301
|
Tang SJ, Suen TC, McInnes RR, Buchwald M. Association of the TLX-2 homeodomain and 14-3-3eta signaling proteins. J Biol Chem 1998; 273:25356-63. [PMID: 9738002 DOI: 10.1074/jbc.273.39.25356] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeodomain proteins play important roles in various developmental processes, and their functions are modulated by polypeptide cofactors. Here we report that both in vitro and in vivo, 14-3-3eta is associated with the TLX-2 homeodomain transcription factor that is required for mouse embryogenesis. Expression of 14-3-3eta shifts the predominant localization of TLX-2 in COS cells from the cytoplasm to the nucleus. Tlx-2 and 14-3-3eta are expressed in the developing peripheral nervous system with spatially and temporally overlapping patterns, and they are also coexpressed in PC12 cells. Increased expression of either gene by transfection considerably inhibited nerve growth factor-induced neurite outgrowth of PC12 cells, and cotransfection of both genes led to a synergistic effect of suppression. These findings define 14-3-3eta as a functional modulator of the TLX-2 homeodomain transcription factor and suggest that the in vivo function of TLX-2 in neural differentiation is likely regulated by signaling mediated by 14-3-3eta.
Collapse
Affiliation(s)
- S J Tang
- Department of Genetics, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
302
|
Chen J, Ruley HE. An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem 1998; 273:24670-5. [PMID: 9733765 DOI: 10.1074/jbc.273.38.24670] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the hindbrain of the mouse embryo, there is often coincident rhombomere-restricted expression of Eph receptor tyrosine kinases and Hox homeobox genes, raising the possibility of regulatory interactions. In this paper, we have identified cis-acting regulatory sequences of the EphA2 (Eck) gene, which direct node and hindbrain-specific expression in transgenic embryos. An 8-kilobase region of mouse genomic DNA element was sufficient to drive rhombomere 4 (r4)-specific expression while conferring patchy expression in the node. Further analysis localized the rhombomere-specific enhancer to a 0.9-kilobase sequence. This element contains multiple Hox-Pbx consensus binding sites that bind to both HOXA1/Pbx1 and HOXB1/Pbx1 proteins in vitro. Co-expression of either HOXA1 or HOXB1 with Pbx1 transactivated EphA2 enhancer-dependent reporter gene expression. These results, together with observations of reduced EphA2 expression in hoxa1 and hoxb1 double mutant mice, suggest that expression of EphA2 gene in rhombomere 4 is directly regulated by Hoxa1 and Hoxb1 homeobox transcription factors.
Collapse
Affiliation(s)
- J Chen
- Departments of Medicine (Rheumatology) and Cell Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
303
|
Subramaniam N, Cairns W, Okret S. Glucocorticoids repress transcription from a negative glucocorticoid response element recognized by two homeodomain-containing proteins, Pbx and Oct-1. J Biol Chem 1998; 273:23567-74. [PMID: 9722596 DOI: 10.1074/jbc.273.36.23567] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have established that the prolactin (PRL) gene is expressed not only in lactotrophs and somatotrophs of the anterior pituitary but, albeit to a lesser extent, in non-pituitary cells like human thymocytes, decidualized endometrium, mammary glands during lactation, and some human non-pituitary cell lines. Despite the requirement in the pituitary for the pituitary-specific transcription factor Pit-1/GHF-1 for PRL expression, the expression in non-pituitary cells occurs in the absence of Pit-1/GHF-1 and can be repressed by glucocorticoids. This prompted us to investigate the transcription factors in non-pituitary cells which are involved in controlling expression and glucocorticoid repression of a previously characterized negative glucocorticoid response element from the bovine prolactin gene (PRL3 nGRE). Here we have demonstrated that non-pituitary cells (COS-7 and mouse hepatoma Hepa1c1c7 cells) conferred increased expression via the PRL3 nGRE mainly because of the binding of the ubiquitously expressed POU-homeodomain-containing octamer transcription factor-1 (Oct-1) to an AT-rich sequence present in the PRL3 sequence. However, full transcriptional activity required the binding of a second ubiquitously expressed homeodomain-containing protein, Pbx, previously shown to bind cooperatively with several homeotic selector proteins. The Pbx binding site in the PRL3 nGRE, located just upstream of the Oct-1 binding site, showed a strong sequence similarity with known Pbx binding sites and bound Pbx with an affinity similar to that of other established Pbx target sequences. Interestingly, both Oct-1 and Pbx binding to the PRL3 nGRE were found to be required for glucocorticoid repression. Addition of in vitro translated glucocorticoid receptor DNA binding domain to the nuclear extract prevented Oct-1 and Pbx from binding to the PRL element. The involvement of the homeobox protein Pbx in glucocorticoid repression via an nGRE identifies a new role for this protein.
Collapse
Affiliation(s)
- N Subramaniam
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, F60 Novum, S-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
304
|
Beckers J, Duboule D. Genetic analysis of a conserved sequence in the HoxD complex: regulatory redundancy or limitations of the transgenic approach? Dev Dyn 1998; 213:1-11. [PMID: 9733096 DOI: 10.1002/(sici)1097-0177(199809)213:1<1::aid-aja1>3.0.co;2-l] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Extensive sequencing in the HoxD complex of several vertebrate species has revealed a set of conserved DNA sequences interspersed between neighboring Hox genes. Their high degree of conservation strongly suggested that they are used for regulatory purposes, a hypothesis that was largely confirmed by using "classical transgenesis" or in vivo mutagenesis through the embryonic stem (ES) cell technology. Here, we show that this is not always the case. We report that the deletion of a conserved regulatory sequence located in the HoxD complex gives different results, depending on the transgenic approach that was used. In "conventional" transgenesis, this sequence was necessary for proper expression in a subdomain of the developing limb. However, a deletion of this sequence in complexo did not confirm this effect, thereby creating an important discrepancy between the classical transgenic and the ES cell-based, targeted mutagenesis. This unexpected observation may show the limitations of the former technology. Alternatively, it could illustrate a redundancy in regulatory circuits and, thus, justify the combination of parallel strategies.
Collapse
Affiliation(s)
- J Beckers
- Department of Zoology and Animal Biology, Sciences III, University of Geneva, Switzerland
| | | |
Collapse
|
305
|
Swift GH, Liu Y, Rose SD, Bischof LJ, Steelman S, Buchberg AM, Wright CV, MacDonald RJ. An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol Cell Biol 1998; 18:5109-20. [PMID: 9710595 PMCID: PMC109096 DOI: 10.1128/mcb.18.9.5109] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1998] [Accepted: 06/01/1998] [Indexed: 11/20/2022] Open
Abstract
HOX proteins and some orphan homeodomain proteins form complexes with either PBX or MEIS subclasses of homeodomain proteins. This interaction can increase the binding specificity and transcriptional effectiveness of the HOX partner. Here we show that specific members of both PBX and MEIS subclasses form a multimeric complex with the pancreatic homeodomain protein PDX1 and switch the nature of its transcriptional activity. The two activities of PDX1 are exhibited through the 10-bp B element of the transcriptional enhancer of the pancreatic elastase I gene (ELA1). In pancreatic acinar cells the activity of the B element requires other elements of the ELA1 enhancer; in beta-cells the B element can activate a promoter in the absence of other enhancer elements. In acinar cell lines the activity is mediated by a complex comprising PDX1, PBX1b, and MRG1 (MEIS2). In contrast, beta-cell lines are devoid of PBX1b and MRG1, so that a trimeric complex does not form, and the beta-cell-type activity is mediated by PDX1 without PBX1b and MRG1. The presence of specific nuclear isoforms of PBX and MEIS is precisely regulated in a cell-type-specific manner. The beta-cell-type activity can be detected in acinar cells if the B element is altered to retain binding of PDX1 but prevent binding of the PDX1-PBX1b-MRG1 complex. These observations suggest that association with PBX and MEIS partners controls the nature of the transcriptional activity of the organ-specific PDX1 transcription factor in exocrine versus endocrine cells.
Collapse
Affiliation(s)
- G H Swift
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Ranganayakulu G, Elliott DA, Harvey RP, Olson EN. Divergent roles for NK-2 class homeobox genes in cardiogenesis in flies and mice. Development 1998; 125:3037-48. [PMID: 9671578 DOI: 10.1242/dev.125.16.3037] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that cardiogenesis in organisms as diverse as insects and vertebrates is controlled by an ancient and evolutionarily conserved transcriptional pathway. In Drosophila, the NK-2 class homeobox gene tinman (tin) is expressed in cardiac and visceral mesodermal progenitors and is essential for their specification. In vertebrates, the tin homologue Nkx2-5/Csx and related genes are expressed in early cardiac and visceral mesodermal progenitors. To test for an early cardiogenic function for Nkx2-5 and to examine whether cardiogenic mechanisms are conserved, we introduced the mouse Nkx2-5 gene and various mutant and chimeric derivatives into the Drosophila germline, and tested for their ability to rescue the tin mutant phenotype. While tin itself strongly rescued both heart and visceral mesoderm, Nkx2-5 rescued only visceral mesoderm. Other vertebrate ‘non-cardiac’ NK-2 genes rescued neither. We mapped the cardiogenic domain of tin to a unique region at its N terminus and, when transferred to Nkx2-5, this region conferred a strong ability to rescue heart. Thus, the cardiac and visceral mesodermal functions of NK-2 homeogenes are separable in the Drosophila assay. The results suggest that, while tin and Nkx2-5 show close functional kinship, their mode of deployment in cardiogenesis has diverged possibly because of differences in their interactions with accessory factors. The distinct cardiogenic programs in vertebrates and flies may be built upon a common and perhaps more ancient program for specification of visceral muscle.
Collapse
Affiliation(s)
- G Ranganayakulu
- Department of Molecular Biology and Oncology, The University of Texas Southwestern Medical Center, Dallas, Tx 75235-9148, USA
| | | | | | | |
Collapse
|
307
|
Huang D, Chen SW, Langston AW, Gudas LJ. A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut. Development 1998; 125:3235-46. [PMID: 9671595 DOI: 10.1242/dev.125.16.3235] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The murine Hoxb-1 gene contains a homeobox sequence and is expressed in a spatiotemporal specific pattern in neuroectoderm, mesoderm and gut endoderm during development. We previously identified a conserved retinoic acid (RA)-inducible enhancer, named the RAIDR5, which contains a DR5 RARE; this RAIDR5 enhancer is located 3′ of the Hoxb-1-coding region in both the mouse and chick. In the F9 murine teratocarcinoma cell line, this DR5 RARE is required for the RA response of the Hoxb-1 gene, suggesting a functional role of the DR5 RARE in Hoxb-1 gene expression during embryogenesis. From the analysis of Hoxb-1/lacZ reporter genes in transgenic mice, we have shown that a wild-type (WT) transgene with 15 kb of Hoxb-1 genomic DNA, including this Hoxb-1 3′ RAIDR5, is expressed in the same tissues and at the same times as the endogenous Hoxb-1 gene. However, a transgene construct with point mutations in the DR5 RARE (DR5mu) was not expressed in the developing foregut, which gives rise to organs such as the esophagus, lung, stomach, liver and pancreas. Like the wild-type transgene, this DR5 RARE mutated transgene was expressed in rhombomere 4 in 9.5 day postcoitum (d.p.c.) embryos. Similarly, transgene staining in the foregut of animals carrying a deletion of the entire Hox-b1 RAIDR5 enhancer (3′-del) was greatly reduced relative to that seen with the WT transgene. We also demonstrated that expression of the WT transgene in the gut increases in response to exogenous RA, resulting in anterior expansion of the expression in the gut. These observations that the Hoxb-1 gene is expressed in the developing gut and that this expression is regulated through a DR5 RARE strongly suggest a role for Hoxb-1 in the anteroposterior axis patterning of the gut and a critical role for endogenous retinoids in early gut development.
Collapse
Affiliation(s)
- D Huang
- Department of Pharmacology, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
308
|
Papenbrock T, Peterson RL, Lee RS, Hsu T, Kuroiwa A, Awgulewitsch A. Murine Hoxc-9 gene contains a structurally and functionally conserved enhancer. Dev Dyn 1998; 212:540-7. [PMID: 9707327 DOI: 10.1002/(sici)1097-0177(199808)212:4<540::aid-aja7>3.0.co;2-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reporter gene analysis of the Hoxc-9 genomic region in transgenic mice allowed us to identify a positional enhancer in the Hoxc-9 intron that drives expression in the posterior neural tube of midgestation mouse embryos in a Hoxc-9-related manner. Sequence comparison to the chicken Choxc-9 intron revealed the existence of two highly conserved sequence elements (CSEs) in a similar spatial arrangement. These structural similarities in the mammalian and avian lineage are mirrored by conserved function of the chicken Choxc-9 intron in transgenic mice. Deletion analysis of the two introns suggests that full activity of both enhancers depends on cooperation between the two CSEs located close to the respective 5' and 3' splice sites. Following the paradigm of phylogenetically conserved developmental control mechanisms, the Hoxc-9 intragenic enhancer was tested in Drosophila. Our data show that the mouse Hoxc-9 enhancer acts in a conserved fashion in transgenic flies, conferring posteriorly restricted reporter gene expression to the developing central nervous system in third instar larvae. This finding indicates that the Hoxc-9 intragenic enhancer is involved in transcriptional regulatory circuits conserved between vertebrates and arthropods.
Collapse
Affiliation(s)
- T Papenbrock
- Department of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|
309
|
Abstract
The Hox genes are clustered sets of homeobox-containing genes that play a central role in animal development. Recent genetic and molecular data suggest that Hox proteins interact with pre-existing homeodomain protein complexes. These complexes may help to regulate Hox activity and Hox specificity, and help cells to interpret signaling cascades during development.
Collapse
Affiliation(s)
- R S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
310
|
Katsuyama Y, Saiga H. Retinoic acid affects patterning along the anterior-posterior axis of the ascidian embryo. Dev Growth Differ 1998; 40:413-22. [PMID: 9727355 DOI: 10.1046/j.1440-169x.1998.t01-2-00006.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because retinoic acid (RA) is known to affect anterior posterior patterning in vertebrate embryos, it was questioned whether it shows similar effects in a more primitive chordate, the ascidian Halocynthia roretzi. Ascidian embryos treated with RA exhibited truncated phenotypes in a dose-dependent manner similar to the anterior truncations seen in vertebrate embryos. The most severely affected larvae possessed a round trunk without the papillae characteristic of the anterior terminal epidermis. Retinoic acid also altered the expression of HrHox-1 and Hroth in a dose-dependent manner. Expression of HrHox-1 increased, whereas expression of Hroth decreased with increasing levels of RA. In treated embryos, HrHox-1 was first expressed pan-ectodermally, then degraded in all but specific regions of the embryo. By contrast, initiation of Hroth expression was not affected, but epidermal expression was lost while expression in the neural tube narrowed toward the anterior in tail-bud embryos. These alterations in the expression of homeobox genes appear to correlate closely to the morphological defects elicited by RA treatment, suggesting broad conservation of developmental patterning mechanisms within the Phylum Chordata.
Collapse
Affiliation(s)
- Y Katsuyama
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Japan
| | | |
Collapse
|
311
|
Bischof LJ, Kagawa N, Waterman MR. The bovine CYP17 promoter contains a transcriptional regulatory element cooperatively bound by tale homeodomain proteins. Endocr Res 1998; 24:489-95. [PMID: 9888529 DOI: 10.3109/07435809809032637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bovine CYP17 is regulated at the transcriptional level by ACTH acting through the second messenger cAMP in adrenal fasciculata and reticularis cells. Promoter analysis has previously identified two regions, proximal and distal, within the CYP17 promoter important in the cAMP dependent transcriptional regulation of this gene. The proximal (-80 to -40) cAMP responsive sequence (CRS2) has been identified as a binding site for Steroidogenic Factor-1 (SF-1)/Ad4BP. The distal region (-243 to -100) is also important for the cAMP transcriptional response as revealed by deletion analysis. Within this distal region from -243 to -225, an independent cAMP responsive sequence referred to as CRS1 has been described. The transcription factors binding CRS1 have been identified as homeodomain transcription factors belonging to an atypical class of homeodomain proteins referred to as TALE. Two families of homeodomain proteins which bind CRS1 are the Pbx and Meis1 families. Proteins from neither of these families can bind CRS1 individually; however, members of the Pbx family interact with members of the Meis1 family to cooperatively bind this element. CRS1 was the first identified cis-acting target element for members of both the Pbx and Meis1 family. Unlike SF-1, these proteins are not expressed in a steroidogenic tissue-specific manner but rather, appear ubiquitous. A current model for the function of these proteins in CYP17 regulation is that they may enhance the cAMP response through the downstream SF-1 binding site.
Collapse
Affiliation(s)
- L J Bischof
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
312
|
Durston AJ, van der Wees J, Pijnappel WW, Godsave SF. Retinoids and related signals in early development of the vertebrate central nervous system. Curr Top Dev Biol 1998; 40:111-75. [PMID: 9673850 DOI: 10.1016/s0070-2153(08)60366-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A J Durston
- Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
313
|
Gould A, Itasaki N, Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998; 21:39-51. [PMID: 9697850 DOI: 10.1016/s0896-6273(00)80513-9] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anteroposterior (AP) patterning in the vertebrate hindbrain is dependent upon the establishment of segmental domains of Hox expression. We investigated the mechanism that governs the early expression of Hoxb4 and found that transient signaling from the paraxial mesoderm induces expression in the hindbrain. Induction involves a retinoid pathway requiring retinoic acid receptor (RAR) function within the neural plate. Characterization of a prerhombomeric enhancer from Hoxb4 reveals that a retinoic acid (RA) response element is an essential component of the early neural response to somite (s) signaling and can interpret positional information for setting the anterior boundary of expression. These data suggest a mechanism whereby, during normal hindbrain development, Hoxb4 expression is initiated by extrinsic signals and is subsequently maintained by Hox feedback circuits. This mechanism also accounts for the ectopic response of Hoxb4 in rhombomere (r) transpositions and after exposure to retinoids.
Collapse
Affiliation(s)
- A Gould
- Laboratory of Developmental Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | | | | |
Collapse
|
314
|
Packer AI, Crotty DA, Elwell VA, Wolgemuth DJ. Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 1998; 125:1991-8. [PMID: 9570764 DOI: 10.1242/dev.125.11.1991] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the regulatory regions of the Hox genes has revealed a complex array of positive and negative cis-acting elements that control the spatial and temporal pattern of expression of these genes during embryogenesis. In this study we show that normal expression of the murine Hoxa4 gene during development requires both autoregulatory and retinoic acid-dependent modes of regulation. When introduced into a Hoxa4 null background, expression of a lacZ reporter gene driven by the Hoxa4 regulatory region (Hoxa4/lacZ) is either abolished or significantly reduced in all tissues at E10. 5-E12.5. Thus, the observed autoregulation of the Drosophila Deformed gene is conserved in a mouse homolog in vivo, and is reflected in a widespread requirement for positive feedback to maintain Hoxa4 expression. We also identify three potential retinoic acid response elements in the Hoxa4 5′ flanking region, one of which is identical to a well-characterized element flanking the Hoxd4 gene. Administration of retinoic acid to Hoxa4/lacZ transgenic embryos resulted in stage-dependent ectopic expression of the reporter gene in the neural tube and hindbrain. When administered to Hoxa4 null embryos, however, persistent ectopic expression was not observed, suggesting that autoregulation is required for maintenance of the retinoic acid-induced expression. Finally, mutation of the consensus retinoic acid response element eliminated the response of the reporter gene to exogenous retinoic acid, and abolished all embryonic expression in untreated embryos, with the exception of the neural tube and prevertebrae. These data add to the evidence that Hox gene expression is regulated, in part, by endogenous retinoids and autoregulatory loops.
Collapse
Affiliation(s)
- A I Packer
- Department of Genetics and Development, The Center for Reproductive Sciences and the Columbia Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
315
|
Levavasseur F, Mandemakers W, Visser P, Broos L, Grosveld F, Zivkovic D, Meijer D. Comparison of sequence and function of the Oct-6 genes in zebrafish, chicken and mouse. Mech Dev 1998; 74:89-98. [PMID: 9651490 DOI: 10.1016/s0925-4773(98)00067-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To examine the role of the Oct-6 gene in Schwann cell differentiation we have cloned and characterized the chicken and zebrafish homologues of the mouse Oct-6 gene. While highly homologous in the Pit1-Oct1/2-Unc86 (POU) domain, sequence similarities are limited outside this domain. Both genes are intronless and both proteins lack the amino acid repeats that are a characteristic feature of the mammalian Oct-6 proteins. However as in mammals, the aminoterminal parts of the chicken and zebrafish Oct-6 proteins are essential for transactivation of octamer containing promoters. By immunohistochemistry we have found that the chicken Oct-6 protein is expressed in late embryonic ensheathing Schwann cells of the sciatic nerve and is rapidly downregulated when myelination proceeds. This expression profile in glial cells is identical to that in the mouse and rat. Furthermore the zebrafish Oct-6 homolog is expressed in the posterior lateral nerve at a time when it contains actively myelinating Schwann cells. Thus despite extensive primary sequence divergence among the vertebrate Oct-6 proteins, the expression of the chicken and zebrafish Oct-6 proteins is consistent with the notion that Oct-6 functions as a 'competence factor' in promyelin cells to execute the myelination program.
Collapse
Affiliation(s)
- F Levavasseur
- MGC, Dept. of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
316
|
Green NC, Rambaldi I, Teakles J, Featherstone MS. A conserved C-terminal domain in PBX increases DNA binding by the PBX homeodomain and is not a primary site of contact for the YPWM motif of HOXA1. J Biol Chem 1998; 273:13273-9. [PMID: 9582372 DOI: 10.1074/jbc.273.21.13273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HOX proteins are dependent upon cofactors of the PBX family for specificity of DNA binding. Two regions that have been implicated in HOX/PBX cooperative interactions are the YPWM motif, found N-terminal to the HOX homeodomain, and the GKFQ domain (also known as the Hox cooperativity motif) immediately C-terminal to the PBX homeodomain. Using derivatives of the E2A-PBX oncoprotein, we find that the GKFQ domain is not essential for cooperative interaction with HOXA1 but contributes to the stability of the complex. By contrast, the YPWM motif is strictly required for cooperative interactions in vitro and in vivo, even with mutants of E2A-PBX lacking the GKFQ domain. Using truncated PBX proteins, we show that the YPWM motif contacts the PBX homeodomain. The presence of the GKFQ domain increases monomer binding by the PBX homeodomain 5-fold, and the stability of the HOXA1.E2A-PBX complex 2-fold. These data suggest that the GKFQ domain acts mainly to increase DNA binding by PBX, rather than providing a primary contact site for the YPWM motif of HOXA1. We have identified 2 residues, Glu-301 and Tyr-305, required for GKFQ function and suggest that this is dependent on alpha-helical character.
Collapse
Affiliation(s)
- N C Green
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
317
|
Magli MC. The role of homeobox genes in hematopoiesis. BIOTHERAPY (DORDRECHT, NETHERLANDS) 1998; 10:279-94. [PMID: 9592016 DOI: 10.1007/bf02678548] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeobox genes encode transcription factors containing a common DNA-binding motif found in virtually all animal species. Different homeobox gene families have evolved which encode homeodomains of different types or classes and thus far approximately 170 homeobox genes have been cloned. Homeoproteins are involved in the control of animal development and several lines of evidence strongly suggest that they may contribute to the regulation of hematopoiesis. Many members of this large family are expressed in blood cells. Moreover, homeobox containing genes have been involved in translocation events occurring in certain leukemias and lymphomas. Furthermore a number of studies indicate that modulation of homeobox gene expression may induce alterations in proliferative, differentiative or phenotypic characteristics of hematopoietic cells. Although the function of each individual gene has not been clearly defined there is strong evidence for cooperativity among homeoproteins indicating that regulatory combinations of homeobox genes may play a pivotal role in controlling survival, proliferation and differentiation of hematopoietic cells.
Collapse
Affiliation(s)
- M C Magli
- Institute of Mutagenesis and Differentiation-CNR, Pisa, Italy.
| |
Collapse
|
318
|
Hérault Y, Beckers J, Kondo T, Fraudeau N, Duboule D. Genetic analysis of a Hoxd-12 regulatory element reveals global versus local modes of controls in the HoxD complex. Development 1998; 125:1669-77. [PMID: 9521905 DOI: 10.1242/dev.125.9.1669] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate Hoxd genes are essential determinants of limb morphogenesis. In order to understand the genetic control of their complex expression patterns, we have used a combined approach involving interspecies sequence alignments in parallel with transgenic analyses, followed by in vivo mutagenesis. Here, we report on the identification of a regulatory element that is located in the vicinity of the Hoxd-12 gene. While this element is well conserved in tetrapods, little sequence similarity was scored when compared to the cognate fish DNA. The regulatory potential of this region XI (RXI) was first assayed in the context of a Hoxd-12/lacZ reporter transgene and shown to direct reporter gene expression in posterior limb buds. A deletion of this region was generated by targeted mutagenesis in ES cells and introduced into mice. Analyses of animals homozygous for the HoxDRXI mutant allele revealed the function of this region in controlling Hoxd-12 expression in the presumptive posterior zeugopod where it genetically interacts with Hoxa-11. Downregulation of Hoxd-12 expression was also detected in the trunk suggesting that RXI may mediate a rather general function in the activation of Hoxd-12. These results support a model whereby global as well as local regulatory influences are necessary to build up the complex expression patterns of Hoxd genes during limb development.
Collapse
Affiliation(s)
- Y Hérault
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
319
|
Aubin J, Lemieux M, Tremblay M, Behringer RR, Jeannotte L. Transcriptional interferences at the Hoxa4/Hoxa5 locus: importance of correct Hoxa5 expression for the proper specification of the axial skeleton. Dev Dyn 1998; 212:141-56. [PMID: 9603431 DOI: 10.1002/(sici)1097-0177(199805)212:1<141::aid-aja13>3.0.co;2-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described a Hoxa5 mutant mouse line in which specification of axial identity is perturbed and viability is markedly reduced. In the present study, we assay the Hoxa5 mutation in different genetic backgrounds and carry out a complete analysis of skeletal transformations. Although Hoxa5 is expressed over a large domain during embryogenesis, homeotic transformations of the axial skeleton are confined between cervical vertebra C3 and thoracic vertebra T2, which corresponds to the specific expression domain of the major Hoxa5 transcript. Loss of Hoxa5 function also affects the formation of the acromion in the appendicular skeleton. Disruption of the adjacent Hoxa4 gene leads to similar homeotic transformations of the cervicothoracic vertebrae. To discriminate the respective role of each gene, we generated transheterozygous animals carrying inactivated Hoxa4 and Hoxa5 alleles on different chromosomes. Compound heterozygous mutants exhibit homeotic transformations in the cervicothoracic transition region more reminiscent to those observed in Hoxa5 homozygous mutants. Although the Hoxa5 mutation does not significantly affect Hoxa4 expression, the pattern of Hoxa5 expression is impaired in cis by the Hoxa4 mutation, specifically in the cervicothoracic region of the prevertebral column. The expression of Hoxa5 in this particular domain is also perturbed by the Hoxa5 mutation itself, raising the possibility of regional autoregulation. Altogether, these results demonstrate the crucial role of Hoxa5 in the specification of the cervical and upper thoracic region of the skeleton and establish the importance of its correct expression for the proper patterning of the embryo.
Collapse
Affiliation(s)
- J Aubin
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Qc, Canada
| | | | | | | | | |
Collapse
|
320
|
Guazzi S, Pintonello ML, Viganò A, Boncinelli E. Regulatory interactions between the human HOXB1, HOXB2, and HOXB3 proteins and the upstream sequence of the Otx2 gene in embryonal carcinoma cells. J Biol Chem 1998; 273:11092-9. [PMID: 9556594 DOI: 10.1074/jbc.273.18.11092] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate Hox and Otx genes encode homeodomain-containing transcription factors thought to transduce positional information along the body axis in the segmental portion of the trunk and in the rostral brain, respectively. Moreover, Hox and Otx2 genes show a complementary spatial regulation during embryogenesis. In this report, we show that a 1821-base pair (bp) upstream DNA fragment of the Otx2 gene is positively regulated by co-transfection with expression vectors for the human HOXB1, HOXB2, and HOXB3 proteins in an embryonal carcinoma cell line (NT2/D1) and that a shorter fragment of only 534 bp is able to drive this regulation. We also identified the HOXB1, HOXB2, and HOXB3 DNA-binding region on the 534-bp Otx2 genomic fragment using nuclear extracts from Hox-transfected COS cells and 12.5 days postcoitum mouse embryos or HOXB3 homeodomain-containing bacterial extracts. HOXB1, HOXB3, and nuclear extracts from 12.5 days postcoitum mouse embryos bind to a sequence containing two palindromic TAATTA sites, which bear four copies of the ATTA core sequence, a common feature of most HOM-C/HOX binding sites. HOXB2 protected an adjacent site containing a direct repeat of an ACTT sequence, quite divergent from the ATTA consensus. The region bound by the three homeoproteins is strikingly conserved through evolution and necessary (at least for HOXB1 and HOXB3) to mediate the up-regulation of the Otx2 transcription. Taken together, our data support the hypothesis that anteriorly expressed Hox genes might play a role in the refinement of the Otx2 early expression boundaries in vivo.
Collapse
Affiliation(s)
- S Guazzi
- Department of Biology and Biotechnology, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | | | | | | |
Collapse
|
321
|
Bischof LJ, Kagawa N, Moskow JJ, Takahashi Y, Iwamatsu A, Buchberg AM, Waterman MR. Members of the meis1 and pbx homeodomain protein families cooperatively bind a cAMP-responsive sequence (CRS1) from bovine CYP17. J Biol Chem 1998; 273:7941-8. [PMID: 9525891 DOI: 10.1074/jbc.273.14.7941] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Pbx homeodomain proteins provide specificity and increased DNA binding affinity to other homeodomain proteins. A cAMP-responsive sequence (CRS1) from bovine CYP17 has previously been shown to be a binding site for Pbx1. A member of a second mammalian homeodomain family, Meis1, is now also demonstrated to be a CRS1-binding protein upon purification using CRS1 affinity chromatography. CRS1 binding complexes from Y1 adrenal cell nuclear extract contain both Pbx1 and Meis1. This is the first transcriptional regulatory element reported as a binding site for members of the Meis1 homeodomain family. Pbx1 and Meis1 bind cooperatively to CRS1, whereas neither protein can bind this element alone. Mutagenesis of the CRS1 element indicates a binding site for Meis1 adjacent to the Pbx site. All previously identified Pbx binding partners have Pbx interacting motifs that contain a tryptophan residue amino-terminal to the homeodomain that is required for cooperative binding to DNA with Pbx. Members of the Meis1 family contain one tryptophan residue amino-terminal to the homeodomain, but site-directed mutagenesis indicates that this residue is not required for cooperative CRS1 binding with Pbx. Thus, the Pbx-Meis1 interaction is unique among Pbx complexes. Meis1 also cooperatively binds CRS1 with the Pbx homologs extradenticle from Drosophila melanogaster and ceh-20 from Caenorhabditis elegans, indicating that this interaction is evolutionarily conserved. Thus, CYP17 CRS1 is a transcriptional regulatory element containing both Pbx and Meis1 binding sites, which permit these two homeodomain proteins to bind and potentially regulate cAMP-dependent transcription through this sequence.
Collapse
Affiliation(s)
- L J Bischof
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | | | | | | | |
Collapse
|
322
|
Kallunki P, Edelman GM, Jones FS. The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci U S A 1998; 95:3233-8. [PMID: 9501246 PMCID: PMC19725 DOI: 10.1073/pnas.95.6.3233] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell adhesion molecule L1 mediates axonal guidance during neural development and mutations in its gene result in severe neurological defects. In previous studies, we identified the promoter for the L1 gene and showed that a neural restrictive silencer element (NRSE) was critical for preventing ectopic expression of L1 during early embryonic development. In the present study, we have investigated the role of the NRSE in the regulation of L1 expression during postnatal development. In gel mobility shift experiments, the NRSE formed DNA-protein complexes with nuclear extracts prepared from the brains of postnatal mice. To examine the influence of the NRSE on postnatal patterns of L1 expression in vivo, we compared the expression of two lacZ transgene constructs, one containing the native L1 gene regulatory sequences (L1lacZ) and another (L1lacZDeltaN) lacking the NRSE. Newborn mice carrying the L1lacZDeltaN showed enhanced beta-galactosidase expression relative to L1lacZ in the brain and ectopic expression in nonneural tissues. In contrast to L1lacZ mice, however, L1lacZDeltaN mice showed an unexpected loss, during postnatal development and in the adult, of beta-galactosidase expression in several neural structures, including the neural retina, cerebellum, cortex, striatum, and hippocampus. These data support the conclusion that the NRSE not only plays a role in the silencing of L1 expression in nonneural tissues during early development but also can function as a silencer and an enhancer of L1 expression in the nervous system of postnatal and adult animals.
Collapse
Affiliation(s)
- P Kallunki
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
323
|
Sharpe J, Nonchev S, Gould A, Whiting J, Krumlauf R. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 1998; 17:1788-98. [PMID: 9501100 PMCID: PMC1170526 DOI: 10.1093/emboj/17.6.1788] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clustered organisation of Hox complexes is highly conserved in vertebrates and the reasons for this are believed to be linked with the regulatory mechanisms governing their expression. In analysis of the Hoxb4-Hoxb6 region of the HoxB complex we identified enhancers which lie in the intergenic region between Hoxb4 and Hoxb5, and which are capable of mediating the correct boundaries of neural and mesodermal expression for Hoxb5. We examined their regulatory properties in the context of the local genomic region spanning the two genes by transgenic analysis, in which each promoter was independently marked with a different reporter, to monitor simultaneously the relative transcriptional read-outs from each gene. Our analysis revealed that within this intergenic region: (i) a limb and a neural enhancer selectively activate Hoxb4 as opposed to Hoxb5; (ii) a separate neural enhancer is able to activate both genes, but expression is dependent upon competition between the two promoters for the enhancer and is influenced by the local genomic context; (iii) mesodermal enhancer activities can be shared between the genes. We found similar types of regulatory interactions between Hoxb5 and Hoxb6. Together these results provide evidence for three separate general mechanisms: selectivity, competition and sharing, that control the balance of cis-regulatory interactions necessary for generating the proper spatial and temporal patterns of Hox gene expression. We suggest that these mechanisms are part of a regulatory basis for maintenance of Hox organisation.
Collapse
Affiliation(s)
- J Sharpe
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
324
|
Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125:1123-36. [PMID: 9463359 DOI: 10.1242/dev.125.6.1123] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The analysis of Hoxa1 and Hoxb1 null mutants suggested that these genes are involved in distinct aspects of hindbrain segmentation and specification. Here we investigate the possible functional synergy of the two genes. The generation of Hoxa1(3′RARE)/Hoxb1(3′RARE) compound mutants resulted in mild facial motor nerve defects reminiscent of those present in the Hoxb1 null mutants. Strong genetic interactions between Hoxa1 and Hoxb1 were uncovered by introducing the Hoxb1(3′RARE) and Hoxb1 null mutations into the Hoxa1 null genetic background. Hoxa1(null)/Hoxb1(3′RARE) and Hoxa1(null)/Hoxb1(null)double homozygous embryos showed additional patterning defects in the r4-r6 region but maintained a molecularly distinct r4-like territory. Neurofilament staining and retrograde labelling of motor neurons indicated that Hoxa1 and Hoxb1 synergise in patterning the VIIth through XIth cranial nerves. The second arch expression of neural crest cell markers was abolished or dramatically reduced, suggesting a defect in this cell population. Strikingly, the second arch of the double mutant embryos involuted by 10.5 dpc and this resulted in loss of all second arch-derived elements and complete disruption of external and middle ear development. Additional defects, most notably the lack of tympanic ring, were found in first arch-derived elements, suggesting that interactions between first and second arch take place during development. Taken together, our results unveil an extensive functional synergy between Hoxa1 and Hoxb1 that was not anticipated from the phenotypes of the simple null mutants.
Collapse
Affiliation(s)
- A Gavalas
- Institut de Génétique et de Biologie Moléculaire and Cellulaire, CNRS/INSERM/ULP, Collége de France, BP 163 - 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
325
|
Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998; 125:1025-36. [PMID: 9463349 DOI: 10.1242/dev.125.6.1025] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing vertebrate hindbrain Hoxa1 and Hoxb1 play important roles in patterning segmental units (rhombomeres). In this study, genetic analysis of double mutants demonstrates that both Hoxa1 and Hoxb1 participate in the establishment and maintenance of Hoxb1 expression in rhombomere 4 through auto- and para-regulatory interactions. The generation of a targeted mutation in a Hoxb1 3′ retinoic acid response element (RARE) shows that it is required for establishing early high levels of Hoxb1 expression in neural ectoderm. Double mutant analysis with this Hoxb1(3′RARE) allele and other targeted loss-of-function alleles from both Hoxa1 and Hoxb1 reveals synergy between these genes. In the absence of both genes, a territory appears in the region of r4, but the earliest r4 marker, the Eph tyrosine kinase receptor EphA2, fails to be activated. This suggests a failure to initiate rather than maintain the specification of r4 identity and defines new roles for both Hoxb1 and Hoxa1 in early patterning events in r4. Our genetic analysis shows that individual members of the vertebrate labial-related genes have multiple roles in different steps governing segmental processes in the developing hindbrain.
Collapse
Affiliation(s)
- M Studer
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
326
|
Berthelsen J, Zappavigna V, Ferretti E, Mavilio F, Blasi F. The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperativity. EMBO J 1998; 17:1434-45. [PMID: 9482740 PMCID: PMC1170491 DOI: 10.1093/emboj/17.5.1434] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The products of the mammalian Pbx and Drosophila exd genes are able to interact with Hox proteins specifically and to increase their DNA binding affinity and selectivity. In the accompanying paper we show that Pbx proteins exist as stable heterodimers with a novel homeodomain protein, Prep1. Here we show that Prep1-Pbx interaction presents novel structural features: it is independent of DNA binding and of the integrity of their respective homeodomains, and requires sequences in the N-terminal portions of both proteins. The Prep1-Pbx protein-protein interaction is essential for DNA-binding activity. Prep1-Pbx complexes are present in early mouse embryos at a time when Pbx is also interacting with Hox proteins. The use of different interaction surfaces could allow Pbx to interact with Prep1 and Hox proteins simultaneously. Indeed, we observe the formation of a ternary Prep1-Pbx1-HOXB1 complex on a HOXB1-responsive target in vitro. Interaction with Prep1 enhances the ability of the HOXB1-Pbx1 complex to activate transcription in a cooperative fashion from the same target. Our data suggest that Prep1 is an additional component in the transcriptional regulation by Hox proteins.
Collapse
Affiliation(s)
- J Berthelsen
- Dipartimento di Genetica e Biologia dei Microrganismi dell'Università, H.S. Raffaele, via Olgettina 58, 20132, Milan, Italy
| | | | | | | | | |
Collapse
|
327
|
Min W, Woo HJ, Lee CS, Lee KK, Yoon WK, Park HW, Kim MH. 307-bp fragment in HOXA7 upstream sequence is sufficient for anterior boundary formation. DNA Cell Biol 1998; 17:293-9. [PMID: 9539109 DOI: 10.1089/dna.1998.17.293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The HOX genes are expressed in a positionally and temporally restricted manner involving anteroposterior axial pattern formation during early embryogenesis. Previously, we studied the sequence and function of an upstream regulatory region of the human HOXA7 gene. To identify a critical cis-acting element, a deletion analysis was performed along the human control region (HCR) (about 1.1 kb), which was sufficient for setting the anterior boundary of expression in transgenic mice. We demonstrated that a 307-bp control region contains a cis-acting element(s) specifying an anterior boundary as well as a dorsal-ventral restriction in the neural tube at day 12.5 postconception (p.c.). The distinct anterior limit of expression was noted at the level of C7/T1 in the neural tube and spinal ganglia. In addition, our deletion experiments revealed that the HCR consisted of several cis-acting elements which were individually capable of driving regionally restricted expression patterns in the neural tube and limb buds.
Collapse
Affiliation(s)
- W Min
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
328
|
Kleinjan DA, Dekker S, Guy JA, Grosveld FG. Cloning and sequencing of the CRABP-I locus from chicken and pufferfish: analysis of the promoter regions in transgenic mice. Transgenic Res 1998; 7:85-94. [PMID: 9608736 DOI: 10.1023/a:1008864224100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), a derivative of vitamin A, is an important molecule for development and homeostasis of vertebrate organisms. The intracellular retinoic acid binding protein CRABP-I has a high affinity for RA, and is thought to be involved in the mechanism of RA signalling. CRABP-I is well conserved in evolution and shows a specific expression pattern during development, but mice made deficient for the protein by gene targeting appear normal. However, the high degree of homology with CRABP-I from other species indicates that the protein has been subject to strong selective conservation, indicative of an important biological function. In this paper we have compared the conservation in the expression pattern of the mouse, chicken and pufferfish CRABP-I genes to substantiate this argument further. First we cloned and sequenced genes and promoter regions of the CRABP-I genes from chicken and the Japanese pufferfish, Fugu rubripes. Sequence comparison with the mouse gene did not show any large blocks of homology in the promoter regions. Nevertheless, the promoter of the chicken gene directed expression to a subset of the tissues that show expression with the promoter from the mouse gene. The pattern observed with the pufferfish promoter is even more restricted, essentially to rhombomere 4 only, indicating that this region may be functionally the most important for CRABP-I expression in the developing embryo.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
329
|
Göttgens B, Gilbert JG, Barton LM, Aparicio S, Hawker K, Mistry S, Vaudin M, King A, Bentley D, Elgar G, Green AR. The pufferfish SLP-1 gene, a new member of the SCL/TAL-1 family of transcription factors. Genomics 1998; 48:52-62. [PMID: 9503016 DOI: 10.1006/geno.1997.5162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The SCL/TAL-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for the development of all hemopoietic lineages and also acts as a T-cell oncogene. Four related genes have been described in mammals (LYL-1, TAL-2, NSCL1, and NSCL2), all of which exhibit a high degree of sequence similarity to SCL/TAL-1 in the bHLH domain and two of which (LYL-1 and TAL-2) have also been implicated in the pathogenesis of T-cell acute lymphoblastic leukemia. In this study we describe the identification and characterization of a pufferfish gene termed SLP-1, which represents a new member of this gene family. The genomic structure and sequence of SLP-1 suggests that it forms a subfamily with SCL/TAL-1 and LYL-1 and is most closely related to SCL/TAL-1. However, unlike SCL/TAL-1, SLP-1 is widely expressed. Sequence analysis of a whole cosmid containing SLP-1 shows that SLP-1 is flanked upstream by a zinc finger gene and a fork-head-domain gene and downstream by a heme-oxygenase and a RING finger gene.
Collapse
Affiliation(s)
- B Göttgens
- Department of Haematology, MRC Centre, University of Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 1998; 125:443-52. [PMID: 9425139 DOI: 10.1242/dev.125.3.443] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres (r) with distinct identities. Recent studies have uncovered regulatory links between transcription factors governing this process, but little is known of how these relate to molecules mediating cell-cell signalling. The Eph receptor tyrosine kinase gene EphA4 (Sek-1) is expressed in r3 and r5, and function-blocking experiments suggest that it is involved in restricting intermingling of cells between odd- and even-numbered rhombomeres. We have analysed the cis-acting regulatory sequences of the EphA4 gene in transgenic mice and identified a 470 bp enhancer element that drives specific expression in r3 and r5. Within this element, we have identified eight binding sites for the Krox-20 transcription factor that is also expressed in r3 and r5. Mutation of these binding sites abolishes r3/r5 enhancer activity and ectopic expression of Krox-20 leads to ectopic activation of the enhancer. These data indicate that Krox-20 is a direct transcriptional activator of EphA4. Together with evidence that Krox-20 regulates Hox gene expression, our findings reveal a mechanism by which the identity and movement of cells are coupled such that sharply restricted segmental domains are generated.
Collapse
Affiliation(s)
- T Theil
- Division of Developmental Neurobiology, National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
331
|
Abstract
Most animals exhibit distinctive and diverse morphological features on their anterior-posterior body axis. However, underneath the variation in design and developmental strategies lies a shared ancient structural blueprint that is based on the expression patterns of Hox genes. Both the establishment and maintenance of the spatial and temporal distribution of Hox transcripts play an important role in determining axial pattern. The study of many animal systems, both vertebrate and invertebrate, suggests that the mechanisms used to establish Hox transcription are nearly as diverse as the body plans they specify. The strategies for maintenance of Hox expression pattern seem more conserved among different phyla, and rely on the action of Pc and trx group genes as well as auto- and cross-regulation among Hox genes. In mice, the sharing of regulatory elements coupled with auto- and cross-regulation could explain the conservation of the clustered arrangement of Hox genes. In contrast, fly Hox genes seem to have evolved insulators or boundary elements to avoid sharing regulatory regions. Differences in Hox transcription patterns can be correlated with morphological modifications in different species, and it seems likely that evolutionary variation of Hox cis-regulatory elements has played a major role in the emergence of novel body plans in different taxa of the animal kingdom.
Collapse
Affiliation(s)
- G Gellon
- Department of Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
332
|
Abstract
Hox genes are usually expressed temporally and spatially in a colinear manner with respect to their positions in the Hox complex. Consistent with the expected pattern for a paralogous group 13 member, early embryonic Hoxc13 expression is found in the nails and tail. Hoxc13 is also expressed in vibrissae, in the filiform papillae of the tongue, and in hair follicles throughout the body; a pattern that apparently violates spatial colinearity. Mice carrying mutant alleles of Hoxc13 have been generated by gene targeting. Homozygotes have defects in every region in which gene expression is seen. The most striking defect is brittle hair resulting in alopecia (hairless mice). One explanation for this novel role is that Hoxc13 has been recruited for a function common to hair, nail, and filiform papilla development.
Collapse
Affiliation(s)
- A R Godwin
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112-5331, USA
| | | |
Collapse
|
333
|
Knoepfler PS, Calvo KR, Chen H, Antonarakis SE, Kamps MP. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci U S A 1997; 94:14553-8. [PMID: 9405651 PMCID: PMC25052 DOI: 10.1073/pnas.94.26.14553] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/1997] [Indexed: 02/05/2023] Open
Abstract
E2a-Pbx1 is a chimeric transcription factor oncoprotein produced by the t(1;19) translocation in human pre-B cell leukemia. Class I Hox proteins bind DNA cooperatively with both Pbx proteins and oncoprotein E2a-Pbx1, suggesting that leukemogenesis by E2a-Pbx1 and Hox proteins may alter transcription of cellular genes regulated by Pbx-Hox motifs. Likewise, in murine myeloid leukemia, transcriptional coactivation of Meis1 with HoxA7/A9 suggests that Meis1-HoxA7/9 heterodimers may evoke aberrant gene transcription. Here, we demonstrate that both Meis1 and its relative, pKnox1, dimerize with Pbx1 on the same TGATTGAC motif selected by dimers of Pbx proteins and unidentified partner(s) in nuclear extracts, including those from t(1;19) pre-B cells. Outside their homeodomains, Meis1 and pKnox1 were highly conserved only in two motifs required for cooperativity with Pbx1. Like the unidentified endogenous partner(s), both Meis1 and pKnox1 failed to dimerize significantly with E2a-Pbx1. The Meis1/pKnox1-interaction domain in Pbx1 resided predominantly in a conserved N-terminal Pbx domain deleted in E2a-Pbx1. Thus, the leukemic potential of E2a-Pbx1 may require abrogation of its interaction with members of the Meis and pKnox families of transcription factors, permitting selective targeting of genes regulated by Pbx-Hox complexes. In addition, because most motifs bound by Pbx-Meis1/pKnox1 were not bound by Pbx1-Hox complexes, the leukemic potential of Meis1 in myeloid leukemias may involve shifting Pbx proteins from promoters containing Pbx-Hox motifs to those containing Pbx-Meis motifs.
Collapse
Affiliation(s)
- P S Knoepfler
- Department of Pathology, University of California at San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
334
|
Grieder NC, Marty T, Ryoo HD, Mann RS, Affolter M. Synergistic activation of a Drosophila enhancer by HOM/EXD and DPP signaling. EMBO J 1997; 16:7402-10. [PMID: 9405369 PMCID: PMC1170340 DOI: 10.1093/emboj/16.24.7402] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The homeotic proteins encoded by the genes of the Drosophila HOM and the vertebrate HOX complexes do not bind divergent DNA sequences with a high selectivity. In vitro, HOM (HOX) specificity can be increased by the formation of heterodimers with Extradenticle (EXD) or PBX homeodomain proteins. We have identified a single essential Labial (LAB)/EXD-binding site in a Decapentaplegic (DPP)-responsive enhancer of the homeotic gene lab which drives expression in the developing midgut. We show that LAB and EXD bind cooperatively to the site in vitro, and that the expression of the enhancer in vivo requires exd and lab function. In addition, point mutations in either the EXD or the LAB subsite compromise enhancer function, strongly suggesting that EXD and LAB bind to this site in vivo. Interestingly, we found that the activity of the enhancer is only stimulated by DPP signaling significantly upon binding of LAB and EXD. Thus, the enhancer appears to integrate positional information via the homeotic gene lab, and spatiotemporal information via DPP signaling; only when these inputs act in concert in an endodermal cell is the enhancer fully active. Our results illustrate how a tissue-specific response to DPP can be generated through synergistic effects on an enhancer carrying both DPP- and HOX-responsive sequences.
Collapse
Affiliation(s)
- N C Grieder
- Abteilung Zellbiologie, Biozentrum, Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
335
|
Abstract
In this paper I have tried to bring together work that highlights the role of homeobox genes in generating craniofacial form. I review both normal and disrupted embryogenesis and ask whether mis-expression of the homeobox genes outside their normal domains could be contributing to congenital facial abnormalities arising from either genetic or teratogenic actions. Experimentally generated transgenic mice carrying loss- or gain-of-function mutations in homeobox genes, in combination with their normal expression patterns, have allowed us to compile and test models of embryonic specification based around a Hox/homeobox code. These models form the basis on which the functional questions are considered. There are four major sections covering different experimental approaches designed to ectopically induce homeobox genes in the head. Transgenic mice, where heterologous promoters drive a given Hox gene in the head, have shown that the more posteriorly expressed Hox genes tend to have a significant effect only on the skull bones of mesodermal origin whereas those normally expressed more anteriorly, in the hindbrain and branchial arches, can affect more anterior branchial arch and neural crest-derived structures. Manipulation experiments which can induce homeobox genes in small, localised regions of the facial precursors show clear and dramatic effects of this expression on facial development. Null mutations in predicted repressors of Hox gene expression, however, do not appear to give rise to substantial craniofacial abnormalities. Retinoic acid, on the other hand, is well known for its teratogenic actions and its ability to induce Hox gene expression. Evidence is now accumulating that at least some of its teratogenic actions may be mediated by its regulation of the Hox and other homeobox genes in the head.
Collapse
Affiliation(s)
- J Whiting
- Department of Craniofacial Development, UMDS, Guy's Hospital, London, UK.
| |
Collapse
|
336
|
Abstract
The burgeoning number of articles concerning the role of HOX genes and hematopoiesis ensures that this will continue to be an area of very active research. It seems clear that HOX genes are expressed in stage- and lineage-specific patterns during early stages of hematopoietic development and differentiation. Several lines of evidence suggest that multiple genes of the HOXB (B2, B4, B6-B9), HOXC (C6, C8), and HOXA (A5) are involved in erythropoiesis. Similarly, a number of genes of the HOXA, HOXB, and HOXC appear to play a role in lymphoid cells. Furthermore, several genes, such as A9, A10, B3, B7, and B8, may control myelomonocytic differentiation. The question arises as to whether such a multiplicity of HOX genes reflects redundancy or indicates subtlety of the regulatory machinary. A similar complexity has been observed for hematopoietic cytokines, and the current view is that, although multiple molecules may have similar or overlapping effects, each factor has a specific function and regulatory combinations appear to play a critical role in controlling hematopoietic cell processes (99). One challenge for the future is to delineate in more detail the precise expression patterns of these genes in the many distinct subpopulations of blood cells and during fetal development. Overexpression of HOX genes in hematopoietic cells can dramatically perturb the differentiation of various cell lineages and can contribute to leukemogenesis. Future studies may involve the overexpression of alternatively spliced versions of different HOX genes or of truncated versions of HOX genes to ascertain the functional domains of the proteins that mediate the biologic effects. The findings in HOX knockout mice confirm a role for these genes in normal blood cell development. Further work in this area will require careful examination of fetal hematopoiesis and of animals bearing multiple HOX gene knockouts. Involvement of HOX genes in leukemia is just beginning to be appreciated. Establishing the true extent of HOX gene mutations in human disease will require strategies such as comparative genomic hybridization (100) and analysis of high density oligonucleotide arrays (101). The holy grail of homeobox work is to discover the physiologic processes and specific target genes regulated by HOX proteins. Given the broad range of tissues in which HOX genes are expressed, they would appear to be involved in very basic cellular processes, e.g., cell proliferation and death, adhesion, and migration, etc., rather than the direct regulation of tissue-specific genes. The search for target genes may be made easier by the further characterization of cooperative DNA binding between HOX proteins and other transcription factors. We speculate that HOX proteins do not behave as conventional transcriptional activators or inhibitors but rather may mark genes for potential future activation, i.e., they may establish competency to execute specific differentiation programs, with the actual activation being accomplished by transcriptional pathways triggered by exogenous signals. This proposed function may be an architectural one, involving changes in the conformation of DNA and/or altering interactions between DNA and histones, thus making areas of the genome more or less accessible to other protein factors (102). If this is the case, we may need to develop new assays to discern the molecular action of HOX proteins. The ease of manipulating the hematopoietic systems would appear to make it a very attractive model for explicating the general functions of this remarkable family of genes.
Collapse
Affiliation(s)
- M C Magli
- Institute of Mutagenesis and Differentiation, CNR, Pisa, Italy
| | | | | |
Collapse
|
337
|
Shen WF, Montgomery JC, Rozenfeld S, Moskow JJ, Lawrence HJ, Buchberg AM, Largman C. AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 1997; 17:6448-58. [PMID: 9343407 PMCID: PMC232497 DOI: 10.1128/mcb.17.11.6448] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice. These integrations result in constitutive activation of Meis1. Furthermore, the Hoxa-9 gene is frequently activated by viral integration in the same BXH-2 leukemias, suggesting a biological synergy between these two distinct classes of homeodomain proteins in causing malignant transformation. We now show that the Hoxa-9 protein physically interacts with Meis1 proteins by forming heterodimeric binding complexes on a DNA target containing a Meis1 site (TGACAG) and an AbdB-like Hox site (TTTTACGAC). Hox proteins from the other AbdB-like paralogs, Hoxa-10, Hoxa-11, Hoxd-12, and Hoxb-13, also form DNA binding complexes with Meis1b, while Hox proteins from other paralogs do not appear to interact with Meis1 proteins. DNA binding complexes formed by Meis1 with Hox proteins dissociate much more slowly than DNA complexes with Meis1 alone, suggesting that Hox proteins stabilize the interactions of Meis1 proteins with their DNA targets.
Collapse
Affiliation(s)
- W F Shen
- Department of Medicine, University of California VA Medical Center, San Francisco 94121, USA
| | | | | | | | | | | | | |
Collapse
|
338
|
Rieckhof GE, Casares F, Ryoo HD, Abu-Shaar M, Mann RS. Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 1997; 91:171-83. [PMID: 9346235 DOI: 10.1016/s0092-8674(00)80400-6] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We show that homothorax (hth) is required for the Hox genes to pattern the body of the fruit fly, Drosophila melanogaster. hth is necessary for the nuclear localization of an essential HOX cofactor, Extradenticle (EXD), and encodes a homeodomain protein that shares extensive identity with the product of Meis1, a murine proto-oncogene. MEIS1 is able to rescue hth mutant phenotypes and can induce the cytoplasmic-to-nuclear translocation of EXD in cell culture and Drosophila embryos. Thus, Meis1 is a murine homolog of hth. MEIS1/HTH also specifically binds to EXD with high affinity in vitro. These data suggest a novel and evolutionarily conserved mechanism for regulating HOX activity in which a direct protein-protein interaction between EXD and HTH results in EXD's nuclear translocation.
Collapse
Affiliation(s)
- G E Rieckhof
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
339
|
Kimura C, Takeda N, Suzuki M, Oshimura M, Aizawa S, Matsuo I. Cis-acting elements conserved between mouse and pufferfish Otx2 genes govern the expression in mesencephalic neural crest cells. Development 1997; 124:3929-41. [PMID: 9374391 DOI: 10.1242/dev.124.20.3929] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies suggested that the Otx2 gene plays an essential role in the development of cranial skeletons and nerves of mesencephalic neural crest origin. To clarify this role, we have identified the cis-acting elements in mouse and pufferfish Otx2 genes responsible for the expression in the crest cells using a transgenic approach with the lacZ reporter gene. In mouse, 49 bp sequences in the proximal 5′ region upstream were essential and sufficient to direct the transgene expression in the cephalic mesenchyme. In pufferfish, the 1.1 kb distal region, located far downstream (from +14.4 to +15.5 kb), had almost identical activity. Between them, several DNA sequences were conserved, and mutational analyses indicated that motif A was critical for the transgene expression in the premandibular region while motif B was critical in both premandibular and mandibular regions. Motif B, CTAATTA, contains the core motif for binding of homeodomain proteins while motif A, TAAATCTG, does not match any known consensus binding sequences for transcriptional factors. The cephalic mesenchyme that expressed beta-galactosidase under these cis-elements is most likely to correspond to mesencephalic crest cells. Thus the molecular machinery regulating Otx2 expression in these cells appears to be conserved between mouse and fish, implying a crucial role of the Otx2 gene in development of the neural-crest-derived structures of the gnathostome rostral head.
Collapse
Affiliation(s)
- C Kimura
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Honjo, Japan
| | | | | | | | | | | |
Collapse
|
340
|
Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol 1997; 17:5679-87. [PMID: 9315626 PMCID: PMC232416 DOI: 10.1128/mcb.17.10.5679] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.
Collapse
Affiliation(s)
- C P Chang
- Department of Pathology, Stanford University Medical Center, California 94305, USA
| | | | | | | | | | | |
Collapse
|
341
|
Oulad-Abdelghani M, Chazaud C, Bouillet P, Sapin V, Chambon P, Dollé P. Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev Dyn 1997; 210:173-83. [PMID: 9337137 DOI: 10.1002/(sici)1097-0177(199710)210:2<173::aid-aja9>3.0.co;2-d] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the cDNA cloning, partial genomic organization, and expression pattern of Stra10, a novel retinoic acid-inducible gene in P19 embryonal carcinoma cells. Four murine cDNA isoforms have been isolated, which are likely to result from alternative splicing. The predicted protein sequences exhibit approximately 85% identity with the Pbx-related Meis1 homeobox gene products, which are involved in myeloid leukemia in BXH-2 mice, and one of the Stra10 isoforms corresponds to the recently published Meis2 sequence (Nakamura et al. [1996] Oncogene 13:2235-2242). The Meis2 homeodomain is identical to that of Meis1, and is most closely related to those of the Pbx/TGIF homeobox gene products. By in situ hybridization analysis, we show that the Meis2 gene displays spatially restricted expression patterns in the developing nervous system, limbs, face, and in various viscera. In adult mice, Meis2 is mainly expressed in the brain and female genital tract, with a different distribution of the alternative splice forms in these organs.
Collapse
Affiliation(s)
- M Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch, C.U. de Strasbourg
| | | | | | | | | | | |
Collapse
|
342
|
Zhang F, Pöpperl H, Morrison A, Kovàcs EN, Prideaux V, Schwarz L, Krumlauf R, Rossant J, Featherstone MS. Elements both 5' and 3' to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech Dev 1997; 67:49-58. [PMID: 9347914 DOI: 10.1016/s0925-4773(97)00104-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, we show that a lacZ reporter spanning 12.5 kb of murine Hoxd4 genomic DNA contains the major regulatory elements controlling Hoxd4 expression in the mouse embryo. Mutational analysis revealed multiple regulatory regions both 5' and 3' to the coding region. These include a 3' enhancer region required for expression in the central nervous system (CNS) and setting the anterior border in the paraxial mesoderm, and a 5' mesodermal enhancer that directs expression in paraxial and lateral plate mesoderm. A previously defined retinoic acid response element (RARE) is a component of the 5' mesodermal enhancer. Our results support a model in which retinoic acid receptors (RARs) and HOX proteins mediate the initiation and maintenance of Hoxd4 expression.
Collapse
Affiliation(s)
- F Zhang
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Sánchez M, Jennings PA, Murre C. Conformational changes induced in Hoxb-8/Pbx-1 heterodimers in solution and upon interaction with specific DNA. Mol Cell Biol 1997; 17:5369-76. [PMID: 9271414 PMCID: PMC232387 DOI: 10.1128/mcb.17.9.5369] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two classes of homeodomain proteins, Hox and Pbx gene products, have the ability to bind cooperatively to DNA. In Hox proteins, the homeodomain and a highly conserved hexapeptide are required for cooperative DNA binding. In Pbx, the homeodomain and a region immediately C terminal of the homeodomain are essential for cooperativity. Using fluorescence and circular dichroism spectroscopy, we demonstrated that Hox and Pbx proteins interact in the absence of DNA. The interaction in solution is accompanied by conformational changes. Furthermore, upon interaction with specific DNA, additional conformational changes are induced in the Pbx-1/Hoxb-8 heterodimer. These data indicate that prior to DNA binding, Hox-Pbx interaction in solution is accompanied by structural alterations. We propose that these conformational changes modulate the DNA binding properties of these proteins, ultimately resulting in cooperative DNA binding.
Collapse
Affiliation(s)
- M Sánchez
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
344
|
McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C. A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 1997; 124:3221-32. [PMID: 9310317 DOI: 10.1242/dev.124.17.3221] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pbx1 is a homeodomain transcription factor that has the ability to form heterodimers with homeodomain proteins encoded by the homeotic selector (Hox) gene complexes and increase their DNA-binding affinity and specificity. A current hypothesis proposes that interactions with Pbx1 are necessary for Hox proteins to regulate downstream target genes that in turn control growth, differentiation and morphogenesis during development. In pre B cell leukemias containing the t(1;19) chromosome translocation, Pbx1 is converted into a strong transactivator by fusion to the activation domain of the bHLH transcription factor E2A. The E2A-Pbx1 fusion protein should therefore activate transcription of genes normally regulated by Pbx1. We have used the subtractive process of representational difference analysis to identify targets of E2A-Pbx1. We show that E2A-Pbx1 can directly activate transcription of a novel member of the fibroblast growth factor family of intercellular signalling molecules, FGF-15. The FGF-15 gene is expressed in a regionally restricted pattern in the developing nervous system, suggesting that FGF-15 may play an important role in regulating cell division and patterning within specific regions of the embryonic brain, spinal cord and sensory organs.
Collapse
Affiliation(s)
- J R McWhirter
- Department of Biology, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
345
|
Pöpperl H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RS. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 1997; 124:2997-3005. [PMID: 9247341 DOI: 10.1242/dev.124.15.2997] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenic embryos expressing Cwnt8C under the control of the human beta-actin promoter exhibit duplicated axes or a severely dorsalised phenotype. Although the transgene was introduced into fertilised eggs all duplications occurred within a single amnion and, therefore, arose from the production of more than one primitive streak at the time of gastrulation. Morphological examination and the expression of diagnostic markers in transgenic embryos suggested that ectopic Cwnt8C expression produced only incomplete axis duplication: axes were always fused anteriorly, there was a reduction in tissue rostral to the anterior limit of the notochord, and no duplicated expression domain of the forebrain marker Hesx1 was observed. Anterior truncations were evident in dorsalised transgenic embryos containing a single axis. These results are discussed in the light of the effects of ectopic Xwnt8 in Xenopus embryos, where its early expression leads to complete axis duplication but expression after the mid-blastula transition causes anterior truncation. It is proposed that while ectopic Cwnt8C in the mouse embryo can duplicate the primitive streak and node this only produces incomplete axis duplication because specification of the anterior aspect of the axis, as opposed to maintenance of anterior character, is established by interaction with anterior primitive endoderm rather than primitive streak derivatives.
Collapse
Affiliation(s)
- H Pöpperl
- Laboratory of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | |
Collapse
|
346
|
Neuteboom ST, Murre C. Pbx raises the DNA binding specificity but not the selectivity of antennapedia Hox proteins. Mol Cell Biol 1997; 17:4696-706. [PMID: 9234726 PMCID: PMC232322 DOI: 10.1128/mcb.17.8.4696] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have used a binding site selection strategy to determine the optimal binding sites for Pbx proteins by themselves and as heterodimeric partners with various Hox gene products. Among the Pbx proteins by themselves, only Pbx3 binds with high affinity, as a monomer or as a homodimer, to an optimal binding site, TGATTGATTTGAT. An inhibitory domain located N terminal of the Pbx1 homeodomain prevents intrinsic Pbx1 binding to this sequence. When complexed with Hoxc-6, each of the Pbx gene products binds the same consensus sequence, TGATTTAT, which differs from the site bound by Pbx3 alone. Three members of the Antennapedia family, Hoxc-6, Hoxb-7, and Hoxb-8, select the same binding site in conjunction with Pbx1. The affinities of these proteins as heterodimeric partners with Pbx1 for the selected optimal binding site are similar. However, the binding specificity of Hox proteins for optimal binding sites is increased, compared to nonspecific DNA, in the presence of Pbx proteins. Thus, while cooperative DNA binding involving heterodimers of Pbx and Hox gene products derived from members within the Antennapedia family does not increase binding site selectivity, DNA binding specificity of the Hox gene products is significantly enhanced in the presence of Pbx.
Collapse
Affiliation(s)
- S T Neuteboom
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
347
|
Shanmugam K, Featherstone MS, Saragovi HU. Residues flanking the HOX YPWM motif contribute to cooperative interactions with PBX. J Biol Chem 1997; 272:19081-7. [PMID: 9228093 DOI: 10.1074/jbc.272.30.19081] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hox genes encode transcription factors that are major determinants of embryonic patterning. Recently, we and others have shown that specific recognition of target sites in DNA is partly achieved through cooperative interaction with the extradenticle/pre-B-cell transformation-related gene (EXD/PBX) family of homeodomain-containing proteins. This interaction is mediated by the YPWM motif present N-terminal to the homeodomain in HOX proteins. In the present study, we use YPWM peptides to confirm the importance of this motif for mediating HOX/PBX interactions. We also used a novel monoclonal antibody directed against the YPWM to show that occlusion of this motif abrogates cooperativity with PBX. In addition, we present evidence that residues flanking the YPWM, both N-terminally and C-terminally, stabilize the HOX.PBX cooperative complex. Because these flanking residues are also conserved among paralogs, they are likely to help distinguish the specificity of HOX/PBX interactions. Our data further show that the relative importance of individual residues within and flanking the YPWM is dependent on the identity of position 6 of the cooperative binding site (TGATTNATGG). These results suggest that interactions between PBX and the YPWM motif are modified by a base pair predicted to contact the N-terminal arm of the HOX homeodomain.
Collapse
Affiliation(s)
- K Shanmugam
- McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
348
|
Maconochie MK, Nonchev S, Studer M, Chan SK, Pöpperl H, Sham MH, Mann RS, Krumlauf R. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997; 11:1885-95. [PMID: 9242495 DOI: 10.1101/gad.11.14.1885] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Correct regulation of the segment-restricted patterns of Hox gene expression is essential for proper patterning of the vertebrate hindbrain. We have examined the molecular basis of restricted expression of Hoxb2 in rhombomere 4 (r4), by using deletion analysis in transgenic mice to identify an r4 enhancer from the mouse gene. A bipartite Hox/Pbx binding motif is located within this enhancer, and in vitro DNA binding experiments showed that the vertebrate labial-related protein Hoxb1 will cooperatively bind to this site in a Pbx/Exd-dependent manner. The Hoxb2 r4 enhancer can be transactivated in vivo by the ectopic expression of Hoxb1, Hoxa1, and Drosophila labial in transgenic mice. In contrast, ectopic Hoxb2 and Hoxb4 are unable to induce expression, indicating that in vivo this enhancer preferentially responds to labial family members. Mutational analysis demonstrated that the bipartite Hox/Pbx motif is required for r4 enhancer activity and the responses to retinoids and ectopic Hox expression. Furthermore, three copies of the Hoxb2 motif are sufficient to mediate r4 expression in transgenic mouse embryos and a labial pattern in Drosophila embryos. This reporter expression in Drosophila embryos is dependent upon endogenous labial and exd, suggesting that the ability of this Hox/Pbx site to interact with labial-related proteins has been evolutionarily conserved. The endogenous Hoxb2 gene is no longer upregulated in r4 in Hoxb1 homozygous mutant embryos. On the basis of these experiments we conclude that the r4-restricted domain of Hoxb2 in the hindbrain is the result of a direct cross-regulatory interaction by Hoxb1 involving vertebrate Pbx proteins as cofactors. This suggests that part of the functional role of Hoxb1 in maintaining r4 identity may be mediated by the Hoxb2 gene.
Collapse
Affiliation(s)
- M K Maconochie
- Laboratory of Developmental Neurobiology, Medical Research Council (MRC), National Institute for Medical Research (NIMR), London, UK
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R. Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 1997; 65:3-17. [PMID: 9256341 DOI: 10.1016/s0925-4773(97)00032-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Msx2 is a homeobox gene with a regulatory role in inductive tissue interactions, including those that pattern the skull. We demonstrated previously that individuals affected with an autosomal dominant disorder of skull morphogenesis (craniosynostosis, Boston type) bear a mutated form of Msx2 in which a histidine is substituted for a highly conserved proline in position 7 of the N-terminal arm of the homeodomain (p148h). The mutation behaves as a dominant positive in transgenic mice. The location of the mutation in the N-terminal arm of the homeodomain, a region which in other homeodomain proteins plays a key part in protein-protein interactions, prompted us to undertake a yeast two hybrid screen for Msx2-interacting proteins. Here we present a functional analysis of one such protein, designated Miz1 (Msx-interacting-zinc finger). Miz1 is a zinc finger-containing protein whose amino acid sequence closely resembles that of the yeast protein, Nfi-1. Together these proteins define a new, highly conserved protein family. Analysis of Miz1 expression by Northern blot and in situ hybridization revealed a spatiotemporal pattern that overlaps that of Msx2. Further, Miz1 is a sequence specific DNA binding protein, and it can function as a positive-acting transcription factor. Miz1 interacts directly with Msx2 in vitro and enhances the DNA binding affinity of Msx2 for a functionally important element in the rat osteocalcin promoter. The p148h mutation in Msx2 augments the Miz1 effect on Msx2 DNA binding, suggesting a reason why this mutation behaves in vivo as a dominant positive, and providing a potential explanation of the craniosynostosis phenotype.
Collapse
Affiliation(s)
- L Wu
- Department of Biochemistry and Molecular Biology, USC Norris Cancer Hospital and Research Institute, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Di Rocco G, Mavilio F, Zappavigna V. Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO J 1997; 16:3644-54. [PMID: 9218805 PMCID: PMC1169988 DOI: 10.1093/emboj/16.12.3644] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hox genes control cell fates and specify regional identities in vertebrate development. Hox proteins show a relaxed DNA-binding selectivity in vitro, suggesting that functional specificity is achieved in vivo through the action of transcriptional co-factors. Pbx proteins are good candidates for such a role, on the basis of both genetic and biochemical evidence. We report that the human Pbx1 and HOXB1 proteins can cooperatively activate transcription through a genetically characterized Hox target, i.e. an autoregulatory element directing spatially restricted expression of the murine Hoxb-1 gene (b1-ARE) in the developing hindbrain. On the b1-ARE, only a restricted subset of HOX proteins (HOXA1, HOXB1, HOXA2) are able to bind cooperatively with Pbx1 and activate transcription. Selective recognition of the b1-ARE is mediated by the N-terminal region of the HOX homeodomain. The DNA-binding and protein-protein interaction functions of HOXB1 and Pbx1 are all necessary for the assembly of a transcriptionally active complex on the b1-ARE. Functional dissection of the complex allowed the localization of the main activation domain in the HOXB1 N-terminal region, and of an additional one in the C-terminal region of Pbx1 contained in the Pbx1a but not in the alternatively spliced Pbx1b isoform. Our results indicate that Pbx1 acts as a transcriptional co-factor of Hox proteins, allowing selective recognition and cooperative activation of regulatory target sequences.
Collapse
Affiliation(s)
- G Di Rocco
- DIBIT-Istituto Scientifico H.S. Raffaele, Milano, Italy
| | | | | |
Collapse
|