301
|
Zhang M, Dou M, Xia Y, Hu Z, Zhang B, Bai Y, Xie J, Liu Q, Xie C, Lu D, Hou S, He J, Tao J, Sun R. Photostable 1-Trifluoromethyl Cinnamyl Alcohol Derivatives Designed as Potential Fungicides and Bactericides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5435-5445. [PMID: 33945271 DOI: 10.1021/acs.jafc.1c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the current work, a series of 1-trifluoromethyl cinnamyl alcohol derivatives were designed and synthesized and their antifungal activities were evaluated. The bioassay result showed that most compounds exhibited excellent antifungal activity in vitro at 10 μg mL-1. Next, photostable and easily synthesized compound 2 with broad-spectrum antifungal activity in vitro was selected as a potential candidate to evaluate its antibacterial and antifungal activities. The EC50 values of compound 2 against eight fungal plant pathogens in vitro ranged from 3.806 to 17.981 μg mL-1; at the same time, compound 2 could effectively control Podosphaera xanthii, Odium heveae Steinm, Puccinia striiformis West, and Puccinia sorghi in pot experiments. In addition, compound 2 exhibited excellent antibacterial activities in vitro and in vivo against Xanthomonas oryzae pv. oryzae. Furthermore, the absorption and translocation of compound 2 in wheat plants were determined by the high-performance liquid chromatography method. The result showed that compound 2 could be translocated acropetally as well as basipetally in wheat plants. Finally, it was found that compound 2 had no cross-resistance with carbendazim, azoxystrobin, and boscalid.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Menglan Dou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Yingying Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou, Hainan 570228, People's Republic of China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Beijing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Yongxia Bai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Qifeng Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Dadong Lu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Shuai Hou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jianguo He
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou, Hainan 570228, People's Republic of China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| |
Collapse
|
302
|
Liu J, Han S, Hu Y, Pao CW. Fabrication and characterization of a novel PMO containing riboflavin-5'-phosphate sodium salt for sensitive detection of pesticide ferbam. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
303
|
Evaluating the Antifungal Potential of Botanical Compounds to Control Botryotinia fuckeliana and Rhizoctonia solani. Molecules 2021; 26:molecules26092472. [PMID: 33922682 PMCID: PMC8122953 DOI: 10.3390/molecules26092472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
The European Union is promoting regulatory changes to ban fungicides because of the impact their use has on the ecosystem and the adverse effects they can pose for humans. An ecofriendly alternative to these chemicals to fight against fungal species with low toxicity is essential oils and their compounds extracted from aromatic plants. The purpose of this study was to evaluate the in vitro antifungal capacity of the botanical compounds eugenol, carvacrol, thymol, and cinnamaldehyde, and the synergy or antagonism of their mixtures, against Botryotinia fuckeliana and Rhizoctonia solani. Different bioassays were performed at doses of 300, 200, 150, and 100 µg/mL using pure commercial compounds and their combination in potato dextrose agar culture medium. Growth rate and the mycelium growth inhibition parameters were calculated. Phenolic compounds and their combination inhibited the development of species at the different concentrations, with fungicidal or fungistatic activity shown under almost all the tested conditions. When comparing the growth rates of the species in the control plates and treatments, the statistical analysis showed that there were statistically significant differences. The mixture of compounds improved fungicidal activity against the studied species and at a lower concentration of monoterpenes.
Collapse
|
304
|
Liu Y, Fang K, Zhang X, Liu T, Wang X. Enantioselective toxicity and oxidative stress effects of acetochlor on earthworms (Eisenia fetida) by mediating the signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142630. [PMID: 33069465 DOI: 10.1016/j.scitotenv.2020.142630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Acetochlor (ACT) as a widely used chiral chloroacetamide herbicide is appropriate to evaluate the potential toxicity in soil ecosystems at enantiomeric level. The acute and subchronic toxicities of R-acetochlor (R-ACT) and S-acetochlor (S-ACT) on earthworms (Eisenia fetida) were investigated in the present study. Residual analyses showed that S-ACT degraded faster than R-ACT in artificial soil with half-lives of 16.5 and 21.7 d, respectively. Additionally, significant enantioselective acute toxicity in earthworms from between S-ACT and R-ACT (p < 0.05) was observed, and the acute toxicity of R-ACT were 1.9 and 1.5 times higher than those of S-ACT in the filter paper test and artificial soil test. The hydroxyl radical (OH-) content, superoxide dismutase (SOD) and antioxidant enzyme catalase (CAT) activities, and cytochrome P450 content in earthworms significantly increased under the influence of ACT enantiomers; however, the acetylcholinesterase (AchE) activity was significantly inhibited after exposure to the two enantiomers. Moreover, lipid peroxidation and DNA damage were induced by ACT enantiomers. The results of transcriptome sequencing indicated that R-ACT induced a stronger oxidative stress effect than S-ACT in earthworms by mediating signaling pathways, which may be the primary reason for the enantioselective toxicity between S-ACT and R-ACT. Overall, the results demonstrated that R-ACT has a higher risk than S-ACT in the soil environment, which is important for understanding the enantioselective behavior of chloroacetamide pesticides.
Collapse
Affiliation(s)
- Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
305
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
306
|
The Fungicide Chlorothalonil Changes the Amphibian Skin Microbiome: A Potential Factor Disrupting a Host Disease-Protective Trait. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin microbiome is an important part of amphibian immune defenses and protects against pathogens such as the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis. Alteration of the microbiome by anthropogenic factors, like pesticides, can impact this protective trait, disrupting its functionality. Chlorothalonil is a widely used fungicide that has been recognized as having an impact on amphibians, but so far, no studies have investigated its effects on amphibian microbial communities. In the present study, we used the amphibian Lithobates vibicarius from the montane forest of Costa Rica, which now appears to persist despite ongoing Bd-exposure, as an experimental model organism. We used 16S rRNA amplicon sequencing to investigate the effect of chlorothalonil on tadpoles’ skin microbiome. We found that exposure to chlorothalonil changes bacterial community composition, with more significant changes at a higher concentration. We also found that a larger number of bacteria were reduced on tadpoles’ skin when exposed to the higher concentration of chlorothalonil. We detected four presumed Bd-inhibitory bacteria being suppressed on tadpoles exposed to the fungicide. Our results suggest that exposure to a widely used fungicide could be impacting host-associated bacterial communities, potentially disrupting an amphibian protective trait against pathogens.
Collapse
|
307
|
Schulz R, Bub S, Petschick LL, Stehle S, Wolfram J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 2021; 372:81-84. [PMID: 33795455 DOI: 10.1126/science.abe1148] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides to aquatic invertebrates and pollinators has increased considerably-in sharp contrast to the applied amount-and that this increase has been driven by highly toxic pyrethroids and neonicotinoids, respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since approximately 2010. Our results challenge the claims of a decrease in the environmental impacts of pesticide use.
Collapse
Affiliation(s)
- Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany.
- Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| | - Sascha Bub
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Lara L Petschick
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| | - Sebastian Stehle
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
- Eusserthal Ecosystem Research Station, University Koblenz-Landau, 76857 Eusserthal, Germany
| | - Jakob Wolfram
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, 76829 Landau, Germany
| |
Collapse
|
308
|
McCune F, Samson-Robert O, Rondeau S, Chagnon M, Fournier V. Supplying honey bees with waterers: a precautionary measure to reduce exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17573-17586. [PMID: 33403629 DOI: 10.1007/s11356-020-12147-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Water is essential for honey bees (Apis mellifera L.), but contaminated sources of water in agricultural environments represent a risk of exposure to potentially harmful contaminants. Providing clean water to honey bees could be an efficient and cost-effective measure for beekeepers to reduce bee mortality associated with pesticides and improve the health of their colonies. The main goal of this study was to design a waterer prototype to fulfill the water requirements of honey bees and to evaluate the potential of this waterer in improving colonies' health in agricultural settings, through mitigating the possible impact of an exposure to pesticides from puddle water. We tested the preference of honey bees regarding water composition and waterer prototypes, among which honey bees showed a strong preference for salted water and a poultry-type waterer. Our waterer models were quickly adopted and intensively used through the season in both the context of honey production in field crops and pollination services in cranberry crops. However, in neither context did the use of waterers reduce worker mortality nor increase overall colony weight. Our waterers provided bees with water containing fewer pesticides and were associated with reduced risks of drowning compared to natural sources of water. Our study suggests that the use of waterers fulfills an important requirement for honey bees and represents an interesting and convenient precautionary measure for beekeepers.
Collapse
Affiliation(s)
- Frédéric McCune
- Centre de recherche et d'innovation sur les végétaux, Université Laval, QC, Quebec, G1V 0A6, Canada.
| | - Olivier Samson-Robert
- Centre de recherche et d'innovation sur les végétaux, Université Laval, QC, Quebec, G1V 0A6, Canada
| | - Sabrina Rondeau
- Centre de recherche et d'innovation sur les végétaux, Université Laval, QC, Quebec, G1V 0A6, Canada
- School of Environmental Sciences, University of Guelph, N1G 2 W1, Guelph, ON, Canada
| | - Madeleine Chagnon
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, H3C 3P8, Canada
| | - Valérie Fournier
- Centre de recherche et d'innovation sur les végétaux, Université Laval, QC, Quebec, G1V 0A6, Canada
| |
Collapse
|
309
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Synergy of the LaVO4/h-BN Nanocomposite: A Highly Active Electrocatalyst for the Rapid Analysis of Carbendazim. Inorg Chem 2021; 60:5271-5281. [DOI: 10.1021/acs.inorgchem.1c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N. Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| |
Collapse
|
310
|
Torquetti CG, Guimarães ATB, Soto-Blanco B. Exposure to pesticides in bats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142509. [PMID: 33032135 DOI: 10.1016/j.scitotenv.2020.142509] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
311
|
Konschak M, Zubrod JP, Baudy P, Fink P, Kenngott KGJ, Englert D, Röder N, Ogbeide C, Schulz R, Bundschuh M. Chronic effects of the strobilurin fungicide azoxystrobin in the leaf shredder Gammarus fossarum (Crustacea; Amphipoda) via two effect pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111848. [PMID: 33421672 DOI: 10.1016/j.ecoenv.2020.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Fungicides pose a risk for crustacean leaf shredders serving as key-stone species for leaf litter breakdown in detritus-based stream ecosystems. However, little is known about the impact of strobilurin fungicides on shredders, even though they are presumed to be the most hazardous fungicide class for aquafauna. Therefore, we assessed the impact of the strobilurin azoxystrobin (AZO) on the survival, energy processing (leaf consumption and feces production), somatic growth (growth rate and molting activity), and energy reserves (neutral lipid fatty and amino acids) of the amphipod crustacean Gammarus fossarum via waterborne exposure and food quality-mediated (through the impact of leaf colonizing aquatic microorganisms) and thus indirect effects using 2 × 2-factorial experiments over 24 days. In a first bioassay with 30 µg AZO/L, waterborne exposure substantially reduced survival, energy processing and affected molting activity of gammarids, while no effects were observed via the dietary pathway. Furthermore, a negative growth rate (indicating a body mass loss in gammarids) was induced by waterborne exposure, which cannot be explained by a loss in neutral lipid fatty and amino acids. These energy reserves were increased indicating a disruption of the energy metabolism in G. fossarum caused by AZO. Contrary to the first bioassay, no waterborne AZO effects were observed during a second experiment with 15 µg AZO/L. However, an altered energy processing was determined in gammarids fed with leaves microbially colonized in the presence of AZO, which was probably caused by fungicide-induced effects on the microbial decomposition efficiency ultimately resulting in a lower food quality. The results of the present study show that diet-related strobilurin effects can occur at concentrations below those inducing waterborne toxicity. However, the latter seems to be more relevant at higher fungicide concentrations.
Collapse
Affiliation(s)
- M Konschak
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany.
| | - J P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, Eußerthal D-76857, Germany
| | - P Baudy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany
| | - P Fink
- Institute for Zoology, University of Cologne, Zülpicher Straße 47b, Köln D-50674, Germany; Helmholtz-Centre for Environmental Research - UFZ, Department River Ecology and Department Aquatic Ecosystem Analysis and Management, Brückstrasse 3a, Magdeburg 39114 D, Germany
| | - K G J Kenngott
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany
| | - D Englert
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany
| | - N Röder
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany
| | - C Ogbeide
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany
| | - R Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, Eußerthal D-76857, Germany
| | - M Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau D-76829, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, Uppsala SWE-75007, Sweden.
| |
Collapse
|
312
|
Konschak M, Zubrod JP, Baudy P, Fink P, Pietz S, Duque A TS, Bakanov N, Schulz R, Bundschuh M. Mixture effects of a fungicide and an antibiotic: Assessment and prediction using a decomposer-detritivore system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105762. [PMID: 33561742 DOI: 10.1016/j.aquatox.2021.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobials, such as fungicides and antibiotics, pose a risk for microbial decomposers (i.e., bacteria and aquatic fungi) and invertebrate detritivores (i.e., shredders) that play a pivotal role in the ecosystem function of leaf litter breakdown. Although waterborne toxicity and diet-related effects (i.e., dietary exposure and microorganism-mediated alterations in food quality for shredders) of fungicides and antibiotics on decomposer-detritivore systems have been increasingly documented, their joint effect is unknown. We therefore assessed waterborne and dietary effects of an antimicrobial mixture consisting of the fungicide azoxystrobin (AZO) and the antibiotic ciprofloxacin (CIP) on microbial decomposers and the shredder Gammarus fossarum using a tiered approach. We compared effect sizes measured in the present study with model predictions (i.e., independent action) based on published data. During a 7-day feeding activity assay quantifying waterborne toxicity in G. fossarum, the leaf consumption of gammarids was reduced by ∼60 % compared to the control when subjected to the mixture at concentrations of each component causing a 20 % reduction in the same response variable when applied individually. Moreover, the selective feeding of gammarids during the food choice assay indicated alterations in food quality induced by the antimicrobial mixture. The food selection and, in addition, the decrease in microbial leaf decomposition is likely linked to changes in leaf-associated bacteria and fungi. During a long-term assay, energy processing, growth and energy reserves of gammarids were increased in presence of 15 and 500 μg/L of AZO and CIP, respectively, through the dietary pathway. These physiological responses were probably driven by CIP-induced alterations in the gut microbiome or immune system of gammarids. In general, model predictions matched observed effects caused by waterborne exposure on the leaf consumption, energy processing and growth of gammarids during short- and long-term assays, respectively. However, when complex horizontal (bacteria and aquatic fungi) and vertical (leaf-associated microorganisms and shredders) interactions were involved, model predictions partly over- or underestimated mixture effects. Therefore, the present study identifies uncertainties of mixture effect predictions for complex biological systems calling for studies targeting the underlying processes and mechanisms.
Collapse
Affiliation(s)
- Marco Konschak
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany.
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857, Eußerthal, Germany
| | - Patrick Baudy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Patrick Fink
- Institute for Zoology, University of Cologne, Zülpicher Straße 47b, D-50674, Köln, Germany; Helmholtz-Centre for Environmental Research - UFZ, Department River Ecology and Department Aquatic Ecosystem Analysis and Management, Brückstrasse 3a, 39114 D, Magdeburg, Germany
| | - Sebastian Pietz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Tomás S Duque A
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Nikita Bakanov
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857, Eußerthal, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden.
| |
Collapse
|
313
|
Monk BC, Keniya MV. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J Fungi (Basel) 2021; 7:67. [PMID: 33498194 PMCID: PMC7908997 DOI: 10.3390/jof7020067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antifungal drugs and antifungal agrochemicals have significant limitations. These include several unintended consequences of their use including the growing importance of intrinsic and acquired resistance. These problems underpin an increasingly urgent need to improve the existing classes of antifungals and to discover novel antifungals. Structural insights into drug targets and their complexes with both substrates and inhibitory ligands increase opportunity for the discovery of more effective antifungals. Implementation of this promise, which requires multiple skill sets, is beginning to yield candidates from discovery programs that could more quickly find their place in the clinic. This review will describe how structural biology is providing information for the improvement and discovery of inhibitors targeting the essential fungal enzyme sterol 14α-demethylase.
Collapse
Affiliation(s)
- Brian C. Monk
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| | | |
Collapse
|
314
|
Fungicide Cost Reduction with Soybean Rust-Resistant Cultivars in Paraguay: A Supply and Demand Approach. SUSTAINABILITY 2021. [DOI: 10.3390/su13020887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soybean rust (SBR) is one of the most serious diseases for Paraguay’s economy. To avoid excessive financial losses due to SBR, farmers utilize fungicides. Increasing fungicide costs are, therefore, becoming a threat to farmers’ incomes. Developing SBR-resistant cultivars is a possible solution to this problem. To investigate the effects of SBR-resistant cultivars on soybean farmers in Paraguay, we constructed a model for the supply and demand of soybeans considering yields, cultivated area, changes in the stock quantity of soybeans, exports of soybeans and soybean products, feed demand for soybean cake and price linkage functions. We established three scenarios: an SBR pandemic in which fungicides become ineffective (Scenario 1) and the adoption of SBR-resistant cultivars in 33% (Scenarios 2) and 75% (Scenarios 3) of cultivated areas. The estimation of these three scenarios demonstrates that SBR-resistant cultivar adoption will significantly reduce current fungicide costs for farmers by 112–253 million United States dollars (USD). The potential benefits of the widespread dissemination of SBR-resistant cultivars are also considered in terms of economic disparities and environmental risks. To establish a more sustainable agricultural industry, earlier dissemination of such cultivars is required.
Collapse
|
315
|
|
316
|
Teratogenic, Oxidative Stress and Behavioural Outcomes of Three Fungicides of Natural Origin ( Equisetum arvense, Mimosa tenuiflora, Thymol) on Zebrafish ( Danio rerio). TOXICS 2021; 9:toxics9010008. [PMID: 33435474 PMCID: PMC7827758 DOI: 10.3390/toxics9010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
The improper use of synthetic fungicides has raised public concerns related to environmental pollution and animal health. Over the years, plant-derived antifungals have been investigated as safer alternatives, although little scientific evidence of its neurodevelopmental effects exist. The main objective of this study was to explore the effects of three alternative natural extracts (Equisetum arvense, Mimosa tenuiflora, Thymol) with antifungal properties during the early development of zebrafish by evaluating different teratogenic, oxidative stress and behavioural outcomes. Following the determination of the 96 h-LC50, exposure to sublethal concentrations showed the safety profile of both E. arvense and M. tenuiflora. However, following 96-h exposure to Thymol, increased lethality, pericardial oedema, yolk and eye deformations, and decreased body length were observed. The reduced and oxidized glutathione (GSH:GSSG) ratio was increased, and the glutathione-s-transferase activity in the group exposed to the highest Thymol concentration. Overall, these results support a more reducing environment associated with possible effects at the cellular proliferation level. In addition, the disruption of behavioural states (fear- and anxiety-like disorders) were noted, pointing to alterations in the c-Jun N-terminal kinase developmental signalling pathway, although further studies are required to explore this rationale. Notwithstanding, the results provide direct evidence of the teratogenic effects of Thymol, which might have consequences for non-target species.
Collapse
|
317
|
Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM. Pesticides in Drinking Water-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020468. [PMID: 33430077 PMCID: PMC7826868 DOI: 10.3390/ijerph18020468] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The ubiquitous problem of pesticide in aquatic environment are receiving worldwide concern as pesticide tends to accumulate in the body of the aquatic organism and sediment soil, posing health risks to the human. Many pesticide formulations had introduced due to the rapid growth in the global pesticide market result from the wide use of pesticides in agricultural and non-agricultural sectors. The occurrence of pesticides in the water body is derived by the runoff from the agricultural field and industrial wastewater. Soluble pesticides were carried away by water molecules especially during the precipitation event by percolating downward into the soil layers and eventually reach surface waters and groundwater. Consequently, it degrades water quality and reduces the supply of clean water for potable water. Long-time exposure to the low concentration of pesticides had resulted in non-carcinogenic health risks. The conventional method of pesticide treatment processes encompasses coagulation-flocculation, adsorption, filtration and sedimentation, which rely on the phase transfer of pollutants. Those methods are often incurred with a relatively high operational cost and may cause secondary pollution such as sludge formation. Advanced oxidation processes (AOPs) are recognized as clean technologies for the treatment of water containing recalcitrant and bio-refractory pollutants such as pesticides. It has been adopted as recent water purification technology because of the thermodynamic viability and broad spectrum of applicability. This work provides a comprehensive review for occurrence of pesticide in the drinking water and its possible treatment.
Collapse
Affiliation(s)
- Muhammad Syafrudin
- Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, Korea; (M.S.); (J.R.)
| | - Risky Ayu Kristanti
- Faculty of Military Engineering, Universitas Pertahanan, Bogor 16810, Indonesia;
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Malaysia
- Correspondence: ; Tel.: +60-85-630100 (ext. 2501)
| | - Jongtae Rhee
- Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, Korea; (M.S.); (J.R.)
| | - Wedad A. Al-onazi
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.-o.); (T.S.A.); (A.M.A.-M.)
| | - Tahani Saad Algarni
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.-o.); (T.S.A.); (A.M.A.-M.)
| | - Abdulhadi H. Almarri
- Department of Chemistry, College of Alwajh, Tabuk University, Tabuk 1144, Saudi Arabia;
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.-o.); (T.S.A.); (A.M.A.-M.)
| |
Collapse
|
318
|
Birolli WG, da Silva BF, Rodrigues-Filho E. Biodegradation of the fungicide Pyraclostrobin by bacteria from orange cultivation plots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140968. [PMID: 32763599 DOI: 10.1016/j.scitotenv.2020.140968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The pesticides belonging the strobilurin group are among the most common contaminants in the environment. In this work, biodegradation studies of the strobilurin fungicide Pyraclostrobin by bacteria from orange cultivation plots were performed aiming to contribute with the development of a bioremediation method. Experiments were performed in triplicate with validated methods, and optimization was performed by Central Composite Design and Response Surface Methodology. The strains were evaluated in liquid nutrient medium containing 100 mg L-1 of Pyraclostrobin, and decreased concentrations of 61.5 to 100.5 mg L-1 were determined after 5 days at 37 °C and 130 rpm, showing the importance of strain selection. When the five most efficient strains (Bacillus sp. CSA-13, Paenibacillus alvei CBMAI2221, Bacillus sp. CBMAI2222, Bacillus safensis CBMAI2220 and Bacillus aryabhattai CBMAI2223) were used in consortia, synergistic and antagonistic effects were observed accordingly to the employed combination of bacteria, resulting in 64.2 ± 3.9 to 95.4 ± 4.9 mg L-1 residual Pyraclostrobin. In addition, the formation of 1-(4-chlorophenyl)-1H-pyrazol-3-ol was quantified (0.59-0.01 mg L-1), and a new biodegradation pathway was proposed with 15 identified metabolites. Experiments were also performed in soil under controlled conditions (30 °C, 0-28 days, 100 mg kg-1 pesticide), and the native microbiome reduced the pesticide concentration to 70.4 ± 2.3 mg L-1, whereas the inoculation of an efficient bacterial consortium promoted clearly better results, 57.2 ± 3.9 mg L-1 residual Pyraclostrobin. This suggests that the introduction of these strains in soil in a bioaugmentation process increases decontamination. However, the native microbiome is important for a more efficient bioremediation.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| | - Bianca Ferreira da Silva
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| |
Collapse
|
319
|
Bernabò I, Guardia A, Macirella R, Sesti S, Tripepi S, Brunelli E. Tissues injury and pathological changes in Hyla intermedia juveniles after chronic larval exposure to tebuconazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111367. [PMID: 32971454 DOI: 10.1016/j.ecoenv.2020.111367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Tebuconazole (TBZ), an azole pesticide, is one of the most frequently detected fungicides in surface water. Despite its harmful effects, mainly related to endocrine disturbance, the consequences of TBZ exposure in amphibians remain poorly understood. Here, we investigated the adverse and delayed effects of TBZ chronic exposure on a native anuran species, often inhabiting cultivated areas, the Italian tree frog (Hyla intermedia). To disclose the multiple mechanisms of action through which TBZ exerts its toxicity we exposed tadpoles over the whole larval period to two sublethal TBZ concentrations (5 and 50 μg/L), and we evaluated histological alterations in three target organs highly susceptible to xenobiotics: liver, kidney, and gonads. We also assessed morphometric and gravimetric parameters: snout-vent length (SVL), body mass (BM), liver somatic index (LSI), and gonad-mesonephros complex index (GMCI) and determined sex ratio, gonadal development, and differentiation. Our results show that TBZ induces irreversible effects on multiple target organs in H. intermedia, exerting its harmful effects through several pathological pathways, including a massive inflammatory response. Moreover, TBZ markedly affects sexual differentiation also by inducing the appearance of sexually undetermined individuals and a general delay of germ cell maturation. Given the paucity of data on the effects of TBZ in amphibians, our results will contribute to a better understanding of the environmental risk posed by this fungicide to the most endangered group of vertebrates.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
320
|
Marinho MDC, Diogo BS, Lage OM, Antunes SC. Ecotoxicological evaluation of fungicides used in viticulture in non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43958-43969. [PMID: 32748361 DOI: 10.1007/s11356-020-10245-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The effect of fungicides, commonly used in vine cultures, on the health of terrestrial and aquatic ecosystems has been poorly studied. The objective of this study was to evaluate the toxicity of three viticulture fungicides (myclobutanil, cymoxanil, and azoxystrobin) on non-target organisms, the bacteria Rhodopirellula rubra, Escherichia coli, Pseudomonas putida, and Arthrobacter sp., the microalgae Raphidocelis subcapitata, and the macrophyte Lemna minor. Fungicide toxicity was performed in acute cell viability assay for bacteria; 72-h and 7-day growth inhibition tests for R. subcapitata and L. minor, respectively. Contents of photosynthetic pigments and lipid peroxidation in L. minor were evaluated. Arthrobacter sp. and P. putida showed resistance to these fungicides. Even though azoxystrobin affected R. rubra and E. coli cell viability, this effect was due to the solvent used, acetone. Cell viability decrease was obtained for R. rubra exposed to cymoxanil and E. coli exposed to myclobutanil (30 min of exposure at 10 mg/L and 240 min of exposure at 46 mg/L, respectively). R. subcapitata showed about 10-fold higher sensitivity to azoxystrobin (EC50-72h = 0.25 mg/L) and cymoxanil (EC50-72h = 0.36 mg/L) than L. minor to azoxystrobin and myclobutanil (EC50-72h = 1.53 mg/L and EC50-72h = 1.89 mg/L, respectively). No lipid peroxidation was observed in L. minor after fungicide exposure, while changes of total chlorophyll were induced by azoxystrobin and myclobutanil. Our results showed that non-target aquatic organisms of different trophic levels are affected by fungicides used in viticulture.
Collapse
Affiliation(s)
- Maria da Conceição Marinho
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Bárbara Salazar Diogo
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
| | - Olga Maria Lage
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal.
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
321
|
Lin S, Tang T, Cang T, Yu S, Ying Z, Gu S, Zhang Q. The distributions of three fungicides in vegetables and their potential health risks in Zhejiang, China: A 3-year study (2015-2017). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115481. [PMID: 32892012 DOI: 10.1016/j.envpol.2020.115481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Fungicides have been extensively used around the world in agriculture due to their effectiveness of sterilization. Recent evidences have shown that fungicides would exert a negative effect on gut microbiota and result in gut microbiota dysbiosis and metabolism disorder on non-target organisms and even humans. However, research on residues and potential health risks of fungicides in daily consumed vegetables has received less attention compared to insecticides. In this study, we studied three widely applied fungicides, procymidone, dimethomorph, and azoxystrobin, in China. We collected 551 samples of 10 different vegetables in 11 cities from Zhejiang province during 2015-2017. Three fungicides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average apparent recoveries of three fungicides ranged from 84.2% to 110% with the relative standard deviations lower than 10%. The LOD values of procymidone, dimethomorph, and azoxystrobin was 2, 0.09, and 1 μg/kg, respectively. The levels of procymidone, dimethomorph, and azoxystrobin in those vegetables ranged from ND-875, ND-238, and ND-76 μg/kg, respectively. The highest mean concentrations of procymidone, dimethomorph, and azoxystrobin were found in eggplant (68 μg/kg), spinach (16.4 μg/kg), and kidney bean (4 μg/kg), respectively. Tomato (62.6% of samples), eggplant (44.3% of samples), and cucumber (41.6% of samples) were most frequently detected with fungicides. Solanaceous fruit vegetables have the highest detection rate than other vegetables, and fungicides were most frequently detected in winter. The mean concentrations of three fungicides in different vegetables were all below the maximum residue limits for the national food safety standards of China, and the health risks resulting from consuming those vegetables in adults and children were all within the safe ranges. The data provided here clarify the distributions of fungicides in commonly consumed vegetables and their potential health risks.
Collapse
Affiliation(s)
- Shu Lin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Tao Tang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Tao Cang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Shuqing Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China.
| |
Collapse
|
322
|
The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley ( Hordeum vulgare L.) Seedlings. ScientificWorldJournal 2020; 2020:6649746. [PMID: 33343237 PMCID: PMC7725555 DOI: 10.1155/2020/6649746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.
Collapse
|
323
|
Serra AA, Bittebière AK, Mony C, Slimani K, Pallois F, Renault D, Couée I, Gouesbet G, Sulmon C. Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140772. [PMID: 32711307 DOI: 10.1016/j.scitotenv.2020.140772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Anne-Kristel Bittebière
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Cendrine Mony
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kahina Slimani
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Frédérique Pallois
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - David Renault
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
324
|
Nagai T. Sensitivity differences among five species of aquatic fungi and fungus-like organisms for seven fungicides with various modes of action. JOURNAL OF PESTICIDE SCIENCE 2020; 45:223-229. [PMID: 33304191 PMCID: PMC7691557 DOI: 10.1584/jpestics.d20-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Five species of aquatic fungi and fungus-like organisms were used for toxicity assays with seven fungicides to determine the differences in species sensitivity. A microplate toxicity assay with adenosine triphosphate luminescence detection was used as an efficient and economical high-throughput assay. The obtained toxicity data were standardized based on the species sensitivity distribution method. Species sensitivity differed among the fungicides: Rhizophydium brooksianum was most sensitive to hydroxyisoxazole, isoprothiolane, and ferimzone; Chytriomyces hyalinus was most sensitive to tricyclazole; Sporobolomyces roseus was most sensitive to ipconazole; Aphanomyces stellatus was most sensitive to orysastrobin and kasugamycin. Tetracladium setigerum was not the most sensitive species to any of the tested fungicides. The ranges of EC50s to fungal species were lower than to other aquatic organisms (primary producers, invertebrates, and vertebrates) for hydroxyisoxazole, kasugamycin, isoprothiolane, ipconazole, and ferimzone. These results suggest the usefulness of a battery of fungal species to assess the ecological effects of fungicides.
Collapse
|
325
|
Burdon FJ, Bai Y, Reyes M, Tamminen M, Staudacher P, Mangold S, Singer H, Räsänen K, Joss A, Tiegs SD, Jokela J, Eggen RIL, Stamm C. Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. GLOBAL CHANGE BIOLOGY 2020; 26:6363-6382. [PMID: 32881210 PMCID: PMC7692915 DOI: 10.1111/gcb.15302] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.
Collapse
Affiliation(s)
- Francis J. Burdon
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Yaohui Bai
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingPeople's Republic of China
| | - Marta Reyes
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Manu Tamminen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Present address:
Department of BiologyUniversity of TurkuTurkuFinland
| | - Philipp Staudacher
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Simon Mangold
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Present address:
AgroscopeReckenholzstrasse 191Zurich8046Switzerland
| | - Heinz Singer
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Katja Räsänen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Adriano Joss
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Scott D. Tiegs
- Department of Biological SciencesOakland UniversityRochesterMIUSA
| | - Jukka Jokela
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Rik I. L. Eggen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
| | - Christian Stamm
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
326
|
Burdon FJ, Bai Y, Reyes M, Tamminen M, Staudacher P, Mangold S, Singer H, Räsänen K, Joss A, Tiegs SD, Jokela J, Eggen RIL, Stamm C. Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. GLOBAL CHANGE BIOLOGY 2020. [PMID: 32881210 DOI: 10.5061/dryad.z34tmpgb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.
Collapse
Affiliation(s)
- Francis J Burdon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Marta Reyes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Manu Tamminen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Philipp Staudacher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Simon Mangold
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Katja Räsänen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
327
|
Imfeld G, Meite F, Wiegert C, Guyot B, Masbou J, Payraudeau S. Do rainfall characteristics affect the export of copper, zinc and synthetic pesticides in surface runoff from headwater catchments? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140437. [PMID: 32887001 DOI: 10.1016/j.scitotenv.2020.140437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Rainfall and runoff characteristics may influence off-site export of pesticides into downstream aquatic ecosystems. However, the relationship between rainfall characteristics and pesticide export from small headwater catchments remains elusive due to confounding factors including the application dose and timing and the variation of pesticide stocks in soil. Here we examined the impact of rainfall characteristics on the export of copper (Cu), zinc (Zn) and 12 legacy and currently used synthetic pesticides in surface runoff from a headwater vineyard catchment. Cluster analysis of rainfall intensity, depth and duration of 78 events revealed four distinct rainfall categories, i.e., Small, Long, Moderate and Intense (p < 0.001). Event mean concentrations of pesticides did not differ among rainfall categories (p > 0.05). In contrast, event loads of both dissolved and solid-bound Cu and Zn significantly differed among rainfall categories (p < 0.001). Rainfall depth and intensity significantly correlated with both Cu and Zn loads in runoff (ρs = 0.33 to 0.92, p < 0.002), and might be the main drivers of Cu and Zn export at the catchment scale. In contrast, rainfall depth, intensity or duration did not influence the loads of synthetic pesticides in runoff, even when weekly variations of pesticide stocks in the soil were accounted for. However, intense rainfall-runoff events, that can fragment soil, may control the export of persistent and hydrophobic legacy pesticides stocks in the soil, such as simazine and tetraconazole. Our results show that rainfall characteristics controlled the off-site export of Cu, Zn and legacy synthetic pesticides in a small headwater catchment, whereas the application timing drove the export of currently used synthetic pesticides in runoff. We anticipate our results to be a preliminary step to forecast the influence of regional rainfall patterns on the export of both metallic and synthetic pesticides by surface runoff from small agricultural headwater catchments.
Collapse
Affiliation(s)
- Gwenaël Imfeld
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France.
| | - Fatima Meite
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France
| | - Charline Wiegert
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France
| | - Benoît Guyot
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France
| | - Jérémy Masbou
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France
| | - Sylvain Payraudeau
- Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517, Université de Strasbourg/ENGEES, CNRS, 1 Rue Blessig, 67084 Strasbourg Cedex, France
| |
Collapse
|
328
|
Fungicide Exposure Induces Sensitivity Differences in Aquatic Life Stages of European Common Frogs (Rana temporaria). J HERPETOL 2020. [DOI: 10.1670/19-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
329
|
Schreiner VC, Bakanov N, Kattwinkel M, Könemann S, Kunz S, Vermeirssen ELM, Schäfer RB. Sampling rates for passive samplers exposed to a field-relevant peak of 42 organic pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140376. [PMID: 32927560 DOI: 10.1016/j.scitotenv.2020.140376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Pesticide concentrations in agricultural streams are often characterised by a low level of baseline exposure and episodic peak concentrations associated with heavy rainfall events. Traditional sampling methods such as grab sampling, which are still largely used in governmental monitoring, typically miss peak concentrations. Passive sampling represents a cost-efficient alternative but requires the additional determination of sampling rates to calculate time-weighted average (TWA) water concentrations from the accumulated pesticide mass in the sampler. To date, sampling rates have largely been determined in experiments with constant exposure, which does not necessarily reflect field situations. Using Empore styrene-divinylbenzene (SDB) passive sampler disks mounted in metal holders, we determined sampling rates for 42 organic pesticides, of which 27 sampling rates were lacking before. The SDB disks were in an artificial channel system exposed to a field-relevant pesticide peak. We used an open-source algorithm to estimate coefficients of equations for the accumulated pesticide mass in disks and to determine exposure time-dependent sampling rates. These sampling rates ranged from 0.02 to 0.98 L d-1 and corresponded to those from previous studies determined with constant exposure. The prediction of sampling rates using compound properties was unreliable. Hence, experiments are required to determine reliable sampling rates. We discuss the use of passive sampling to estimate peak concentrations. Overall, our study provides sampling rates and computer code to determine these under peak exposure designs and suggests that passive sampling is suitable to estimate peak pesticide concentrations in field studies.
Collapse
Affiliation(s)
- Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany.
| | - Nikita Bakanov
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Mira Kattwinkel
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Sarah Könemann
- Swiss Centre for Applied Ecotoxicology, 8600 Dübendorf, Switzerland
| | - Stefan Kunz
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | | | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|
330
|
Wang M, Cernava T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 4:100061. [PMID: 36157708 PMCID: PMC9487991 DOI: 10.1016/j.ese.2020.100061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 05/11/2023]
Abstract
Recent studies have shown that various agrochemicals can substantially affect microbial communities; especially those that are associated with cultivated plants. Under certain circumstances, up to 50% of the naturally occurring microorganisms can be negatively affected by common agricultural practices such as seed coating with fungicide-based matrices. Nevertheless, the off-target effects of commonly applied agrochemicals are still understudied in terms of their interferences with microbial communities. At the same time, agrochemical inputs are steadily increasing due to the intensification of agriculture and the increasing pathogen pressure that is currently observed worldwide. In this article, we briefly reflect on the current knowledge related to pesticide interference with microbial communities and discuss negative implications for the plant holobiont as well as such that are spanning beyond local system borders. Cumulative effects of pesticide inputs that cause alterations in microbial functioning likely have unforeseen implications on geochemical cycles that should be addressed with a high priority in ongoing research. A holistic assessment of such implications will allow us to objectively select the most suitable means for food production under the scenario of a growing global population and aggravating climatic conditions. We present three hypothetical solutions that might facilitate a more sustainable and less damaging application of pesticides in the future.
Collapse
Affiliation(s)
- Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Corresponding author.
| |
Collapse
|
331
|
Baudy P, Konschak M, Sakpal H, Baschien C, Schulz R, Bundschuh M, Zubrod JP. The Fungicide Tebuconazole Confounds Concentrations of Molecular Biomarkers Estimating Fungal Biomass. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:620-625. [PMID: 32857223 DOI: 10.1007/s00128-020-02977-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Due to their ecological importance, fungi are suitable indicator organisms for anthropogenic stress. To estimate fungal biomass, the fungal membrane molecule ergosterol is often quantified as a proxy. Estimates based on ergosterol may, however, be distorted by exposure to demethylase inhibiting (DMI) fungicides, interfering with sterol synthesis. To test this hypothesis, we exposed ten fungal species to the DMI fungicide tebuconazole and measured concentrations of ergosterol and DNA per unit dry mass of the fungal hyphae. The latter served as alternative biomass proxy that is not specifically targeted by tebuconazole. Effects of tebuconazole on ergosterol concentrations were species-specific, while concentrations were on average reduced by 13%. In contrast, DNA concentrations were on average increased by 13%. We demonstrate that DMI fungicides - at close to field relevant levels - can distort fungal biomass estimation, complicating the use of this endpoint for environmental management.
Collapse
Affiliation(s)
- Patrick Baudy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
| | - Marco Konschak
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Harshada Sakpal
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
| | - Christiane Baschien
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007, Uppsala, Sweden.
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829, Landau, Germany
- Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, 76857, Eußerthal, Germany
| |
Collapse
|
332
|
Guan M, Xia P, Tian M, Chen D, Zhang X. Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 2020; 69:104998. [PMID: 32919014 DOI: 10.1016/j.tiv.2020.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Conazoles were designed to inhibit ergosterol biosynthesis. Conazoles have been widely used as agricultural fungicides and are frequently detected in the environment. Although conazoles have been reported to have adverse effects, such as potential carcinogenic effects, the underlying molecular mechanisms of toxicity remain unclear. Here, the molecular fingerprints of five conazoles (propiconazole (Pro), penconazole (Pen), tebuconazole (Teb), flusilazole (Flu) and epoxiconazole (Epo)) were assessed in Saccharomyces cerevisiae (yeast) via functional genome-wide knockout mutant profiling. A total of 169 (4.49%), 176 (4.67%), 198 (5.26%), 218 (5.79%) and 173 (4.59%) responsive genes were identified at three concentrations (IC50, IC20 and IC10) of Pro, Pen, Teb, Flu and Epo, respectively. The five conazoles tended to have similar gene mutant fingerprints and toxicity mechanisms. "Ribosome" (sce03010) and "cytoplasmic translation" (GO: 0002181) were the common KEGG pathway and GO biological process term by gene set enrichment analysis of the responsive genes, which suggested that conazoles influenced protein synthesis. Conazoles also affected fatty acids synthesis because "biosynthesis of unsaturated fatty acids" pathway was among the top-ranked KEGG pathways. Moreover, two genes, YGR037C (acyl-CoA-binding protein) and YCR034W (fatty acid elongase), were key fingerprints of conazoles because they played vital roles in conazole-induced toxicity. Overall, the fingerprints derived from the yeast functional genomic screening provide an alternative approach to elucidate the molecular mechanisms of environmental pollutant conazoles.
Collapse
Affiliation(s)
- Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Dong Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| |
Collapse
|
333
|
Zhang Z, Zhang J, Zhao X, Gao B, He Z, Li L, Shi H, Wang M. Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122756. [PMID: 32353726 DOI: 10.1016/j.jhazmat.2020.122756] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Prothioconazole (PTA) is a novel, broad-spectrum, chiral triazole fungicide that is mainly used to prevent and control the disease of cereal crops. However, the adverse effects of PTA and its major metabolite on nontarget organisms have aroused wide concern. In the present work, the acute toxic of the metabolite prothioconazole-desthio (PTA-desthio), with an LC50 of 1.31 mg L-1, was 3.5-fold more toxic than the parent compound, indicating that the metabolism of PTA in zebrafish was toxic. The stereoselective uptake and metabolism of PTA and PTA-desthio in zebrafish was firstly investigated using LC-MS/MS. Remarkable enantioselectivity was observed: S-PTA and S-PTA-desthio were preferentially uptake with the uptake rate constants of 8.22 and 8.15 d-1 at exposure concentration of 0.5 mg L-1, respectively, and the R-PTA-desthio were preferentially metabolized. PTA-desthio was rapidly formed during the uptake processes. The antioxidant enzyme activities in the zebrafish changed significantly, and these effects were reversible. A metabolic pathway including 13 phase I metabolites and 2 phase II metabolites was firstly proposed. A glucuronic acid conjugate and sulfate conjugate were observed in zebrafish. The results of this work provide information that highlights and can help mitigate the potential toxicity of PTA to the ecological environment and humans health.
Collapse
Affiliation(s)
- Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Ministry of Education, Nanjing, 20095, PR China.
| |
Collapse
|
334
|
Zhu L, Li B, Wu R, Li W, Wang J, Wang J, Du Z, Juhasz A, Zhu L. Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. CHEMOSPHERE 2020; 255:126982. [PMID: 32416393 DOI: 10.1016/j.chemosphere.2020.126982] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can damage the soil environment, including damage to sentinel organisms such as earthworms. When assessing the toxicity of pesticides towards earthworms, assays are usually performed using standardized artificial soil, however, soil physicochemical properties may affect pesticide toxicity. In the present study, the toxicity of a commonly used insecticide (chlorpyrifos) to earthworms (Eisenia fetida) was determined in artificial soil and three typical natural soils (fluvo-aquic soil, black soil and red clay) by measuring acute and subchronic toxicity. Soil tests were conducted to measure the acute toxicity of chlorpyrifos to Eisenia fetida quantified by the half lethal concentration (LC50) while subchronic toxicity tests assessed the impact of low dose chlorpyrifos exposure (0.01, 0.1, 1 mg/kg; up to 56 d) on reactive oxygen species content, antioxidant enzymes activities, detoxifying enzyme activity, malondialdehyde content, and 8-hydroxydeoxyguanosine content. Subchronic toxicity was quantified using the integrated biomarker response (IBR) which highlighted that the toxicity of chlorpyrifos in artificial and natural soils was not the same. Outcomes from artificial soil studies may underestimate (fluvo-aquic soil and red clay) or overestimate (black soil) chlorpyrifos effects.
Collapse
Affiliation(s)
- Lei Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Wenxiu Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, 61 Daizong Road, Taian, 271018, PR China.
| |
Collapse
|
335
|
Cuco AP, Wolinska J, Santos JI, Abrantes N, Gonçalves FJM, Castro BB. Can parasites adapt to pollutants? A multigenerational experiment with a Daphnia × Metschnikowia model system exposed to the fungicide tebuconazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105584. [PMID: 32795838 DOI: 10.1016/j.aquatox.2020.105584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasitic fungi. The underperformance of these microbes and their inability to adapt to such stressors can interfere with the key processes where they intervene. Further research is needed to rank fungicides based on the hazard to non-target fungi (parasites, but also symbionts and decomposers), towards more effective management and protective legislation.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
336
|
McClure CM, Smalling KL, Blazer VS, Sperry AJ, Schall MK, Kolpin DW, Phillips PJ, Hladik ML, Wagner T. Spatiotemporal variation in occurrence and co-occurrence of pesticides, hormones, and other organic contaminants in rivers in the Chesapeake Bay Watershed, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138765. [PMID: 32344224 DOI: 10.1016/j.scitotenv.2020.138765] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
Investigating the spatiotemporal dynamics of contaminants in surface water is crucial to better understand how introduced chemicals are interacting with and potentially influencing aquatic organisms and environments. Within the Chesapeake Bay Watershed, United States, there are concerns about the potential role of contaminant exposure on fish health. Evidence suggests that exposure to contaminants in surface water is causing immunosuppression and intersex in freshwater fish species. Despite these concerns, there is a paucity of information regarding the complex dynamics of contaminant occurrence and co-occurrence in surface water across both space and time. To address these concerns, we applied a Bayesian hierarchical joint-contaminant model to describe the occurrence and co-occurrence patterns of 28 contaminants and total estrogenicity across six river sites and over three years. We found that seasonal occurrence patterns varied by contaminant, with the highest occurrence probabilities during the spring and summer months. Additionally, we found that the proportion of agricultural landcover in the immediate catchment, as well as stream discharge, did not have a significant effect on the occurrence probabilities of most compounds. Four pesticides (atrazine, metolachlor, fipronil and simazine) co-occurred across sites after accounting for environmental covariates. These results provide baseline information on the contaminant occurrence patterns of several classes of compounds within the Chesapeake Bay Watershed. Understanding the spatiotemporal dynamics of contaminants in surface water is the first step in investigating the effects of contaminant exposure on fisheries and aquatic environments.
Collapse
Affiliation(s)
- Catherine M McClure
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, 413 Forest Resource Building, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA.
| | - Vicki S Blazer
- U.S. Geological Survey, Fish Health Branch, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | - Adam J Sperry
- U.S. Geological Survey, Fish Health Branch, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | - Megan K Schall
- The Pennsylvania State University, Biological Services, 76 University Drive, Hazleton, PA 18202, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S Clinton St Room 269, Iowa City, IA 52240, USA.
| | - Patrick J Phillips
- U.S. Geological Survey, New York Water Science Center, 425 Jordan Road, Troy, NY 12180, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA.
| |
Collapse
|
337
|
Brock TCM, Romão J, Yin X, Osman R, Roessink I. Sediment toxicity of the fungicide fludioxonil to benthic macroinvertebrates -evaluation of the tiered effect assessment procedure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110504. [PMID: 32220792 DOI: 10.1016/j.ecoenv.2020.110504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
28-Day sediment-spiked laboratory toxicity tests with eight benthic macroinvertebrates and the lipophilic fungicide fludioxonil were conducted to verify the proposed tiered sediment effect assessment procedure as recommended by the European Food Safety Authority (EFSA). The test species were the oligochaetes Lumbriculus variegatus and Tubifex tubifex, the insects Chironomus riparius and Caenis horaria, the crustaceans Hyalella azteca and Asellus aquaticus and the bivalves Corbicula fluminalis and Pisidium amnicum. Toxicity estimates were expressed in terms of total concentration of dry sediment as well as in pore water concentration. Field-collected sediment, also used in a previously performed sediment-spiked microcosm experiment, was used in tests with all species. L. variegatus and C. riparius had similar lowest 28d-L(E)C10 values when expressed in terms of total sediment concentration, but in terms of pore water concentration L. variegatus was more sensitive. Three of the six additional benthic test species (A. aquaticus, C. horaria, C. fluminalis) had 28d-EC10 values a factor of 2-6 lower than that of L. variegatus. Comparing different effect assessment tiers for sediment organisms, i.e. Tier-0 (Modified Equilibrium Partitioning approach), Tier-1 (Standard Test Species approach), Tier-2 (Species Sensitivity Distribution (SSD) approach) and Tier-3 (Model Ecosystem approach), it is concluded that the tiers based on sediment-spiked laboratory toxicity tests provide sufficient protection when compared with the Tier-3 Regulatory Acceptable Concentration (RAC). Differences between Tier-1 and Tier-2 RACs, however, appear to be relatively small and not always consistent, irrespective of expressing the RAC in terms of total sediment or pore water concentration. Derivation of RACs by means of the SSD approach may be a challenge, because it is difficult obtaining a sufficient number of valid chronic EC10 values with appropriate 95% confidence bands for sediment-dwelling macroinvertebrates. Therefore, this paper proposes a Tier-2 Weight-of-Evidence approach to be used in case an insufficient number of valid additional toxicity data is made available. Similar studies with pesticides that differ in fate properties and toxic mode-of-action are necessary for further validation of the tiered effect assessment approach for sediment organisms.
Collapse
Affiliation(s)
- Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - João Romão
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Current Address: Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Xiao Yin
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands; Current Address: Zhe Jiang Agriculture and Forestry University, College of Agricultural and Food Science, 88 North Road of Huan Cheng, Lin'an, Hangzhou, Zhe Jiang, 311300, China
| | - Rima Osman
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700, AA Wageningen, the Netherlands.
| |
Collapse
|
338
|
Biocontrol Agents and Natural Compounds Against Mycotoxinogenic Fungi. Toxins (Basel) 2020; 12:toxins12060353. [PMID: 32481521 PMCID: PMC7354559 DOI: 10.3390/toxins12060353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
|
339
|
The Impact of Mother's Living Environment Exposure on Genome Damage, Immunological Status, and Sex Hormone Levels in Newborns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103402. [PMID: 32414150 PMCID: PMC7277460 DOI: 10.3390/ijerph17103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Background: The aim of this study was to compare for the first time IL-6 (Interleukin 6), testosterone (T) and estradiol (E) levels, their ratio (E/T), micronucleus (MN), and nuclear bridge (NB) frequency between newborns with regard to their mother’s residency and diet. Our results should enable an assessment of the possible environmental endocrine effects and interaction between biomarkers, pointing to possible associated health risks. Methods: Fifty full-term newborns of both sexes, whose mothers were healthy and not occupationally exposed to any known carcinogen, were analyzed. All of the mothers filled in a detailed questionnaire. Results: The results showed significantly higher levels of E in newborns of mothers with agricultural residency than those born by mothers with urban residency. Significantly, lower levels of E were measured in newborns of mothers who drank milk and carbonated beverages more frequently. Testosterone was significantly higher in boys of mothers with agricultural residency than from mothers with urban residency. Residence and other parameters had no impact on the difference in MN frequency. IL-6 levels were higher in newborns of mothers with agricultural residency. NB levels were significantly associated with E. A significant association between E levels and IL-6 was found. Conclusion: Our results were the first to show a significant impact of the mother’s agricultural residency and diet on their newborns’ sex hormone and IL-6 levels and their association.
Collapse
|
340
|
Pimentão AR, Pascoal C, Castro BB, Cássio F. Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135676. [PMID: 31787296 DOI: 10.1016/j.scitotenv.2019.135676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Leaf litter decomposition is a key ecological process in freshwater ecosystems. Fungi, particularly aquatic hyphomycetes, play a major role in organic matter turnover and constitute a pivotal node in detrital food webs. The extensive use of antifungal formulations, which include agrochemicals and pharmaceuticals, is a threat to biodiversity and may affect non-target microbial and invertebrate decomposer communities. Using a laboratory approach, we assessed the effects of tebuconazole (agrochemical), clotrimazole and terbinafine (pharmaceuticals) on aquatic communities and on the decomposition of plant litter. Alder leaves were colonized by natural microbiota in a clean stream, and then exposed in microcosms to 8 concentrations of each fungicide (10 to 1280 μg L-1). Fungicides led to shifts in species dominance in all tested concentrations, but no effects on leaf decomposition were observed. In addition, tebuconazole and clotrimazole strongly reduced fungal biomass and reproduction, whilst terbinafine stimulated fungal reproduction at lower concentrations but had no measurable effects on fungal biomass. Subsequently, the indirect effects of the fungicides were assessed on the next trophic level (detritivore invertebrates), by evaluating leaf consumption by a specialist (Allogamus sp.) and a generalist (Chironomus riparius) species, when feeding on fungicide-preconditioned leaves. The feeding activity of C. riparius and Allogamus sp. was not affected, and as expected, specialists were more efficient than generalists in exploring leaves as a dietary resource. However, results indicated that these fungicides have direct negative effects on microbial decomposers, and thus may compromise ecosystem functions on the long term.
Collapse
Affiliation(s)
- Ana Rita Pimentão
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
341
|
Kawtharani H, Snini SP, Heang S, Bouajila J, Taillandier P, Mathieu F, Beaufort S. Phenyllactic Acid Produced by Geotrichum candidum Reduces Fusarium sporotrichioides and F. langsethiae Growth and T-2 Toxin Concentration. Toxins (Basel) 2020; 12:E209. [PMID: 32224845 PMCID: PMC7232515 DOI: 10.3390/toxins12040209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Fusariumsporotrichioides and F. langsethiae are present in barley crops. Their toxic metabolites, mainly T-2 toxin, affect the quality and safety of raw material and final products such as beer. Therefore, it is crucial to reduce Fusarium spp. proliferation and T-2 toxin contamination during the brewing process. The addition of Geotrichum candidum has been previously demonstrated to reduce the proliferation of Fusarium spp. and the production of toxic metabolites, but the mechanism of action is still not known. Thus, this study focuses on the elucidation of the interaction mechanism between G.candidum and Fusarium spp. in order to improve this bioprocess. First, over a period of 168 h, the co-culture kinetics showed an almost 90% reduction in T-2 toxin concentration, starting at 24 h. Second, sequential cultures lead to a reduction in Fusarium growth and T-2 toxin concentration. Simultaneously, it was demonstrated that G. candidum produces phenyllactic acid (PLA) at the early stages of growth, which could potentially be responsible for the reduction in Fusarium growth and T-2 toxin concentration. To prove the PLA effect, F. sporotrichioides and F.langsethiae were cultivated in PLA supplemented medium. The expected results were achieved with 0.3 g/L of PLA. These promising results contribute to a better understanding of the bioprocess, allowing its optimization at an up-scaled industrial level.
Collapse
Affiliation(s)
| | | | | | | | | | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (H.K.); (S.P.S.); (S.H.); (J.B.); (P.T.)
| | - Sandra Beaufort
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (H.K.); (S.P.S.); (S.H.); (J.B.); (P.T.)
| |
Collapse
|
342
|
Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. An Overview of Strobilurin Fungicide Degradation:Current Status and Future Perspective. Front Microbiol 2020; 11:389. [PMID: 32226423 PMCID: PMC7081128 DOI: 10.3389/fmicb.2020.00389] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/25/2020] [Indexed: 01/24/2023] Open
Abstract
Strobilurin fungicides have been widely used in agricultural fields for decades. These pesticides are designed to manage fungal pathogens, although their broad-spectrum mode of action also produces non-target impacts. Therefore, the removal of strobilurins from ecosystems has received much attention. Different remediation technologies have been developed to eliminate pesticide residues from soil/water environments, such as photodecomposition, ozonation, adsorption, incineration, and biodegradation. Compared with conventional methods, bioremediation is considered a cost-effective and ecofriendly approach for the removal of pesticide residues. Several strobilurin-degrading microbes and microbial communities have been reported to effectively utilize pesticide residues as a carbon and nitrogen source. The degradation pathways of strobilurins and the fate of several metabolites have been reported. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of strobilurins. The present review summarizes recent progress in strobilurin degradation and comprehensively discusses the potential of strobilurin-degrading microorganisms in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| |
Collapse
|
343
|
Cooper EM, Rushing R, Hoffman K, Phillips AL, Hammel SC, Zylka MJ, Stapleton HM. Strobilurin fungicides in house dust: is wallboard a source? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:247-252. [PMID: 31636368 PMCID: PMC7044059 DOI: 10.1038/s41370-019-0180-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
Strobilurin fungicides are used primarily in fruits and vegetables, but recently, a patent was issued for one strobilurin fungicide, azoxystrobin, in mold-resistant wallboard. This raises concerns about the potential presence of these chemicals in house dust and potential exposure indoors, particularly in young children. Furthermore, recent toxicological studies have suggested that strobilurins may cause neurotoxicity. Currently, it is not clear whether or not azoxystrobin applications in wallboard lead to exposures in the indoor environments. The purpose of this study was to determine if azoxystrobin, and related strobilurins, could be detected in house dust. We also sought to characterize the concentrations of azoxystrobin in new wallboard samples. To support this study, we collected and analyzed 16 new dry wall samples intentionally marketed for use in bathrooms to inhibit mold. We then analyzed 188 house dust samples collected from North Carolina homes in 2014-2016 for azoxystrobin and related strobilurins, including pyraclostrobin, trifloxystrobin, and fluoxastrobin using liquid chromatography tandem mass spectrometry. Detection frequencies for azoxystrobin, pyraclostrobin, trifloxystrobin, and fluoxastrobin ranged from 34-87%, with azoxystrobin being detected most frequently and at the highest concentrations (geometric mean = 3.5 ng/g; maximum = 10,590 ng/g). Azoxystrobin was also detected in mold-resistant wallboard samples, primarily in the paper covering where it was found at concentrations up to 88.5 µg/g. Cumulatively, these results suggest that fungicides present in wallboard may be migrating to the indoor environment, leading to exposure in the residences that would constitute a separate exposure pathway independent of dietary exposures.
Collapse
Affiliation(s)
- Ellen M Cooper
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | | | - Kate Hoffman
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Allison L Phillips
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Mark J Zylka
- University of North Carolina, Chapel Hill, NC, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA.
| |
Collapse
|
344
|
Huang T, Huang Y, Huang Y, Yang Y, Zhao Y, Martyniuk CJ. Toxicity assessment of the herbicide acetochlor in the human liver carcinoma (HepG2) cell line. CHEMOSPHERE 2020; 243:125345. [PMID: 31739254 DOI: 10.1016/j.chemosphere.2019.125345] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Acetochlor is a high-volume herbicide used on a global scale and toxicity assessments are needed to define its potential for adverse effects in wildlife and humans. This study was conducted to determine the effects of acetochlor on human liver carcinoma cells (HepG2), a cell model widely used to assess the potential for chemical hepatotoxicity. Experiments were conducted at concentrations ranging 0-800 μM acetochlor over a 12 to 48h period to quantify underlying mechanisms of toxicity. Our data indicate that acetochlor suppressed HepG2 cell proliferation in both a concentration- and time-dependent manner. Acetochlor induced reactive oxygen species (ROS) generation more than 700% with exposure to 400 μM acetochlor, and acetochlor decreased the activities and levels of anti-oxidant responses (superoxide dismutase, glutathione) following exposure to 100 μM, 200 μM and 400 μM acetochlor. Acetochlor also (1) induced HepG2 cell damage through apoptotic-signaling pathways; (2) enhanced intracellular free Ca2+ concentration (>400%); (3) decreased mitochondrial transmembrane potential (∼77%), and reduced ATP levels (∼65%) following exposure to 400 μM acetochlor compared to untreated cells. Notably, cell cycle progression was blocked at G0/G1 phase in HepG2 cells when treated for 24 h with 400 μM acetochlor. Taken together, acetochlor induced significant cytotoxicity toward HepG2 cells, and the underlying toxicity mechanisms appear to be related to ROS generation, mitochondrial dysfunction and disruption in the cell cycle regulation. These data contribute to toxicity assessments for acetochlor, a high-use herbicide, to quantify risk to wildlife and human health.
Collapse
Affiliation(s)
- Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
345
|
Gross MS, Bean TG, Hladik ML, Rattner BA, Kuivila KM. Uptake, Metabolism, and Elimination of Fungicides from Coated Wheat Seeds in Japanese Quail ( Coturnix japonica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1514-1524. [PMID: 31977218 DOI: 10.1021/acs.jafc.9b05668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pesticides coated to the seed surface potentially pose an ecological risk to granivorous birds that consume incompletely buried or spilled seeds. To assess the toxicokinetics of seeds treated with current-use fungicides, Japanese quail (Coturnix japonica) were orally dosed with commercially coated wheat seeds. Quail were exposed to metalaxyl, tebuconazole, and fludioxonil at either a low dose (0.0655, 0.0308, and 0.0328 mg/kg of body weight, respectively) or a high dose (0.196, 0.0925, and 0.0985 mg/kg of body weight, respectively). Fungicides were rapidly absorbed and distributed to tissues. Tebuconazole was metabolized into tert-butylhydroxy-tebuconazole. All compounds were eliminated to below detection limits within 24 h. The high detection frequencies observed in fecal samples potentially offer a non-invasive matrix to monitor pesticide exposure. With the summation of total body burden across plasma, tissue, and fecal samples, less than 9% of the administered dose was identified as the parent fungicide, demonstrating the importance to monitor both active ingredients and their metabolites in biological samples.
Collapse
Affiliation(s)
- Michael S Gross
- California Water Science Center , United States Geological Survey , Sacramento , California 95819 , United States
| | - Thomas G Bean
- Department of Environmental Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Michelle L Hladik
- California Water Science Center , United States Geological Survey , Sacramento , California 95819 , United States
| | - Barnett A Rattner
- Patuxent Wildlife Research Center , United States Geological Survey , Beltsville , Maryland 20705 , United States
| | - Kathryn M Kuivila
- Oregon Water Science Center , United States Geological Survey , Portland , Oregon 97201 , United States
| |
Collapse
|
346
|
Xiang H, Cai Q, Li Y, Zhang Z, Cao L, Li K, Yang H. Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters. JOURNAL OF SENSORS 2020; 2020:1-22. [DOI: 10.1155/2020/8503491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water is essential for every life living on the planet. However, we are facing a more serious situation such as water pollution since the industrial revolution. Fortunately, many efforts have been done to alleviate/restore water quality in freshwaters. Numerous sensors have been developed to monitor the dynamic change of water quality for ecological, early warning, and protection reasons. In the present review, we briefly introduced the pollution status of two major pollutants, i.e., pesticides and heavy metals, in freshwaters worldwide. Then, we collected data on the sensors applied to detect the two categories of pollutants in freshwaters. Special focuses were given on the sensitivity of sensors indicated by the limit of detection (LOD), sensor types, and applied waterbodies. Our results showed that most of the sensors can be applied for stream and river water. The average LOD was72.53±12.69 ng/ml (n=180) for all pesticides, which is significantly higher than that for heavy metals (65.36±47.51 ng/ml,n=117). However, the LODs of a considerable part of pesticides and heavy metal sensors were higher than the criterion maximum concentration for aquatic life or the maximum contaminant limit concentration for drinking water. For pesticide sensors, the average LODs did not differ among insecticides (63.83±17.42 ng/ml,n=87), herbicides (98.06±23.39 ng/ml,n=71), and fungicides (24.60±14.41 ng/ml,n=22). The LODs that differed among sensor types with biosensors had the highest sensitivity, while electrochemical optical and biooptical sensors showed the lowest sensitivity. The sensitivity of heavy metal sensors varied among heavy metals and sensor types. Most of the sensors were targeted on lead, cadmium, mercury, and copper using electrochemical methods. These results imply that future development of pesticides and heavy metal sensors should (1) enhance the sensitivity to meet the requirements for the protection of aquatic ecosystems and human health and (2) cover more diverse pesticides and heavy metals especially those toxic pollutants that are widely used and frequently been detected in freshwaters (e.g., glyphosate, fungicides, zinc, chromium, and arsenic).
Collapse
Affiliation(s)
- Hongyong Xiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuan Li
- Northwest Land and Resources Research Center, Shaanxi Normal Northwest University, China
| | - Zhenxing Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin 130024, China
| | - Lina Cao
- Ecology and Environment Department of Jilin Province, Changchun, Jilin 130024, China
| | - Kun Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
| | - Haijun Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China
- School of Life Science and Geology, Yili Normal University, Yili, Xinjiang 835000, China
| |
Collapse
|
347
|
Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, Moustaid-Moussa N, Crago J. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). CHEMOSPHERE 2020; 241:124980. [PMID: 31600620 DOI: 10.1016/j.chemosphere.2019.124980] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Azoxystrobin and pyraclostrobin are broad spectrum strobilurin fungicides that have been measured in the aquatic environment. Strobilurins inhibit mitochondrial respiration by binding to the mitochondrial respiratory complex III. The goal of this study was to investigate mitochondrial dysfunction and oxidative stress in the developing zebrafish from exposure to azoxystrobin and pyraclostrobin. Exposure studies were performed where zebrafish embryos were exposed to azoxystrobin and pyraclostrobin at 0.1, 10, 100 μg/L from 4 hpf to 48 hpf to measure mitochondrial dysfunction and oxidative stress mRNA transcripts, and 5 dpf to measure movement, growth, oxygen consumption, enzymatic activities, and mRNA transcripts. Results from this study indicated that there was a significant reduction in both basal and maximal respiration at 48 hpf in zebrafish exposed to 100 μg/L of pyraclostrobin. There was no difference in oxidative stress or apoptotic mRNA transcripts at 48 hpf, indicating that the two strobilurins were acting first on mitochondrial function and not directly through oxidative stress. At 5 dpf, standard body length was significantly reduced with exposure to pyraclostrobin and azoxystrobin exposure as compared to the control. These reductions in apical endpoints corresponded with increases in oxidative stress and apoptotic mRNA transcripts in treatment groups at 5 dpf indicating that strobilurins' exposure followed the adverse outcome pathway for mito-toxicants. Our results indicate that strobilurins can decrease mitochondrial function, which in turn lead to diminished growth and movement.
Collapse
Affiliation(s)
- N Kumar
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| | - A Willis
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - K Satbhai
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - L Ramalingam
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - C Schmitt
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | | - J Crago
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
348
|
Tian Z, Peter KT, Gipe AD, Zhao H, Hou F, Wark DA, Khangaonkar T, Kolodziej EP, James CA. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:889-901. [PMID: 31887037 DOI: 10.1021/acs.est.9b06126] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study used suspect and nontarget screening with high-resolution mass spectrometry to characterize the occurrence of contaminants of emerging concern (CECs) in the nearshore marine environment of Puget Sound (WA). In total, 87 non-polymeric CECs were identified; those confirmed with reference standards (45) included pharmaceuticals, herbicides, vehicle-related compounds, plasticizers, and flame retardants. Eight polyfluoroalkyl substances were detected; perfluorooctanesulfonic acid (PFOS) concentrations were as high as 72-140 ng/L at one location. Low levels of methamphetamine were detected in 41% of the samples. Transformation products of pesticides were tentatively identified, including two novel transformation products of tebuthiuron. While a hydrodynamic simulation, analytical results, and dilution calculations demonstrated the prevalence of wastewater effluent to nearshore marine environments, the identity and abundance of selected CECs revealed the additional contributions from stormwater and localized urban and industrial sources. For the confirmed CECs, risk quotients were calculated based on concentrations and predicted toxicities, and eight CECs had risk quotients >1. Dilution in the marine estuarine environment lowered the risks of most wastewater-derived CECs, but dilution alone is insufficient to mitigate risks of localized inputs. These findings highlighted the necessity of suspect and nontarget screening and revealed the importance of localized contamination sources in urban marine environments.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Katherine T Peter
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Alex D Gipe
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Fan Hou
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - David A Wark
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Tarang Khangaonkar
- Pacific Northwest National Laboratories , 1100 Dexter Avenue N , Seattle , Washington 98011 , United States
| | - Edward P Kolodziej
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - C Andrew James
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| |
Collapse
|
349
|
Chen S, Wang Y, Feng L. Specific detection and discrimination of dithiocarbamates using CTAB-encapsulated fluorescent copper nanoclusters. Talanta 2019; 210:120627. [PMID: 31987203 DOI: 10.1016/j.talanta.2019.120627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/29/2022]
Abstract
The continuous increase of annual dithiocarbamates consumption and a severe underestimation of ditihocarbamates threats urge the establishment of monitoring network for dithiocarbamates residue based on neoteric facile, rapid, inexpensive and applicable detection method. Current rapid detection methods based on enzyme or Au/Ag nanoparticles suffer either from low sensitivity or from poor selectivity, greatly limiting their practical applications. In this work, a paper-based versatile chemosensor based on CTAB-encapsulated fluorescent cooper nanocluster was developed for the specific detection and discrimination of dithiocarbamates. The as-synthesized cooper nanoclusters were investigated highly sensitive and selective to dithiocarbamates both in colorimetric and fluorometric detecting channel. In addition, the as-fabricated sensor can be used to evaluate total amounts of dithiocarbamates, even for real samples. By integrating colorimetry and fluorometry, a binary concentration-based optical electronic tongue was established for the discrimination of different dithiocarbamates.
Collapse
Affiliation(s)
- Shuqin Chen
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
350
|
A glance into the black box: Novel species-specific quantitative real-time PCR assays to disentangle aquatic hyphomycete community composition. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|