301
|
Neve RM, Parmar H, Amend C, Chen C, Rizzino A, Benz CC. Identification of an epithelial-specific enhancer regulating ESX expression. Gene 2005; 367:118-25. [PMID: 16307850 DOI: 10.1016/j.gene.2005.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 10/25/2022]
Abstract
The Ets transcription factor, ESX, exhibits a unique pattern of epithelial-restricted expression and transactivates genes involved in epithelial differentiation and cancer. The aim of this study was to determine the underlying genetic basis for epithelial-specific expression of ESX. We have identified a 30bp ESX enhancer sequence (EES) approximately 3 kb upstream of the proximal promoter. This region displays enhancer activity in an epithelial-specific manner and deletion of this region abrogates ESX gene transcription. An EES binding protein complex (EBC) was identified through electrophoretic mobility shift assays whose degree of EES binding correlated well with endogenous ESX levels in epithelial cells and was regulated by epithelial differentiation. Understanding the regulation of this element will lend insight into mechanisms of epithelial differentiation and the etiology of breast cancer and may provide novel targets for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Richard M Neve
- Cancer Research Institute, University of California San Francisco, Box 0808, San Francisco, CA 94143-0808, USA.
| | | | | | | | | | | |
Collapse
|
302
|
Scherpereel A. La génomique pour le cancer du poumon : qu’est-ce que chaque clinicien devrait savoir ? Rev Mal Respir 2005. [DOI: 10.1016/s0761-8425(05)85667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
303
|
Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, Zent R, Arteaga CL. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 2005; 25:3408-23. [PMID: 16186809 DOI: 10.1038/sj.onc.1208964] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have examined the effects of transforming growth factor-beta (TGFbeta) signaling on mammary epithelial cell survival. Transgenic mice expressing an active mutant of Alk5 in the mammary gland (MMTV-Alk5(T204D)) exhibited reduced apoptosis in terminal endbuds and during postlactational involution. Transgene-expressing mammary cells contained lower Smad2/3 and higher c-myc levels than controls, high ligand-independent phosphatidylinositol-3 kinase (PI3K) and Akt activities, and were insensitive to TGFbeta-mediated growth arrest. Treatment with a proteasome inhibitor increased Smad2/3 levels and ligand-independent Smad transcriptional reporter activity, as well as reduced both c-myc protein and basal cell proliferation. Treatment with an Alk5 kinase small-molecule inhibitor upregulated Smad2/3 levels, reduced PI3K activity, P-Akt, and c-myc, and inhibited cell survival. Although Alk5(T204D)-expressing mice did not develop mammary tumors, bigenic MMTV-Alk(T204D) x Neu mice developed cancers that were more metastatic than those occurring in MMTV-Neu transgenics. These data suggest that (1) TGFbeta can signal to PI3K/Akt and enhance mammary epithelial cell survival in vivo before cytological or histological evidence of transformation, and (2) TGFbeta signaling can provide epithelial cells with a 'gain-of-function' effect that synergizes with oncogene-induced transformation.
Collapse
Affiliation(s)
- R S Muraoka-Cook
- Department of Cancer Biology, Vanderbilt University school of Medicine, Nashville, TN 37232-6307, USA
| | | | | | | | | | | | | | | |
Collapse
|
304
|
Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massagué J. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci U S A 2005; 102:13909-14. [PMID: 16172383 PMCID: PMC1236573 DOI: 10.1073/pnas.0506517102] [Citation(s) in RCA: 416] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TGF-beta can signal by means of Smad transcription factors, which are quintessential tumor suppressors that inhibit cell proliferation, and by means of Smad-independent mechanisms, which have been implicated in tumor progression. Although Smad mutations disable this tumor-suppressive pathway in certain cancers, breast cancer cells frequently evade the cytostatic action of TGF-beta while retaining Smad function. Through immunohistochemical analysis of human breast cancer bone metastases and functional imaging of the Smad pathway in a mouse xenograft model, we provide evidence for active Smad signaling in human and mouse bone-metastatic lesions. Genetic depletion experiments further demonstrate that Smad4 contributes to the formation of osteolytic bone metastases and is essential for the induction of IL-11, a gene implicated in bone metastasis in this mouse model system. Activator protein-1 is a key participant in Smad-dependent transcriptional activation of IL-11 and its overexpression in bone-metastatic cells. Our findings provide functional evidence for a switch of the Smad pathway, from tumor-suppressor to prometastatic, in the development of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yibin Kang
- Cancer Biology and Genetics Program and Howard Hughes Medical Institute, Molecular Cytology Laboratory, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005; 65:6130-8. [PMID: 16024614 DOI: 10.1158/0008-5472.can-04-1408] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, an in vivo model of human breast cancer metastasizing from the orthotopic site to bone does not exist, making it difficult to study the many steps of skeletal metastasis. Moreover, models used to identify the mechanisms by which breast cancer metastasizes to bone are limited to intracardiac injection, which seeds the cancer cells directly into the circulation, thus bypassing the early steps in the metastatic process. Such models do not reflect the full process of metastasis occurring in patients. We have developed an animal model of breast cancer metastasis in which the breast cancer cells and the bone target of osteotropic metastasis are both of human origin. The engrafted human bone is functional, based on finding human IgG in the mouse bloodstream, human B cells in the mouse spleen, and normal bone histology. Furthermore, orthotopic injection of a specific human breast cancer cell line, SUM1315 (derived from a metastatic nodule in a patient), later resulted in both bone and lung metastases. In the case of bone, metastasis was to the human implant and not the mouse skeleton, indicating a species-specific osteotropism. This model replicates the events observed in patients with breast cancer skeletal metastases and serves as a useful and relevant model for studying the disease.
Collapse
Affiliation(s)
- Charlotte Kuperwasser
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Abstract
Little is known about how the genotypic and molecular abnormalities associated with epithelial cancers actually contribute to the histological phenotypes observed in tumours in vivo. 3D epithelial culture systems are a valuable tool for modelling cancer genes and pathways in a structurally appropriate context. Here, we review the important features of epithelial structures grown in 3D basement membrane cultures, and how such models have been used to investigate the mechanisms associated with tumour initiation and progression.
Collapse
Affiliation(s)
- Jayanta Debnath
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
307
|
Landis MD, Seachrist DD, Montañez-Wiscovich ME, Danielpour D, Keri RA. Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-beta signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene 2005; 24:5173-90. [PMID: 15897883 PMCID: PMC1431507 DOI: 10.1038/sj.onc.1208712] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Upregulation of HER2/ErbB2/Neu occurs in 15-30% of human breast cancers and correlates with poor prognosis. Identification of ErbB2/Neu transcriptional targets should facilitate development of novel therapeutic approaches. Development of breast cancer is a multistep process; thus, to identify the transcriptomes associated with different stages of progression of tumorigenesis, we compared expression profiles of mammary tumors and preneoplastic mammary tissue from MMTV-Neu transgenic mice to expression profiles of wild-type mammary glands using Affymetrix microarrays. We identified 324 candidate genes that were unique to ErbB2/Neu-induced tumors relative to normal mammary gland tissue from wild-type controls. Expression of a subset of these genes (82) was also changed in the preneoplastic mammary glands compared to wild-type controls, indicating that they may play a pivotal role during early events of ErbB2/Neu-initiated mammary tumorigenesis. Further analysis of the microarray data revealed that expression of several known transforming growth factor (TGF)-beta target genes was altered, suggesting that the TGF-beta signaling cascade is downregulated in ErbB2/Neu-induced tumors. Western blot analysis for TGF-beta-Receptor-I/ALK5 and immunohistochemistry for TGF-beta-Receptor-I/ALK5 and phosphorylated/activated Smad2 confirmed that the Smad-dependent TGF-beta signaling cascade was inactive in these tumors. Although absent in most of the tumor, phosphorylated Smad2 was present in the periphery of tumors. Interestingly, presence of phosphorylated/activated Smad2 correlated with expression of Activin-Receptor-IB/ALK4, suggesting that although Smad-dependent TGF-beta signaling is absent in ErbB2/Neu-induced tumors, Activin signaling may be active at the leading edge of these tumors. Cumulatively, these data indicate that the TGF-beta pathway is intrinsically suppressed in ErbB2/Neu tumors via a mechanism involving loss of TGF-beta-Receptor-I/ALK5.
Collapse
Affiliation(s)
- Melissa D Landis
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
308
|
Wang SE, Wu FY, Shin I, Qu S, Arteaga CL. Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function. Mol Cell Biol 2005; 25:4703-15. [PMID: 15899872 PMCID: PMC1140650 DOI: 10.1128/mcb.25.11.4703-4715.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) inhibits proliferation and promotes cell migration. In TGF-beta-treated MCF10A mammary epithelial cells overexpressing HER2 and by chromatin immunoprecipitation, we identified novel Smad targets including protein tyrosine phosphatase receptor type kappa (PTPRK). TGF-beta up-regulated PTPRK mRNA and RPTPkappa (receptor type protein tyrosine phosphatase kappa, the protein product encoded by the PTPRK gene) protein in tumor and nontumor mammary cells; HER2 overexpression down-regulated its expression. RNA interference (RNAi) of PTPRK accelerated cell cycle progression, enhanced response to epidermal growth factor (EGF), and abrogated TGF-beta-mediated antimitogenesis. Endogenous RPTPkappa associated with EGF receptor and HER2, resulting in suppression of basal and ErbB ligand-induced proliferation and receptor phosphorylation. In MCF10A/HER2 cells, TGF-beta enhanced cell motility, FAK phosphorylation, F-actin assembly, and focal adhesion formation and inhibited RhoA activity. These responses were abolished when RPTPkappa was eliminated by RNA interference (RNAi). In cells expressing RPTPkappa RNAi, phosphorylation of Src at Tyr527 was increased and (activating) phosphorylation of Src at Tyr416 was reduced. These data suggest that (i) RPTPkappa positively regulates Src; (ii) HER2 signaling and TGF-beta-induced RPTPkappa converge at Src, providing an adequate input for activation of FAK and increased cell motility and adhesion; and (iii) RPTPkappa is required for both the antiproliferative and the promigratory effects of TGF-beta.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Division of Oncology, Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Ave., 777 PRB, Nashville, TN 37232-6307, USA
| | | | | | | | | |
Collapse
|
309
|
Affiliation(s)
- Virginia Kaklamani
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
310
|
Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 2005; 65:4228-37. [PMID: 15899814 DOI: 10.1158/0008-5472.can-04-4585] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although transforming growth factor-beta (TGF-beta) is both a suppressor and promoter of tumorigenesis, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we identified the adaptor protein ELF, a beta-spectrin from stem/progenitor cells committed to foregut lineage. ELF activates and modulates Smad4 activation of TGF-beta to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. Analysis of development of colon cancer in (adult) elf+/-/Smad4+/-, elf+/-, Smad4+/-, and gut epithelial cells from elf-/- mutant mouse embryos pinpoints the defect to hyperplasia/adenoma transition. Further analysis of the role of ELF in human colorectal cancer confirms reduced expression of ELF in Dukes' B1 stage tissues (P < 0.05) and of Smad4 in advanced colon cancers (P < 0.05). This study indicates that by modulating Smad 4, ELF has a key role in TGF-beta signaling in the suppression of early colon cancer.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of GI Developmental Biology, Department of Surgery, Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, Hegarty C, McDaniel B, Rademaker A, Oddoux C, Ostrer H, Michel LS, Huang H, Chen Y, Ahsan H, Offit K, Pasche B. Combined genetic assessment of transforming growth factor-beta signaling pathway variants may predict breast cancer risk. Cancer Res 2005; 65:3454-61. [PMID: 15833881 DOI: 10.1158/0008-5472.can-04-2961] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is growing evidence that common variants of the transforming growth factor-beta (TGF-beta) signaling pathway may modify breast cancer risk. In vitro studies have shown that some variants increase TGF-beta signaling, whereas others have an opposite effect. We tested the hypothesis that a combined genetic assessment of two well-characterized variants may predict breast cancer risk. Consecutive patients (n = 660) with breast cancer from the Memorial Sloan-Kettering Cancer Center (New York, NY) and healthy females (n = 880) from New York City were genotyped for the hypomorphic TGFBR1*6A allele and for the TGFB1 T29C variant that results in increased TGF-beta circulating levels. Cases and controls were of similar ethnicity and geographic location. Thirty percent of cases were identified as high or low TGF-beta signalers based on TGFB1 and TGFBR1 genotypes. There was a significantly higher proportion of high signalers (TGFBR1/TGFBR1 and TGFB1*CC) among controls (21.6%) than cases (15.7%; P = 0.003). The odds ratio [OR; 95% confidence interval (95% CI)] for individuals with the lowest expected TGF-beta signaling level (TGFB1*TT or TGFB1*TC and TGFBR1*6A) was 1.69 (1.08-2.66) when compared with individuals with the highest expected TGF-signaling levels. Breast cancer risk incurred by low signalers was most pronounced among women after age 50 years (OR, 2.05; 95% CI, 1.01-4.16). TGFBR1*6A was associated with a significantly increased risk for breast cancer (OR, 1.46; 95% CI, 1.04-2.06), but the TGFB1*CC genotype was not associated with any appreciable risk (OR, 0.89; 95% CI, 0.63-1.21). TGFBR1*6A effect was most pronounced among women diagnosed after age 50 years (OR, 2.20; 95% CI, 1.25-3.87). This is the first study assessing the TGF-beta signaling pathway through two common and functionally relevant TGFBR1 and TGFB1 variants. This approach may predict breast cancer risk in a large subset of the population.
Collapse
Affiliation(s)
- Virginia G Kaklamani
- Cancer Genetics Program, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005; 115:1714-23. [PMID: 15937546 PMCID: PMC1142114 DOI: 10.1172/jci24399] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/19/2005] [Indexed: 12/18/2022] Open
Abstract
In the present study, we demonstrated that human skin cancers frequently overexpress TGF-beta1 but exhibit decreased expression of the TGF-beta type II receptor (TGF-(beta)RII). To understand how this combination affects cancer prognosis, we generated a transgenic mouse model that allowed inducible expression of TGF-beta(1) in keratinocytes expressing a dominant negative TGF-(beta)RII (Delta(beta)RII) in the epidermis. Without Delta(beta)RII expression, TGF-beta1 transgene induction in late-stage, chemically induced papillomas failed to inhibit tumor growth but increased metastasis and epithelial-to-mesenchymal transition (EMT), i.e., formation of spindle cell carcinomas. Interestingly, Delta(beta)RII expression abrogated TGF-beta1-mediated EMT and was accompanied by restoration of membrane-associated E-cadherin/catenin complex in TGF-beta1/Delta(beta)RII compound tumors. Furthermore, expression of molecules thought to mediate TGF-beta1-induced EMT was attenuated in TGF-beta1/Delta(beta)RII-transgenic tumors. However, TGF-beta1/Delta(beta)RII-transgenic tumors progressed to metastasis without losing expression of the membrane-associated E-cadherin/catenin complex and at a rate higher than those observed in nontransgenic, TGF-beta1-transgenic, or Delta(beta)RII-transgenic mice. Abrogation of Smad activation by Delta(beta)RII correlated with the blockade of EMT. However, Delta(beta)RII did not alter TGF-beta1-mediated expression of RhoA/Rac and MAPK, which contributed to increased metastasis. Our study provides evidence that TGF-beta1 induces EMT and invasion via distinct mechanisms. TGF-beta1-mediated EMT requires functional TGF-(beta)RII, whereas TGF-beta1-mediated tumor invasion cooperates with reduced TGF-(beta)RII signaling in tumor epithelia.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
313
|
MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 2005; 7:591-600. [PMID: 15864305 DOI: 10.1038/ncb1258] [Citation(s) in RCA: 415] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/19/2005] [Indexed: 01/09/2023]
Abstract
Evasion from apoptosis is a hallmark of cancer, and recent success using targeted therapeutics underscores the importance of identifying anti-apoptotic survival pathways. Here we utilize RNA interference (RNAi) to systematically screen the kinase and phosphatase component of the human genome. In addition to known kinases, we identified several new survival kinases. Interestingly, numerous phosphatases and associated regulatory subunits contribute to cell survival, revealing a previously unrecognized general role for phosphatases as negative regulators of apoptosis. We also identified a subset of phosphatases with tumour-suppressor-like activity. Finally, RNAi targeting of specific protein kinases sensitizes resistant cells to chemotherapeutic agents. The development of inhibitors that target these kinases or phosphatases may lead to new anti-cancer strategies.
Collapse
Affiliation(s)
- Jeffrey P MacKeigan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
314
|
Stuelten CH, DaCosta Byfield S, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 2005; 118:2143-53. [PMID: 15855236 DOI: 10.1242/jcs.02334] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We used 2D-cocultures employing fibroblasts of different genetic backgrounds and MCF10A-derived human breast epithelial cells of increasingly malignant potential to investigate tumor-stroma interactions in breast cancer and to identify possible signaling pathways involved. Tumor cells induced expression of matrix-metalloproteinase 9 (MMP-9) in fibroblasts in a pattern dependent on the degree of their malignancy. In-situ zymography localized the main gelatinolytic activity around stromal cells in cocultures and xenografted tumors. Use of Smad3 knockout fibroblasts, small molecule inhibitors, and neutralizing antibodies showed that MMP-9 expression was induced by tumor cell-derived TNF-alpha and TGF-beta, dependent on Smad-, Ras-, and PI3-kinase-signaling, and likewise modulated by subsequent HGF- and EGF-signaling. Together, our results indicate that MMP-9 levels in tumor fibroblasts are regulated by a complex tumor-stroma cross-talk, involving multiple ligands and cellular signaling pathways.
Collapse
Affiliation(s)
- Christina H Stuelten
- Laboratory of Cell Regulation and Carcinogenesis, CCR, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
315
|
Yao R, Lemon WJ, Wang Y, Grubbs CJ, Lubet RA, You M. Altered gene expression profile in mouse bladder cancers induced by hydroxybutyl(butyl)nitrosamine. Neoplasia 2005; 6:569-77. [PMID: 15548366 PMCID: PMC1531661 DOI: 10.1593/neo.04223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA) MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-I, STAT1, Smad1, Smad2, Jun, NFkappaB, and so on, in the TGF-beta signaling pathway and p115 RhoGEF, RhoGDI3, MEKK4A/MEKK4B, PI3KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-beta pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.
Collapse
Affiliation(s)
- Ruisheng Yao
- Department of Surgery and The Alvin J. Siteman Cancer Center, Campus Box 8109, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William J Lemon
- Department of Surgery and The Alvin J. Siteman Cancer Center, Campus Box 8109, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yian Wang
- Department of Surgery and The Alvin J. Siteman Cancer Center, Campus Box 8109, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clinton J Grubbs
- Departments of Surgery, Genetics, and Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronald A Lubet
- Chemoprevention Agent Development Research Group, National Cancer Institute, Rockville, MD 20892, USA
| | - Ming You
- Department of Surgery and The Alvin J. Siteman Cancer Center, Campus Box 8109, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
316
|
Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T. Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 2005; 65:1877-86. [PMID: 15753386 DOI: 10.1158/0008-5472.can-04-2828] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor function of activin A, together with our findings that activin A is an inhibitor of angiogenesis, which is down-regulated by the N-MYC oncogene, prompted us to investigate in more detail its role in the malignant transformation process of neuroblastomas. Indeed, neuroblastoma cells with restored activin A expression exhibited a diminished proliferation rate and formed smaller xenograft tumors with reduced vascularity, whereas lung metastasis rate remained unchanged. In agreement with the decreased vascularity of the xenograft tumors, activin A inhibited several crucial angiogenic responses of cultured endothelial cells, such as proteolytic activity, migration, and proliferation. Endothelial cell proliferation, activin A, or its constitutively active activin receptor-like kinase 4 receptor (ALK4T206D), increased the expression of CDKN1A (p21), CDKN2B (p15), and CDKN1B (p27) CDK inhibitors and down-regulated the expression of vascular endothelial growth factor receptor-2, the receptor of a key angiogenic factor in cancer. The constitutively active forms of SMAD2 and SMAD3 were both capable of inhibiting endothelial cell proliferation, whereas the dominant-negative forms of SMAD3 and SMAD4 released the inhibitory effect of activin A on endothelial cell proliferation by only 20%. Thus, the effects of activin A on endothelial cell proliferation seem to be conveyed via the ALK4/SMAD2-SMAD3 pathways, however, non-SMAD cascades may also contribute. These results provide novel information regarding the role of activin A in the malignant transformation process of neuroblastomas and the molecular mechanisms involved in regulating angiogenesis thereof.
Collapse
Affiliation(s)
- Ekaterini Panopoulou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
317
|
Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005; 288:C494-506. [PMID: 15692148 DOI: 10.1152/ajpcell.00458.2004] [Citation(s) in RCA: 411] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Caveolae are 50- to 100-nm omega-shaped invaginations of the plasma membrane that function as regulators of signal transduction. Caveolins are a class of oligomeric structural proteins that are both necessary and sufficient for caveolae formation. Interestingly, caveolin-1 has been implicated in the pathogenesis of oncogenic cell transformation, tumorigenesis, and metastasis. Here, we review the available experimental evidence (gleaned from cultured cells, animal models, and human tumor samples) that caveolin-1 (Cav-1) functions as a "tumor and/or metastasis modifier gene." Genetic evidence from the study of Cav-1(-/-) null mice and human breast cancer mutations [CAV-1 (P132L)] supports the idea that caveolin-1 normally functions as a negative regulator of cell transformation and mammary tumorigenesis. In contrast, caveolin-1 may function as a tumor promoter in prostate cancers. We discuss possible molecular mechanisms to explain these intriguing, seemingly opposing, findings. More specifically, caveolin-1 phosphorylation (at Tyr14 and Ser80) and mutations (P132L) may override or inactivate the growth inhibitory activity of the caveolin-scaffolding domain (residues 82-101).
Collapse
Affiliation(s)
- Terence M Williams
- Department of Molecular Pharmacology, and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | |
Collapse
|
318
|
Abstract
Transforming growth factor beta (TGF-beta) is a ubiquitous and essential regulator of cellular and physiologic processes including proliferation, differentiation, migration, cell survival, angiogenesis, and immunosurveillance. Alterations in the TGF-beta signaling pathway, including mutation or deletion of members of the signaling pathway and resistance to TGF-beta-mediated inhibition of proliferation are frequently observed in human cancers. Although these alterations define a tumor suppressor role for the TGF-beta pathway in human cancer, TGF-beta also mediates tumor-promoting effects, either through differential effects on tumor and stromal cells or through a fundamental alteration in the TGF-beta responsiveness of the tumor cells themselves. TGF-beta and members of the TGF-beta signaling pathway are being evaluated as prognostic or predictive markers for cancer patients. Ongoing advances in understanding the TGF-beta signaling pathway will enable targeting of this pathway for the chemoprevention and treatment of human cancers.
Collapse
Affiliation(s)
- Rebecca L Elliott
- Department of Medicine and Pharmacology and Cancer Biology, Duke University Medical Center, 221 BMSRB Research Drive, Box 2631 DUMC, Durham, NC 27710, USA
| | | |
Collapse
|
319
|
Abstract
Sophisticated genetic technologies have led to the development of mouse models of human cancers that recapitulate important features of human oncogenesis. Many of these genetically engineered mouse models promise to be very relevant and relatively rapid systems for determining the efficacy of chemopreventive agents and their mechanisms of action. The validation of such models for chemoprevention will help the selection of appropriate agents for large-scale clinical trials and allow the testing of combination therapies.
Collapse
Affiliation(s)
- Jeffrey E Green
- Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Besthesda, MD 20892, USA.
| | | |
Collapse
|
320
|
|
321
|
Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 2005; 64:9002-11. [PMID: 15604265 DOI: 10.1158/0008-5472.can-04-2111] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To address the role of transforming growth factor (TGF) beta in the progression of established tumors while avoiding the confounding inhibitory effects of TGF-beta on early transformation, we generated doxycycline (DOX)-inducible triple transgenic mice in which active TGF-beta1 expression could be conditionally regulated in mouse mammary tumor cells transformed by the polyomavirus middle T antigen. DOX-mediated induction of TGF-beta1 for as little as 2 weeks increased lung metastases >10-fold without a detectable effect on primary tumor cell proliferation or tumor size. DOX-induced active TGF-beta1 protein and nuclear Smad2 were restricted to cancer cells, suggesting a causal association between autocrine TGF-beta and increased metastases. Antisense-mediated inhibition of TGF-beta1 in polyomavirus middle T antigen-expressing tumor cells also reduced basal cell motility, survival, anchorage-independent growth, tumorigenicity, and metastases. Therefore, induction and/or activation of TGF-beta in hosts with established TGF-beta-responsive cancers can rapidly accelerate metastatic progression.
Collapse
Affiliation(s)
- Rebecca S Muraoka-Cook
- Department of Cancer Biology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2005; 3:1011-22. [PMID: 15573100 DOI: 10.1038/nrd1580] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of ligands has a pivotal role in the regulation of a wide variety of physiological processes from development to pathogenesis. Since the discovery of the prototypic member, TGF-beta, almost 20 years ago, there have been tremendous advances in our understanding of the complex biology of this superfamily. Deregulation of TGF-beta has been implicated in the pathogenesis of a variety of diseases, including cancer and fibrosis. Here we present the rationale for evaluating TGF-beta signalling inhibitors as cancer therapeutics, the structures of small-molecule inhibitors that are in development and the targeted drug discovery model that is being applied to their development.
Collapse
Affiliation(s)
- Jonathan M Yingling
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
323
|
Thavaraj S, Paterson IC, Hague A, Prime SS. Over-expression of TGF-beta1 in Smad4-deficient human oral carcinoma cells causes tumour regression in vivo by mechanisms that sensitize cells to apoptosis. J Pathol 2005; 205:14-20. [PMID: 15546158 DOI: 10.1002/path.1683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have shown previously that transforming growth factor-beta (TGF-beta) is a potent tumour suppressor in Smad4-deficient human malignant oral keratinocytes but the mechanism by which this occurs is unknown. In the present study, we show that over-expression of TGF-beta1 causes regression of tumours derived from Smad4-deficient oral keratinocytes transplanted orthotopically to athymic mice. Further, tumour regression is associated with the induction of apoptosis without changes in cell proliferation. In vitro, TGF-beta1 did not induce apoptosis directly in these cells but sensitized cells to cisplatin, but not Fas, -induced cell death. The data suggest that TGF-beta1 induces tumour regression in vivo by Smad4-independent pathways that sensitize keratinocytes to mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Selvam Thavaraj
- Department of Oral and Dental Science, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
324
|
Muraoka-Cook RS, Dumont N, Arteaga CL. Dual Role of Transforming Growth Factor β in Mammary Tumorigenesis and Metastatic Progression. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.937s.11.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
It is generally accepted that transforming growth factor β (TGFβ) is both a tumor suppressor and tumor promoter. Whereas loss or attenuation of TGFβ signal transduction is permissive for transformation, introduction of dominant-negative TGFβ receptors into metastatic breast cancer cells has been shown to inhibit epithelial-to-mesenchymal transition, motility, invasiveness, survival, and metastases. In addition, there is evidence that excess production and/or activation of TGFβ by cancer cells can contribute to tumor progression by paracrine mechanisms involving neoangiogenesis, production of stroma and proteases, and subversion of immune surveillance mechanisms in tumor hosts. These data provide a rationale in favor of blockade of autocrine/paracrine TGFβ signaling in human mammary tumors with therapeutic intent. Several treatment approaches are currently in early clinical development and have been the focus of our laboratory. These include (1) ligand antibodies or receptor-containing fusion proteins aimed at blocking ligand binding to cognate receptors and (2) small-molecule inhibitors of the type I TGFβ receptor serine/threonine kinase. Many questions remain about the viability of anti-TGFβ treatment strategies, the best molecular approach (or combinations) for inhibition of TGFβ function in vivo, the biochemical surrogate markers of tumor response, the molecular profiles in tumors for selection into clinical trials, and potential toxicities, among others.
Collapse
Affiliation(s)
- Rebecca S. Muraoka-Cook
- Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, and Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee
| | - Nancy Dumont
- Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, and Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee
| | - Carlos L. Arteaga
- Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, and Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee
| |
Collapse
|
325
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as Novel Targets for Cancer Therapy (Part I). ACTA ACUST UNITED AC 2005; 5:173-90. [PMID: 15952871 DOI: 10.2165/00129785-200505030-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past 10 years, progress made in cancer biology, genetics, and biotechnology has led to a major transition in cancer drug design and development. There has been a change from an emphasis on non-specific, cytotoxic agents to specific, molecular-based therapeutics. Mechanism-based therapy is designed to act on cellular and molecular targets that are causally involved in the formation, growth, and progression of human cancers. These agents, which may have greater selectivity for cancer versus normal cells, and which may produce better anti-tumor efficacy and lower host toxicity, can be small molecules, natural or engineered peptides, proteins, antibodies, or synthetic nucleic acids (e.g. antisense oligonucleotides, ribozymes, and siRNAs). Novel targets are identified and validated by state-of-the-art approaches, including high-throughput screening, combinatorial chemistry, and gene expression arrays, which increase the speed and efficiency of drug discovery and development. Examples of oncogene-based, molecular therapeutics that show promising clinical activity include trastuzumab (Herceptin), imatinib (Gleevec), and gefitinib (Iressa). However, the full potential of oncogenes as novel targets for cancer therapy has not been realized and many challenges remain, from the validation of novel targets, to the design of specific agents, to the evaluation of these agents in both preclinical and clinical settings. In maximizing the benefits of molecular therapeutics in monotherapy or combination therapy of cancer, it is necessary to have an understanding of the underlying molecular abnormalities and mechanisms involved. This is the first part of a four-part review in which we discuss progress made in the last decade as it relates to the discovery of novel oncogenes and signal transduction pathways, in the context of their potential as targets for cancer therapy. This part delineates the latest discoveries about the potential use of growth factors and protein tyrosine kinases as targets for therapy. Later parts focus on intermediate signaling pathways, transcription factors, and proteins involved in cell cycle, DNA damage, and apoptotic pathways.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology, and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
326
|
Micke P, Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004; 45 Suppl 2:S163-75. [PMID: 15552797 DOI: 10.1016/j.lungcan.2004.07.977] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stroma cells, together with extracellular matrix components, provide the microenvironment that is pivotal for cancer cell growth, invasion and metastatic progression. Characteristic stroma alterations accompany or even precede the malignant conversion of epithelial cells. Crucial in this process are fibroblasts, also termed myofibroblasts or cancer-associated fibroblasts (CAFs) that are located in the vicinity of the neoplastic epithelial cells. They are able to modify the phenotype of the epithelial cells by direct cell-to-cell contacts, through soluble factors or by modification of extracellular matrix components. Seminal functional studies in various cancer types, including breast, colon, prostate and lung cancer, have confirmed the concept that fibroblasts can determine the fate of the epithelial cell, since they are able to promote malignant conversion as well as to revert tumour cells to a normal phenotype. This review focuses on characteristic changes of fibroblasts in cancer and provides the experimental background elucidating functional properties of CAFs in the carcinogenic process. A possible implication in lung carcinogenesis is emphasised. Finally, a laser-capture- and microarray-based approach is presented, which comprehensively characterises carcinoma-associated fibroblasts in their in vivo environment for the identification of potential targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Patrick Micke
- Ludwig Institute for Cancer Research, Uppsala, Sweden.
| | | |
Collapse
|
327
|
Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S, Dankort DL, Muller WJ, Park M. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell 2004; 16:550-61. [PMID: 15548598 PMCID: PMC545891 DOI: 10.1091/mbc.e04-07-0567] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activation of the hepatocyte growth factor receptor Met induces a morphogenic response and stimulates the formation of branching tubules by Madin-Darby canine kidney (MDCK) epithelial cells in three-dimensional cultures. A constitutively activated ErbB2/Neu receptor, NeuNT, promotes a similar invasive morphogenic program in MDCK cells. Because both receptors are expressed in breast epithelia, are associated with poor prognosis, and hepatocyte growth factor (HGF) is expressed in stroma, we examined the consequence of cooperation between these signals. We show that HGF disrupts NeuNT-induced epithelial morphogenesis, stimulating the breakdown of cell-cell junctions, dispersal, and invasion of single cells. This correlates with a decrease in junctional proteins claudin-1 and E-cadherin, in addition to the internalization of the tight junction protein ZO-1. HGF-induced invasion of NT-expressing cells is abrogated by pretreatment with a pharmacological inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, which restores E-cadherin and ZO-1 at cell-cell junctions, establishing the involvement of MEK-dependent pathways in this process. These results demonstrate that physiological signals downstream from the HGF/Met receptor synergize with ErbB2/Neu to enhance the malignant phenotype, promoting the breakdown of cell-cell junctions and enhanced cell invasion. This is particularly important for cancers where ErbB2/Neu is overexpressed and HGF is a physiological growth factor found in the stroma.
Collapse
Affiliation(s)
- Hanane Khoury
- Molecular Oncology Group, McGill University Health Center, McGill University, Montreal, Quebec, H3A 1A1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Mills Shaw KR, Wrobel CN, Brugge JS. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 2004; 9:297-310. [PMID: 15838601 PMCID: PMC1509102 DOI: 10.1007/s10911-004-1402-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The development of breast carcinomas involves a complex set of phenotypic alterations in breast epithelial cells and the surrounding microenvironment. While traditional transformation assays provide models for investigating certain aspects of the cellular processes associated with tumor initiation and progression, they do not model alterations in tissue architecture that are critically involved in tumor development. In this review, we provide examples of how three-dimensional (3D) cell culture models can be utilized to dissect the pathways involved in the development of mammary epithelial structures and to elucidate the mechanisms responsible for oncogene-induced phenotypic alterations in epithelial behavior and architecture. Many normal mammary epithelial cell lines undergo a stereotypic morphogenetic process when grown in the presence of exogenous matrix proteins. This 3D morphogenesis culminates in the formation of well-organized, polarized spheroids, and/or tubules that are highly reminiscent of normal glandular architecture. In contrast, transformed cell lines isolated from mammary tumors exhibit significant deviations from normal epithelial behavior in 3D culture. We describe the use of 3D models as a method for both reconstructing and deconstructing the cell biological and biochemical events involved in mammary neoplasia.
Collapse
Key Words
- mammary epithelial cells
- breast cancer
- morphogenesis
- 3d cell culture
- oncogenesis
- 3d
- three-dimensional
- bard-1, brca-1 associated ring domain
- cdk, cyclin-dependent kinase
- cgh, comparative genomic hybridization
- csf-1, colony-stimulating factor
- csf-1r, colony-stimulating factor receptor
- dcis, ductal carcinoma in situ
- e7, human papilloma virus 16 e7 protein
- ecm, extracellular matrix
- egf, epidermal growth factor
- egfr, epidermal growth factor receptor
- ehs, engelbreth-holm-swarm
- emt, epithelial-to-mesenchymal transition
- er, estrogen receptor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
- hgf, hepatocyte growth factor
- igf, insulin-like growth factor
- il-1, interleukin-1
- mapk, mitogen-activated protein kinase
- mec, mammary epithelial cell
- mmp, matrix metalloproteinase
- mmtv, mouse mammary tumor virus
- pi3k, phosphotidylinositol-3 kinase
- pr, progesterone receptor
- rb, retinoblastoma protein
- tgfβ, transforming growth factor beta
- vegf, vascular endothelial growth factor
Collapse
Affiliation(s)
| | - Carolyn N. Wrobel
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- To whom correspondence should be addressed at Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115; e-mail: joan
| |
Collapse
|
329
|
|
330
|
Prime SS, Eveson JW, Stone AM, Huntley SP, Davies M, Paterson IC, Robinson CM. Metastatic dissemination of human malignant oral keratinocyte cell lines following orthotopic transplantation reflects response to TGF-beta 1. J Pathol 2004; 203:927-32. [PMID: 15258995 DOI: 10.1002/path.1603] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examined the behaviour of nine human malignant oral keratinocyte cell lines following orthotopic transplantation to the floor of the mouth of athymic mice. Tumourigenesis, local spread, and metastatic dissemination were correlated with known cellular responses to transforming growth factor-beta 1 (TGF-beta 1). Six of nine cell lines were tumourigenic; four of these cell lines showed local spread which was characterized by vascular and bone invasion. Metastatic spread was uncommon, with only 9% of animals with primary tumours developing metastases and these were almost exclusively found in the regional lymph nodes; there was one pulmonary metastasis and no liver deposits. Tumour cell behaviour did not reflect the clinical stage of the original tumours. Cell lines that were resistant to TGF-beta 1-induced growth inhibition were more likely to form primary tumours, exhibit local spread, and metastasize than cells that were growth-inhibited by the ligand. The data demonstrate that tumourigenicity and tumour behaviour in this orthotopic mouse model varied between cell lines and that the pattern of local invasion and metastasis was similar to that seen in human oral cancer. Furthermore, cell lines that were refractory to the growth inhibitory effects of TGF-beta 1 behaved more aggressively than cells that underwent ligand-induced cell-cycle arrest.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, University of Bristol Dental School, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| | | | | | | | | | | | | |
Collapse
|
331
|
Martin SS, Ridgeway AG, Pinkas J, Lu Y, Reginato MJ, Koh EY, Michelman M, Daley GQ, Brugge JS, Leder P. A cytoskeleton-based functional genetic screen identifies Bcl-xL as an enhancer of metastasis, but not primary tumor growth. Oncogene 2004; 23:4641-5. [PMID: 15064711 DOI: 10.1038/sj.onc.1207595] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many mouse models of breast cancer form large primary tumors that rarely metastasize. Models with aggressive metastasis express oncoproteins that simultaneously affect growth and apoptosis pathways. To define the role of apoptotic resistance and to model a challenge faced by tumor cells during metastatic dissemination, we focused on apoptosis induced by cell shape change. Inhibiting actin polymerization with Latrunculin-A causes cell rounding and death within hours in nontumorigenic human 10A-Ras mammary epithelial cells. In contrast, MDA-MB-231 metastatic breast tumor cells resist LA-induced death, and survive for days despite cell rounding. Infecting 10A-Ras cells with a MDA-MB-231 retroviral expression library, and selecting with Latrunculin-A repeatedly identified Bcl-xL as a suppressor of cytoskeleton-dependent death. Although Bcl-xL enhances the spread of metastatic breast tumor cell lines, the distinct effects of apoptotic resistance on tumor growth in the mammary gland and during metastasis have not been compared directly. We find that Bcl-xL overexpression in mouse mammary epithelial cells does not induce primary tumor formation or enhance MEK-induced tumorigenesis within the mammary gland environment. However, it strongly enhances metastatic potential. These results with Bcl-xL provide novel evidence that isolated apoptotic resistance can increase metastatic potential, but remain overlooked by assays based on breast tumor growth.
Collapse
Affiliation(s)
- Stuart S Martin
- Harvard Medical School, Department of Genetics, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Lenferink AEG, Magoon J, Cantin C, O'Connor-McCourt MD. Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-beta and Neu pathway signaling studies: identification of a novel model for TGF-beta-induced epithelial-to-mesenchymal transition. Breast Cancer Res 2004; 6:R514-30. [PMID: 15318933 PMCID: PMC549171 DOI: 10.1186/bcr907] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 04/27/2004] [Accepted: 06/02/2004] [Indexed: 11/10/2022] Open
Abstract
Introduction This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). Methods The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-β families (recombinant human EGF, heregulin-β1 and TGF-β1). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-β1, and they were therefore further investigated for their ability to undergo a TGF-β-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. Results We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TβRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TβRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-β1, and that all are growth inhibited by TGF-β1, but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-β1 treatment. Conclusion We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Anne EG Lenferink
- Receptor, Signaling and Proteomics Group, National Research Council, Biotechnology Research Institute, Montréal, Quebèc, Canada
| | - Joanne Magoon
- Receptor, Signaling and Proteomics Group, National Research Council, Biotechnology Research Institute, Montréal, Quebèc, Canada
| | - Christiane Cantin
- Receptor, Signaling and Proteomics Group, National Research Council, Biotechnology Research Institute, Montréal, Quebèc, Canada
| | - Maureen D O'Connor-McCourt
- Receptor, Signaling and Proteomics Group, National Research Council, Biotechnology Research Institute, Montréal, Quebèc, Canada
| |
Collapse
|
333
|
Tian F, Byfield SD, Parks WT, Stuelten CH, Nemani D, Zhang YE, Roberts AB. Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2004; 64:4523-30. [PMID: 15231662 DOI: 10.1158/0008-5472.can-04-0030] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of transforming growth factor beta (TGF-beta) in carcinogenesis is complex, with tumor suppressor and pro-oncogenic activities depending on the particular tumor cell and its stage in malignant progression. We previously have demonstrated in breast cancer cell lines that Smad2/3 signaling played a dominant role in mediating tumor suppressor effects on well-differentiated breast cancer cell lines grown as xenografts and prometastatic effects on a more invasive, metastatic cell line. Our present data based on selective interference with activation of endogenous Smad2 and Smad3 by stable expression of a mutant form of the TGF-beta type I receptor (RImL45) unable to bind Smad2/3 but with a functional kinase again show that reduction in Smad2/3 signaling by expression of RImL45 enhanced the malignancy of xenografted tumors of the well-differentiated MCF10A-derived tumor cell line MCF10CA1h, resulting in formation of larger tumors with a higher proliferative index and more malignant histologic features. In contrast, expression of RImL45 in the more aggressive MCF10CA1a cell line strongly suppressed formation of lung metastases following tail vein injection. These results suggest a causal, dominant role for the endogenous Smad2/3 signaling pathway in the tumor suppressor and prometastatic activities of TGF-beta in these cells. Using an in vitro assay, we further show that non-Smad signaling pathways, including p38 and c-Jun NH(2)-terminal kinase, cooperate with TGF-beta/Smads in enhancing migration of metastatic MCF10CA1a cells, but that, although necessary for migration, these other pathways are not sufficient for metastasis.
Collapse
Affiliation(s)
- Fang Tian
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA
| | | | | | | | | | | | | |
Collapse
|
334
|
Huntley SP, Davies M, Matthews JB, Thomas G, Marshall J, Robinson CM, Eveson JW, Paterson IC, Prime SS. Attenuated type II TGF-beta receptor signalling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. Int J Cancer 2004; 110:170-6. [PMID: 15069677 DOI: 10.1002/ijc.20111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined the effect of stable transfection of dominant negative TbetaR-II (dn TbetaR-II) cDNA in a human oral carcinoma cell line that contained normal Ras and was growth inhibited by TGF-beta1. Two clonal cell lines containing dn TbetaR-II were isolated and compared to the vector-only control and parent cell line. The treatment of cells with exogenous TGF-beta1 resulted in a decrease in ligand-induced growth inhibition and loss of c-myc downregulation in test cells compared to controls; transcriptional activation of certain genes including fra-1 and collagenase was retained. Cells containing dn TbetaR-II grew faster in monolayer culture, expressed less keratin 10 and exhibited increased motility and invasion in vitro compared to control cell lines. Endogenous TGF-beta1 production and the regulation of MMP-2 and MMP-9 by TGF-beta1 remained unchanged. After orthotopic transplantation to the floor of the mouth in athymic mice, cells containing dn TbetaR-II formed comparable numbers of primary tumours at the site of inoculation as controls but the tumours were less differentiated as demonstrated by the absence of keratin 10 immunostaining. Further, metastatic dissemination to the lungs and lymphatics was more evident in grafts of cells containing dn TbetaR-II than controls. Taken together, the results demonstrate that attenuation of TGF-beta signalling through transfection of dn TbetaR-II cDNA leads to an enhanced growth rate, a loss of tumour cell differentiation and an increase in migration and invasion, characteristics that corresponded to the development of the metastatic phenotype.
Collapse
Affiliation(s)
- Suzy P Huntley
- Department of Oral and Dental Science, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL. Overexpression of HER2 (erbB2) in Human Breast Epithelial Cells Unmasks Transforming Growth Factor β-induced Cell Motility. J Biol Chem 2004; 279:24505-13. [PMID: 15044465 DOI: 10.1074/jbc.m400081200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have examined overexpression of the human epidermal growth factor receptor 2 (HER2) to determine if it modifies the anti-proliferative effect of transforming growth factor (TGF)-beta against MCF-10A human mammary epithelial cells. Exogenous TGF-beta inhibited cell proliferation and induced Smad-dependent transcriptional reporter activity in both MCF-10A/HER2 and MCF-10A/vector control cells. Ligand-induced reporter activity was 7-fold higher in HER2-overexpressing cells. In wound closure and transwell assays, TGF-beta induced motility of HER2-transduced, but not control cells. The HER2-blocking antibody trastuzumab (Herceptin) prevented TGF-beta-induced cell motility. Expression of a constitutively active TGF-beta type I receptor (ALK5(T204D)) induced motility of MCF-10A/HER2 but not MCF-10A/vector cells. TGF-beta-induced motility was blocked by coincubation with either the phosphatidylinositol 3-kinase inhibitor LY294002, the mitogen-activated protein kinase (MAPK) inhibitor U0126, the p38 MAPK inhibitor SB202190, and an integrin beta(1) blocking antibody. Rac1 activity was higher in HER2-overexpressing cells, where both Rac1 and Pak1 proteins were constitutively associated with HER2. Both exogenous TGF-beta and transduction with constitutively active ALK5 enhanced this association. TGF-beta induced actin stress fibers as well as lamellipodia within the leading edge of wounds. Herceptin blocked basal and TGF-beta-stimulated Rac1 activity but did not repress TGF-beta-stimulated transcriptional reporter activity. These data suggest that 1) overexpression of HER2 in nontumorigenic mammary epithelial is permissive for the ability of TGF-beta to induce cell motility and Rac1 activity, and 2) HER2 and TGF-beta signaling cooperate in the induction of cellular events associated with tumor progression.
Collapse
MESH Headings
- Actins/metabolism
- Activin Receptors, Type I/metabolism
- Adenoviridae/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Blotting, Northern
- Breast Neoplasms/metabolism
- Bromodeoxyuridine/pharmacology
- Butadienes/pharmacology
- Cell Cycle
- Cell Division
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Chromones/pharmacology
- DNA, Complementary/metabolism
- Disease Progression
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Imidazoles/pharmacology
- Immunoblotting
- Integrin beta1/immunology
- Ligands
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Models, Genetic
- Morpholines/pharmacology
- Nitriles/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Precipitin Tests
- Protein Serine-Threonine Kinases
- Pseudopodia/metabolism
- Pyridines/pharmacology
- Receptor, ErbB-2/biosynthesis
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/metabolism
- Retroviridae/genetics
- Signal Transduction
- Transcription, Genetic
- Transforming Growth Factor beta/metabolism
- Trastuzumab
- Wound Healing
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yukiko Ueda
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
336
|
Maschler S, Grunert S, Danielopol A, Beug H, Wirl G. Enhanced tenascin-C expression and matrix deposition during Ras/TGF-beta-induced progression of mammary tumor cells. Oncogene 2004; 23:3622-33. [PMID: 15116096 DOI: 10.1038/sj.onc.1207403] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of tenascin-C (TN-C) in breast carcinomas has been associated with a migratory or even invasive tumor cell phenotype. The mechanisms regulating expression and matrix deposition of TN-C in normal and cancerous breast tissues are, however, little understood. Here, we demonstrate that mouse mammary epithelial cells (EpH4) transformed by oncogenic Ha-Ras (EpRas) overexpress TN-C, which accumulates in the cytoplasm. When EpRas cells undergo epithelial-mesenchymal transition (EMT) in response to TGFbeta1, they secrete TN-C into the culture medium. In EpRas cells undergoing TGFbeta1-induced EMT in three-dimensional (3D)-collagen gel cultures, TN-C was deposited into an extracellular matrix (ECM) already containing fibronectin and perlecan. Under less physiological 2D plastic cultures, EpRas cells undergoing EMT failed to deposit TN-C into an (apparently incomplete) ECM. Ras-downstream signaling was dissected by pharmacological inhibitors and effector-specific Ras mutants (V12S35, V12C40), specifically inhibiting or activating ERK/MAPK or PI3K signaling, respectively. We showed that TN-C overexpression required a hyperactive ERK/MAPK-signaling pathway, while elevated PI3K signaling did not enhance TN-C expression. Similarly, tumors induced by cells exhibiting hyperactive ERK/MAPK signaling showed expression of TN-C in the tumor cells themselves, while only endothelial cells expressed TN-C in tumors caused by the V12C40 mutant (incapable of EMT in vivo). Taken together, our data indicate that hyperactive ERK/MAPK signaling causes enhanced expression of TN-C, while its secretion is induced by TGFbeta1 and both signals cooperate in TN-C matrix deposition. Importantly, both signals also cooperate to induce EMT in vitro and tumor progression/metastasis in vivo.
Collapse
Affiliation(s)
- Sabine Maschler
- Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
337
|
Kopp JL, Wilder PJ, Desler M, Kim JH, Hou J, Nowling T, Rizzino A. Unique and selective effects of five Ets family members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the promoter of the type II transforming growth factor-beta receptor gene. J Biol Chem 2004; 279:19407-20. [PMID: 14976186 DOI: 10.1074/jbc.m314115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3, a member of the Ets transcription factor family. The TbetaR-II gene behaves as a tumor suppressor and it is expressed in nearly all cell types, whereas Elf3 is expressed primarily in epithelial cells. Hence, the TbetaR-II gene is likely to be regulated by other Ets proteins in nonepithelial cells. In this study, we examined the effects of four other Ets family members (Ets1, Ets2, PEA3, and PU.1) on TbetaR-II promoter/reporter constructs that contain the two essential ets sites of this gene. These studies employed F9 embryonal carcinoma cells and their differentiated cells, because transcription of the TbetaR-II gene increases after F9 cells differentiate. Here we demonstrate that Ets2, which is expressed in F9-differentiated cells along with Elf3, does not stimulate or bind to the TbetaR-II promoter in these cells. In contrast, PEA3 stimulates the TbetaR-II promoter in F9-differentiated cells, but it inhibits this promoter in F9 cells. Thus, the effects of PEA3 on the TbetaR-II promoter are cell context-dependent. We also show that the effects of Elf3 are cell context-dependent. Elf3 strongly stimulates the TbetaR-II promoter in F9-differentiated cells, but not in F9 cells. In contrast to Elf3 and PEA3, Ets1 strongly stimulates this promoter in both F9 cells and F9-differentiated cells. Finally, we show that PU.1 exerts little or no effect on the activity of the TbetaR-II promoter. Together, our findings indicate that Elf3 is not the only Ets protein capable of stimulating the TbetaR-II promoter. Importantly, our findings also indicate that each of the five Ets proteins influences the TbetaR-II promoter in a unique manner because of important differences in their biochemical properties or their patterns of cellular expression.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
338
|
Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, Yang G, Jin F, Zheng W. Genetic Polymorphisms in the TGF-β1 Gene and Breast Cancer Survival. Cancer Res 2004; 64:836-9. [PMID: 14871809 DOI: 10.1158/0008-5472.can-03-3492] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of genetic polymorphisms in the TGF-beta1 gene at codon 10 (T+29C), codon 25 (G+74C), and the promoter region [C --> T at -509 from the transcription site, (C-509T)] on breast cancer survival was evaluated among a cohort of 1111 patients. The median follow-up time for the cohort was 5.17 years after cancer diagnosis. No DNA sequence variation at codon 25 of the TGF-beta1 gene was found, whereas polymorphisms in C-509T and T+29C were in strong linkage disequilibrium. Patients who carried the C allele of T+29C polymorphism had a reduced 5-year disease-free survival rate (75.6% for T/C, and 78.2% for C/C) compared with the T/T genotype (85.1%; P, 0.04); the age-adjusted hazard ratio was 1.5 (95% confidence interval, 1.1-2.2). Adjustment for clinical prognostic factors slightly attenuated the association (hazard ratio, 1.4, 95% confidence interval, 1.0-1.9). Our study suggests that genetic polymorphisms in the TGF-beta1 gene may play a role in breast cancer progression.
Collapse
Affiliation(s)
- Xiao-Ou Shu
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK, Brugge JS. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A 2004; 101:1257-62. [PMID: 14739340 PMCID: PMC337040 DOI: 10.1073/pnas.0308090100] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MCF10A mammary epithelial cells form growth-arrested structures when cultured in three-dimensional basement membrane gels. Activation of the receptor tyrosine kinase ErbB2 induces formation of proliferative structures that share properties with noninvasive early stage lesions. We conducted a genetic screen to identify cDNAs that can cooperate with ErbB2 to induce migration in these cells, with the hypothesis that they would represent candidate "second hits" in the development of invasive breast carcinomas. We found that expression of transforming growth factor (TGF)beta1 and TGFbeta3 in cells expressing activated ErbB2 induces migration in transwell chambers and invasive behavior in both basement membrane cultures and invasion chambers. The ability of ErbB2 to cooperate with TGFbeta correlated with sustained, elevated activation of extracellular signal-regulated kinase (Erk)-mitogen-activated protein kinase. Pharmacological reduction of Erk activity inhibited the cooperative effect of TGFbeta and ErbB2 on migration and expression of activated Erk kinase was sufficient to cooperate with TGFbeta to induce migration and invasion, suggesting that sustained Erk activation is critical for ErbB2/TGFbeta cooperation. In addition, we show that costimulation of ErbB2 and TGFbeta induces autocrine secretion of factors that are sufficient to induce migration, but not invasion, by means of both epidermal growth factor receptor-dependent and -independent processes. These results support the role of TGFbeta as a pro-invasion factor in the progression of breast cancers with activated ErbB2 and suggest that activation of the Erk and epidermal growth factor receptor pathways are key in mediating these events.
Collapse
Affiliation(s)
- Sarah E Seton-Rogers
- Department of Cell Biology and Harvard Institute of Proteomics, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
340
|
Affiliation(s)
- Peter M Siegel
- Cancer Biology and Genetics Program, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
341
|
Wakefield LM, Yang Y, Dukhanina O, Tang B, Mamura M, Letterio JL, Green J, Merlino GT, Anver MR. Use of mouse models to validate and therapeutically target transforming growth factor beta as an important player in breast cancer progression. Breast Cancer Res 2003. [PMCID: PMC3300136 DOI: 10.1186/bcr675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
342
|
Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 2003; 100:8621-3. [PMID: 12861075 PMCID: PMC166359 DOI: 10.1073/pnas.1633291100] [Citation(s) in RCA: 601] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anita B Roberts
- Laboratory of Cell Regulation and Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA.
| | | |
Collapse
|