberty, early reproductive senescence and ovarian malformations in female Long Evans rats. Here, using neural tissue obtained from the same animals, we explored the impact of neonatal BPA exposure on the development of sexually dimorphic hypothalamic regions critical for female reproductive physiology and behavior. Endpoints included quantification of oxytocin-immunoreactive neurons (OT-ir) in the paraventricular nucleus (PVN), serotonin (5-HT-ir) fiber density in the ventrolateral subdivision of the ventromedial nucleus (VMNvl) as well as ERα-ir neuron number in the medial preoptic area (MPOA), the VMNvl, and the arcuate nucleus (ARC). Both doses of BPA increased the number of OT-ir neurons within the PVN, but no significant effects were seen on 5-HT-ir fiber density or ERα-ir neuron number in any of the areas analyzed. In addition to hypothalamic development, we also assessed female sex behavior and body weight. No effect of BPA on sexual receptivity or proceptive behavior in females was observed. Females treated with BPA, however, weighed significantly more than control females by postnatal day 99. This effect of BPA on weight is critical because alterations in metabolism, are frequently associated with reproductive dysfunction. Collectively, the results of this and our prior study indicate that the impact of neonatal BPA exposure within the female rat hypothalamus is region specific and support the hypothesis that developmental BPA exposure may adversely affect reproductive development in females.
Collapse
Affiliation(s)
- Heather B Adewale
- Department of Biology, NC State University, Raleigh, NC 27695, United States
| | | | | | | |
Collapse
|
341
|
Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z. The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol 2011; 2011:350546. [PMID: 22190926 PMCID: PMC3235456 DOI: 10.1155/2011/350546] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 09/25/2011] [Indexed: 12/29/2022] Open
Abstract
Oxytocin, a hormone involved in numerous physiologic processes, plays a central role in the mechanisms of parturition and lactation. It acts through its receptor, which belongs to the G-protein-coupled receptor superfamily, while Gq/phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3) is the main pathway via which it exerts its action in the myometrium. Changes in receptor levels, receptor desensitization, and locally produced oxytocin are factors that influence the effect of oxytocin on uterine contractility in labor. Activation of oxytocin receptor causes myometrial contractions by increasing intracellular Ca(+2) and production of prostaglandins. Since oxytocin induces contractions, the inhibition of its action has been a target in the management of preterm labor. Atosiban is today the only oxytocin receptor antagonist that is available as a tocolytic. However, the quest for oxytocin receptor antagonists with a better pharmacological profile has led to the synthesis of peptide and nonpeptide molecules such as barusiban, retosiban, L-368,899, and SSR-126768A. Many of these oxytocin receptor antagonists are used only as pharmacological tools, while others have tocolytic action. In this paper, we summarize the action of oxytocin and its receptor and we present an overview of the clinical and experimental data of oxytocin antagonists and their tocolytic action.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens Medical School, 11526 Athens, Greece
- *Nikolaos Vrachnis:
| | - Fotodotis M. Malamas
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, University of Athens Medical School, 11526 Athens, Greece
| | - Stavros Sifakis
- Department of Obstetrics and Gynaecology, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece
| | - Efthymios Deligeoroglou
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens Medical School, 11526 Athens, Greece
| | - Zoe Iliodromiti
- 2nd Department of Obstetrics and Gynecology, Aretaieio Hospital, University of Athens Medical School, 11526 Athens, Greece
| |
Collapse
|
342
|
Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 2010; 171:1197-208. [PMID: 20888890 DOI: 10.1016/j.neuroscience.2010.09.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/02/2010] [Accepted: 09/28/2010] [Indexed: 12/31/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that displays robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including low social interactions, reduced vocalizations in social settings, and high levels of repetitive self-grooming. Autism-relevant phenotypes in BTBR offer translational tools to discover neurochemical mechanisms underlying unusual mouse behaviors relevant to symptoms of autism. Because repetitive self-grooming in mice may be a displacement behavior elevated by stressors, we investigated neuroendocrine markers of stress and behavioral reactivity to stressors in BTBR mice, as compared to C57BL/6J (B6), a standard inbred strain with high sociability. Radioimmunoassays replicated previous findings that circulating corticosterone is higher in BTBR than in B6. Higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were detected in the brains of BTBR as compared to B6. No significant differences were detected in corticotrophin releasing factor (CRF) peptide or CRF mRNA. In response to behavioral stressors, BTBR and B6 were generally similar on behavioral tasks including stress-induced hyperthermia, elevated plus-maze, light ↔ dark exploration, tail flick, acoustic startle and prepulse inhibition. BTBR displayed less reactivity than B6 to a noxious thermal stimulus in the hot plate, and less immobility than B6 in both the forced swim and tail suspension depression-related tasks. BTBR, therefore, exhibited lower depression-like scores than B6 on two standard tests sensitive to antidepressants, did not differ from B6 on two well-validated anxiety-like behaviors, and did not exhibit unusual stress reactivity to sensory stimuli. Our findings support the interpretation that autism-relevant social deficits, vocalizations, and repetitive behaviors are not the result of abnormal stress reactivity in the BTBR mouse model of autism.
Collapse
|
343
|
Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther 2010; 16:e92-123. [PMID: 20557568 DOI: 10.1111/j.1755-5949.2010.00154.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a potential therapeutic target to improve mood and socio-affiliative behaviors in patients with profound social deficits and/or drug addiction.
Collapse
|
344
|
Lee HJ, Pagani J, Young WS. Using transgenic mouse models to study oxytocin's role in the facilitation of species propagation. Brain Res 2010; 1364:216-24. [PMID: 20732312 DOI: 10.1016/j.brainres.2010.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/31/2022]
Abstract
Oxytocin and its receptor are important for a wide range of effects, from social memory to uterine contractions. It is an evolutionarily well-conserved hormone that is particularly important in social and gregarious animals. Research on small mammals has yielded a rich literature on oxytocin's many functions. Recently a new tool has been created that has furthered our understanding of oxytocin's role in behavior: transgenic mice that lack either the ability to synthesize oxytocin or the oxytocin receptor itself. The study of these lines, while still in its infancy, is already bearing fruit and offers the promise of insight into some human disorders characterized by aberrant social behavior.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Department of Dental Microbiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | |
Collapse
|
345
|
Gordon I, Zagoory-Sharon O, Leckman JF, Feldman R. Prolactin, Oxytocin, and the development of paternal behavior across the first six months of fatherhood. Horm Behav 2010; 58:513-8. [PMID: 20399783 PMCID: PMC3247300 DOI: 10.1016/j.yhbeh.2010.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/16/2022]
Abstract
Animal studies have implicated the neuropeptides Prolactin (PRL) and Oxytocin (OT) in processes of maternal bonding and PRL has similarly been shown to play a role in the neurophysiology of fatherhood. Yet, very little is known on the involvement of PRL and OT in human fathering. Forty-three fathers and their firstborn infant were seen twice: in the second and sixth postpartum months. Paternal plasma PRL and OT were sampled at both time-points and analyzed with ELISA methods. At six months fathers were videotaped interacting with their child in social and exploratory play contexts and interactions were micro-analyzed for father-infant Affect Synchrony and father facilitation of child toy exploration. PRL and OT showed high individual stability across time and were correlated at the second observation. PRL was related to father-infant Coordinated Exploratory Play in the toy context whereas OT was associated with father-infant Affect Synchrony in the social context. Results point to the role of PRL and OT in the development of human fathering and underscore their differential relations with patterns of paternal care.
Collapse
Affiliation(s)
- Ilanit Gordon
- Department of Psychology, Bar-Ilan University, Israel
| | | | | | - Ruth Feldman
- Department of Psychology, Bar-Ilan University, Israel
- Gonda Brain Sciences Center, Bar-Ilan University, Israel
- Yale University, Child Study Center, USA
| |
Collapse
|
346
|
A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc Natl Acad Sci U S A 2010; 107:13936-41. [PMID: 20647384 DOI: 10.1073/pnas.1003296107] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evolutionarily highly conserved neuropeptide oxytocin is a key mediator of social and emotional behavior in mammals, including humans. A common variant (rs53576) in the oxytocin receptor gene (OXTR) has been implicated in social-behavioral phenotypes, such as maternal sensitivity and empathy, and with neuropsychiatric disorders associated with social impairment, but the intermediate neural mechanisms are unknown. Here, we used multimodal neuroimaging in a large sample of healthy human subjects to identify structural and functional alterations in OXTR risk allele carriers and their link to temperament. Activation and interregional coupling of the amygdala during the processing of emotionally salient social cues was significantly affected by genotype. In addition, evidence for structural alterations in key oxytocinergic regions emerged, particularly in the hypothalamus. These neural characteristics predicted lower levels of reward dependence, specifically in male risk allele carriers. Our findings identify sex-dependent mechanisms impacting the structure and function of hypothalamic-limbic circuits that are of potential clinical and translational significance.
Collapse
|
347
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin. J Neurosci 2010. [PMID: 20554860 DOI: 10.1523/jneur osci.0036-10.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oleoylethanolamide (OEA) is a biologically active lipid amide that is released by small-intestinal enterocytes during the absorption of dietary fat and inhibits feeding by engaging the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Previous studies have shown that the anorexic effects of systemically administered OEA require the activation of sensory afferents of the vagus nerve. The central circuits involved in mediating OEA-induced hypophagia remain unknown. In the present study, we report the results of in situ hybridization and immunohistochemistry experiments in rats and mice, which show that systemic injections of OEA (5-10 mg kg(-1), intraperitoneal) enhance expression of the neuropeptide oxytocin in magnocellular neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. No such effect is observed with other hypothalamic neuropeptides, including vasopressin, thyrotropin-releasing hormone and pro-opiomelanocortin. The increase in oxytocin expression elicited by OEA was absent in mutant PPAR-alpha-null mice. Pharmacological blockade of oxytocin receptors in the brain by intracerebroventricular infusion of the selective oxytocin antagonist, L-368,899, prevented the anorexic effects of OEA. The results suggest that OEA suppresses feeding by activating central oxytocin transmission.
Collapse
|
349
|
Gaetani S, Fu J, Cassano T, Dipasquale P, Romano A, Righetti L, Cianci S, Laconca L, Giannini E, Scaccianoce S, Mairesse J, Cuomo V, Piomelli D. The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin. J Neurosci 2010; 30:8096-101. [PMID: 20554860 PMCID: PMC2900249 DOI: 10.1523/jneurosci.0036-10.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 11/21/2022] Open
Abstract
Oleoylethanolamide (OEA) is a biologically active lipid amide that is released by small-intestinal enterocytes during the absorption of dietary fat and inhibits feeding by engaging the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha). Previous studies have shown that the anorexic effects of systemically administered OEA require the activation of sensory afferents of the vagus nerve. The central circuits involved in mediating OEA-induced hypophagia remain unknown. In the present study, we report the results of in situ hybridization and immunohistochemistry experiments in rats and mice, which show that systemic injections of OEA (5-10 mg kg(-1), intraperitoneal) enhance expression of the neuropeptide oxytocin in magnocellular neurons of the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus. No such effect is observed with other hypothalamic neuropeptides, including vasopressin, thyrotropin-releasing hormone and pro-opiomelanocortin. The increase in oxytocin expression elicited by OEA was absent in mutant PPAR-alpha-null mice. Pharmacological blockade of oxytocin receptors in the brain by intracerebroventricular infusion of the selective oxytocin antagonist, L-368,899, prevented the anorexic effects of OEA. The results suggest that OEA suppresses feeding by activating central oxytocin transmission.
Collapse
Affiliation(s)
- Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Jin Fu
- Department of Pharmacology, University of California, Irvine, Irvine, California 92697-4625
- Unit of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy, and
| | - Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Pasqua Dipasquale
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Righetti
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Cianci
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Laconca
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
- Department of Biomedical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Elisa Giannini
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Jérôme Mairesse
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, Irvine, California 92697-4625
- Unit of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy, and
| |
Collapse
|
350
|
Apicella CL, Cesarini D, Johannesson M, Dawes CT, Lichtenstein P, Wallace B, Beauchamp J, Westberg L. No association between oxytocin receptor (OXTR) gene polymorphisms and experimentally elicited social preferences. PLoS One 2010; 5:e11153. [PMID: 20585395 PMCID: PMC2886839 DOI: 10.1371/journal.pone.0011153] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/27/2010] [Indexed: 02/04/2023] Open
Abstract
Background Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. Methodology/Principal Findings We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene in a sample of Swedish twins (n = 684). Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs) and behavior in either of the games. Conclusion We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant.
Collapse
Affiliation(s)
- Coren L Apicella
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|