301
|
Chen Y, Chen Z, Wang W, Wang Y, Zhu J, Wang X, Huang W. Investigating the effects of Laggera pterodonta on H3N2-Induced inflammatory and immune responses through network pharmacology, molecular docking, and experimental validation in a mice model. Heliyon 2024; 10:e29487. [PMID: 38665556 PMCID: PMC11043942 DOI: 10.1016/j.heliyon.2024.e29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
For centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.
Collapse
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zexing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanqi Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
| | - Jinyi Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China
- Institute of Integration of Traditional and Western Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
302
|
Zhang L, Zhang H, Niu X, Zhang X, Chen X, Lei S, Ma S, Sun Z. Liangxue-Qushi-Zhiyang Decoction Ameliorates DNCB-Induced Atopic Dermatitis in Mice through the MAPK Signaling Pathway Based on Network Pharmacology. ACS OMEGA 2024; 9:17931-17944. [PMID: 38680355 PMCID: PMC11044150 DOI: 10.1021/acsomega.3c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The traditional prescription of Liangxue-Qushi-Zhiyang decoction (LQZ) has been demonstrated to be efficacious in treating atopic dermatitis (AD), a chronic inflammatory skin disorder marked by intense itching, redness, rashes, and skin thickening. Nevertheless, there has been an inadequate systematic exploration of the potential targets, biological processes, and pathways for AD treatment through LQZ. The study objective was to evaluate the efficacy and possible mechanism of LQZ in AD mice. In our study, we identified the primary compounds of LQZ, analyzed hub targets, and constructed a network. Subsequently, the predicted mechanisms of LQZ in AD were experimentally studied and validated in vivo, as determined by network pharmacological analysis. A total of 80 serum components of LQZ were identified through ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS), among which 49 compounds were absorbed into the bloodstream. Our results indicated that LQZ targets six putative key factors in the MAPK signaling pathway, which play essential roles in AD, namely, EGFR, p-MAPK1/3, p-MAPK14, IL-1β, IL-6, and TNF-α. We observed spleen coefficient, dermatitis scores, and ear thickness were all downregulated in 2,4-dinitrochlorobenzene (DNCB)-induced mice after LQZ treatment. Histological analysis of the dorsal and ear skin further revealed that LQZ significantly decreased skin inflammation, epidermal thickness, and mast cell numbers compared to the DNCB group. Our study demonstrated the effectiveness of LQZ in reducing epidermal and dermal damage in a mouse model of AD. Furthermore, our findings suggest that downregulating the MAPK signaling pathway could be a potential therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Lili Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Huili Zhang
- Beijing
University of Chinese Medicine Dongfang Hospital, Beijing 100078, China
| | - Xiaoyu Niu
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xuan Zhang
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Xingtong Chen
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengyi Lei
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Shengnan Ma
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| | - Zhanxue Sun
- Beijing
University of Chinese Medicine Affiliated Third Hospital, Beijing 100029, China
| |
Collapse
|
303
|
Shu P, Mo J, Li Z, Li M, Zhu W, Du Z. Ferulic acid in synergy with retinol alleviates oxidative injury of HaCaT cells during UVB-induced photoaging. Aging (Albany NY) 2024; 16:7153-7173. [PMID: 38643459 PMCID: PMC11087097 DOI: 10.18632/aging.205749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/22/2024]
Abstract
Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Zunjiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Mingjie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
| | - Wei Zhu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, Guangdong, P.R. China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
304
|
Han B, Luo J, Xu B. Revealing Molecular Mechanisms of the Bioactive Saponins from Edible Root of Platycodon grandiflorum in Combating Obesity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1123. [PMID: 38674532 PMCID: PMC11053671 DOI: 10.3390/plants13081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Obesity has emerged as a significant health concern, as it is a disease linked to metabolic disorders in the body and is characterized by the excessive accumulation of lipids. As a plant-derived food, Platycodon grandiflorum (PG) was reported by many studies, indicating that the saponins from PG can improve obesity effectively. However, the anti-obesity saponins from PG and its anti-obesity mechanisms have not been fully identified. This study identified the active saponins and their molecular targets for treating obesity. The TCMSP database was used to obtain information on 18 saponins in PG. The anti-obesity target of the PG saponins was 115 targets and 44 core targets. GO and KEGG analyses using 44 core anti-obesity genes and targets of PG-active saponins screened from GeneCards, OMIM, Drugbank, and DisGeNet showed that the PI3K-Akt pathway, the JAK-STAT pathway, and the MAPK pathway were the major pathways involved in the anti-obesity effects of PG saponins. BIOVIA Discovery Studio Visualizer and AutoDock Vina were used to perform molecular docking and process the molecular docking results. The molecular docking results showed that the active saponins of PG could bind to the major therapeutic obesity targets to play an obesity-inhibitory role. The results of this study laid the foundation for further research on the anti-obesity saponins in PG and their anti-obesity mechanism and provided a new direction for the development of functional plant-derived food. This research studied the molecular mechanism of PG saponins combating obesity through various signaling pathways, and prosapogenin D can be used to develop as a new potential anti-obesity drug.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (B.H.); (J.L.)
| |
Collapse
|
305
|
Zheng S, Xue C, Li S, Zao X, Li X, Liu Q, Cao X, Wang W, Qi W, Zhang P, Ye Y. Chinese medicine in the treatment of non-alcoholic fatty liver disease based on network pharmacology: a review. Front Pharmacol 2024; 15:1381712. [PMID: 38694920 PMCID: PMC11061375 DOI: 10.3389/fphar.2024.1381712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by abnormalities in hepatic fat deposition, the incidence of which has been increasing year by year in recent years. It has become the largest chronic liver disease globally and one of the important causes of cirrhosis and even primary liver cancer formation. The pathogenesis of NAFLD has not yet been fully clarified. Modern medicine lacks targeted clinical treatment protocols for NAFLD, and most drugs lack efficacy and have high side effects. In contrast, Traditional Chinese Medicine (TCM) has significant advantages in the treatment and prevention of NAFLD, which have been widely recognized by scholars around the world. In recent years, through the establishment of a "medicine-disease-target-pathway" network relationship, network pharmacology can explore the molecular basis of the role of medicines in disease prevention and treatment from various perspectives, predicting the pharmacological mechanism of the corresponding medicines. This approach is compatible with the holistic view and treatment based on pattern differentiation of TCM and has been widely used in TCM research. In this paper, by searching relevant databases such as PubMed, Web of Science, and Embase, we reviewed and analyzed the relevant signaling pathways and specific mechanisms of action of single Chinese medicine, Chinese medicine combinations, and Chinese patent medicine for the treatment of NAFLD in recent years. These related studies fully demonstrated the therapeutic characteristics of TCM with multi-components, multi-targets, and multi-pathways, which provided strong support for the exact efficacy of TCM exerted in the clinic. In conclusion, we believe that network pharmacology is more in line with the TCM mindset of treating diseases, but with some limitations. In the future, we should eliminate the potential risks of false positives and false negatives, clarify the interconnectivity between components, targets, and diseases, and conduct deeper clinical or experimental studies.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
306
|
Xu J, Chen J, Deng J, Chen X, Du R, Yu Z, Gao S, Chen B, Wang Y, Cai X, Duan H, Cai Y, Zheng G. Naringenin inhibits APAP-induced acute liver injury through activating PPARA-dependent signaling pathway. Exp Cell Res 2024; 437:114028. [PMID: 38582338 DOI: 10.1016/j.yexcr.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinji Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong, Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
307
|
Wang Z, Sun Y, Wu M, Zhou L, Zheng Y, Ren T, Li M, Zhao W. Hawthorn Proanthocyanidin Extract Inhibits Colorectal Carcinoma Metastasis by Targeting the Epithelial-Mesenchymal Transition Process and Wnt/β-Catenin Signaling Pathway. Foods 2024; 13:1171. [PMID: 38672844 PMCID: PMC11049232 DOI: 10.3390/foods13081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/β-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (Z.W.); (Y.S.); (M.W.); (L.Z.); (Y.Z.); (T.R.); (M.L.)
| |
Collapse
|
308
|
Luo X, Shi Y, Ma Y, Liu Y, Jing P, Cao X, Wang J, Hu Z, Cai H. Exploring the mechanism of ShenGui capsule in treating heart failure based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2024; 103:e37512. [PMID: 38579077 PMCID: PMC10994518 DOI: 10.1097/md.0000000000037512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 04/07/2024] Open
Abstract
ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1β with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1β (IL-1β) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1β binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1β for the treatment of heart failure.
Collapse
Affiliation(s)
- Xiang Luo
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixi Liu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pan Jing
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jincheng Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
309
|
Wang Z, Qiu H, Yang Y, Zhang Y, Mou T, Zhang X, Zhang Y. Huanglian-Hongqu herb pair improves nonalcoholic fatty liver disease via NF-κB/NLRP3 pathway in mice: network pharmacology, molecular docking and experimental validation. Hereditas 2024; 161:12. [PMID: 38566171 PMCID: PMC10988798 DOI: 10.1186/s41065-024-00316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The Huanglian-Hongqu herb pair (HH) is a carefully crafted traditional Chinese herbal compound designed to address disorders related to glucose and lipid metabolism. Its primary application lies in treating hyperlipidemia and fatty liver conditions. This study explored the potential mechanism of HH in treating non-alcoholic fatty liver disease (NAFLD) through network pharmacology, molecular docking, and in vivo animal experiments. Ultrahigh performanceliquid chromatography-quadrupole/orbitrapmass spectrometry (UPLC-Q-TOF-MS) was employed to identify the chemical composition of HH. Network pharmacology was used to analyze the related signaling pathways affected by HH. Subsequently, the prediction was verified by animal experiment. Finally, we identified 29 components within HH. Network pharmacology unveiled interactions between HH and 153 NAFLD-related targets, highlighting HH's potential to alleviate NAFLD through NF-κB signaling pathway. Molecular docking analyses illuminated the binding interactions between HH components and key regulatory proteins, including NF-κB, NLRP3, ASC, and Caspase-1. In vivo experiments demonstrated that HH alleviated NAFLD by reducing serum and liver lipid levels, improving liver function, and lowering inflammatory cytokine levels in the serum. Moreover, HH administration downregulated mRNA and protein levels of the NF-κB/NLRP3 pathway. In conclusion, our findings demonstrated that HH has potential therapeutic benefits in ameliorating NAFLD by targeting the NF-κB/NLRP3 pathway, facilitating the broader application of HH in the field of NAFLD.
Collapse
Affiliation(s)
- Zheng Wang
- College of Traditional Chinese Medicine and Health Service, Shanxi Datong University, Datong, China
| | - Hairong Qiu
- Department of Chinese Medicine, Medical School, Hubei Minzu University, Enshi, China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Yueyu Zhang
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Taiguo Mou
- College of Public health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Traditional Chinese Medicine department, Chinese Medicine Hospital of Chenghua, Chengdu, China.
| | - Yong Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
310
|
Panlu K, Zhou Z, Huang L, Ge L, Wen C, Lv H. Associations between obesity and hyperuricemia combing mendelian randomization with network pharmacology. Heliyon 2024; 10:e27074. [PMID: 38509958 PMCID: PMC10951504 DOI: 10.1016/j.heliyon.2024.e27074] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Obesity has become a global health issue and a risk factor for hyperuricemia. However, the associations between obesity and hyperuricemia are sometimes confounding. In the present study, we performed mendelian randomization (MR) analysis to study their relationship and investigate the underlying mechanism by network pharmacology. Method Body mass index (BMI) and uric acid related to single nucleotide polymorphism were selected as instrumental variables for MR analysis. Three robust analytical methods are used for bidirectional MR analysis such as inverse-variance weighting, weighted median and MR-Egger regression. Then, we further performed sensitivity analysis to evaluate the horizontal pleiotropy, heterogeneities, and stability. The targets related to obesity and hyperuricemia were collected, screened and further conducted for Kyoto Encyclopedia of Genes and Genomes pathway enrichment to explore the mechanism of obesity and hyperuricemia using network pharmacology. Results The positive causality was indicated between BMI and hyperuricemia based on inverse variance-weighted analysis [odds ratio:1.23, 95% confidence interval: 1.11 to 1.30 for each standard deviation increase in BMI (4.6 kg/m2)]. Conversely, hyperuricemia did not influence BMI. 235 intersected targets from obesity and hyperuricemia were collected. Insulin resistance were the top 1 key target. The mechanism between obesity and hyperuricemia are associated with important pathways including adipocytokine signaling pathway, insulin resistance and cholesterol metabolism et al. Conclusions Our MR analysis supported the causal association between obesity and hyperuricemia based on availablegenome-wide association analysis summary statistics. Obesity leads to hyperuricemia via insulin resistance, which is a key link in the huge network pathways using network pharmacology.
Collapse
Affiliation(s)
- Kailai Panlu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zizun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402, Hangzhou, Zhejiang, China
| | - Lin Huang
- School of Basic Medical Science, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Lei Ge
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China
| | - Huiqing Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402, Hangzhou, Zhejiang, China
| |
Collapse
|
311
|
Zhou J, Qiao C, Gao Y, Wang H, Li J, Yang S, Chai K, Zhao T, Wu J. Exploring the mechanism of action of Shuangyang houbitong granules in the treatment of acute pharyngitis based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37674. [PMID: 38552049 PMCID: PMC10977574 DOI: 10.1097/md.0000000000037674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Acute pharyngitis (AP) refers to the acute inflammation of the pharynx, characterized by swelling and pain in the throat. Shuangyang houbitong granules (SHG), a traditional Chinese medicine compound, have been found to be effective in providing relief from symptoms associated with AP. METHODS The chemical components of SHG were screened using Traditional Chinese Medicine Systems Pharmacology database, HERB database, and China National Knowledge Infrastructure. The targets of the granules were predicted using SwissTargetPrediction database. A network was constructed based on the targets of AP obtained from Genecards database, and protein-protein interaction analysis was performed on the intersection targets using STRING database. Key targets were screened for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and the binding activity of components and targets was predicted using AutoDockTools-1.5.7. RESULTS A total of 65 components of SHG that met the screening criteria were retrieved, resulting in 867 corresponding targets. Additionally, 1086 AP target genes were retrieved, and 272 gene targets were obtained from the intersection as potential targets for SHG in the treatment of AP. Molecular docking results showed that the core components genkwanin, acacetin, apigenin, quercetin can stably bind to the core targets glyceraldehyde 3-phosphate dehydrogenase, interleukin 6, tumor necrosis factor, serine/threonine protein kinase, tumor protein 53, and epidermal growth factor receptor. CONCLUSION The research results preliminarily predict and verify the mechanism of action of SHG in the treatment of AP, providing insights for further in-depth research.
Collapse
Affiliation(s)
- Jiying Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqi Qiao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Gao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyun Yang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Keyan Chai
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
312
|
Hou L, Zou Z, Wang Y, Pi H, Yuan Z, He Q, Kuang Y, Zhao G. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification. Aging (Albany NY) 2024; 16:6745-6756. [PMID: 38546402 PMCID: PMC11087090 DOI: 10.18632/aging.205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 05/08/2024]
Abstract
Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.
Collapse
Affiliation(s)
- Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Zhiming Zou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Hui Pi
- Dali University, Dali 671003, Yunnan, China
| | - Zeyue Yuan
- Dali University, Dali 671003, Yunnan, China
| | - Qin He
- Dali University, Dali 671003, Yunnan, China
| | - Yongfang Kuang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| |
Collapse
|
313
|
Zhang Y, Wang Y, Xin E, Zhang Z, Ma D, Liu T, Gao F, Bian T, Sun Y, Wang M, Wang Z, Yan X, Li Y. Network pharmacology and experimental verification reveal the mechanism of Hedysari Radix and Curcumae Rhizoma with the optimal compatibility ratio against colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117555. [PMID: 38110130 DOI: 10.1016/j.jep.2023.117555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The herb pair Astragali Radix (AR) and Curcumae Rhizoma (vinegar-processed, VPCR), derived from the traditional Chinese medicine (TCM) text 'Yixuezhongzhongcanxilu', have long been used to treat gastrointestinal diseases, notably colitis-associated colorectal cancer (CAC). Hedysari Radix (HR), belonging to the same Leguminosae family as AR but from a different genus, is traditionally used as a substitute for AR when paired with VPCR in the treatment of CAC. However, the optimal compatibility ratio for HR-VPCR against CAC and the underlying mechanisms remain unclear. AIM OF THE STUDY To investigate the optimal compatibility ratio and underlying mechanisms of HR-VPCR against CAC using a combination of comparative pharmacodynamics, network pharmacology, and experimental verification. MATERIALS AND METHODS The efficacy of different compatibility ratios of HR-VPCR against CAC was evaluated using various indicators, including the body weight, colon length, tumor count, survival rate, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, inflammation cytokines (IL-1β, IL-6, IL-10, TNF-α), tumor markers (K-Ras, p53), and intestinal permeability proteins (claudin-1, E-cadherin, mucin-2). Then, the optimal compatibility ratio of HR-VPCR against CAC was determined based on the fuzzy matter-element analysis by integrating the above indicators. After high-performance liquid chromatography (HPLC) analysis for the optimal compatibility ratio of HR-VPCR, potential active components of HR-VPCR were identified by TCMSP and the previous bibliographies. Swiss Targets and GeneCards were adopted to predict the targets of the active components and the targets of CAC, respectively. Then, the common targets of HR-VPCR against CAC were obtained by Venn analysis. PPI networks were constructed in STRING. GO and KEGG enrichments were visualized by the David database. Finally, the predicted pathway was experimentally validated via Western blot. RESULTS Various compatibility ratios of HR-VPCR demonstrated notable therapeutic effects to some extent, evidenced by improvements in body weight, colon length, tumor count, pathological symptoms (DAI score), colon and organ indexes, survival rate, and modulation of inflammation factors (IL-1β, IL-6, IL-10, TNF-α), as well as tumor markers (K-Ras, p53), and down-regulation of intestinal permeability proteins (claudin-1, E-cadherin, mucin-2) in CAC mice. Among these ratios, the ratio 4:1 represents the optimal compatibility ratio by the fuzzy matter-element analysis. Thirty active components of HR-VPCR were carefully selected, targeting 553 specific genes. Simultaneously, 2022 targets associated with CAC were identified. 88 common targets were identified after generating a Venn plot. Following PPI network analysis, 29 core targets were established, with AKT1 ranking highest among them. Further analysis via GO and KEGG enrichment identified the PI3K-AKT signaling pathway as a potential mechanism. Experimental validation confirmed that HR-VPCR intervention effectively reversed the activated PI3K-AKT signaling pathway. CONCLUSIONS The optimal compatibility ratio for the HR-VPCR herb pair in alleviating CAC is 4:1. HR-VPCR exerts its effects by alleviating intestinal inflammation, improving intestinal permeability, and regulating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yugui Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yanjun Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Erdan Xin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Zhuanhong Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Dingcai Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Ting Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Feiyun Gao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Tiantian Bian
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yujing Sun
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Maomao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Zhe Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Xingke Yan
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Yuefeng Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Key Laboratory of Standard and Quality of Chinese Medicine Research of Gansu, Engineering Research Center of Chinese Medicine Pharmaceutical Process of Gansu, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| |
Collapse
|
314
|
Zhang J, Li Q, Yan B, Wang Q, Zhou Y. Integrated network pharmacology and brain metabolomics to analyze the mechanism of Dihuang Yinzi intervention in Alzheimer's disease. Heliyon 2024; 10:e26643. [PMID: 39669488 PMCID: PMC11636838 DOI: 10.1016/j.heliyon.2024.e26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 12/14/2024] Open
Abstract
Ethnopharmacological relevance Alzheimer's disease (AD) is an incurable neurodegenerative disease that has become one of the most important diseases threatening global public health security. Dihuang Yinzi (DHYZ) is a traditional Chinese medicine that has been widely used for the treatment of AD and has significant therapeutic effects, but its specific mechanism of action is still unclear.The aim of the study is to investigate the specific mechanism of DHYZ in treating AD based on brain metabolomics and network pharmacology. Materials and methods In this study, the classic APPswe/PS1E9 (APP/PS1) mice were selected as the AD animal model, and the mechanism of DHYZ was studied. The learning and memory ability of mice was detected by Y-maze test, and the ultrastructure of neural cells in the brain of the mice was observed by transmission electron microscope (TEM). Then, the mechanism of DHYZ intervention in AD was analyzed by constructing network pharmacology, and combined with brain metabolomics based on ultra performance liquid chromatography-mass spectrometry (UPLC-MS) to detect differential metabolic markers and their metabolic pathways. In addition, a joint analysis of differential metabolites and potential targets for DHYZ treatment of AD is conducted to deeply explore the relationship between key targets, differential metabolites, and metabolic pathways. Results After 30 days of DHYZ treatment, the spatial work and reference memory ability of APP/PS1 mice were significantly improved, the structure of mitochondria and synapses in the neurons of the brain were basically normal. 202 potential targets for DHYZ treatment of AD were screened through network pharmacology, and after enrichment analysis, these targets showed correlation with redox reactions, mitochondrial and synaptic functional pathways. And 7 differential metabolites were identified in brain metabolomics are Nicotinic acid, N-Formyl-L-glutamic acid, 5-(2-Hydroxyethyl)-4-methylthiazole, D-Gulono-1,4-lactone, Norepinephrine, 3-Methylotrophicacid, Palmitic acid. These differential metabolites mainly involve nicotinite and nicotinamide metabolism, pertussis, cAMP signaling pathway, cysteine and methionine metabolism. Notablely, through matching analysis of targets and metabolites, a total of 20 genes were found to match Nicotinic acid, 51 genes were found to match norepinephrine, and 14 genes intersected with the two metabolites, enrichment analysis of the intersected genes showed that neuroactive light receptor interaction, serotonergic synapse, and cAMP signaling were significantly affected, which is consistent with previous network pharmacology results. Conclusion This study identified the main chemical ingredients of DHYZ intervention in AD may originated from Polygala tenuifolia Wild, Dendrobium nobile Line and Ophiogon japonicus (L.f) Ker-Gawl. Combined with Y Maze, TEM and brain metabolomics, revealed that DHYZ can improve the learning and memory abilities and brain pathological morphology of APP/PS1 mice by regulating nicotinic acid, 3-Methylthiopropionic acid, pertussis and their metabolic pathways, including nicotinate and nicotinamide metabolism, cAMP signaling pathway and cysteine and methionine metabolism. In short, this study provides a new research foundation and direction for the treatment of AD with traditional Chinese medicine.
Collapse
Affiliation(s)
| | | | - Bowen Yan
- School of Basic Medicine, Heilongjiang University Of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Basic Medicine, Heilongjiang University Of Chinese Medicine, Harbin, 150040, China
| | - Yanyan Zhou
- School of Basic Medicine, Heilongjiang University Of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
315
|
Wang H, Tian Q, Zhang R, Du Q, Hu J, Gao T, Gao S, Fan K, Cheng X, Yan S, Zheng G, Dong H. Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway. Lipids Health Dis 2024; 23:76. [PMID: 38468335 PMCID: PMC10926578 DOI: 10.1186/s12944-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinqin Tian
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiujing Du
- Jiangyin People's Hospital, Wuxi, Jiangsu, China
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keyi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng Yan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
316
|
Zhou X, Wang X, Li J, Zhang M, Yang Y, Lei S, He Y, Yang H, Zhou D, Guo C. Integrated Network Pharmacology and in vivo Experimental Validation Approach to Explore the Potential Antioxidant Effects of Annao Pingchong Decoction in Intracerebral Hemorrhage Rats. Drug Des Devel Ther 2024; 18:699-717. [PMID: 38465266 PMCID: PMC10922012 DOI: 10.2147/dddt.s439873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background Annao Pingchong decoction (ANPCD) is a traditional Chinese decoction which has definite effects on treating intracerebral hemorrhage (ICH) validated through clinical and experimental studies. However, the impact of ANPCD on oxidative stress (OS) after ICH remains unclear and is worth further investigating. Aim To investigate whether the therapeutic effects of ANPCD on ICH are related to alleviating OS damage and seek potential targets for its antioxidant effects. Materials and Methods The therapeutic candidate genes of ANPCD on ICH were identified through a comparison of the target genes of ANPCD, target genes of ICH and differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis and functional enrichment analysis were combined with targets-related literature to select suitable antioxidant targets. The affinity between ANPCD and the selected target was verified using macromolecular docking. Subsequently, the effects of ANPCD on OS and the selected target were further investigated through in vivo experiments. Results Forty-eight candidate genes were screened, in which silent information regulator sirtuin 1 (SIRT1) is one of the core genes that has antioxidant effects and ICH significantly affected its expression. The good affinity between 6 compounds of ANPCD and SIRT1 was also demonstrated by macromolecular docking. The results of in vivo experiments demonstrated that ANPCD significantly decreased modified neurological severity scoring (mNSS) scores and serum MDA and 8-OHdG content in ICH rats, while significantly increasing serum SOD and CAT activity, complicated with the up-regulation of ANPCD on SIRT1, FOXO1, PGC-1α and Nrf2. Furthermore, ANPCD significantly decreased the apoptosis rate and the expression of apoptosis-related proteins (P53, cytochrome c and caspase-3). Conclusion ANPCD alleviates OS damage and apoptosis after ICH in rats. As a potential therapeutic target, SIRT1 can be effectively regulated by ANPCD, as are its downstream proteins.
Collapse
Affiliation(s)
- Xuqing Zhou
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Xu Wang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Jiaqi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Mengxue Zhang
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yi Yang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shihui Lei
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Desheng Zhou
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Chun Guo
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| |
Collapse
|
317
|
Jin S, Li Y, Luo C, Cheng X, Tao W, Li H, Wang W, Qin M, Xie G, Han F. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117499. [PMID: 38042392 DOI: 10.1016/j.jep.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1β, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Shuyi Jin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yveting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| | - Xinyi Cheng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Tao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongting Li
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China.
| |
Collapse
|
318
|
Wang H, Liu J, Zhang Z, Peng J, Wang Z, Yang L, Wang X, Hu S, Hong L. β-Sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic Biol Med 2024; 214:137-157. [PMID: 38364944 DOI: 10.1016/j.freeradbiomed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound β-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zhi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Xinqi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Siyuan Hu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Li Hong
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| |
Collapse
|
319
|
Yin CY, Lian YP, Xu JD, Liu CM, Cai JL, Zhu L, Wang DJ, Luo LB, Yan XJ. Study on network pharmacology of Ginkgo biloba extract against ischaemic stroke mechanism and establishment of UPLC-MS/MS methods for simultaneous determination of 19 main active components. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:254-270. [PMID: 37758241 DOI: 10.1002/pca.3286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Ginkgo biloba extract (GBE) is an effective substance from traditional Chinese medicine (TCM) G. biloba for treating ischaemic stroke (IS). However, its active ingredients and mechanism of action remain unclear. OBJECTIVES This study aimed to reveal the potential active component group and possible anti-IS mechanism of GBE. MATERIALS AND METHODS The network pharmacology method was used to reveal the possible anti-IS mechanism of these active ingredients in GBE. An ultra-high-performance liquid chromatography triple quadrupole electrospray tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous detection of the active ingredients of GBE. RESULTS The active components of GBE anti-IS were screened by literature integration. Network pharmacology results showed that the anti-IS effect of GBE is achieved through key active components such as protocatechuic acid, bilobalide, ginkgolide A, and so on. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the possible anti-IS mechanism of GBE is regulating the PI3K-Akt signalling pathway and other signal pathways closely related to inflammatory response and apoptosis regulation combined with AKT1, MAPK, TNF, ALB, CASP3, and other protein targets. Nineteen main constituents in seven batches of GBE were successfully analysed using the established UPLC-MS/MS method, and the results showed that the content of protocatechuic acid, gallic acid, ginkgolide A, and so forth was relatively high, which was consistent with network pharmacology results, indicating that these ingredients may be the key active anti-IS ingredients of GBE. CONCLUSION This study revealed the key active components and the anti-IS mechanism of GBE. It also provided a simple and sensitive method for the quality control of related preparations.
Collapse
Affiliation(s)
- Chun-Yan Yin
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Yuan-Pei Lian
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Jian-Da Xu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Chan-Ming Liu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Jia-Li Cai
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Li Zhu
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Di-Jun Wang
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Li-Bo Luo
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiao-Jing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| |
Collapse
|
320
|
Ding Y, Xiang Q, Zhu P, Fan M, Tong H, Wang M, Cheng S, Yu P, Shi H, Zhang H, Chen X. Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155276. [PMID: 38295661 DOI: 10.1016/j.phymed.2023.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbβ3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbβ3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbβ3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peiyuan Zhu
- Department of Transfusion Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, PR China
| | - Manlu Fan
- Department of TCM, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong 250013, China
| | - Huaqin Tong
- Department of Cardiology, Yangzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225127, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Songyi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haibo Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haowen Zhang
- College of Health Preservation and Rehabilitation, Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
321
|
Ren H, Yuan Q, Lu J, Xi S, Liu Y, Yang G, Xie Z, Wang B, Ma L, Fu X, Liu J, Zhang Y. Tetrahydropiperine, a natural alkaloid with neuroprotective effects in ischemic stroke. J Chem Neuroanat 2024; 136:102397. [PMID: 38331229 DOI: 10.1016/j.jchemneu.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Ischemic stroke (IS) is a life-threatening neurological disease with various pathological mechanisms. Tetrahydropiperine (THP) is a natural alkaloid with protective effects against multiple diseases, such as seizure, and pain. This study was to examine the impact of THP on IS and investigate its potential mechanism. MATERIAL AND METHODS We employed network pharmacology and molecular docking techniques to identify the target proteins of THP for intervention in IS. Adult male Sprague-Dawley rats were used to create a permanent middle cerebral artery occlusion model. PC-12 cells were chosen to establish an oxygen-glucose deprivation (OGD) cell model. Disease modeling followed by nimodipine (NIMO); 3-methyladenine (3-MA) and rapamycin (RAP) interventions. Open field test, Longa score, balance beam test, and forelimb grip test were used to measure motor and neurological functions. The degree of neurological damage recovery was assessed through behavioral analysis, and cerebral infarction volume was determined using TTC staining. Morphological changes were examined through HE and Nissl staining, and ultrastructural changes in neurons were observed using transmission electron microscopy. The protein expression of autophagy and related pathways was analyzed through Western blot (WB). The appropriate hypoxia time and drug concentration were determined using CCK-8 assay, which also measured cell survival rate. RESULTS The network pharmacology findings indicated that the impact of THP on IS was enhanced in the PI3K/Akt signaling pathway. THP demonstrated robust docking capability with proteins associated with the autophagy and PI3K/Akt/mTOR, as indicated by the molecular docking outcomes. THP significantly improved behavioral damage, reduced the area of cerebral infarction, ameliorated histopathological damage from ischemia, increase neuronal survival, and alleviated ultrastructural damage in neurons (P < 0.05). THP enhanced the survival of PC-12 cells induced by OGD and ameliorated the morphological harm to the cells (P < 0.05). THP was found to elevate the quantities of P62, LC3-Ⅰ, PI3K, P-AKt/Akt, and P-mTOR/mTOR proteins while reducing the levels of Atg7 and Beclin1 proteins. The results of transmission electron microscopy showed no autophagosomes in the THP, 3-MA, and 3-MA + THP groups. CONCLUSION The activation of the PI3K/Akt/mTOR signaling pathway by THP inhibits autophagy and provides relief from neurological damage in IS.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Ethnomedicine Modernization, Minority of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Qianqian Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jiayuan Lu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Siyu Xi
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanbo Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guangyu Yang
- Wuhan Railway Vocational College Of Technology, Wuhan 430200, China
| | - Zhixi Xie
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Li Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Ethnomedicine Modernization, Minority of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Ethnomedicine Modernization, Minority of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
322
|
Gou D, Qiu P, Wang Y, Hong F, Ren P, Cheng X, Wang L, Dou X, Liu T, Liu J, Zhang L, Zhao J. Multifunctional chitosan-based hydrogel wound dressing loaded with Acanthopanax senticosus and Osmundastrum cinnamomeum: Preparation, characterization and coagulation mechanism. J Mech Behav Biomed Mater 2024; 151:106384. [PMID: 38242071 DOI: 10.1016/j.jmbbm.2024.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Considerable potential exists for the development of natural polymer hydrogels that possess notable antibacterial and anti-inflammatory properties, along with excellent biocompatibility and mechanical attributes, to expedite the healing of skin wounds. Recent endeavors have focused on formulating an optimal hydrogel dressing for wound hemostasis and repair. In this pursuit, we have crafted a composite hydrogel using carboxymethyl chitosan and alginic acid, cross-linked with EDC/NHS, and enriched with extracts from Acanthopanax senticosus and Osmundastrum cinnamomeum. This synthesized hydrogel showcases commendable features, including significant swelling capacity (135 ± 3.6%), proficient water retention (94.421 ± 0.154%), and effective water vapor permeability (5845.011 ± 467.799 g/m2/d). Moreover, our drug-loaded hydrogels (CMCS/SA/AS/OC) have demonstrated remarkable efficacy in accelerating wound healing in both in vivo and in vitro models. On the 7th day, the wound healing rate reached 94.905% ± 0.498%, and by the 14th day, the wound was nearly fully healed (98.08% ± 0.323%) with the emergence of hair coverage. Furthermore, these hydrogels exhibited remarkable hemostatic properties, the platelet activity was 89.37% ± 1.29% and the platelet adhesion rate was 66.36% ± 1.42%. In order to elucidate the coagulation mechanism of the Acanthopanax senticosus and Osmundastrum cinnamomeum extracts, a network pharmacology approach was carried out. 41 active compounds and 107 potential therapeutic targets associated with these extracts were identified, revealing a total of 132 coagulation pathways. Platelet activation and complement and coagulation cascades pathways showed the highest levels of enrichment by KEGG analysis, serving as potential mechanisms through which the active components in AS/OC may facilitate coagulation by targeting relevant factors. In summary, our study has successfully developed an innovative drug-loaded hydrogel that not only enhances wound hemostasis and healing but also provides insights into the underlying mechanisms through network pharmacology. This work establishes a robust theoretical foundation for the medical application of our hydrogel.
Collapse
Affiliation(s)
- Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130103, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun, 130022, China.
| |
Collapse
|
323
|
Tang M, Wu ZE, Li F. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Comput Biol Med 2024; 170:108040. [PMID: 38308871 DOI: 10.1016/j.compbiomed.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly efficient small-molecule anticancer drugs. Despite the specificity and efficacy of TKIs, they can produce off-target effects, leading to severe liver toxicity, and even some of them are labeled as black box hepatotoxicity. Thus, we focused on representative TKIs associated with severe hepatic adverse events, namely lapatinib, pazopanib, regorafenib, and sunitinib as objections of study, then integrated drug side-effect data from United State Food and Drug Administration (U.S. FDA) and network pharmacology to elucidate mechanism underlying TKI-induced liver injury. Based on network pharmacology, we constructed a specific comorbidity module of high risk of serious adverse effects and created drug-disease networks. Enrichment analysis of the networks revealed the depletion of all-trans-retinoic acid and the involvement of down-regulation of the HSP70 family-mediated endoplasmic reticulum (ER) stress as key factors in TKI-induced liver injury. These results were further verified by transcription data. Based on the target prediction results of drugs and reactive metabolites, we also shed light on the association between toxic metabolites and severe hepatic adverse reactions, and thinking HSPA8, HSPA1A, CYP1A1, CYP1A2 and CYP3A4 were potential therapeutic or preventive targets against TKI-induced liver injury. In conclusion, our research provides comprehensive insights into the mechanism underlying severe liver injury caused by TKIs, offering a better understanding of how to enhance patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Miaomiao Tang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
324
|
Manoj M, Sowmyanarayan S, Kowshik AV, Chatterjee J. Identification of Potentially Repurposable Drugs for Lewy Body Dementia Using a Network-Based Approach. J Mol Neurosci 2024; 74:21. [PMID: 38363395 DOI: 10.1007/s12031-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
The conventional method of one drug being used for one target has not yielded therapeutic solutions for Lewy body dementia (LBD), which is a leading progressive neurological disorder characterized by significant loss of neurons. The age-related disease is marked by memory loss, hallucinations, sleep disorder, mental health deterioration, palsy, and cognitive impairment, all of which have no known effective cure. The present study deploys a network medicine pipeline to repurpose drugs having considerable effect on the genes and proteins related to the diseases of interest. We utilized the novel SAveRUNNER algorithm to quantify the proximity of all drugs obtained from DrugBank with the disease associated gene dataset obtained from Phenopedia and targets in the human interactome. We found that most of the 154 FDA-approved drugs predicted by SAveRUNNER were used to treat nervous system disorders, but some off-label drugs like quinapril and selegiline were interestingly used to treat hypertension and Parkinson's disease (PD), respectively. Additionally, we performed gene set enrichment analysis using Connectivity Map (CMap) and pathway enrichment analysis using EnrichR to validate the efficacy of the drug candidates obtained from the pipeline approach. The investigation enabled us to identify the significant role of the synaptic vesicle pathway in our disease and accordingly finalize 8 suitable antidepressant drugs from the 154 drugs initially predicted by SAveRUNNER. These potential anti-LBD drugs are either selective or non-selective inhibitors of serotonin, dopamine, and norepinephrine transporters. The validated selective serotonin and norepinephrine inhibitors like milnacipran, protriptyline, and venlafaxine are predicted to manage LBD along with the affecting symptomatic issues.
Collapse
Affiliation(s)
- Megha Manoj
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | | | - Arjun V Kowshik
- Department of Biotechnology, PES University, Bangalore, 560085, India
| | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085, India.
| |
Collapse
|
325
|
Wenk J, Voigt I, Inojosa H, Schlieter H, Ziemssen T. Building digital patient pathways for the management and treatment of multiple sclerosis. Front Immunol 2024; 15:1356436. [PMID: 38433832 PMCID: PMC10906094 DOI: 10.3389/fimmu.2024.1356436] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Recent advances in the field of artificial intelligence (AI) could yield new insights into the potential causes of multiple sclerosis (MS) and factors influencing its course as the use of AI opens new possibilities regarding the interpretation and use of big data from not only a cross-sectional, but also a longitudinal perspective. For each patient with MS, there is a vast amount of multimodal data being accumulated over time. But for the application of AI and related technologies, these data need to be available in a machine-readable format and need to be collected in a standardized and structured manner. Through the use of mobile electronic devices and the internet it has also become possible to provide healthcare services from remote and collect information on a patient's state of health outside of regular check-ups on site. Against this background, we argue that the concept of pathways in healthcare now could be applied to structure the collection of information across multiple devices and stakeholders in the virtual sphere, enabling us to exploit the full potential of AI technology by e.g., building digital twins. By going digital and using pathways, we can virtually link patients and their caregivers. Stakeholders then could rely on digital pathways for evidence-based guidance in the sequence of procedures and selection of therapy options based on advanced analytics supported by AI as well as for communication and education purposes. As far as we aware of, however, pathway modelling with respect to MS management and treatment has not been thoroughly investigated yet and still needs to be discussed. In this paper, we thus present our ideas for a modular-integrative framework for the development of digital patient pathways for MS treatment.
Collapse
Affiliation(s)
- Judith Wenk
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Isabel Voigt
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hernan Inojosa
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hannes Schlieter
- Research Group Digital Health, Faculty of Business and Economics, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
326
|
Ma YQ, Zhang M, Sun ZH, Tang HY, Wang Y, Liu JX, Zhang ZX, Wang C. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation. World J Gastrointest Oncol 2024; 16:493-513. [PMID: 38425392 PMCID: PMC10900166 DOI: 10.4251/wjgo.v16.i2.493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis. Resveratrol, a non-flavonoid polyphenolic compound found in a variety of Chinese medicinal materials, has shown excellent anti-GC effect. However, its exact mechanisms of action in GC have not been clarified. AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms. METHODS Action targets of resveratrol and GC-related targets were screened from public databases. The overlapping targets between the two were confirmed using a Venn diagram, and a "Resveratrol-Target-GC" network was constructed using Cytoscape software version 3.9.1. The protein-protein interaction (PPI) network was constructed using STRING database and core targets were identified by PPI network analysis. The Database for Annotation, Visualization and Integrated Discovery database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A "Target-Pathway" network was created by using Cytoscape 3.9.1. The RNA and protein expression levels of core target genes were observed using the Cancer Genome Atlas and the Human Protein Atlas databases. DriverDBv3 and Timer2.0 databases were used for survival and immune infiltration analysis. Subsequently, the findings were further verified by molecular docking technology and in vitro experiments. RESULTS A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases, and 181 intersection targets between the two were screened by Venn diagram. The top 20 core targets were identified by PPI network analysis of the overlapping targets. GO function analysis mainly involved protein binding, identical protein binding, cytoplasm, nucleus, negative regulation of apoptotic process and response to xenobiotic stimulus. KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, ErbB signaling pathway, etc. FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were selected by differential expression analysis, and they were closely associated with immune infiltration. Molecular docking results showed that resveratrol docked well with these two targets. Resveratrol treatment arrested the cell cycle at the S phase, induced apoptosis, and weakened viability, migration and invasion in a dose-dependent manner. Furthermore, resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression. CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation, migration, invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
Collapse
Affiliation(s)
- Ying-Qian Ma
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Ming Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Zhen-Hua Sun
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Hong-Yue Tang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Ying Wang
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jiang-Xue Liu
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Zhan-Xue Zhang
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Chao Wang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
327
|
Hu W, Xie N, Zhu H, Jiang Y, Ding S, Ye S, Zhang S, Wang F, Qu F, Zhou J. The effective compounds and mechanisms of Cang-Fu-Dao-Tan Formula in treating polycystic ovary syndrome based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments. J Pharm Biomed Anal 2024; 239:115867. [PMID: 38061171 DOI: 10.1016/j.jpba.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), as a common endocrine disease in reproductive-age women, which is characterized by both reproductive and metabolic disorders. Cang-Fu-Dao-Tan Formula (CFDTF) is an effective and relatively safe treatment for PCOS. However, the underlying mechanism is poorly understood. PURPOSE To explore the effective compounds and mechanisms of CFDTF in treating PCOS based on UPLC/Q-TOF-MS/MS, network pharmacology and molecular experiments. METHODS The UPLC/Q-TOF-MS/MS and TCMSP, SwissTargetPrediction databases were used to identify the active ingredients of CFDTF. Then GeneCards, Disgenet, Drugbank databases were used to obtain the PCOS related targets. Based above, the Drug-component-target (D-C-T) network and protein-protein-interaction (PPI) network were built to analysis the key targets. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were performed to find the potential mechanisms. Finally, molecular docking analysis, molecular dynamics (MD) simulations and molecular experiments were used to confirm the interactions among the active compounds, targets and explore the potential mechanisms. RESULTS A total of 20 compounds were identified by UPLC/Q-TOF-MS/MS, and 136 active compounds by TCMSP from CFDTF. After removing the duplicate results, there were 370 targets related to both CFDTF and PCOS, among which, MAPK3, AKT1, RELA, EGF, TP53 and MYC were proved to have high interactions with the components. The mechanisms of CFDTF against PCOS were related to PI3K-Akt, mTOR, MAPK signaling pathways, and the in vitro experiments proved that the CFDTF positively regulated the cell proliferation and inhibited the apoptosis levels in PCOS cell model. CONCLUSIONS The combination of UPLC/Q-TOF-MS/MS, systematic network pharmacology and molecular experiments identified that the quercetin, hesperidin, and glycyrrhizin disaccharide are the TOP 3 effective compounds of CFDTF in treating PCOS and the potential mechanisms may involve in regulating proliferation and apoptosis of granulosa cells.
Collapse
Affiliation(s)
- Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Hanyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yiting Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Sijia Ding
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shaoyan Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Siwen Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Jue Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
328
|
Jiang YL, Xun Y. Molecular Mechanism of Salvia miltiorrhiza in the Treatment of Colorectal Cancer Based on Network Pharmacology and Molecular Docking Technology. Drug Des Devel Ther 2024; 18:425-441. [PMID: 38370566 PMCID: PMC10873149 DOI: 10.2147/dddt.s443102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose This study aimed to investigate the effect of Salvia miltiorrhiza on colorectal cancer, as well as the mechanisms involved. Methods The active compounds of Salvia miltiorrhiza and the associated genes in colorectal cancer were sourced from publicly available databases. Targets associated with colorectal cancer were identified by searching the GeneCards and OMIM databases. Subsequently, the Cytoscape 3.6.0 software was employed to create a regulatory network that illustrates the relationships among active ingredients, colorectal cancer, and their corresponding targets. The String database was utilized to generate a PPI network. Molecular docking studies, conducted with AutoDock Vina, verified the binding capabilities of these active components to core targets. The findings from network pharmacology analysis were corroborated through in vitro experiments. Results In this study, we identified 39 active components derived from Salvia miltiorrhiza that are predicted to target 544 genes associated with colorectal cancer through network pharmacology. Through a combined analysis of network pharmacology, we isolated three key targets: SRC, IL6, and INS. Molecular docking results convincingly demonstrated Salvia miltiorrhiza's strong binding affinity to these targets. Additionally, in vitro experiments confirmed that Salvia miltiorrhiza effectively inhibited the progression of colorectal cancer via regulating the INS/SRC/IL6 pathway. Conclusion Salvia miltiorrhiza emerges as a compelling herbal intervention for colorectal cancer. This study lays the foundation for potential future clinical trials assessing the efficacy of Salvia miltiorrhiza in the management of colorectal cancer.
Collapse
Affiliation(s)
- Yi-Ling Jiang
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Yi Xun
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| |
Collapse
|
329
|
Wang YJ, Wang XY, Yang ZN, Shang XY, Mi SH, Liu Q, Yao GD, Song SJ. Exploring the mechanism of daphne-type diterpenes against gastric cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-13. [PMID: 38347741 DOI: 10.1080/10286020.2024.2311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 04/07/2025]
Abstract
Gastric cancer is one of the common malignant tumors. It is reported that daphne-type diterpenes have inhibitory effects on gastric cancer cells, but the mechanism is still unknown. To explore the detailed mechanism of the anticancer effect of daphne-type diterpenes, we carried out an integrated network pharmacology prediction study and selected an effective component (yuanhuacine, YHC) for the following validation in silico and in vitro. The result showed that daphne-type diterpenes exerted an anti-tumor effect by targeting proto-oncogene tyrosine-protein kinase SRC as well as regulating the Ras/MAPK signaling pathway, which caused the apoptosis and mitochondrial damage in gastric cancer cells.
Collapse
Affiliation(s)
- Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Nuo Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Yue Shang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
330
|
Li J, Jia N, Cui M, Li Y, Jiang D, Chu X. Chinese herb couple against diabetes: integrating network pharmacology and mechanism study. J Biomol Struct Dyn 2024:1-17. [PMID: 38345075 DOI: 10.1080/07391102.2024.2314263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/30/2024] [Indexed: 01/04/2025]
Abstract
Cassia twig is a dry twig of Cinnamomum cassia Presl, a Lauraceae plant. Astragalus L is one of the largest genuses of flowering plants in the Leguminosae family. Roots of A. membranaceus Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge. Chinese herb couple refers to the matching of two herbs in pairs, mostly with synergistic effects or toxicity reduction. This Chinese herb couple (Cassia twig-Astragalus) come from the classic famous book "Zhang Xichun's book on Chinese herb couple", which is widely used to treat diabetes. Moreover, both Cassia twig and Astragalus belong to the homology of medicine and food. However, its mechanism is still unclear. The study identified the effective components of Cassia twig-Astragalus by UPLC-Q-TOF-MS/MS and investigated the mechanism of Cassia twig-Astragalus in treating diabetes by virtue of network pharmacology, molecular docking and experimental verification. Firstly, based on UPLC-Q-TOF-MS/MS and network pharmacology, a total of 10 active ingredients of Astragalus and 6 active ingredients of Cassia twig were screened, and a total of 13 key targets were obtained. There were 64 targets at the intersection of Cassia twig-Astragalus with diabetes, mainly including IL-17, TNF, NF-κβ, AGE-RAGE signaling pathway, etc. It mainly involves the response of cells to insulin stimulation, the response to insulin and the positive regulation of cell adhesion. Secondly, molecular docking results showed that quercetin has good binding activities with AKT1 and TNF. Calycosin has good binding activities with AKT1, TNF and CAV1. Formononetin has good binding activities with TNF and IL-6. Isorhamnetin has good binding activities with AKT1, TNF and IL-6. Finally, the animal experiments showed that Cassia twig-Astragalus could improve the body weight, blood glucose and glucose tolerance in diabetic rats. After the intervention with Cassia twig-Astragalus, the inflammatory factors (IL-10, TNF-α, IL-6) were significantly improved in diabetic rats, which also effectively reduced TG and TC.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
331
|
Hu W, Zhao J, Hu Y, Song S, Chen X, Sun Y. Huangqi Jiuni decoction prevents acute kidney injury induced by severe burns by inhibiting activation of the TNF/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117344. [PMID: 37949330 DOI: 10.1016/j.jep.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Jiuni decoction (HQJND) is a prescription for the treatment of severe burns provided based on traditional Chinese and Western medicine, which is created by the First Affiliated Hospital of Anhui Medical University. It consists of 12 herbs and has been used clinically for decades. It has greatly shortened the course of the disease, but the mechanism by which HQJND treats the disease still remains unclear. AIM OF THE STUDY Hence, the objective of this investigation was to utilize modern pharmacological tools to demonstrate the efficacy and mechanism of HQJND in the treatment of acute kidney injury (AKI) caused by severe burns. MATERIALS AND METHODS In this study, the chemical constituents in HQJND were first examined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Then, by using network pharmacology, we screened the targets of drug and disease action, and predicted the signaling pathways acting in the course of drug treatment of disease. Finally, we attempted to verify the efficacy of the drug and explored its therapeutic mechanism after the establishment of an animal model, herbal gavage treatment, collection of rat kidneys and serum for renal function, quantitative real-time Polymerase Chain Reaction (RT-qPCR), Western Blotting (WB), Hematoxylin and eosin (HE) staining and Immunohistochemistry (IHC). RESULTS The 14 important active ingredients in HQJND was analyzed by liquid chromatography tandem mass spectrometry, while network pharmacology screening was performed to identify 353 disease-associated marker genes and 286 drug targets, finally identifying the TNF/NF-κB (tumor necrosis factor/nuclear factor kappa-B) signaling site: the key pathway of burn-induced acute kidney injury when HQJND intervened. The serum renal function and histopathology of rats demonstrated that the use of HQJND significantly improved the renal function in severe burns. RT-qPCR and WB confirmed that the TNF/NF-κB signaling pathway was activated in the Model group of rats, and HQJND could curb the signaling pathway because it moderated the expressions of key proteins in the process. CONCLUSION Based on modern pharmacology, we explored an effective herbal preparation to ameliorate the impairment of renal function after severe burns, which is most likely to function through the TNF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wanxuan Hu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Jie Zhao
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Shushan District, Hefei, Anhui, 230032, PR China; Department of Chinese Integrative Medicine, Anhui Medical University, No. 80, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Yuxin Hu
- Department of Chinese Integrative Medicine, Anhui Medical University, No. 80, Meishan Road, Shushan District, Hefei, Anhui, 230032, PR China
| | - Shuai Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Xulin Chen
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yexiang Sun
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China.
| |
Collapse
|
332
|
Lu Y, Lin M, Ou S, Sun L, Qian K, Kuang H, Wu Y. Astragalus polysaccharides ameliorate epileptogenesis, cognitive impairment, and neuroinflammation in a pentylenetetrazole-induced kindling mouse model. Front Pharmacol 2024; 15:1336122. [PMID: 38405667 PMCID: PMC10884767 DOI: 10.3389/fphar.2024.1336122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
Background: Epilepsy is a prevalent neurological disease where neuroinflammation plays a significant role in epileptogenesis. Recent studies have suggested that Astragalus polysaccharides (APS) have anti-inflammatory properties, which make them a potential candidate for neuroprotection against central nervous system disease. Nevertheless, the extent of their effectiveness in treating epilepsy remains enigmatic. Therefore, our study aims to investigate the potential of APS to mitigate epileptogenesis and its comorbidities by exploring its underlying mechanism. Methods: Initially, we employed pentylenetetrazol-induced seizure mice to validate APS' effectiveness. Subsequently, we employed network pharmacology analysis to probe the possible targets and signaling pathways of APS in treating epilepsy. Ultimately, we verified the key targets and signaling pathways experimentally, predicting their mechanisms of action. Results: APS have been observed to disturb the acquisition process of kindling, leading to reduced seizure scores and a lower incidence of complete kindling. Moreover, APS has been found to improve cognitive impairments and prevent hippocampal neuronal damage during the pentylenetetrazole (PTZ)-kindling process. Subsequent network pharmacology analysis revealed that APS potentially exerted their anti-epileptic effects by targeting cytokine and toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling pathways. Finally, experimental findings showed that APS efficiently inhibited the activation of astrocytes and reduced the release of pro-inflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, APS impeded the activation of the TLR4/NF-κB signaling cascade in a PTZ-induced kindling mouse model. Conclusion: The outcomes of our study suggest that APS exerts an impact on epileptogenesis and mitigates cognitive impairment by impeding neuroinflammatory processes. The mechanism underlying these observations may be attributed to the modulation of the TLR4/NF-κB signaling pathway, resulting in a reduction of the release of inflammatory mediators. These findings partially agree with the predictions derived from network pharmacology analyses. As such, APS represents a potentially innovative and encouraging adjunct therapeutic option for epileptogenesis and cognitive deficit.
Collapse
Affiliation(s)
- Yuling Lu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Minglin Lin
- Department of Colorectal and Anal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sijie Ou
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lanfeng Sun
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kai Qian
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huimin Kuang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
333
|
Wang X, Wang T, Jiang X, Ruan Y, Wang J, Qi C. The potential mechanism of Guizhi Fuling Wan effect in the treatment of cervical squamous cell carcinoma: A bioinformatics analysis investigation. Medicine (Baltimore) 2024; 103:e37153. [PMID: 38306566 PMCID: PMC10843305 DOI: 10.1097/md.0000000000037153] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
As a global malignancy with high mortality rate, targeted drug development for Uterine Cervical Neoplasms is an important direction. The traditional formula Guizhi Fuling Wan (GFW) is widely used in gynecological diseases. However, its potential mechanism of action remains to be discovered. We retrieved GFW and cervical squamous cell carcinoma (CSCC) targets from public databases. The protein-protein interaction network was obtained by string computational analysis and imported Cytoscape_v3.9.0 to obtain the core network and the top 10 Hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analysis of the core network, and then molecular docking to verify whether the selected signaling pathway binds well to the core node. Finally, clinical prognostic analysis and expression differences of Hub genes were validated using the Cancer Genome Atlas database and R language. Our search yielded 152 common targets for GFW and CSCC. The interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, and Toll-like signaling pathway were then selected for further molecular docking from the hub genes enrichment analysis results, which showed good binding. Among the Hub genes, JUN, VEGFA, IL1B, and EGF had a poor prognosis for CSCC. In conclusion, this study illustrates that GFW can have adjuvant therapeutic effects on CSCC through multiple targets and multiple pathways, providing a basis for further research.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- The Third Clinical Medical Collage, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyue Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Jiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanmin Ruan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiamin Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caixia Qi
- Department of Gynecology and Obstetrics, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
334
|
Chen K, Yu Y, Wang Y, Zhu Y, Qin C, Xu J, Zou X, Tao T, Li Y, Jiang Y. Systematic Pharmacology and Experimental Validation to Reveal the Alleviation of Astragalus membranaceus Regulating Ferroptosis in Osteoarthritis. Drug Des Devel Ther 2024; 18:259-275. [PMID: 38318502 PMCID: PMC10843981 DOI: 10.2147/dddt.s441350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Background Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.
Collapse
Affiliation(s)
- Kai Chen
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yaohui Yu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yishu Wang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Zhu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaoren Qin
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jintao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiangjie Zou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianqi Tao
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Li
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yiqiu Jiang
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
335
|
Wang S, Xing Y, Wang R, Jin Z. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117347. [PMID: 37931831 DOI: 10.1016/j.jep.2023.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Huayu Decoction (JHD) is an herbal prescription in traditional Chinese medicine based on Sijunzi Decoction to treat patients with colorectal cancer (CRC). Its effects on the inhibition of CRC cell proliferation and tumor growth are promising; however, its multicomponent nature makes a complete understanding of its mechanism challenging. AIM OF THE STUDY To explore the therapeutic targets and underlying molecular pathways of JHD in CRC treatment using network pharmacology techniques and in vivo validation. MATERIALS AND METHODS The active ingredients and targets of JHD were identified, compound-target interactions were mapped, and enrichment analyses were conducted. We identified the hub targets of JHD-induced cellular senescence in CRC. The binding affinities between compounds and targets were evaluated through molecular docking. Subsequently, we conducted bioinformatic analyses to compare the expression of hub targets between colorectal tissue and normal tissue. Finally, in vivo experiments were carried out utilizing a xenograft model to assess the effects of JHD on cellular senescence biomarkers. RESULTS Network pharmacology revealed 129 active ingredients in JHD that were associated with 678 targets, leading to the construction of compound-target and target-pathway networks. Enrichment analyses highlighted key pathways including cellular senescence. Based on this, hub targets associated with cellular senescence were determined and validated. Molecular docking indicated favorable interactions between the active components and hub targets. Gene expression and survival analysis in CRC tissue were consistent with the potential roles of hub genes. Animal experiments showed that JHD triggered cellular senescence and suppressed the growth of CRC by regulating the p53-p21-Rb signaling pathway. CONCLUSIONS This research adopted network pharmacology, bioinformatics, and animal experiments to unveil that JHD induces cellular senescence in CRC by influencing the p53-p21-Rb pathway and senescence-associated secretory phenotypes, highlighting its potential as a CRC treatment.
Collapse
Affiliation(s)
- Shiting Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xing
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiping Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Jin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
336
|
Dong Y, Liu Y, Tang J, Du J, Zhuang X, Tan S, Yang Y, Yin D. Zhisou powder displays therapeutic effect on chronic bronchitis through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway and reprograming metabolic pathway of arachidonic acid. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117110. [PMID: 37673198 DOI: 10.1016/j.jep.2023.117110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhisou Powder (ZP), one of the most common prescriptions in traditional Chinese medicine, has been widely used in the treatment of acute or chronic bronchitis and chronic cough. The ZP was composed of Ziwan (Aster tataricus L. f.), Jiegeng (Platycodon grandiflorus (Jacq.) A. DC.), Jingjie (Nepeta cataria L.), Baibu (Stemona sessilifolia (Miq.) Miq.), Baiqian (Vincetoxicum glaucescens (Decne.) C. Y. Wu & D. Z. Li), Chenpi (Citrus × aurantium f. deliciosa (Ten.) M. Hiroe) and Gancao (Glycyrrhiza uralensis Fisch. ex DC.), with plant names among it checked with MPNS (http://mpns.kew.org). But until now, the key active components and targets of ZP, and related mechanism of ZP in the treatment of chronic bronchitis (CB) remain unclear. AIM OF THE STUDY This study combined UPLC-Q-Exactive-Orbitrap-MS, network pharmacology, metabonomics with experiment verification to explore potential mechanism of ZP in the treatment of CB. MATERIALS AND METHODS UPLC-Q-Exactive-Orbitrap-MS was performed to analyze the chemical components of ZP. The potentially effective components, attractive targets and critical signaling pathways of Zhisou Powder in the treatment of CB were screened by UPLC-Q-Exactive-Orbitrap-MS combined with network pharmacology. Additionally, the CB model rats induced by SO2 were used to evaluate the anti-chronic bronchitis activity of ZP in vivo. The pulmonary pathology was determined by hematoxylin-eosin staining. Meanwhile, PI3K/Akt/HIF-1α/VEGFA signaling pathway predicted from network pharmacology was verified by Western blot and RT-PCR. Lastly, the metabolic changes of arachidonic acid (AA) in ZP-treated rats were quantitatively analyzed by LC-MS targeted metabonomics, and the proteins expression involved in AA metabolic pathway were detected by immunohistochemistry, immunofluorescence and Western blot. RESULTS The main active components of ZP in the treatment of CB selected by network pharmacology and UPLC-Q-Exactive-Orbitrap-MS technology were quercetin, kaempferol, luteolin, galangin, isorhamnetin, naringenin, nobiletin, formononetin and so on. The core targets of these components were predicted to be TP53, TNF, IL-6, VEGFA, CASP3, IL-1β, JUN, PTGS2. Enrichment of KEGG pathway analysis found that PI3K/Akt/HIF-1α/VEGFA signaling pathway might play a key role in the treatment of CB with ZP. The in vivo study showed that ZP significantly improved the pathological changes of SO2-treated lung tissue and inhibited the activation of PI3K/Akt/HIF-1α/VEGFA signaling pathway. The changes of AA and its metabolites in vivo were studied by targeted metabonomics, and it showed that ZP could reprogram the disorder of AA metabolism which contributed to the treatment of CB with ZP. CONCLUSION ZP displayed good therapeutic effect on CB model rats through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway to exhibit anti-inflammatory effect and reprogramming disordered metabolic pathway of arachidonic acid.
Collapse
Affiliation(s)
- Yahui Dong
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Jie Tang
- College of Biotechnology, Hefei Technology College, Heifei, 238000, China
| | - Jiahui Du
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Xuzhen Zhuang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230021, China.
| |
Collapse
|
337
|
Mu BX, Li Y, Ye N, Liu S, Zou X, Qian J, Wu C, Zhuang Y, Chen M, Zhou JY. Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117342. [PMID: 37879505 DOI: 10.1016/j.jep.2023.117342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargentodoxa cuneata (Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson, DXT)-Patrinia villosa(Patrinia villosa (Thunb.) Dufr, BJC) constitutes a commonly employed herb pair in Chinese medicine for colorectal cancer (CRC) treatment. Modern pharmacological investigations have revealed the anticancer activities of both Sargentodoxa cuneata and Patrinia villosa. Nevertheless, comprehensive studies are required to discern the specific antitumor active ingredients and mechanism of action when these two herbs are used in combination. AIM OF THE STUDY Through the integration of network pharmacology, molecular docking techniques, experimental assays, and bioinformatics analysis, our study aims to forecast the active ingredients, potential targets, and molecular mechanisms underlying the therapeutic efficacy of this herb pair against CRC. MATERIALS AND METHODS Plant names (1, Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson; 2, Patrinia villosa (Thunb.) Dufr.) have been verified through WorldFloraOnline (www.worldFloraonline.org) and MPNs (http://mpns.kew.org). The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) were utilized for screening the active ingredients of the herb pair. The PharmMapper database was employed to predict the target proteins for each active ingredient. CRC-related targets were obtained from the Genecards database, Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). Common targets were identified by intersecting the target proteins of all active ingredients with CRC-related targets. Protein-protein interactions (PPI) for the common target proteins were constructed using the String database and Cytoscape 3.9.1 software. Network topology analysis facilitated the identification of core targets. These core targets were subjected to enrichment analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the Metascape database. Molecular docking was performed using Discovery Studio 2019 to investigate the interactions between the active ingredients and core target proteins. The core targets were validated through bioinformatics analysis using GEPIA, HPA, and the cBioPortal database. Finally, a series of experiments were conducted to further validate the results in vitro. RESULT A total of 15 active ingredients and 255 herb targets were identified, resulting in 66 common targets in conjunction with 6113 disease targets. The PPI analysis highlighted AKT1, EGFR, CASP3, SRC, and ESR1 as core targets. KEGG enrichment analysis indicated significant enrichment in the PI3K-AKT signaling pathway, a pathway associated with cancer. Molecular docking experiments confirmed favorable interactions between dihydroguaiaretic acid and the core target proteins (AKT1, EGFR, CASP3, and ESR1). Bioinformatics analysis revealed differential expression of EGFR and CASP3 in normal and CRC tissues. Cellular experiments further verified that dihydroguaiaretic acid induces apoptosis in colorectal cancer cells through the PI3K-AKT signaling pathway. CONCLUSION Our network pharmacology study has elucidated that the Sargentodoxa cuneata-Patrinia villosa herb pair exerts the negative regulation of the PI3K/AKT/mTOR signaling pathway, ultimately leading to the induction of apoptosis in colorectal cancer cells. This research has predicted and validated the active ingredients, potential targets, and molecular mechanisms of Sargentodoxa cuneata-Patrinia villosa in the treatment of CRC, providing scientific evidence for the use of traditional Chinese medicine in managing CRC.
Collapse
Affiliation(s)
- Bai-Xiang Mu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Yuanxiang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ningyuan Ye
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Shenlin Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xi Zou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jun Qian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Cunen Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210046, China.
| | - Yuwen Zhuang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Min Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
338
|
Ma L, Wu Y, Luo J, Li F, Zhang M, Cai Y, Dai Y, Pi Z, Zheng F, Yue H. Identifying the active compounds and mechanism of action of TongFu XieXia Decoction for treating intestinal obstruction using network pharmacology combined with ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9664. [PMID: 38124169 DOI: 10.1002/rcm.9664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023]
Abstract
RATIONALE TongFu XieXia Decoction (TFXXD), a formulation rooted in traditional Chinese medicine and optimized through clinical practice, serves as an advanced version of the classic Da Cheng Qi decoction used for treating intestinal obstruction (IO), demonstrating significant therapeutic efficacy. However, due to the intricate nature of herbal compositions, the principal constituents and potential mechanisms of TFXXD have yet to be clarified. Accordingly, this study seeks to identify the active compounds and molecular targets of TFXXD, as well as to elucidate its anti-IO mechanisms. METHODS Qualitative identification of the principal constituents of TFXXD was accomplished using ultra-high preformance liquid chromatography-quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS/MS) analysis. PharmMapper facilitated the prediction of potential molecular targets, whereas protein-protein interaction analysis was conducted using STRING 11.0. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape database. A "compounds-target-pathway" network was meticulously constructed within Cytoscape 3.8.2. Finally, molecular docking studies were performed to investigate the interactions between the core target and the crucial compound. RESULTS UPLC-Q-Orbitrap-MS/MS analysis identified 65 components with high precision and sensitivity. Furthermore, 64 potential targets were identified as integral to TFXXD bioactivity in IO treatment. Gene Ontology enrichment analysis revealed 995 distinct biological functions, while the Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 143 intricate signaling pathways. CONCLUSION Molecular docking studies substantiated the substantial affinity between the TFXXD bioactive constituents and their corresponding targets in the context of IO. TFXXD exerts its therapeutic efficacy in IO through a multifaceted interplay between multiple compounds, targets, and pathways. The integration of network pharmacology with UPLC-Q-Orbitrap-MS/MS has emerged as a promising strategy to unravel the intricate web of molecular interactions underlying herbal medicine. However, it is imperative to emphasize the necessity for further in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Liting Ma
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongxi Wu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Luo
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Fangtong Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meiyu Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongyu Cai
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Fei Zheng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
339
|
Zhang JC, Zhang HL, Xin XY, Zhu YT, Mao X, Hu HQ, Jin YX, Fan RW, Zhang XH, Ye Y, Li D. Mechanisms of Bushen Tiaoxue Granules against controlled ovarian hyperstimulation-induced abnormal morphology of endometrium based on network pharmacology. J Ovarian Res 2024; 17:25. [PMID: 38279186 PMCID: PMC10811918 DOI: 10.1186/s13048-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Bushen Tiaoxue Granules (BTG) is an empirical Chinese herbal formula that has been used for the treatment of subfertility. The protective effect of BTG on controlled ovarian hyperstimulation (COH)-induced impaired endometrial receptivity has been reported in our previous study. This study aims to explore the mechanisms of BTG on ameliorating abnormal morphology of endometrium based on network pharmacology. Active compounds of BTG were identified via the traditional Chinese medicine systems pharmacology and UPLC-MS technology. The SwissTargetPrediction platform and HERB database were used to screen out the putative targets of BTG. Potential targets of endometrial dysfunction caused by COH were obtained from three GEO databases. Through the STRING database, the protein-protein interaction was carried out according to the cross-common targets of diseases and drugs. GO terms and KEGG pathways enrichment analyses were conducted via the Metascape database. AutoDock Vina was used for docking validation of the affinity between active compounds and potential targets. Finally, in vivo experiments were used to verify the potential mechanisms derived from network pharmacology study. A total of 141 effective ingredients were obtained from TCMSP and nine of which were verified in UPLC-MS. Six genes were selected through the intersection of 534 disease related genes and 165 drug potential targets. Enrichment analyses showed that BTG might reverse endometrial dysfunction by regulating adherens junction and arachidonic acid metabolism. Hematoxylin-eosin staining revealed that BTG ameliorated the loose and edematous status of endometrial epithelium caused by COH. The protein expression of FOXO1A, β-Catenin and COX-2 was decreased in the COH group, and was up-regulated by BTG. BTG significantly alleviates the edema of endometrial epithelium caused by COH. The mechanisms may be related to adheren junctions and activation of arachidonic acid metabolism. The potential active compounds quercetin, taxifolin, kaempferol, eriodictyol, and isorhamnetin identified from the BTG exhibit marginal cytotoxicity. Both high and low concentrations of kaempferol, eriodictyol, and taxifolin are capable of effectively ameliorating impaired hESC cellular activity.
Collapse
Affiliation(s)
- Jia-Cheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Mao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
340
|
Zhao B, Li Y, Wang B, Liu J, Yang Y, Quan Q, An Q, Liang R, Liu C, Yang C. Uncovering the Anti-Angiogenic Mechanisms of Centella asiatica via Network Pharmacology and Experimental Validation. Molecules 2024; 29:362. [PMID: 38257275 PMCID: PMC10821292 DOI: 10.3390/molecules29020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Centella asiatica (CA) has been used to address cancer for centuries in traditional Chinese medicine (TCM). Previous studies demonstrated its anti-angiogenesis efficacy, but the underlying mechanism of its action remains to be further clarified. This study aims to investigate the underlying mechanisms of CA and its triterpenes in anti-angiogenesis for cancer therapeutics through network pharmacology and experimental validation. METHODS Cytoscape was used to construct a network of compound-disease targets and protein-protein interactions (PPIs) from which core targets were identified. GO and KEGG analyses were performed using Metascape, and the AutoDock-Vina program was used to realize molecular docking for further verification. Then, VEGF165 was employed to establish an induced angiogenesis model. The anti-angiogenic effects of CA were evaluated through assays measuring cell proliferation, migration, and tubular structure formation. RESULTS Twenty-five active ingredients in CA had potential targets for anti-angiogenesis including madecassoside, asiaticoside, madecassic acid, asiatic acid, and asiaticoside B. In total, 138 potential targets for CA were identified, with 19 core targets, including STAT3, SRC, MAPK1, and AKT1. A KEGG analysis showed that CA is implicated in cancer-related pathways, specifically PD-1 and AGE-RAGE. Molecular docking verified that the active components of CA have good binding energy with the first four important targets of angiogenesis. In experimental validation, the extracts and triterpenes of CA improved VEGF165-induced angiogenesis by reducing the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). CONCLUSIONS Our results initially demonstrate the effective components and great anti-angiogenic activity of CA. Evidence of the satisfactory anti-angiogenic action of the extracts and triterpenes from CA was verified, suggesting CA's significant potential as a prospective agent for the therapy of cancer.
Collapse
Affiliation(s)
- Bingtian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Yuanyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Binya Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Jing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Yang Yang
- Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai 201100, China; (Y.Y.); (Q.Q.); (Q.A.)
- East Asia Skin Health Research Center, Beijing 100037, China
| | - Qianghua Quan
- Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai 201100, China; (Y.Y.); (Q.Q.); (Q.A.)
- East Asia Skin Health Research Center, Beijing 100037, China
| | - Quan An
- Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai 201100, China; (Y.Y.); (Q.Q.); (Q.A.)
- East Asia Skin Health Research Center, Beijing 100037, China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Chunhuan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (Y.L.); (B.W.); (J.L.); (R.L.); (C.L.)
| |
Collapse
|
341
|
Li L, Lin Z, Yuan J, Li P, Wang Q, Cho N, Wang Y, Lin Z. The neuroprotective mechanisms of naringenin: Inhibition of apoptosis through the PI3K/AKT pathway after hypoxic-ischemic brain damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116941. [PMID: 37480970 DOI: 10.1016/j.jep.2023.116941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naringenin (NGN) is a widely distributed flavonoid with potent antioxidant and neuroprotective properties. Neuroprotective agents play a crucial role in the treatment of hypoxic-ischemic encephalopathy (HIE). It has shown potential therapeutic effects for neurological disorders. However, its efficacy on HIE is yet to be investigated. AIM OF THE STUDY This study aims to investigate the potential neuroprotective effect of naringenin and its underlying molecular mechanisms in reducing oxidative stress, apoptosis, and improving brain outcomes following HIE. Additionally, the study aims to identify the potential targets, mechanisms, and functions of naringenin using network pharmacology analysis. MATERIALS AND METHODS Neonatal mice were exposed to the hypoxic-ischemic brain damage (HIBD) model to determine brain water content, and brain tissue was subjected to hematoxylin and eosin (HE), immunohistochemistry (IHC), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Nissl staining to investigate its neuroprotective effects. Furthermore, the neonatal mouse primary neuron oxygen-glucose deprivation (OGD) model to measure reactive oxygen species (ROS) production in vitro. The protein levels were characterized by Western Blot, and mRNA levels were evaluated by a real-time quantitative PCR detecting system (qPCR). Transmission electron microscopy (TEM) and mitochondrial fluorescent staining were used to observe mitochondrial morphology. Neuronal nuclei (NeuN) and microtubule-associated protein 2 (MAP2) were detected by Immunofluorescence (IF). Finally, network pharmacology was employed to determine the common target of naringenin and HIE. The core genes were obtained via protein-protein interaction networks (PPI) analysis and molecular docking was examined, and the mechanism of action was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, small interfering RNA (siRNA) was constructed for verification. RESULTS Naringenin has a neuroprotective effect in HIBD by modulating Vegfa expression and activating the PI3K/AKT pathway to inhibit apoptosis. Furthermore, molecular docking results suggest that Vegfa is a potential binding target of naringenin, and silencing Vegfa partially reverses the pharmacological effects of NGN. CONCLUSION Our findings suggest that naringenin demonstrates potential clinical application for treating HIE as a novel neuroprotective agent.
Collapse
Affiliation(s)
- Luyao Li
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Yuan
- Wenling Maternal and Child Health Care Hospital, Xiabao Road, Chengdong Street of Wenling City, Zhejiang Province, 317500, China
| | - Pingping Li
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Qi Wang
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Zhenlang Lin
- Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
342
|
Guo J, Liang J, Guo Z, Bai X, Zhang H, Zhang N, Wang H, Chen Q, Li W, Dong R, Ge D, Yu X, Cui X. Network pharmacology and transcriptomics to determine Danggui Yifei Decoction mechanism of action for the treatment of chronic lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116873. [PMID: 37419225 DOI: 10.1016/j.jep.2023.116873] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several children with pneumonia (especially severe cases) have symptoms of cough and expectoration during the recovery stage after standard symptomatic treatment, which eventually results in chronic lung injury. Danggui yifei Decoction (DGYFD), a traditional Chinese formula, has shown clinical promise for the treatment of chronic lung injury during the recovery stage of pneumonia, however, its mechanism of action is yet to be deciphered. AIM OF THIS STUDY To investigate the therapeutic mechanism of DGYFD for the treatment of chronic lung injury by integrating network pharmacology and transcriptomics. MATERIALS AND METHODS BALB/c mice were used to establish the chronic lung injury mouse model by intratracheal instillation of lipopolysaccharide (LPS). Pathological analysis of lung tissue, lung injury histological score, lung index, protein levels in bronchoalveolar lavage fluid (BALF), immunohistochemical staining, blood rheology, inflammatory cytokines, and oxidative stress levels were used to evaluate the pharmacological effects of DGYFD. Chemical components of DGYFD were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Integrated network pharmacology together with transcriptomics was used to predict potential biological targets. Western blot analysis was used to verify the results. RESULTS In this study, we demonstrated that DGYFD could improve lung injury pathological changes, decreases lung index, down-regulate NO and IL-6 levels, and regulate blood rheology. In addition, DGYFD was able to reduce the protein levels in BALF, up-regulate the expression levels of occludin and ZO-1, improve the ultrastructure of lung tissues, and reverse the imbalance of AT I and AT II cells to repair the alveolar-capillary permeability barrier. Twenty-nine active ingredients of DGYFD and 389 potential targets were identified by UPLC-MS/MS and network pharmacology, and 64 differentially expressed genes (DEGs) were identified using transcriptomics. GO and KEGG analysis revealed that the MAPK pathway may be the molecular target. Further, we found that DGYFD inhibits phosphorylation levels of p38 MAPK and JNK in chronic lung injury mouse models. CONCLUSIONS DGYFD could regulate the imbalance between the excessive release of inflammatory cytokines and oxidative stress, repair the alveolar-capillary permeability barrier and improve the pathological changes during chronic lung injury by regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianning Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junming Liang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ziyi Guo
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Bai
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Hongxian Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning Zhang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Handong Wang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Chen
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Li
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China; School of Graduates, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruijuan Dong
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongyu Ge
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Yu
- Scientific Research and Experiment Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xia Cui
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| |
Collapse
|
343
|
Wang Y, He Q, Rong K, Zhu M, Zhao X, Zheng P, Mi Y. Vitamin D3 promotes gastric cancer cell autophagy by mediating p53/AMPK/mTOR signaling. Front Pharmacol 2024; 14:1338260. [PMID: 38259281 PMCID: PMC10800859 DOI: 10.3389/fphar.2023.1338260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Objective: Vitamin D3 has the general properties of a lipid-soluble vitamin, but is also an active steroid hormone that can regulate the proliferation, apoptosis and differentiation of many tumor cells, and exerts anticancer activity against numerous malignancies. However, the mechanism underlying the effects of vitamin D3 on tumors is not fully understood. Here, we used network pharmacology and in vitro experimental approaches to explore the mechanism of vitamin D3 activity in the context of gastric cancer. Methods: The Targetnet, SuperPred, SwissTargetPrediction, and PharmMapper databases were screened for potential drug-related targets, while we used data from the PharmGKB, Drugbank, OMIM, DisGeNET, CTD, and GeneCards databases to identify potential targets associated with gastric cancer. Disease-drug crossover genes were obtained by constructing Venn diagrams. Gene ontology and Kyoto Encyclopedia of Genomes (KEGG) enrichment analyses of crossover genes were conducted and STRING was used to generate protein interaction networks and identify core targets. CCK-8 experiments were performed and apoptosis detected to assess the effect of vitamin D3 on gastric cancer cells. Western blotting was applied to detect p53/AMPK/mTOR signaling, as well as autophagy-, cell cycle-, and apoptosis-related proteins. Results: A total of 485 targets of vitamin D3 activity were obtained and 1200 gastric cancer disease-related targets discovered. Further, 60 potential targets for vitamin D3 in gastric cancer treatment were identified. KEGG analysis indicated that potential targets were mainly involved in the cell cycle, HIF-1 signaling, and the AMPK pathway, among other pathways. These findings were validated using cellular experiments, which demonstrated that the viability of AGS and SGC-7901 cells was impeded by vitamin D3. Further, vitamin D3 promoted apoptosis and inhibited the cell cycle in those cell lines, as well as activating the p53/AMPK/mTOR pathway, which promotes autophagy and inhibits tumor development. Conclusion: Our network pharmacological analyses provide preliminarily data supporting a role for vitamin D3 in promoting autophagy and apoptosis in gastric cancer cells, and in activating the p53/AMPK/mTOR pathway, which inhibits gastric cancer cell proliferation. Our findings demonstrate the molecular mechanism underlying the effect of vitamin D3 in cure of gastric cancer.
Collapse
Affiliation(s)
- Yanan Wang
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Kang Rong
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyang Zhu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
344
|
Liang H, Yin G, Shi G, Liu Z, Liu X, Li J. Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer. Anal Biochem 2024; 684:115360. [PMID: 37865269 DOI: 10.1016/j.ab.2023.115360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
345
|
Xiao J, Yu Z, Han Q, Guo Y, Ye J, Lian H, Wang L, Ma Y, Liu M. The Mechanism of Action and Experimental Verification of Narenmandula in the Treatment of Postmenopausal Osteoporosis. Comb Chem High Throughput Screen 2024; 27:2249-2259. [PMID: 38178685 PMCID: PMC11348460 DOI: 10.2174/0113862073264965231116105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Narenmandula is a classic ancient remedy in Inner Mongolia, historically used for gastrointestinal diseases. In recent decades, Inner Mongolia Medical University found that it has a significant effect in promoting fracture healing and increasing bone density, and has been used to treat postmenopausal osteoporosis (PMOP), but its mechanism is unclear. OBJECTIVE Identify the mechanism of action of Narenmandula for PMOP treatment. METHODS Network pharmacology, molecular docking and ovarian departing rat models were used to verify the relevant mechanism of Narenmandula in the treatment of PMOP. RESULTS We confirmed that NRMDL prescription can improve OVX-induced bone loss, improve trabecular density, and relieve osteoporosis. Upon screening of network pharmacology, we obtained 238 overlapping genes of Narenmandula and PMOP, and analyzed AKT, IL1B, and IL6 as key genes by network topology. Among the 1143 target genes that interact with PMOP, 107 NRMDL active compounds correspond to 345 target genes and 238 overlapping genes. Network topology analysis showed the top 8 active ingredients, such as quercetin and kaempferol, and the top 20 key genes, such as AKT, IL1B, IL6, INS, JUN, STAT3, TNF, TP53, etc. Enrichment analysis revealed involvement of PI3K-Akt, HIF-1, FoxO, MAPK, and TNF signaling pathways. In addition, we found the most important active compounds bind tightly to core proteins, which were verified by molecular docking analysis. The AKT-related pathway had good binding energy, and the pathway was verified by cell and animal experiments. CONCLUSION The potential mechanism and efficacy of Narenmandula against PMOP may be related to the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, China
| | - Ziceng Yu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuge Han
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiapeng Ye
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Lian
- Inner Mongolia Medical University, Inner Mongolia, Hohhot, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
346
|
Yang Y, Xu M, Yuan W, Feng Y, Hou Y, Fang F, Duan S, Bai L. Network Pharmacology and Molecular Docking Analysis on Mechanisms of Scutellariae Radix in the Treatment of Cerebral Ischemia-reperfusion Injury. Comb Chem High Throughput Screen 2024; 27:2712-2725. [PMID: 37855354 DOI: 10.2174/0113862073258863230921180641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Multiple brain disorders are treated by Scutellaria Radix (SR), including cerebral ischemia-reperfusion (CI/R). However, more studies are needed to clarify the molecular mechanism of SR for CI/R. METHODS The active substances and potential targets of SR and CI/R-related genes were obtained through public databases. Overlapping targets of SR and CI/R were analyzed using proteinprotein interaction (PPI) networks. GO and KEGG enrichment analyses were performed to predict the pathways of SR against CI/R, and the key components and targets were screened for molecular docking. The results of network pharmacology analysis were verified using in vitro experiments. RESULTS 15 components and 64 overlapping targets related to SR and CI/R were obtained. The top targets were AKT1, IL-6, CAS3, TNF, and TP53. These targets have been studied by GO and KEGG to be connected to a number of signaling pathways, including MAPK, PI3K-Akt pathway, and apoptosis. Molecular docking and cell experiments helped to further substantiate the network pharmacology results. CONCLUSION The active compound of SR was able to significantly decrease the apoptosis of HT- 22 cells induced by OGD/R. This finding suggests that SR is a potentially effective treatment for CI/R by modulating the MAPK and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Mengrong Xu
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Wenting Yuan
- Department of College of Life Sciences, Northwest University, No. 229, North Taibai Road, Beilin District, China
| | - Yue Feng
- Department of College of Life Sciences, Northwest University, No. 229, North Taibai Road, Beilin District, China
| | - Yongqiang Hou
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Fei Fang
- Deparment of Central Lab, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Shiwan Duan
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| | - Lu Bai
- Department of Pharmacy, Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, China
| |
Collapse
|
347
|
Du D, Qin C, Sun M, Lv F, Li W, Liu S. The Potential Mechanism of Eriodictyol in Treating Alzheimer's Disease: A Study on Computer-assisted Investigational Strategies. Curr Pharm Des 2024; 30:2086-2107. [PMID: 38920073 DOI: 10.2174/0113816128304628240526071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND At present, drug development for treating Alzheimer's disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown. OBJECTIVE We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations. RESULTS A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations. CONCLUSION ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.
Collapse
Affiliation(s)
- Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
348
|
Sun M, Lv F, Qin C, Du D, Li W, Liu S. The Potential Mechanism of Liujunzi Decoction in the Treatment of Breast Cancer based on Network Pharmacology and Molecular Docking Technology. Curr Pharm Des 2024; 30:702-726. [PMID: 38415453 DOI: 10.2174/0113816128289900240219104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Liujunzi Decoction (LJZD) is a potential clinical treatment for Breast Cancer (BC), but the active ingredients and mechanisms underlying its effectiveness remain unclear. OBJECTIVE The study aimed to investigate the target gene of LJZD compatibility and the possible mechanism of action in the treatment of breast cancer by using network pharmacology and molecular docking. METHODS Based on TCMSP, ETCM, and BATMAN database searching and screening to obtain the ingredients of LJZD, the related targets were obtained. Breast cancer-related targets were collected through GEO, Geencards, OMIM, and other databases, and drug-disease Venn diagrams were drawn by R. The PPI network map was constructed by using Cytoscape. The intersecting targets were imported into the STRING database, and the core targets were analyzed and screened. The intersected targets were analyzed by the DAVID database for GO and KEGG enrichment. AutoDock Vina and Gromacs were used for molecular docking and simulation of the core targets and active ingredients. RESULTS 126 active ingredients of LJZD were obtained; 241 targets related to breast cancer were sought after screening, and 180 intersection targets were identified through Venn diagram analysis. The core targets were FOS and ESR1. KEGG enrichment analysis mainly involved PI3K/Akt, MAPK, and other signaling pathways. CONCLUSION This study has explored the possible targets and signaling pathways of LJZD in treating breast cancer through network pharmacology and bioinformatics analysis. Molecular docking and simulation have further validated the potential mechanism of action of LJZD in breast cancer treatment, providing essential experimental data for future studies.
Collapse
Affiliation(s)
- Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Feng Lv
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunmeng Qin
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Dan Du
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
349
|
Lu Y, Wu Y, Sun L, Yang S, Kuang H, Li R, Meng Y, Wu Y. Identifying the Anti-inflammatory Effects of Astragalus Polysaccharides in Anti-N-Methyl-D-Aspartate Receptor Encephalitis: Network Pharmacology and Experimental Validation. Comb Chem High Throughput Screen 2024; 27:1022-1032. [PMID: 37587811 DOI: 10.2174/1386207326666230816162113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Astragalus polysaccharides (APS), a group of bioactive compounds obtained from the natural source Astragalus membranaceus (AM), exhibits numerous pharmacological actions in the central nervous system, such as anti-inflammatory, antioxidant, and immunomodulatory properties. Despite the remarkable benefits, the effectiveness of APS in treating anti- N-methyl-D-aspartate receptor (NMDAR) encephalitis and the corresponding mechanism have yet to be fully understood. As such, this study aims to investigate the impact of APS on anti-NMDAR encephalitis and explore the potential molecular network mechanism. METHODS The impact of APS intervention on mice with anti-NMDAR encephalitis was assessed, and the possible molecular network mechanism was investigated utilizing network pharmacology and bioinformatics techniques such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),protein-protein interaction (PPI) network, and molecular docking. Enzymelinked immunosorbent assay (ELISA) was applied to detect the expression of core target proteins. RESULTS APS significantly ameliorated cognitive impairment and reduced susceptibility to PTZinduced seizures in mice with anti-NMDAR encephalitis, confirming the beneficial effect of APS on anti-NMDAR encephalitis. Seventeen intersecting genes were identified between APS and anti- NMDAR encephalitis. GO and KEGG analyses revealed the characteristics of the intersecting gene networks. STRING interaction in the PPI network was applied to find crucial molecules. The results of molecular docking suggested that APS may regulate interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) as potential targets in anti-NMDAR encephalitis. Furthermore, the levels of IL-1β, IL-6, and TNF-α detected by ELISA in anti-NMDAR encephalitis mice were significantly downregulated in response to the administration of APS. CONCLUSION The findings of this study demonstrate the significant role of APS in the treatment of anti-NMDAR encephalitis, as it effectively suppresses inflammatory cytokines. These results suggest that APS has the potential to be considered as a viable herbal medication for the treatment of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Yuling Lu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Ying Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanfeng Sun
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shengyu Yang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Huimin Kuang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Rida Li
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Youshi Meng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
350
|
Guo S, Lv Y, Shen J, Li R, Liu H, Fan Y, Tian C. Network Pharmacology Studies on the Molecular Mechanism of Hashimoto's Thyroiditis Treated with Shutiao Qiji Decoction. Comb Chem High Throughput Screen 2024; 27:2899-2911. [PMID: 37929726 DOI: 10.2174/0113862073259714231012070100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND In recent years, the number of patients with Hashimoto's thyroiditis has been increasing, and traditional Chinese medicine ingredients and combinations have been applied to treat Hashimoto's thyroiditis to increase efficacy and reduce side effects during the treatment process. OBJECTIVE Shutiao Qiji Decoction is one of the Chinese traditional medicine prescriptions, which is commonly used to treat cancer, tumor, etc. It is also used for thyroid-related diseases in the clinic. Hashimoto's thyroiditis is an autoimmune disease. In this study, the mechanism of Shutiao Qiji Decoction in treating Hashimoto's thyroiditis was studied through network pharmacology and molecular docking verification. METHOD Each Chinese medicine ingredient of Shutiao Qiji Decoction was retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The related genes of HT were searched from the UniProt and GeneCards databases. Meanwhile, we used Cytoscape to construct the protein-protein interaction (PPI) visual network analysis, and used the search tool to search the database of Interacting Genes (STRING) to build a PPI network. These key proteins were enriched and analyzed by molecular docking validation, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hashimoto's thyroiditis disease model was established in SD rats, and SQD was administered by gavage after the successful establishment of the model. After 6 weeks of continuous administration of the drug by gavage, tissue samples were collected and the thyroid and spleen tissues were visualized by HE staining to verify the therapeutic effect. RESULTS The results showed that there were 287 TCM active ingredients, 1920 HT-related disease targets, and 176 drug and disease targets in SQD. Through PPI analysis, GP analysis, and KEGG analysis of the common targets of drugs and diseases, we found their pathways of action to be mainly cancer action pathway, PI3K-AKT signaling pathway, and T-cell action pathway. The active ingredients of the drugs in SQD, malvidin, stigmasterol, porin-5-en-3bta-ol, and chrysanthemum stigmasterol, were docked with the related target proteins, MAPK, GSK3β, TSHR, and NOTCH molecules. The best binding energies obtained from docking were mairin with TSHR, stigmasterol with TSHR, poriferast-5-en-3beta-ol with MAPK, and chryseriol with GSK3β, with binding energies of -6.84 kcal/mol, -6.53 kcal/mol, -5.03 kcal/mol, and -5.05 kcal/mol, respectively. HE staining sections of rat thyroid and spleen tissues showed that SQD had a therapeutic effect on Hashimoto's thyroiditis and restored its immune function. CONCLUSION It is verified by molecular docking results that Shutiao Qiji Decoction has a potential therapeutic effect on Hashimoto's thyroiditis in the MAPK/TSHR/NOTCH signal pathway, and that the main components, mairin, stigmasterol, poriferast-5-en-3beta-ol, and chryseriol play a role in it. SQD has been shown to have a good therapeutic effect on Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Shuang Guo
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Yan Lv
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Junyu Shen
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Rong Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Haipeng Liu
- The Second Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650216, China
| | - Yuan Fan
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yunnan, 650500, China
| | - Chunhong Tian
- Yunnan Research Institute of Traditional Chinese Medicine, Kunming, Yunnan, 650500, China
| |
Collapse
|