301
|
Ryman N, Palm S, André C, Carvalho GR, Dahlgren TG, Jorde PE, Laikre L, Larsson LC, Palmé A, Ruzzante DE. Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 2006; 15:2031-45. [PMID: 16780422 DOI: 10.1111/j.1365-294x.2006.02839.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Information on statistical power is critical when planning investigations and evaluating empirical data, but actual power estimates are rarely presented in population genetic studies. We used computer simulations to assess and evaluate power when testing for genetic differentiation at multiple loci through combining test statistics or P values obtained by four different statistical approaches, viz. Pearson's chi-square, the log-likelihood ratio G-test, Fisher's exact test, and an F(ST)-based permutation test. Factors considered in the comparisons include the number of samples, their size, and the number and type of genetic marker loci. It is shown that power for detecting divergence may be substantial for frequently used sample sizes and sets of markers, also at quite low levels of differentiation. The choice of statistical method may be critical, though. For multi-allelic loci such as microsatellites, combining exact P values using Fisher's method is robust and generally provides a high resolving power. In contrast, for few-allele loci (e.g. allozymes and single nucleotide polymorphisms) and when making pairwise sample comparisons, this approach may yield a remarkably low power. In such situations chi-square typically represents a better alternative. The G-test without Williams's correction frequently tends to provide an unduly high proportion of false significances, and results from this test should be interpreted with great care. Our results are not confined to population genetic analyses but applicable to contingency testing in general.
Collapse
Affiliation(s)
- Nils Ryman
- Division of Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Ryynänen HJ, Primmer CR. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes. BMC Genomics 2006; 7:192. [PMID: 16872523 PMCID: PMC1557852 DOI: 10.1186/1471-2164-7-192] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/27/2006] [Indexed: 11/17/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC) method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar) and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp). The SNP frequency and the overall nucleotide diversity (3.99 × 10-4) in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases.
Collapse
Affiliation(s)
- Heikki J Ryynänen
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014 University of Helsinki, Finland
| | - Craig R Primmer
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014 University of Helsinki, Finland
- Department of Biology, University of Turku, FIN-20014, Finland
| |
Collapse
|
303
|
Jordal BH, Emerson BC, Hewitt GM. Apparent ‘sympatric’ speciation in ecologically similar herbivorous beetles facilitated by multiple colonizations of an island. Mol Ecol 2006; 15:2935-47. [PMID: 16911212 DOI: 10.1111/j.1365-294x.2006.02993.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coexistence of recently diverged and ecologically similar sister species in complete sympatry represents a particularly compelling case for sympatric speciation. This study investigates the possible sympatric origin of two coexisting bark beetle taxa that utilize the same host plant on the island of La Palma in the Canary Islands. Aphanarthrum subglabrum and Aphanarthrum glabrum ssp. nudum breed inside dead twigs of Euphorbia lamarckii plants and are closely related to the allopatric A. glabrum ssp. glabrum in Tenerife, El Hierro and La Gomera. We tested the various speciation hypotheses in a genealogical context, using mitochondrial gene fragments from Cytochrome Oxidase I and 16S, and nuclear gene fragments from Enolase, Elongation Factor 1alpha and Histone H3. Phylogenetic analyses of the combined nuclear DNA data strongly supported a sister relationship between two sympatric and reproductively isolated taxa in La Palma. However, network analyses of subdivided nonrecombinant segments of the Enolase locus indicated a closer relationship between the two allopatric A. glabrum subspecies, suggesting multiple colonizations of this island. A bimodal distribution of mtDNA haplotypes in La Palma further documented the independent colonization of this island, with asymmetric introgression of mtDNA between two lineages. Consequently, the sympatric origin of the La Palma species is concluded to have involved allopatric phases before the parallel colonization of this island and subsequent introgression at some loci. The clear genetic and morphological evidence for reproductive isolation between these species suggests that the sympatric completion of divergence was either due to initial genetic incompatibility, morphological character displacement in male genitalia, or a combination of these factors.
Collapse
Affiliation(s)
- Bjarte H Jordal
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
304
|
CAPPUCCIO I, PARISET L, AJMONE-MARSAN P, DUNNER S, CORTES O, ERHARDT G, LÜHKEN G, GUTSCHER K, JOOST S, NIJMAN IJ, LENSTRA JA, ENGLAND PR, ZUNDEL S, OBEXER-RUFF G, BEJA-PEREIRA A, VALENTINI A, CONSORTIUM THEECONOGENE. Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01425.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
305
|
Thulin CG, Fang M, Averianov AO. Introgression from Lepus europaeus to L. timidus in Russia revealed by mitochondrial single nucleotide polymorphisms and nuclear microsatellites. Hereditas 2006; 143:68-76. [PMID: 17362337 DOI: 10.1111/j.2006.0018-0661.01952.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hybridisation among wild mammal populations may lead to introgression of genes and genomes over the species barrier. In Sweden, in northern Europe, and on the Iberian Peninsula in southern Europe, mitochondrial DNA from L. timidus occurs among L. europaeus specimens, presumably as a result of interspecific hybridisation. In Russia, the species are believed to hybridise as well, but no investigations have confirmed introgression. Here we develop species diagnostic single nucleotide polymorphisms in the mitochondrial genomes and combine them with analysis of nuclear microsatellite markers to investigate hybridisation and introgression in 71 Lepus specimens from Russia. A total of 58 specimens are typical representatives of either species. An additional nine specimens have slightly intermediate genotypes, potentially as a result of introgression of nuclear genes. Finally, we find three specimens with L. europaeus mitochondrial genome and apparent L. timidus nuclear genome. This indicates that the reciprocal transfer of mtDNA occur among Russian populations of these species. Our observation differs from previous observations of mtDNA introgression in Sweden and Iberia, and provides further support for a reticulated mode of introgression within the genus Lepus.
Collapse
Affiliation(s)
- Carl-Gustaf Thulin
- Population Biology and Conservation Biology, Department of Ecology and Evolution, EBC, Uppsala University, Sweden.
| | | | | |
Collapse
|
306
|
Smith CT, Elfstrom CM, Seeb LW, Seeb JE. Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Mol Ecol 2006; 14:4193-203. [PMID: 16262869 DOI: 10.1111/j.1365-294x.2005.02731.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are a class of genetic markers that are well suited to a broad range of research and management applications. Although advances in genotyping chemistries and analysis methods continue to increase the potential advantages of using SNPs to address molecular ecological questions, the scarcity of available DNA sequence data for most species has limited marker development. As the number and diversity of species being targeted for large-scale sequencing has increased, so has the potential for using sequence from sister taxa for marker development in species of interest. We evaluated the use of Oncorhynchus mykiss and Salmo salar sequence data to identify SNPs in three other species (Oncorhynchus tshawytscha, Oncorhynchus nerka and Oncorhynchus keta). Primers designed based on O. mykiss and S. salar alignments were more successful than primers designed based on Oncorhynchus-only alignments for sequencing target species, presumably due to the much larger number of potential targets available from the former alignments and possibly greater sequence conservation in those targets. In sequencing approximately 89 kb we observed a frequency of 4.30 x 10(-3) SNPs per base pair. Approximately half (53/101) of the subsequently designed validation assays resulted in high-throughput SNP genotyping markers. We speculate that this relatively low conversion rate may reflect the duplicated nature of the salmon genome. Our results suggest that a large number of SNPs could be developed for Pacific salmon using sequence data from other species. While the costs of DNA sequencing are still significant, these must be compared to the costs of using other marker classes for a given application.
Collapse
Affiliation(s)
- Christian T Smith
- Gene Conservation Laboratory, Division of Commercial Fisheries, Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, AK 99518, USA.
| | | | | | | |
Collapse
|
307
|
Kuhn KL, Gaffney PM. Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biol 2006. [DOI: 10.1007/s00300-006-0134-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
308
|
Schmid KJ, Törjék O, Meyer R, Schmuths H, Hoffmann MH, Altmann T. Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1104-14. [PMID: 16453134 DOI: 10.1007/s00122-006-0212-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 12/28/2005] [Indexed: 05/06/2023]
Abstract
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide polymorphism (SNP) markers in 351 accessions from the whole species range using a matrix-assisted laser desorption/ionization time-of-flight assay, and by sequencing of nine unlinked short genomic regions in a subset of 64 accessions. The observed frequency distribution of SNPs is not consistent with a constant-size neutral model of sequence polymorphism due to an excess of rare polymorphisms. There is evidence for a significant population structure as indicated by differences in genetic diversity between geographic regions. Accessions from Central Asia have a low level of polymorphism and an increased level of genome-wide linkage disequilibrium (LD) relative to accessions from the Iberian Peninsula and Central Europe. Cluster analysis with the structure program grouped Eurasian accessions into K = 6 clusters. Accessions from the Iberian Peninsula and from Central Asia constitute distinct populations, whereas Central and Eastern European accessions represent admixed populations in which genomes were reshuffled by historical recombination events. These patterns likely result from a rapid postglacial recolonization of Eurasia from glacial refugial populations. Our analyses suggest that mapping populations for association or LD mapping should be chosen from regional rather than a species-wide sample or identified genetically as sets of individuals with similar average genetic distances.
Collapse
Affiliation(s)
- Karl J Schmid
- Department of Genetics and Evolution, Max-Planck-Institute of Chemical Ecology, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
309
|
ADAMS RACHELI, HALLEN HEATHERE, PRINGLE ANNE. PRIMER NOTE . Using the incomplete genome of the ectomycorrhizal fungus Amanita bisporigera to identify molecular polymorphisms in the related Amanita phalloides. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2005.01198.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
310
|
Abstract
Evaluation of the association of haplotypes with either quantitative traits or disease status is common practice, and under some situations provides greater power than the evaluation of individual marker loci. The focus on haplotype analyses will increase as more single nucleotide polymorphisms (SNPs) are discovered, either because of interest in candidate gene regions, or because of interest in genome-wide association studies. However, there is little guidance on the determination of the sample size needed to achieve the desired power for a study, particularly when linkage phase of the haplotypes is unknown, and when a subset of tag-SNP markers is measured. There is a growing wealth of information on the distribution of haplotypes in different populations, and it is not unusual for investigators to measure genetic markers in pilot studies in order to gain knowledge of the distribution of haplotypes in the target population. Starting with this basic information on the distribution of haplotypes, we derive analytic methods to determine sample size or power to test the association of haplotypes with either a quantitative trait or disease status (e.g., a case-control study design), assuming that all subjects are unrelated. Our derivations cover both phase-known and phase-unknown haplotypes, allowing evaluation of the loss of efficiency due to unknown phase. We also extend our methods to when a subset of tag-SNPs is chosen, allowing investigators to explore the impact of tag-SNPs on power. Simulations illustrate that the theoretical power predictions are quite accurate over a broad range of conditions. Our theoretical formulae should provide useful guidance when planning haplotype association studies.
Collapse
Affiliation(s)
- Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
311
|
Anderson EC, Garza JC. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 2005; 172:2567-82. [PMID: 16387880 PMCID: PMC1456362 DOI: 10.1534/genetics.105.048074] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Likelihood-based parentage inference depends on the distribution of a likelihood-ratio statistic, which, in most cases of interest, cannot be exactly determined, but only approximated by Monte Carlo simulation. We provide importance-sampling algorithms for efficiently approximating very small tail probabilities in the distribution of the likelihood-ratio statistic. These importance-sampling methods allow the estimation of small false-positive rates and hence permit likelihood-based inference of parentage in large studies involving a great number of potential parents and many potential offspring. We investigate the performance of these importance-sampling algorithms in the context of parentage inference using single-nucleotide polymorphism (SNP) data and find that they may accelerate the computation of tail probabilities >1 millionfold. We subsequently use the importance-sampling algorithms to calculate the power available with SNPs for large-scale parentage studies, paying particular attention to the effect of genotyping errors and the occurrence of related individuals among the members of the putative mother-father-offspring trios. These simulations show that 60-100 SNPs may allow accurate pedigree reconstruction, even in situations involving thousands of potential mothers, fathers, and offspring. In addition, we compare the power of exclusion-based parentage inference to that of the likelihood-based method. Likelihood-based inference is much more powerful under many conditions; exclusion-based inference would require 40% more SNP loci to achieve the same accuracy as the likelihood-based approach in one common scenario. Our results demonstrate that SNPs are a powerful tool for parentage inference in large managed and/or natural populations.
Collapse
Affiliation(s)
- Eric C Anderson
- Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, California 95060, USA.
| | | |
Collapse
|
312
|
Goetze E. GLOBAL POPULATIION GENETIC STRUCTURE AND BIOGEOGRAPHY OF THE OCEANIC COPEPODS EUCALANUS HYALINUS AND E. SPINIFER. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00948.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
313
|
Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2005; 2:16. [PMID: 16242022 PMCID: PMC1282567 DOI: 10.1186/1742-9994-2-16] [Citation(s) in RCA: 556] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022] Open
Abstract
Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies.
Collapse
Affiliation(s)
- Simone Sommer
- Animal Ecology & Conservation, Biocentre Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|
314
|
|
315
|
|
316
|
Aguilar A, Smith TB, Wayne RK. A comparison of variation between a MHC pseudogene and microsatellite loci of the little greenbul (Andropadus virens). BMC Evol Biol 2005; 5:47. [PMID: 16159389 PMCID: PMC1249561 DOI: 10.1186/1471-2148-5-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 09/13/2005] [Indexed: 11/25/2022] Open
Abstract
Background We investigated genetic variation of a major histcompatibility complex (MHC) pseudogene (Anvi-DAB1) in the little greenbul (Andropadus virens) from four localities in Cameroon and one in Ivory Coast, West Africa. Previous microsatellite and mitochondrial DNA analyses had revealed little or no genetic differentiation among Cameroon localities but significant differentiation between localities in Cameroon and Ivory Coast. Results Levels of genetic variation, heterozygosity, and allelic diversity were high for the MHC pseudogene in Cameroon. Nucleotide diversity of the MHC pseudogene in Cameroon and Ivory Coast was comparable to levels observed in other avian species that have been studied for variation in nuclear genes. An excess of rare variants for the MHC pseudogene was found in the Cameroon population, but this excess was not statistically significant. Pairwise measures of population differentiation revealed high divergence between Cameroon and Ivory Coast for microsatellites and the MHC locus, although for the latter distance measures were much higher than the comparable microsatellite distances. Conclusion We provide the first ever comparison of variation in a putative MHC pseudogene to variation in neutral loci in a passerine bird. Our results are consistence with the action of neutral processes on the pseudogene and suggest they can provide an independent perspective on demographic history and population substructure.
Collapse
Affiliation(s)
- Andres Aguilar
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
- Center for Tropical Research, Institute of the Environment, 1609 Hershey Hall, University of California, Los Angeles, CA 90095 USA
- Southwest Fisheries Science Center & Department of Ocean Sciences, 110 Shaffer Road, University of California, Santa Cruz, California 95060 USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
- Center for Tropical Research, Institute of the Environment, 1609 Hershey Hall, University of California, Los Angeles, CA 90095 USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095 USA
- Center for Tropical Research, Institute of the Environment, 1609 Hershey Hall, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
317
|
Jennings WB, Edwards SV. SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01072.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
318
|
Steeves TE, Anderson DJ, Friesen VL. The Isthmus of Panama: a major physical barrier to gene flow in a highly mobile pantropical seabird. J Evol Biol 2005; 18:1000-8. [PMID: 16033573 DOI: 10.1111/j.1420-9101.2005.00906.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To further test the hypothesis that the Isthmus of Panama is a major barrier to gene flow in pantropical seabirds, we applied phylogeographic methods to mitochondrial control sequence variation in masked booby (Sula dactylatra) populations on either side of the Isthmus of Panama and the southern tip of Africa. In accord with Steeves et al. (2003), we found that all Caribbean masked boobies with the 'secondary contact' cytochrome b haplotype (m-B) shared a control region haplotype (Sd_100), which grouped with Indian-Pacific haplotypes and not Caribbean-Atlantic haplotypes. In addition, Sd_100 was more closely related to control region haplotypes in the Indian Ocean than in the Pacific. We also found that the 'secondary contact' birds diverged more recently from extant populations in the Indian Ocean than in the Pacific. Thus, it appears that these masked boobies did not breach the Isthmus of Panama. Rather, birds likely dispersed around the southern tip of Africa during favourable oceanographic conditions in the Pleistocene.
Collapse
Affiliation(s)
- T E Steeves
- Department of Biology, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
319
|
Edwards SV, Bryan Jennings W, Shedlock AM. Phylogenetics of modern birds in the era of genomics. Proc Biol Sci 2005; 272:979-92. [PMID: 16024355 PMCID: PMC1599873 DOI: 10.1098/rspb.2004.3035] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a 'community genomics' approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era-with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters-will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
320
|
Spinks PQ, Shaffer HB. Range-wide molecular analysis of the western pond turtle (Emys marmorata): cryptic variation, isolation by distance, and their conservation implications. Mol Ecol 2005; 14:2047-64. [PMID: 15910326 DOI: 10.1111/j.1365-294x.2005.02564.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We analysed phylogeography and population genetic variation across the range of the western pond turtle (Emys marmorata) using rapidly evolving mitochondrial and nuclear DNA sequence data. Nuclear DNA sequences from two unlinked introns displayed extremely low levels of variation, but phylogenetic analyses based on mtDNA recovered four well-supported and geographically coherent clades. These included a large Northern clade composed of populations from Washington south to San Luis Obispo County, California, west of the Coast Ranges; a San Joaquin Valley clade from the southern Great Central Valley; a geographically restricted Santa Barbara clade from a limited region in Santa Barbara and Ventura counties; and a Southern clade that occurs south of the Tehachapi Mountains and west of the Transverse Range south to Baja California, Mexico. An analysis of molecular variance (amova) based on regional hydrographic units revealed that populations from the Sacramento Valley north to Washington were virtually invariant, with no evidence of population substructure among northern river drainage basins. In other areas, E. marmorata contains considerable unrecognized variation, particularly in central and southern California and in northern Baja California, Mexico. Our northern clade is congruent with the distribution of the subspecies Emys marmorata marmorata (Washington-central California). However, no clade is congruent with the distribution of the southern subspecies Emys marmorata pallida from central California-Baja. Thus, recognition of the current subspecies split is not warranted, based on the available genetic evidence. Our amova and phylogenetic results, in conjunction with a growing comparative database for other codistributed aquatic taxa, confirm the occurrence of genetic breaks across the Tehachapi Mountains and Transverse Range bounding the southern end of the Great Central Valley, and point to southern California as a rich source of cryptic genetic variation.
Collapse
Affiliation(s)
- Phillip Q Spinks
- Section of Evolution and Ecology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
321
|
Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W. Sequence polymorphism in polyploid wheat and their d-genome diploid ancestor. Genetics 2005; 167:941-7. [PMID: 15238542 PMCID: PMC1470897 DOI: 10.1534/genetics.103.016303] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequencing was used to investigate the origin of the D genome of the allopolyploid species Triticum aestivum and Aegilops cylindrica. A 247-bp region of the wheat D-genome Xwye838 locus, encoding ADP-glucopyrophosphorylase, and a 326-bp region of the wheat D-genome Gss locus, encoding granule-bound starch synthase, were sequenced in a total 564 lines of hexaploid wheat (T. aestivum, genome AABBDD) involving all its subspecies and 203 lines of Aegilops tauschii, the diploid source of the wheat D genome. In Ae. tauschii, two SNP variants were detected at the Xwye838 locus and 11 haplotypes at the Gss locus. Two haplotypes with contrasting frequencies were found at each locus in wheat. Both wheat Xwye838 variants, but only one of the Gss haplotypes seen in wheat, were found among the Ae. tauschii lines. The other wheat Gss haplotype was not found in either Ae. tauschii or 70 lines of tetraploid Ae. cylindrica (genomes CCDD), which is known to hybridize with wheat. It is concluded that both T. aestivum and Ae. cylindrica originated recurrently, with at least two genetically distinct progenitors contributing to the formation of the D genome in both species.
Collapse
|
322
|
Yoder AD, Olson LE, Hanley C, Heckman KL, Rasoloarison R, Russell AL, Ranivo J, Soarimalala V, Karanth KP, Raselimanana AP, Goodman SM. A multidimensional approach for detecting species patterns in Malagasy vertebrates. Proc Natl Acad Sci U S A 2005; 102 Suppl 1:6587-94. [PMID: 15851666 PMCID: PMC1131875 DOI: 10.1073/pnas.0502092102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biodiversity of Madagascar is extraordinarily distinctive, diverse, and endangered. It is therefore urgent that steps be taken to document, describe, interpret, and protect this exceptional biota. As a collaborative group of field and laboratory biologists, we employ a suite of methodological and analytical tools to investigate the vertebrate portion of Madagascar's fauna. Given that species are the fundamental unit of evolution, where micro- and macroevolutionary forces converge to generate biological diversity, a thorough understanding of species distribution and abundance is critical for understanding the evolutionary, ecological, and biogeographic forces that have shaped Malagasy vertebrate diversity. We illustrate the means by which we apply Mayr's "three basic tasks" of the systematist [Mayr, E. (1942) Systematics and the Origin of Species from the Viewpoint of a Zoologist (Harvard Univ. Press, Cambridge, MA)] to identify, classify, and study the organisms that together constitute Madagascar's vertebrate community. Using field inventory methods, specimen-based studies, and morphological and molecular analyses, we formulate hypotheses of species identity that then serve as the foundation for subsequent studies of biology and history. Our experience, as well as that of other investigators, has shown that much of the vertebrate species diversity in Madagascar is "cryptic" for both biological and practical reasons. Beyond issues of cryptic biological diversity, the resolution of species identity in Madagascar has been hampered because of a lack of vouchered comparative material at the population level. Through our activities, we are attempting to remedy these limitations while simultaneously enhancing research capacity in Madagascar.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Seddon JM, Parker HG, Ostrander EA, Ellegren H. SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Mol Ecol 2005; 14:503-11. [PMID: 15660941 DOI: 10.1111/j.1365-294x.2005.02435.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have the potential to become the genetic marker of choice in studies of the ecology and conservation of natural populations because of their capacity to access variability across the genome. In this study, we provide one of the first demonstrations of SNP discovery in a wild population in order to address typical issues of importance in ecology and conservation in the recolonized Scandinavian and neighbouring Finnish wolf Canis lupus populations. Using end sequence from BAC (bacterial artificial chromosome) clones specific for dogs, we designed assays for 24 SNP loci, 20 sites of which had previously been shown to be polymorphic in domestic dogs and four sites were newly identified as polymorphic in wolves. Of the 24 assayed loci, 22 SNPs were found to be variable within the Scandinavian population and, importantly, these were able to distinguish individual wolves from one another (unbiased probability of identity of 4.33 x 10(-8)), providing equivalent results to that derived from 12 variable microsatellites genotyped in the same population. An assignment test shows differentiation between the Scandinavian and neighbouring Finnish wolf populations, although not all known immigrants are accurately identified. An exploration of the misclassification rates in the identification of relationships shows that neither 22 SNP nor 20 microsatellite loci are able to discriminate across single order relationships. Despite the remaining obstacle of SNP discovery in nonmodel organisms, the use of SNPs in ecological and conservation studies is encouraged by the advent of large scale screening methods. Furthermore, the ability to amplify extremely small fragments makes SNPs of particular use for population monitoring, where faecal and other noninvasive samples are routinely used.
Collapse
Affiliation(s)
- J M Seddon
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| | | | | | | |
Collapse
|
324
|
Carstens BC, Stevenson AL, Degenhardt JD, Sullivan J. Testing nested phylogenetic and phylogeographic hypotheses in the Plethodon vandykei species group. Syst Biol 2005; 53:781-92. [PMID: 15545255 DOI: 10.1080/10635150490522296] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mesic forests in the North American Pacific Northwest occur in two disjunct areas: along the coastal and Cascade ranges of Oregon, Washington, and British Columbia as well as the Northern Rocky Mountains of Idaho, Montana, and British Columbia. Over 150 species or species complexes have disjunct populations in each area, and a priori hypotheses based on phytogeography and geology potentially explain the disjunction via either dispersal or vicariance. Here, we test these hypotheses in the disjunct salamander complex Plethodon vandykei and P. idahoensisby collecting genetic data (669 bp of Cyt b) from 262 individuals. Maximum likelihood analysis indicated reciprocal monophyly of these species, supporting the ancient vicariance hypothesis, whereas parametric bootstrap and Bayesian hypothesis testing allow rejection of the dispersal hypothesis. The coalescent estimate of the time since population divergence (estimated using MDIV) is 3.75 x 106 years, and the 95%credibility interval of this value overlaps with the geological estimate of vicariance, but not the hypothesized dispersal. These results are congruent with the pattern seen in other mesic forest amphibian lineages and suggest disjunction in amphibians may be a concerted response to a geological/climatological event. WithinP. idahoensis, we tested the corollary hypothesis of an inland Pleistocene refugium in the Clearwater drainage with nested clade analysis and coalescent estimates of population growth rate (g). Both analyses support post-Pleistocene expansion from the Clearwater refugium. We corroborated this result by calculating Tajima's Dand mismatch distribution within each drainage, showing strong evidence for recent population expansion within most drainages. This work demonstrates the utility of statistical phylogeography and contributes two novel analytical tools: tests of stationarity with respect to topology in the Bayesian estimation, and the use of coalescent simulations to test the significance of the population growth-rate parameter.
Collapse
Affiliation(s)
- Bryan C Carstens
- Department of Biological Sciences, Moscow, Idaho 83844-3051, USA.
| | | | | | | |
Collapse
|
325
|
Ryynänen HJ, Primmer CR. Distribution of genetic variation in the growth hormone 1 gene in Atlantic salmon (Salmo salar) populations from Europe and North America. Mol Ecol 2005; 13:3857-69. [PMID: 15548297 DOI: 10.1111/j.1365-294x.2004.02370.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The level and hierarchical distribution of genetic variation in complete sequences of the Atlantic salmon (Salmo salar) growth hormone (GH1) gene were investigated in populations from Europe and North America with a view to inferring the major evolutionary forces affecting genetic variation at this locus. Seventeen polymorphic sites were identified in complete sequences from nine populations, with levels of noncoding (intron and untranslated region sequences) nucleotide diversity being similar to those observed in other species. No variation, however, was observed in exonic sequences, indicating that nucleotide diversity in the Atlantic salmon GH1 gene is three and 25 times less than that estimated for human and Drosophila coding sequences, respectively. This suggests that purifying selection is the predominant contemporary force controlling the molecular evolution of GH1 coding sequences. Comparison of haplotype relationships within and between populations indicated that differentiation between populations from Europe and North America was greater than within-continent comparisons. However, several haplotypes observed in the northernmost European populations were more similar to those observed in North American than to any other haplotypes observed in Europe. This is most likely to be a result of historical, rather than contemporary, gene flow. Neutrality test statistics, such as Tajima's D, were significantly positive in the European populations in which North American-like haplotypes were observed. Although a positive Tajima's D is commonly interpreted as the signal of balancing selection, a more likely explanation in this case is that either historical migration or ascertainment bias, rather than within population local adaptation, has given rise to an excess of intermediate frequency alleles.
Collapse
Affiliation(s)
- Heikki J Ryynänen
- Department of Biological and Environmental Sciences, University of Helsinki, PO Box 65, FIN-00014 University of Helsinki, Finland
| | | |
Collapse
|
326
|
Lopez C, Piégu B, Cooke R, Delseny M, Tohme J, Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:425-31. [PMID: 15650816 DOI: 10.1007/s00122-004-1833-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 10/01/2004] [Indexed: 05/18/2023]
Abstract
Single nucleotide polymorphisms (SNP) are the most abundant type of DNA polymorphism found in animal and plant genomes. They provide an important new source of molecular markers that are useful in genetic mapping, map-based positional cloning, quantitative trait locus mapping and the assessment of genetic distances between individuals. Very little is known on the frequency of SNPs in cassava. We have exploited the recently-developed collection of cassava expressed sequence tags (ESTs) to detect SNPs in the five cultivars of cassava used to generate the sequences. The frequency of intra-cultivar and inter-cultivar SNPs after analysis of 111 contigs was one polymorphism per 905 and one per 1,032 bp, respectively; totaling 1 each 509 bp. We have obtained further information on the frequency of SNPs in six cassava cultivars by analysis of 33 amplicons obtained from 3' EST and BAC end sequences. Overall, about 11 kb of DNA sequence was obtained for each cultivar. A total of 186 SNPs (136 and 50 from ESTs and BAC ends, respectively) were identified. Among these, 146 were intra-cultivar polymorphisms, while 80 were inter-cultivar polymorphisms. Thus the total frequency of SNPs was one per 62 bp. This information will help to develop new strategies for EST mapping as well as their association with phenotypic characteristics.
Collapse
Affiliation(s)
- C Lopez
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS-Université de Perpignan-Institut de Recherche pour le Développement, 52 Av Paul Alduy, 66860, Perpignan Cedex, France
| | | | | | | | | | | |
Collapse
|
327
|
Jennings WB, Edwards SV. SPECIATIONAL HISTORY OF AUSTRALIAN GRASS FINCHES (POEPHILA) INFERRED FROM THIRTY GENE TREES*. Evolution 2005. [DOI: 10.1554/05-280.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
328
|
Goetze E. GLOBAL POPULATION GENETIC STRUCTURE AND BIOGEOGRAPHY OF THE OCEANIC COPEPODS EUCALANUS HYALINUS AND E. SPINIFER. Evolution 2005. [DOI: 10.1554/05-077.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
329
|
Sites JW, Marshall JC. Operational Criteria for Delimiting Species. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2004. [DOI: 10.1146/annurev.ecolsys.35.112202.130128] [Citation(s) in RCA: 525] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jack W. Sites
- Department of Integrative Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, 84602-5181; ,
| | - Jonathon C. Marshall
- Department of Integrative Biology and M.L. Bean Life Science Museum, Brigham Young University, Provo, 84602-5181; ,
| |
Collapse
|
330
|
Rogers SM, Bernatchez L. FAST-TRACK: Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol Ecol 2004; 14:351-61. [PMID: 15660930 DOI: 10.1111/j.1365-294x.2004.02396.x] [Citation(s) in RCA: 904] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As natural selection must act on underlying genetic variation, discovering the number and location of loci under the influence of selection is imperative towards understanding adaptive divergence in evolving populations. Studies employing genome scans have hypothesized that the action of divergent selection should reduce gene flow at the genomic locations implicated in adaptation and speciation among natural populations, yet once 'outlier' patterns of variation have been identified the function and role of such loci needs to be confirmed. We integrated adaptive QTL mapping and genomic scans among diverging sympatric pairs of the lake whitefish (Coregonus clupeaformis) species complex in order to test the hypothesis that differentiation between dwarf and normal ecotypes at growth-associated QTL was maintained by directional selection. We found evidence of significantly high levels of molecular divergence among eight growth QTL where two of the strongest candidate loci under the influence of directional selection exhibited parallel reductions of gene flow over multiple populations.
Collapse
Affiliation(s)
- S M Rogers
- Département de biologie, Québec-Océan, Université Laval, Ste-Foy, Québec, G1K 7P4 Canada
| | | |
Collapse
|
331
|
Hafner MS, Spradling TA, Light JE, Hafner DJ, Demboski JR. SYSTEMATIC REVISION OF POCKET GOPHERS OF THE CRATOGEOMYS GYMNURUS SPECIES GROUP. J Mammal 2004. [DOI: 10.1644/ber-122.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
332
|
Nascimento FF, Bonvicino CR, da Silva FCD, Schneider MPC, Seuánez HN. Cytochrome b polymorphisms and population structure of two species of Alouatta (Primates). Cytogenet Genome Res 2004; 108:106-11. [PMID: 15545722 DOI: 10.1159/000080808] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 01/19/2004] [Indexed: 11/19/2022] Open
Abstract
We carried out a phylogenetic and population study in Alouatta caraya and Alouatta belzebul based on cytochrome b DNA sequence data. Maximum Parsimony and Median-Joining analyses grouped A. caraya from different localities showing a population structure in accordance with geographic distribution. The relation between A. caraya haplotypes could be explained with respect to the species range in the Cerrado, one of the most ancient morphoclimatic domains of South America, and the Chaco. Conversely, A. belzebul from the Amazonas and Atlantic forests grouped in a paraphyletic arrangement without an evident geographic pattern. Recent geologic events resulting in the separation of A. belzebul might explain why these geographically distant groups shared similar haplotypes and why ancestral polymorphisms might have been maintained in this species. Time of divergence estimates indicated that the splitting of the Alouatta lineage leading to A. caraya occurred some 4.58 MYA while the lineage leading to A. belzebul emerged 4.14 MYA.
Collapse
Affiliation(s)
- F F Nascimento
- Genetics Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
333
|
Abstract
The 'crisis discipline' of conservation biology has voraciously incorporated many technologies to speed up and increase the accuracy of conservation decision-making. Genetic approaches to characterizing endangered species or areas that contain endangered species are prime examples of this. Technical advances in areas such as high-throughput sequencing, microsatellite analysis and non-invasive DNA sampling have led to a much-expanded role for genetics in conservation. Such expansion will allow for more precise conservation decisions to be made and, more importantly, will allow conservation genetics to contribute to area- and landscape-based decision-making processes.
Collapse
Affiliation(s)
- Rob DeSalle
- American Museum of Natural History, New York, New York 10024, USA.
| | | |
Collapse
|
334
|
Holland BS, Hadfield MG. Origin and diversification of the endemic Hawaiian tree snails (Achatinellidae: Achatinellinae) based on molecular evidence. Mol Phylogenet Evol 2004; 32:588-600. [PMID: 15223040 DOI: 10.1016/j.ympev.2004.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/15/2004] [Indexed: 11/23/2022]
Abstract
Tree snails of the endemic subfamily Achatinellinae comprise a diverse and important component of the Hawaiian fauna. In recent decades anthropogenic impacts have resulted in devastating extinction rates in Hawaiian tree snails. To address long-standing biogeographic, systematic, and evolutionary questions we used cytochrome c oxidase subunit I (COI) gene sequences to reconstruct the phylogeny of 23 extant species spanning the range of the subfamily from five Hawaiian Islands. To investigate family-level relationships, data were analyzed from 11 terrestrial pulmonate families. Although nodal support for monophyly of the endemic Pacific family Achatinellidae and endemic Hawaiian subfamily Achatinellinae was strong, bifurcation order among deeper ingroup nodes was not well-supported by bootstrap resampling. We hypothesize that lineage extinction and rapidity of lineage formation may have rendered evolutionary reconstruction difficult using a standard phylogenetic approach. Use of an optimized evolutionary model, however, improved resolution and recovered three main clades. The diversification pattern inferred contradicts the traditional biogeographic hypothesis of a Maui origin of the achatinelline lineage. Taxa comprising the basal ingroup clade (Achatinella spp.) and seeding lineages for subsequent clades originated on O'ahu. Therefore it appears that the ancestral colonizing species of achatinellines arrived first on O'ahu from an unknown source, and that O'ahu is the Hawaiian origin of the subfamily. Species previously defined by morphological criteria were generally found to be phylogenetically distinct, and the overall colonization pattern follows the island-age progression rule with several instances of generic polyphyly and back-colonization.
Collapse
Affiliation(s)
- Brenden S Holland
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
335
|
Aitken N, Smith S, Schwarz C, Morin PA. Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 2004; 13:1423-31. [PMID: 15140087 DOI: 10.1111/j.1365-294x.2004.02159.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have rarely been exploited in nonhuman and nonmodel organism genetic studies. This is due partly to difficulties in finding SNPs in species where little DNA sequence data exist, as well as to a lack of robust and inexpensive genotyping methods. We have explored one SNP discovery method for molecular ecology, evolution, and conservation studies to evaluate the method and its limitations for population genetics in mammals. We made use of 'CATS' (or 'EPIC') primers to screen for novel SNPs in mammals. Most of these primer sets were designed from primates and/or rodents, for amplifying intron regions from conserved genes. We have screened 202 loci in 16 representatives of the major mammalian clades. Polymerase chain reaction (PCR) success correlated with phylogenetic distance from the human and mouse sequences used to design most primers; for example, specific PCR products from primates and the mouse amplified the most consistently and the marsupial and armadillo amplifications were least successful. Approximately 24% (opossum) to 65% (chimpanzee) of primers produced usable PCR product(s) in the mammals tested. Products produced generally high but variable levels of readable sequence and similarity to the expected genes. In a preliminary screen of chimpanzee DNA, 12 SNPs were identified from six (of 11) sequenced regions, yielding a SNP on average every 400 base pairs (bp). Given the progress in genome sequencing, and the large numbers of CATS-like primers published to date, this approach may yield sufficient SNPs per species for population and conservation genetic studies in nonmodel mammals and other organisms.
Collapse
Affiliation(s)
- Nicola Aitken
- Laboratory for Conservation Genetics, Max Planck Institute for Evolutionary Anthropology, Inselstrasse 22, D-04103, Leipzig, Germany
| | | | | | | |
Collapse
|
336
|
Johnson NK, Cicero C. NEW MITOCHONDRIAL DNA DATA AFFIRM THE IMPORTANCE OF PLEISTOCENE SPECIATION IN NORTH AMERICAN BIRDS. Evolution 2004; 58:1122-30. [PMID: 15212392 DOI: 10.1111/j.0014-3820.2004.tb00445.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.
Collapse
Affiliation(s)
- Ned K Johnson
- Museum of Vertebrate Zoology, University of California, Berkeley, California 94720-3160, USA
| | | |
Collapse
|
337
|
Morin PA, Luikart G, Wayne RK, the SNP workshop group. SNPs in ecology, evolution and conservation. Trends Ecol Evol 2004. [DOI: 10.1016/j.tree.2004.01.009] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
338
|
Abdo Z, Crandall KA, Joyce P. Evaluating the performance of likelihood methods for detecting population structure and migration. Mol Ecol 2004; 13:837-51. [PMID: 15012759 DOI: 10.1111/j.1365-294x.2004.02132.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A plethora of statistical models have recently been developed to estimate components of population genetic history. Very few of these methods, however, have been adequately evaluated for their performance in accurately estimating population genetic parameters of interest. In this paper, we continue a research program of evaluation of population genetic methods through computer simulation. Specifically, we examine the software MIGRATEE-N 1.6.8 and test the accuracy of this software to estimate genetic diversity (Theta), migration rates, and confidence intervals. We simulated nucleotide sequence data under a neutral coalescent model with lengths of 500 bp and 1000 bp, and with three different per site Theta values of (0.00025, 0.0025, 0.025) crossed with four different migration rates (0.0000025, 0.025, 0.25, 2.5) to construct 1000 evolutionary trees per-combination per-sequence-length. We found that while MIGRATEE-N 1.6.8 performs reasonably well in estimating genetic diversity (Theta), it does poorly at estimating migration rates and the confidence intervals associated with them. We recommend researchers use this software with caution under conditions similar to those used in this evaluation.
Collapse
Affiliation(s)
- Zaid Abdo
- Department of Mathematics, PO Box 441103, University of Idaho, Moscow, ID 83844-1104, USA
| | | | | |
Collapse
|
339
|
Affiliation(s)
- Christian Schlötterer
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Josef Baumann Gasse 1, 1210 Vienna, Austria.
| |
Collapse
|
340
|
Johnson NK, Cicero C. NEW MITOCHONDRIAL DNA DATA AFFIRM THE IMPORTANCE OF PLEISTOCENE SPECIATION IN NORTH AMERICAN BIRDS. Evolution 2004. [DOI: 10.1554/03-283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
341
|
Clayton D, Chapman J, Cooper J. Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004; 27:415-28. [PMID: 15481099 DOI: 10.1002/gepi.20032] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is usually assumed that detection of a disease susceptability gene via marker polymorphisms in linkage disequilibrium with it is facilitated by consideration of marker haplotypes. However, capture of the marker haplotype information requires resolution of gametic phase, and this must usually be inferred statistically. Recently, we questioned the value of the marker haplotype information, and suggested that certain analyses of multivariate marker data, not based on haplotypes explicitly and not requiring resolution of gametic phase, are often more powerful than analyses based on haplotypes. Here, we review this work and assess more carefully the situations in which our conclusions might apply. We also relate these analyses to alternative approaches to haplotype analysis, namely those based on haplotype similarity and those inspired by cladistics.
Collapse
Affiliation(s)
- David Clayton
- Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, UK
| | | | | |
Collapse
|
342
|
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 2003; 4:981-94. [PMID: 14631358 DOI: 10.1038/nrg1226] [Citation(s) in RCA: 758] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Population genomics has the potential to improve studies of evolutionary genetics, molecular ecology and conservation biology, by facilitating the identification of adaptive molecular variation and by improving the estimation of important parameters such as population size, migration rates and phylogenetic relationships. There has been much excitement in the recent literature about the identification of adaptive molecular variation using the population-genomic approach. However, the most useful contribution of the genomics model to population genetics will be improving inferences about population demography and evolutionary history.
Collapse
Affiliation(s)
- Gordon Luikart
- Laboratoire d'Ecologie Alpine, Génomique des Populations et Biodiversit, CNRS UMR 5553, Université Joseph Fourier, B.P. 53, F-38041 Grenoble, Cedex 9, France.
| | | | | | | | | |
Collapse
|
343
|
Abstract
In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history.
Collapse
Affiliation(s)
- L L Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
344
|
Törjék O, Berger D, Meyer RC, Müssig C, Schmid KJ, Rosleff Sörensen T, Weisshaar B, Mitchell-Olds T, Altmann T. Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:122-140. [PMID: 12974817 DOI: 10.1046/j.1365-313x.2003.01861.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The major goal of this project was the establishment of a tool for rapid mapping of new mutations and genotyping in Arabidopsis consisting of at least 100 evenly spaced framework markers. We assembled a single nucleotide polymorphism (SNP)-based marker set consisting of 112 polymorphic sites with average spacing of 1.15 Mbp derived from an SNP database that we recently developed. This information was used to set up efficient SNP detection reactions based on multiplexed primer extension assays. The 112 Columbia (Col-0)/C24 framework markers were used to assemble 18 multiplexed SNaPshot assays with which up to eight separate loci can be genotyped in a single-tube/single-capillary format. In addition, for 110 framework markers matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) assays have been established for high throughput analyses. We demonstrated the usefulness and the robustness of both procedures of this tool by genotyping 48 BC3F1 individuals created between the accessions Col-0 and C24. Subsets of 10-62 of the established markers discriminate between various combinations of the accessions Col-0, C24, Landsberg erecta (Ler), Cape Verdi Islands (Cvi) and Niederzenz (Nd). Using a subset of 17 evenly distributed and established SNP markers that are also polymorphic between Ler and Col-0, we were able to rapidly map a mutant gene (tbr1) to an interval of 2.3 Mbp in an Ler (tbr1) x Col-0 cross.
Collapse
Affiliation(s)
- O Törjék
- University of Potsdam, Institute of Biochemistry and Biology-Genetics, Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Wang Z, Baker AJ, Hill GE, Edwards SV. RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS MEXICANUS) BY AFLP ANALYSIS. Evolution 2003. [DOI: 10.1554/03-159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|