301
|
Abstract
Most patients with asthma are successfully treated with conventional therapy. Nevertheless, there is a small proportion of asthmatic patients, including present cigarette smokers and former cigarette smokers, who fail to respond well to therapy with high-dose glucocorticoids (GCs) or with supplementary therapy. In addition, high doses of steroids have a minimal effect on the inexorable decline in lung function in COPD patients and only a small effect on reducing exacerbations. GC insensitivity, therefore, presents a profound management problem in these patients. GCs act by binding to a cytosolic GC receptor (GR), which is subsequently activated and is able to translocate to the nucleus. Once in the nucleus, the GR either binds to DNA and switches on the expression of antiinflammatory genes or acts indirectly to repress the activity of a number of distinct signaling pathways such as nuclear factor (NF)-kappaB and activator protein (AP)-1. This latter step requires the recruitment of corepressor molecules. Importantly, this latter interaction is mutually repressive in that high levels of NF-kappaB and AP-1 attenuate GR function. A failure to respond may therefore result from reduced GC binding to GR, reduced GR expression, enhanced activation of inflammatory pathways, or lack of corepressor activity. These events can be modulated by oxidative stress, T-helper type 2 cytokines, or high levels of inflammatory mediators, all of which may lead to a reduced clinical outcome. Understanding the molecular mechanisms of GR action, and inaction, may lead to the development of new antiinflammatory drugs or may reverse the relative steroid insensitivity that is characteristic of patients with these diseases.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| | - Peter J Barnes
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
302
|
Chiloeches A, Sánchez-Pacheco A, Gil-Araujo B, Aranda A, Lasa M. Thyroid hormone-mediated activation of the ERK/dual specificity phosphatase 1 pathway augments the apoptosis of GH4C1 cells by down-regulating nuclear factor-kappaB activity. Mol Endocrinol 2008; 22:2466-80. [PMID: 18755855 DOI: 10.1210/me.2008-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormone (T3) plays a crucial role in processes such as cell proliferation and differentiation, whereas its implication on cellular apoptosis has not been well documented. Here we examined the effect of T3 on the apoptosis of GH4C1 pituitary cells and the mechanisms underlying this effect. We show that T3 produced a significant increase in apoptosis in serum-depleted conditions. This effect was accompanied by a decrease in nuclear factor-kappaB (NF-kappaB)-dependent transcription, IkappaBalpha phosphorylation, translocation of p65/NF-kappaB to the nucleus, phosphorylation, and transactivation. Moreover, these effects were correlated with a T3-induced decrease in the expression of antiapoptotic gene products, such as members of the inhibitor of apoptosis protein and Bcl-2 families. On the other hand, ERK but not c-Jun N-terminal kinase or MAPK p38, was activated upon exposure to T3, and inhibition of ERK alone abrogated T3-mediated apoptosis. In addition, T3 increased the expression of the MAPK phosphatase, dual specificity phosphatase 1 (DUSP1), in an ERK-dependent manner. Interestingly, the suppression of DUSP1 expression abrogated T3-induced inhibition of NF-kappaB-dependent transcription and p65/NF-kappaB translocation to the nucleus, as well as T3-mediated apoptosis. Overall, our results indicate that T3 induces apoptosis in rat pituitary tumor cells by down-regulating NF-kappaB activity through a mechanism dependent on the ERK/DUSP1 pathway.
Collapse
Affiliation(s)
- Antonio Chiloeches
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | |
Collapse
|
303
|
Ralph JA, Morand EF. MAPK phosphatases as novel targets for rheumatoid arthritis. Expert Opin Ther Targets 2008; 12:795-808. [PMID: 18554149 DOI: 10.1517/14728222.12.7.795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a challenge for therapeutic interventions due to complex inflammatory signalling pathways underlying its pathogenesis. The MAPK signalling network, a major effector limb of the inflammatory lesion, is an attractive therapeutic target. MAPK phosphatases (MKPs), endogenous negative regulators of MAPK signalling, have received increasing recognition as modulators of inflammatory and immune responses, and hence as a potential therapeutic avenue for RA. OBJECTIVE To present the rationale for therapeutically targeting MAPK signalling and explore the case for addressing MKP1 as a novel therapeutic strategy for RA. METHODS We summarise literature describing the importance of MAPK signalling in RA and review reports describing the roles of MKPs in modulating innate and adaptive immune responses. Finally we expand on the role of MKP1 in RA pathogenesis and explore data defining MKP1 as a mediator of glucocorticoid action. CONCLUSION MKP1 constitutes an exciting, novel potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jennifer A Ralph
- Monash University, Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, 246 Clayton Road, Clayton, Melbourne 3168, Australia
| | | |
Collapse
|
304
|
Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines. J Invest Dermatol 2008; 129:375-82. [PMID: 18704103 DOI: 10.1038/jid.2008.237] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Toll-like receptors (TLRs) on keratinocytes are important cell surface receptors involved in the innate and acquired immune response to invading microorganisms. In acne vulgaris, TLR2 activation by Propionibacterium acnes (P. acnes) may induce skin inflammation via induction of various proinflammatory molecules that stimulate the invasion of inflammatory cells. Although corticosteroids themselves exert immunosuppressive or anti-inflammatory effects, it is well known clinically that systemic or topical glucocorticoid treatment provokes an acneiform reaction. Nevertheless, the effect of steroids on TLR2 expression in human keratinocytes remains unknown. Here, we found that the addition of glucocorticoids, such as dexamethasone and cortisol, to cultured human keratinocytes increased their TLR2 gene expression. Moreover, these glucocorticoids markedly enhanced TLR2 gene expression, which was further stimulated by P. acnes, tumor necrosis factor-alpha, and IL-1alpha. Gene expression of mitogen-activated protein kinase (MAPK) phosphatase-1 was also increased by the addition of dexamethasone. By using several inhibitors and activators, we found that TLR2 gene induction by glucocorticoids was mediated by the suppression of p38 MAPK activity following induction of MAPK phosphatase-1. These findings strongly suggest that steroid-induced TLR2 together with P. acnes existing as normal resident flora plays an important role in the exacerbation of acne vulgaris as well as in possible induction of corticosteroid-induced acne or in that of rosacea-like dermatitis.
Collapse
|
305
|
Doni A, Mantovani G, Porta C, Tuckermann J, Reichardt HM, Kleiman A, Sironi M, Rubino L, Pasqualini F, Nebuloni M, Signorini S, Peri G, Sica A, Beck-Peccoz P, Bottazzi B, Mantovani A. Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells. J Biol Chem 2008; 283:29983-92. [PMID: 18703503 DOI: 10.1074/jbc.m805631200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTX3 (prototypic long pentraxin 3) is a fluid phase pattern recognition receptor, which plays nonredundant roles in the resistance against diverse pathogens, in the assembly of a hyaluronic acid-rich extracellular matrix, and in female fertility. Inflammatory signals induce production of PTX3 in diverse cell types, including myeloid dendritic cells (DC), fibroblasts, and endothelial cells (EC). The present study was designed to explore the effect of glucocorticoid hormones (GC) on PTX3 production in different cellular contexts. In myeloid DC, GC inhibited the PTX3 production. In contrast, in fibroblasts and EC, GC alone induced and, under inflammatory conditions, enhanced and extended PTX3 production. In vivo administration of GC augmented the blood levels of PTX3 in mice and humans. Moreover, patients with Cushing syndrome had increased levels of circulating PTX3, whereas PTX3 levels were decreased in subjects affected by iatrogenic hypocortisolism. In nonhematopoietic cells, GC receptor (GR) functioned as a ligand-dependent transcription factor (dimerization-dependent) to induce PTX3 gene expression. In contrast, in hematopoietic cells, GR repressed PTX3 gene transcription by interfering (dimerization-independent) with the action of other signaling pathways, probably NFkappaB and AP-1. Thus, divergent effects of GC were found to be due to different GR mechanisms. The results presented here indicate that GC have divergent effects on PTX3 production in hematopoietic (DC and macrophages) and nonhematopoietic (fibroblasts and EC) cells. The divergent effects of GC on PTX3 production probably reflect the different functions of this multifunctional molecule in innate immunity and in the construction of the extracellular matrix.
Collapse
Affiliation(s)
- Andrea Doni
- Istituto Clinico Humanitas, Istituto Di Ricerca Cura a Caratte Re Scientifico, Department of Immunology and Inflammation, Rozzano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
O'Neill LAJ. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 2008; 29:12-20. [PMID: 18631453 DOI: 10.1016/j.immuni.2008.06.004] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Toll-like receptor (TLR) signaling is subjected to crosstalk from other signals, with a resulting positive or negative effect. There is complex crosstalk between the NLR family of immune-regulatory molecules and TLRs, and C-type lectin receptors such as Dectin-1 synergize with TLR2 via the tyrosine kinase Syk. Bruton's tyrosine kinase plays an important positive role in TLR signaling, whereas the TAM family of receptor tyrosine kinases is inhibitory. The tyrosine phosphatase SHP1 has been shown to positively regulate induction of interferon-beta, whereas SHP2 inhibits the kinase TBK1, limiting this response. K63-linked polyubiquination has also been shown to be critical for the initiation of TLR signaling. Finally, glucocorticoids affect TLR signaling by inducing the phosphatase MKP1 and inhibiting TBK1 activation. These recent findings emphasize the importance of considering TLR signaling in the context of other signaling pathways, as is likely to occur in vivo during infection and inflammation.
Collapse
Affiliation(s)
- Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
307
|
Haffner MC, Jurgeit A, Berlato C, Geley S, Parajuli N, Yoshimura A, Doppler W. Interaction and functional interference of glucocorticoid receptor and SOCS1. J Biol Chem 2008; 283:22089-96. [PMID: 18524780 DOI: 10.1074/jbc.m801041200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokine and glucocorticoid (GC) hormone signaling act in an integrated fashion to control inflammation and immune response. Here we establish a new mode of interaction of these two pathways and propose Suppressor of Cytokine Signaling (SOCS)-1 as an essential player in mediating cross-talk. We observed that glucocorticoid receptor (GR) and SOCS1 form an intracellular complex through an interaction, which required the SH2 domain of SOCS1 and the ligand binding domain of GR. Furthermore, GC stimulation was found to increase the nuclear level of SOCS1. SOCS1 binding to the GR did not require ligand binding of the receptor; however, it was abolished after long term GC stimulation, suggesting a functional role of the interaction for the early phase of GC action. The interaction between GR and SOCS1 appeared to negatively influence the transcription of the two GR-regulated genes, FKBP5 and MKP1, because the GC-dependent expression of these genes was inhibited by the SOCS1 inducer IFNgamma and enhanced in SOCS1-deficient murine embryonic fibroblasts as compared with IFNgamma treated wild-type cells. Our results suggest a prominent role of SOCS1 in the early phase of cross-talk between GR and cytokine signaling.
Collapse
Affiliation(s)
- Michael C Haffner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
308
|
Retinoic acid utilizes CREB and USF1 in a transcriptional feed-forward loop in order to stimulate MKP1 expression in human immunodeficiency virus-infected podocytes. Mol Cell Biol 2008; 28:5785-94. [PMID: 18625721 DOI: 10.1128/mcb.00245-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef-induced podocyte proliferation and dedifferentiation via mitogen-activated protein kinase 1,2 (MAPK1,2) activation plays a role in human immunodeficiency virus (HIV) nephropathy pathogenesis. All-trans retinoic acid (atRA) reverses the HIV-induced podocyte phenotype by activating cyclic AMP (cAMP)/protein kinase A (PKA) and inhibiting MAPK1,2. Here we show that atRA, through cAMP and PKA, triggers a feed-forward loop involving CREB and USF1 to induce biphasic stimulation of MKP1. atRA stimulated CREB and USF1 binding to the MKP1 gene promoter, as shown by gel shifting and chromatin immunoprecipitation assays. CREB directly mediated the early phase of atRA-induced MKP1 stimulation; whereas the later phase was mediated by CREB indirectly through induction of USF1. These findings were confirmed by a reporter gene assay using the MKP1 promoter with mutation of CRE or Ebox binding sites. Consistent with these findings, the biological effects of atRA on podocytes were inhibited by silencing either MKP1, CREB, or USF1 with small interfering RNA. atRA also induced CREB phosphorylation and MKP1 expression and reduced MAPK1,2 phosphorylation in kidneys of HIV type 1-infected transgenic mice. We conclude that atRA induces sustained activation of MKP1 to suppress Nef-induced activation of the Src-MAPK1,2 pathway, thus returning the podocyte to a more differentiated state. The mechanism involves a feed-forward loop where activation of one transcription factor (TF) (CREB) leads to induction of a second TF (USF1).
Collapse
|
309
|
Fürst R, Zahler S, Vollmar AM. Dexamethasone-induced expression of endothelial mitogen-activated protein kinase phosphatase-1 involves activation of the transcription factors activator protein-1 and 3',5'-cyclic adenosine 5'-monophosphate response element-binding protein and the generation of reactive oxygen species. Endocrinology 2008; 149:3635-42. [PMID: 18403484 DOI: 10.1210/en.2007-1524] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently identified the MAPK phosphatase (MKP)-1 as a novel mediator of the antiinflammatory properties of glucocorticoids (dexamethasone) in the human endothelium. However, nothing is as yet known about the signaling pathways responsible for the up-regulation of MKP-1 by dexamethasone in endothelial cells. Knowledge of the molecular basis of this new alternative way of glucocorticoid action could facilitate the identification of new antiinflammatory drug targets. Thus, the aim of our study was to elucidate the underlying molecular mechanisms. Using Western blot analysis, we found that dexamethasone rapidly activates ERK, c-jun N-terminal kinase (JNK), and p38 MAPK in human umbilical vein endothelial cells. By applying the kinase inhibitors PD98059 (MAPK kinase-1) and SP600125 (JNK), ERK and JNK were shown to be crucial for the induction of MKP-1. Using EMSA and a decoy oligonucleotide approach, the transcription factors activator protein-1 (activated by ERK and JNK) and cAMP response element-binding protein (activated by ERK) were found to be involved in the up-regulation of MKP-1 by dexamethasone. Interestingly, dexamethasone induces the generation of reactive oxygen species (measured by dihydrofluorescein assay), which participate in the signaling process by triggering JNK activation. Our work elucidates a novel alternative mechanism for transducing antiinflammatory effects of glucocorticoids in the human endothelium. Thus, our study adds valuable information to the efforts made to find new antiinflammatory principles utilized by glucocorticoids. This might help to gain new therapeutic options to limit glucocorticoid side effects and to overcome resistance.
Collapse
Affiliation(s)
- Robert Fürst
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Butenandtstrasse 5-13, Munich, Germany.
| | | | | |
Collapse
|
310
|
Clark AR, Martins JRS, Tchen CR. Role of dual specificity phosphatases in biological responses to glucocorticoids. J Biol Chem 2008; 283:25765-9. [PMID: 18541529 DOI: 10.1074/jbc.r700053200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The powerful anti-inflammatory effects of glucocorticoids (GCs) have been known for more than sixty years, but their molecular mechanisms are still incompletely understood and hotly debated. The GC receptor (GR) was cloned in 1985 and shown to be a transcription factor. Initially, the anti-inflammatory actions of GCs were explained in terms of genes that were up-regulated by the receptor. However, none of these putative mediators seemed able to account for the spectrum of anti-inflammatory responses to GCs. The discovery of a negative regulatory function of GR then shifted the focus away from GC-induced genes as anti-inflammatory mediators. In recent years, attention has begun to move back toward the idea that the anti-inflammatory response to GCs is partially dependent on the positive regulation of gene expression by GR.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | | | |
Collapse
|
311
|
Diefenbacher M, Sekula S, Heilbock C, Maier JV, Litfin M, van Dam H, Castellazzi M, Herrlich P, Kassel O. Restriction to Fos family members of Trip6-dependent coactivation and glucocorticoid receptor-dependent trans-repression of activator protein-1. Mol Endocrinol 2008; 22:1767-80. [PMID: 18535250 DOI: 10.1210/me.2007-0574] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The term activator protein (AP)-1 describes homodimeric and heterodimeric transcription factors composed of members of the Jun, Fos, and cAMP response element-binding protein (CREB)/activating transcription factor (ATF) families of proteins. Distinct AP-1 dimers, for instance the prototypical c-Jun:c-Fos and c-Jun:ATF2 dimers, are differentially regulated by signaling pathways and bind related yet distinct response elements in the regulatory regions of AP-1 target genes. Little is known about the dimer-specific regulation of AP-1 activity at the promoter of its target genes. We have previously shown that nTrip6, the nuclear isoform of the LIM domain protein Trip6, acts as an AP-1 coactivator. Moreover, nTrip6 is an essential component of glucocorticoid receptor (GR)-mediated trans-repression of AP-1, in that it mediates the tethering of GR to the promoter-bound AP-1. We have now discovered a striking specificity of nTrip6 actions determined by the binding preference of its LIM domains. We show that nTrip6 interacts only with Fos family members. Consequently, nTrip6 is a selective coactivator for AP-1 dimers containing Fos. nTrip6 also assembles activated GR to c-Jun:c-Fos-driven promoters. Neither nTrip6 nor GR are recruited to a promoter occupied by c-Jun:ATF2. Thus, only Fos-containing dimers are trans-repressed by GR. Thus, the dimer composition of AP-1 determines the mechanism of both the positive and negative regulation of AP-1 transcriptional activity. Interestingly, on a second level of action, GR represses the increase in transcriptional activity of c-Jun:ATF2 induced by c-Jun N-terminal kinase (JNK)-dependent phosphorylation. This repression depends on GR-mediated induction of MAPK phosphatase 1 (MKP-1) expression, which results in c-Jun N-terminal kinase inactivation.
Collapse
Affiliation(s)
- Markus Diefenbacher
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz Platz 1, D- 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
There are ten mitogen-activated protein kinase (MAPK) phosphatases (MKPs) that act as negative regulators of MAPK activity in mammalian cells and these can be subdivided into three groups. The first comprises DUSP1/MKP-1, DUSP2/PAC1, DUSP4/MKP-2 and DUSP5/hVH-3, which are inducible nuclear phosphatases. With the exception of DUSP5, these MKPs display a rather broad specificity for inactivation of the ERK, p38 and JNK MAP kinases. The second group contains three closely related ERK-specific and cytoplasmic MKPs encoded by DUSP6/MKP-3, DUSP7/MKP-X and DUSP9/MKP-4. The final group consists of three MKPs DUSP8/hVH-5, DUSP10/MKP-5 and DUSP16/MKP-7 all of which preferentially inactivate the stress-activated p38 and JNK MAP kinases. Abnormal MAPK signalling will have important consequences for processes critical to the development and progression of human cancer. In addition, MAPK signalling also plays a key role in determining the response of tumour cells to conventional cancer therapies. The emerging roles of the dual-specificity MKPs in the regulation of MAPK activities in normal tissues has highlighted the possible pathophysiological consequences of either loss (or gain) of function of these enzymes as part of the oncogenic process. This review summarises the current evidence implicating the dual-specificity MKPs in the initiation and development of cancer and also on the outcome of treatment.
Collapse
Affiliation(s)
- Stephen M Keyse
- Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
313
|
Adcock IM, Ford PA, Bhavsar P, Ahmad T, Chung KF. Steroid resistance in asthma: mechanisms and treatment options. Curr Allergy Asthma Rep 2008; 8:171-8. [PMID: 18417060 DOI: 10.1007/s11882-008-0028-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucocorticoid insensitivity presents a profound management problem in patients with asthma because conventional therapies are not effective. Glucocorticoids, acting through the glucocorticoid receptor (GR), are able to selectively repress inflammatory gene expression by utilizing several distinct mechanisms targeting nuclear factor-varphiB and activator protein-1 activation complexes and by effects on mitogen-activated protein kinases. Different model systems often activate distinct sets of signaling molecules and different glucocorticoid responsiveness may result from differences in concentrations and timing of steroid treatment of cells, GR expression levels, and the precise inflammatory stimulus used. Thus, abnormal activation of many signaling pathways may affect corticosteroid responsiveness in patients with corticosteroid-resistant asthma. Understanding the molecular mechanisms of GR action and inaction may lead to the development of new anti-inflammatory drugs or enable clinicians to reverse the relative steroid-insensitivity that is characteristic of some patients with severe asthma.
Collapse
Affiliation(s)
- Ian M Adcock
- Cell and Molecular Biology, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK.
| | | | | | | | | |
Collapse
|
314
|
Chiarella P, Vulcano M, Bruzzo J, Vermeulen M, Vanzulli S, Maglioco A, Camerano G, Palacios V, Fernández G, Brando RF, Isturiz MA, Dran GI, Bustuoabad OD, Ruggiero RA. Anti-inflammatory pretreatment enables an efficient dendritic cell-based immunotherapy against established tumors. Cancer Immunol Immunother 2008; 57:701-18. [PMID: 17962945 PMCID: PMC11030084 DOI: 10.1007/s00262-007-0410-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/19/2007] [Indexed: 01/20/2023]
Abstract
Although animals can be immunized against the growth of some tumor implants, most of the attempts to use immunotherapy to cause the regression of animal and human tumors once they have become established have been disappointing even when strongly immunogenic tumors were used as target. In this paper, we demonstrate that the failure to achieve an efficient immunological treatment against an established strongly immunogenic murine fibrosarcoma was paralleled with the emergence of a state of immunological unresponsiveness (immunological eclipse) against tumor antigens observed when the tumor surpassed the critical size of 500 mm(3). In turn, the onset of the immunological eclipse was coincidental with the onset of a systemic inflammatory condition characterized by a high number of circulating and splenic polymorphonucleated neutrophils (PMN) displaying activation and Gr1(+)Mac1(+) phenotype and an increasing serum concentration of the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 cytokines and C-reactive protein (CRP) and serum A amyloid (SAA) phase acute proteins. Treatment of tumor-bearing mice with a single low dose (0.75 mg/kg) of the synthetic corticoid dexamethasone (DX) significantly reduced all the systemic inflammatory parameters and simultaneously reversed the immunological eclipse, as evidenced by the restoration of specific T-cell-dependent concomitant immunity, ability of spleen cells to transfer anti-tumor activity and recovery of T-cell signal transduction molecules. Two other anti-inflammatory treatments by using indomethacin or dimeric TNF-alpha receptor, also partially reversed the immunological eclipse although the effect was not as striking as that observed with DX. The reversion of the immunological eclipse was not enough on its own to inhibit the primary growing tumor. However, when we used the two-step strategy of inoculating DX to reverse the eclipse and then dendritic cells loaded with tumor antigens (DC) as an immunization booster, a significant inhibition of the growth of both established tumors and remnant tumor cells after excision of large established tumors was observed, despite the fact that the vaccination alone (DC) had no effect or even enhanced tumor growth in certain circumstances. The two-step strategy of tumor immunotherapy that we present is based on the rationale that it is necessary to eliminate or ameliorate the immunological eclipse as a precondition to allow an otherwise ineffective anti-tumor immunological therapy to have a chance to be successful.
Collapse
Affiliation(s)
- Paula Chiarella
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Marisa Vulcano
- División Inmunología, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
- Present Address: Research Laboratory in Immunology and Inflammation, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Juan Bruzzo
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Mónica Vermeulen
- División Inmunología Oncológica, Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Silvia Vanzulli
- Instituto de Estudios Oncológicos (IEO), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Andrea Maglioco
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Gabriela Camerano
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Víctor Palacios
- Centro de Estudio y Tratamiento Oncológico (CETRO), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Gabriela Fernández
- División Inmunología, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Romina Fernández Brando
- División Inmunología, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Martín A. Isturiz
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
- División Inmunología, Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Graciela I. Dran
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Oscar D. Bustuoabad
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| | - Raúl A. Ruggiero
- División Medicina Experimental (ILEX CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425 Buenos Aires, Argentina
| |
Collapse
|
315
|
Kang BN, Jude JA, Panettieri RA, Walseth TF, Kannan MS. Glucocorticoid regulation of CD38 expression in human airway smooth muscle cells: role of dual specificity phosphatase 1. Am J Physiol Lung Cell Mol Physiol 2008; 295:L186-93. [PMID: 18441094 DOI: 10.1152/ajplung.00352.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The enzymatic activity of CD38, ADP-ribosyl cyclase, synthesizes the calcium mobilizing molecule cyclic ADP-ribose from beta-NAD. In human airway smooth muscle (HASM) cells, CD38 expression is augmented by the inflammatory cytokine, TNF-alpha, causing increased intracellular calcium response to agonists. The transcriptional and posttranscriptional regulation of CD38 expression involves signaling through MAPKs and requires activation of NF-kappaB and activator protein-1 (AP-1). The cytokine-augmented CD38 expression is decreased by anti-inflammatory glucocorticoids due to inhibition of NF-kappaB activation and other mechanisms. In this study, we investigated glucocorticoid regulation of CD38 expression in HASM cells through the MKP-1. In HASM cells, dexamethasone and TNF-alpha induced MKP-1 expression (both mRNA and protein) rapidly. Dexamethasone decreased TNF-alpha-induced phosphorylation of the major MAPKs, i.e., ERK, p38, and JNK, and decreased the activation of NF-kappaB and AP-1. Dexamethasone also decreased CD38 expression induced by TNF-alpha, and part of this effect was attributable to decreased transcript stability. In cells transfected with MKP-1-specific small interfering RNAs (siRNAs), there was significant attenuation of MKP-1 expression and partial, but nonsignificant, reversal of dexamethasone inhibition of CD38 expression. These results indicate that regulation of CD38 expression in HASM cells by glucocorticoids involves decreased signaling through MAPKs and activation of transcription factors. The glucocorticoid effects on decreased CD38 expression and function result from regulation through transcription and transcript stability.
Collapse
Affiliation(s)
- Bit Na Kang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
316
|
Mechanisms of disease: macrophage migration inhibitory factor in SLE, RA and atherosclerosis. ACTA ACUST UNITED AC 2008; 4:98-105. [PMID: 18235539 DOI: 10.1038/ncprheum0701] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023]
Abstract
The past decade has seen the emergence of two new paradigms in inflammatory disease: first, cardiovascular complications of atherosclerosis are markedly increased in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE); and second, inflammatory mechanisms are important in the pathogenesis of atherosclerosis. These concurrent developments have lead to the concept that inflammatory mediators operative in RA and SLE might be causal in the accelerated atherosclerosis observed, a concept supported by clinical studies showing that this acceleration is not fully explained by traditional vascular risk factors. Separate lines of evidence implicate the cytokine macrophage migration inhibitory factor (MIF) in RA, SLE, and atherosclerosis. Several reports have revealed definitive in vivo evidence of the activity of MIF in a model of SLE, demonstrated a novel role for MIF in monocyte/macrophage recruitment, and showed that MIF regulates a key mediator of inflammatory cell activation. Together with evidence that MIF circulates in increased concentrations in patients with RA and SLE, this information suggests that in addition to contributing to each disease, MIF might contribute directly to the acceleration of atherosclerosis in RA and SLE.
Collapse
|
317
|
Pulido R, van Huijsduijnen RH. Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 2008; 275:848-66. [DOI: 10.1111/j.1742-4658.2008.06250.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
318
|
Stellato C. Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets. J Allergy Clin Immunol 2008; 120:1247-63; quiz 1264-5. [PMID: 18073120 DOI: 10.1016/j.jaci.2007.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/27/2022]
Abstract
Research on the biology of airway epithelium in the last decades has progressively uncovered the many roles of this cell type during the immune response. Far from the early view of the epithelial layer simply as a passive barrier, the airway epithelium is now considered a central player in mucosal immunity, providing innate mechanisms of first-line host defense as well as facilitating adaptive immune responses. Alterations of the epithelial phenotype are primarily involved in the pathogenesis of allergic airways disease, particularly in severe asthma. Appreciation of the epithelium as target of glucocorticoid therapy has also grown, because of studies defining the pathways and mediators affected by glucocorticoids, and studies illustrating the relevance of the control of the response from epithelium in the overall efficacy of topical and systemic therapy with glucocorticoids. Studies of the mechanism of action of glucocorticoids within the biology of the immune response of the epithelium have uncovered mechanisms of gene regulation involving both transcriptional and posttranscriptional events. The view of epithelium as therapeutic target therefore has plenty of room to evolve, as new knowledge on the role of epithelium in immunity is established and novel pathways mediating glucocorticoid regulation are elucidated.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
319
|
Donet E, Bosch P, Sanchis A, Bayo P, Ramírez A, Cascallana JL, Bravo A, Pérez P. Transrepression function of the glucocorticoid receptor regulates eyelid development and keratinocyte proliferation but is not sufficient to prevent skin chronic inflammation. Mol Endocrinol 2008; 22:799-812. [PMID: 18174358 DOI: 10.1210/me.2007-0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) play a key role in skin homeostasis and stress responses acting through the GC receptor (GR), which modulates gene expression by DNA binding-dependent (transactivation) and -independent (transrepression) mechanisms. To delineate which mechanisms underlie the beneficial and adverse effects mediated by GR in epidermis and other epithelia, we have generated transgenic mice that express a mutant GR (P493R, A494S), which is defective for transactivation but retains transrepression activity, under control of the keratin 5 promoter (K5-GR-TR mice). K5-GR-TR embryos exhibited eyelid opening at birth and corneal defects that resulted in corneal opacity in the adulthood. Transgenic embryos developed normal skin, although epidermal atrophy and focal alopecia was detected in adult mice. GR-mediated transrepression was sufficient to inhibit keratinocyte proliferation induced by acute and chronic phorbol 12-myristate 13-acetate exposure, as demonstrated by morphometric analyses, bromodeoxyuridine incorporation, and repression of keratin 6, a marker of hyperproliferative epidermis. These antiproliferative effects were mediated through negative interference of GR with MAPK/activator protein-1 and nuclear factor-kappaB activities, although these interactions occurred with different kinetics. However, phorbol 12-myristate 13-acetate-induced inflammation was only partially inhibited by GR-TR, which efficiently repressed IL-1beta and MMP-3 genes while weakly repressing IL-6 and TNF-alpha. Our data highlight the relevance of deciphering the mechanisms underlying GR actions on epithelial morphogenesis as well as for its therapeutic use to identify more restricted targets of GC administration.
Collapse
Affiliation(s)
- Eva Donet
- Centro de Investigación Príncipe Felipe, E-46013 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Kaur M, Chivers JE, Giembycz MA, Newton R. Long-acting beta2-adrenoceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol Pharmacol 2008; 73:203-14. [PMID: 17901197 DOI: 10.1124/mol.107.040121] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Addition of an inhaled long-acting beta(2)-adrenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) is more effective at improving asthma control and reducing exacerbations than increasing the dose of ICS. Given that LABA monotherapy is not anti-inflammatory, pathways may exist by which LABAs enhance ICS actions. In the current study, the glucocorticoid dexamethasone had no effect on beta(2)-adrenoceptor agonist-induced cAMP-response element-dependent transcription in the human bronchial epithelial cell line BEAS-2B. In contrast, simple glucocorticoid response element (GRE)-dependent transcription induced by dexamethasone, budesonide, and fluticasone was synergistically enhanced by beta(2)-adrenoceptor agonists, including salmeterol and formoterol, to a level that could not be achieved by glucocorticoid alone. This enhancement was mimicked by other cAMP-elevating agents, and a cAMP mimetic, and was blocked by an inhibitor of cAMP-dependent protein kinase (PKA). Thus, beta(2)-adrenoceptor agonists synergistically enhance simple GRE-dependent transcription via the classical cAMP-PKA pathway. Consistent with the clinical situation, the addition of a beta(2)-adrenoceptor agonist to a glucocorticoid is steroid-sparing in that maximal GRE-dependent responses, evoked by glucocorticoid, are achieved at approximately 10-fold lower concentrations in the presence of beta(2)-adrenoceptor agonist. Finally, analysis of dexamethasone-inducible genes, including glucocorticoid-inducible leucine zipper (GILZ), aminopeptidase N, FKBP51, PAI-1, tristetraprolin, DNB5, p57KIP2, metallothionein 1X, and MKP-1, revealed enhanced inducibility of some genes by glucocorticoid/beta(2)-adrenoceptor agonist combinations in a manner that was consistent with the GRE-reporter. Because such effects also occur in primary human airway smooth muscle cells, we propose that enhancement of glucocorticoid-inducible gene expression may contribute to the superior efficacy of LABA/ICS combination therapies, over ICS alone, in asthma treatment.
Collapse
Affiliation(s)
- Manminder Kaur
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Canada
| | | | | | | |
Collapse
|
321
|
Giembycz MA, Kaur M, Leigh R, Newton R. A Holy Grail of asthma management: toward understanding how long-acting beta(2)-adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br J Pharmacol 2007; 153:1090-104. [PMID: 18071293 DOI: 10.1038/sj.bjp.0707627] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is unequivocal evidence that the combination of an inhaled corticosteroid (ICS) -- i.e. glucocorticoid -- and an inhaled long-acting beta(2)-adrenoceptor agonist (LABA) is superior to each component administered as a monotherapy alone in the clinical management of asthma. Moreover, Calverley and colleagues (Lancet 2003, 361: 449-456; N Engl J Med 2007, 356: 775-789) reporting for the 'TRial of Inhaled STeroids ANd long-acting beta(2)-agonists (TRISTAN)' and 'TOwards a Revolution in COPD Health (TORCH)' international study groups also demonstrated the superior efficacy of LABA/ICS combination therapies over ICS alone in the clinical management of chronic obstructive pulmonary disease. This finding has been independently confirmed indicating that the therapeutic benefit of LABA/ICS combination therapies is not restricted to asthma and may be extended to other chronic inflammatory diseases of the airways. Despite the unquestionable benefit of LABA/ICS combination therapies, there is a vast gap in our understanding of how these two drugs given together deliver superior clinical efficacy. In this article, we review the history of LABA/ICS combination therapies and critically evaluate how these two classes of drugs might interact at the biochemical level to suppress pro-inflammatory responses. Understanding the molecular basis of this fundamental clinical observation is a Holy Grail of current respiratory diseases research as it could permit the rational exploitation of this effect with the development of new 'optimized' LABA/ICS combination therapies.
Collapse
Affiliation(s)
- M A Giembycz
- Department of Pharmacology and Therapeutics, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
322
|
Horsch K, de Wet H, Schuurmans MM, Allie-Reid F, Cato ACB, Cunningham J, Burrin JM, Hough FS, Hulley PA. Mitogen-activated protein kinase phosphatase 1/dual specificity phosphatase 1 mediates glucocorticoid inhibition of osteoblast proliferation. Mol Endocrinol 2007; 21:2929-40. [PMID: 17761948 PMCID: PMC2838148 DOI: 10.1210/me.2007-0153] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Steroid-induced osteoporosis is a common side effect of long-term treatment with glucocorticoid (GC) drugs. GCs have multiple systemic effects that may influence bone metabolism but also directly affect osteoblasts by decreasing proliferation. This may be beneficial at low concentrations, enhancing differentiation. However, high-dose treatment produces a severe deficit in the proliferative osteoblastic compartment. We provide causal evidence that this effect of GC is mediated by induction of the dual-specificity MAPK phosphatase, MKP-1/DUSP1. Excessive MKP-1 production is both necessary and sufficient to account for the impaired osteoblastic response to mitogens. Overexpression of MKP-1 after either GC treatment or transfection ablates the mitogenic response in osteoblasts. Knockdown of MKP-1 using either immunodepletion of MKP-1 before in vitro dephosphorylation assay or short interference RNA transfection prevents inactivation of ERK by GCs. Neither c-jun N-terminal kinase nor p38 MAPK is activated by the mitogenic cocktail in 20% fetal calf serum, but their activation by a DNA-damaging agent (UV irradiation) was inhibited by either GC treatment or overexpression of MKP-1, indicating regulation of all three MAPKs by MKP-1 in osteoblasts. However, an inhibitor of the MAPK/ERK kinase-ERK pathway inhibited osteoblast proliferation whereas inhibitors of c-jun N-terminal kinase or p38 MAPK had no effect, suggesting that ERK is the MAPK that controls osteoblast proliferation. Regulation of ERK by MKP-1 provides a novel mechanism for control of osteoblast proliferation by GCs.
Collapse
Affiliation(s)
- Kay Horsch
- Division of Endocrinology and Metabolism, Department of Medicine, University of Stellenbosch, Stellenbosch 7505, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
One principal aim of research in the signal transduction field is to identify targets for therapeutic intervention, in an attempt to modify disease and curtail human suffering. Diseases such as chronic inflammation, atherosclerosis, diabetes and cancer exact a huge toll on health, in physical, social and financial terms. Defective signaling mechanisms are central to their pathogenesis. One candidate signaling molecule that is presently undergoing intense investigation is the c-Jun N-terminal kinase. With roles described in almost all classes of disease, the main questions are what type of inhibitor to use and when exactly to use it during the disease course?
Collapse
Affiliation(s)
- Baljinder Salh
- University of British Columbia, Department of Medicine, Vancouver, BC, Canada.
| |
Collapse
|
324
|
Abstract
Multiple dental diseases are characterized by chronic inflammation, due to the production of cytokines, chemokines, and prostanoids by immune and non-immune cells. Membrane-bound receptors provide a link between the extracellular environment and the initiation of intracellular signaling events that activate common signaling components, including p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor (NF)-kappaB. Although ERK pathways regulate cell survival and are responsive to extracellular mitogens, p38 MAPK, JNK, and NF-kappaB are involved in environmental stress responses, including inflammatory stimuli. Over the past decade, significant advances have been made relative to our understanding of the fundamental intracellular signaling mechanisms that govern inflammatory cytokine expression. The p38 MAPK pathway has been shown to play a pivotal role in inflammatory cytokine and chemokine gene regulation at both the transcriptional and the post-transcriptional levels. In this review, we present evidence for the significance of p38 MAPK signaling in diverse dental diseases, including chronic pain, desquamative disorders, and periodontal diseases. Additional information is presented on the molecular mechanisms whereby p38 signaling controls post-transcriptional gene expression in inflammatory states.
Collapse
Affiliation(s)
- C S Patil
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214-3008, USA
| | | |
Collapse
|
325
|
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 2007; 72:799-809. [PMID: 17622575 DOI: 10.1124/mol.107.038794] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-kappaB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | |
Collapse
|
326
|
Kleiman A, Tuckermann JP. Glucocorticoid receptor action in beneficial and side effects of steroid therapy: lessons from conditional knockout mice. Mol Cell Endocrinol 2007; 275:98-108. [PMID: 17587493 DOI: 10.1016/j.mce.2007.05.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/12/2007] [Accepted: 05/12/2007] [Indexed: 01/19/2023]
Abstract
Glucocorticoids (GCs) are potent immune suppressive drugs with unfortunately severe side effects. Different molecular modes of actions of the GC receptor (GR) have been identified. Transcriptional transactivation by binding of a dimerized GR protein complex to the promoter of GC regulated genes or interference with activity of pro-inflammatory transcription factors by GR monomers are considered as the two major mechanisms. It has been hypothesized that selective GR agonists (SEGRAs) addressing dimer-independent function would reveal potent steroid therapeutic activity with reduced side effects. Recent studies of a mouse knock-in strain with a dimerization-deficient GR demonstrate that some inflammatory processes can be suppressed by GCs, while others cannot. Also side effects of GCs occur in these mice. Thus, depending on the process that is treated, SEGRA could be therapeutically more or less effective and not all side effects of steroid therapy may be reduced.
Collapse
Affiliation(s)
- Anna Kleiman
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Group of Tissue specific Hormone Action, Beutenberg Str. 11, D-07745 Jena, Germany
| | | |
Collapse
|
327
|
Chinenov Y, Rogatsky I. Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol 2007; 275:30-42. [PMID: 17576036 DOI: 10.1016/j.mce.2007.04.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 04/28/2007] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are responsible for the recognition of a variety of microbial pathogens and the initial induction of immune and inflammatory responses. These responses are normally restricted by the adrenally produced glucocorticoid hormones which provide a feedback mechanism to curb unabated inflammation. Glucocorticoids act through a ligand-dependent transcription factor-the glucocorticoid receptor (GR), which engages in a complex network of protein:protein and protein:DNA interactions ultimately activating or repressing target gene transcription. Not surprisingly, multiple mechanisms account for the glucocorticoid interference with TLR signaling including enhanced expression of the natural inhibitors of TLR pathways, direct repression of TLR-activated transcriptional regulators and cross-utilization of cofactors essential for both GR and TLR signaling. Here we discuss recent and unexpected examples of crosstalk between the two transcriptional networks and the emerging role of GR in the regulation of innate immunity.
Collapse
Affiliation(s)
- Yurii Chinenov
- Hospital for Special Surgery, Department of Microbiology & Immunology, Weill Medical College of Cornell University, 535 E70th Street, Research Building Room 425, New York, NY 10021,USA
| | | |
Collapse
|
328
|
Clark AR. Anti-inflammatory functions of glucocorticoid-induced genes. Mol Cell Endocrinol 2007; 275:79-97. [PMID: 17561338 DOI: 10.1016/j.mce.2007.04.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 04/25/2007] [Indexed: 01/12/2023]
Abstract
There is a broad consensus that glucocorticoids (GCs) exert anti-inflammatory effects largely by inhibiting the function of nuclear factor kappaB (NFkappaB) and consequently the transcription of pro-inflammatory genes. In contrast, side effects are thought to be largely dependent on GC-induced gene expression. Biochemical and genetic evidence suggests that the positive and negative effects of GCs on transcription can be uncoupled from one another. Hence, novel GC-related drugs that mediate inhibition of NFkappaB but do not activate gene expression are predicted to retain therapeutic effects but cause fewer or less severe side effects. Here, we critically re-examine the evidence in favor of the consensus, binary model of GC action and discuss conflicting evidence, which suggests that anti-inflammatory actions of GCs depend on the induction of anti-inflammatory mediators. We propose an alternative model, in which GCs exert anti-inflammatory effects at both transcriptional and post-transcriptional levels, both by activating and inhibiting expression of target genes. The implications of such a model in the search for safer anti-inflammatory drugs are discussed.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| |
Collapse
|
329
|
Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 2007; 8:205. [PMID: 17603917 PMCID: PMC1929075 DOI: 10.1186/1471-2164-8-205] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/01/2007] [Indexed: 01/27/2023] Open
Abstract
Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies.
Collapse
|
330
|
Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal 2007; 19:1372-82. [PMID: 17512700 PMCID: PMC2203964 DOI: 10.1016/j.cellsig.2007.03.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/29/2007] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein (MAP) kinase cascades are signal transduction pathways that play pivotal regulatory roles in the biosynthesis of pro-inflammatory cytokines. MAP kinase phosphatase (MKP)-1, an archetypal member of the MKP family, is essential for the dephosphorylation/deactivation of MAP kinases p38 and JNK. Earlier studies conducted using cultured immortalized macrophages provided compelling evidence indicating that MKP-1 deactivates p38 and JNK, thereby limiting pro-inflammatory cytokine biosynthesis in innate immune cells exposed to microbial components. Recent studies employing MKP-1 knockout mice have confirmed the central function of MKP-1 in the feedback control of p38 and JNK activity as well as the crucial physiological function of MKP-1 as a negative regulator of the synthesis of pro-inflammatory cytokines in vivo. MKP-1 was shown to be a major feedback regulator of the innate immune response and to play a critical role in preventing septic shock and multi-organ dysfunction during pathogenic infection. In this review, we will update the studies on the biochemical properties and the regulation of MKP-1, and summarize our understanding on the physiological function of this key phosphatase in the innate immune response.
Collapse
Affiliation(s)
- Xianxi Wang
- Center for Perinatal Research, Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | |
Collapse
|
331
|
Jeffrey KL, Camps M, Rommel C, Mackay CR. Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 2007; 6:391-403. [PMID: 17473844 DOI: 10.1038/nrd2289] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dual-specificity phosphatases (DUSPs) are a subset of protein tyrosine phosphatases, many of which dephosphorylate threonine and tyrosine residues on mitogen-activated protein kinases (MAPKs), and hence are also referred to as MAPK phosphatases (MKPs). The regulated expression and activity of DUSP family members in different cells and tissues controls MAPK intensity and duration to determine the type of physiological response. For immune cells, DUSPs regulate responses in both positive and negative ways, and DUSP-deficient mice have been used to identify individual DUSPs as key regulators of immune responses. From a drug discovery perspective, DUSP family members are promising drug targets for manipulating MAPK-dependent immune responses in a cell-type and disease-context-dependent manner, to either boost or subdue immune responses in cancers, infectious diseases or inflammatory disorders.
Collapse
Affiliation(s)
- Kate L Jeffrey
- Immunology and Inflammation Research Program, The Garvan Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | |
Collapse
|
332
|
Abstract
Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) are protein phosphatases that dephosphorylate both the phosphothreonine and phosphotyrosine residues on activated MAPKs. Removal of the phosphates renders MAPKs inactive, effectively halting their cellular function. In recent years, evidence has emerged that, similar to MAPKs, MKPs are pivotal in the regulation of immune responses. By deactivating MAPKs, MKPs can modulate both innate and adaptive immunity. A number of immunomodulatory agents have been found to influence the expression of MKP1 in particular, highlighting the central role of this phosphatase in immune regulation. This Review discusses the properties, function and regulation of MKPs during immune responses.
Collapse
Affiliation(s)
- Yusen Liu
- Center for Perinatal Research, Columbus Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, USA.
| | | | | |
Collapse
|
333
|
Saban R, D'Andrea MR, Andrade-Gordon P, Derian CK, Dozmorov I, Ihnat MA, Hurst RE, Simpson C, Saban MR. Regulatory network of inflammation downstream of proteinase-activated receptors. BMC PHYSIOLOGY 2007; 7:3. [PMID: 17397547 PMCID: PMC1853107 DOI: 10.1186/1472-6793-7-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 03/30/2007] [Indexed: 12/13/2022]
Abstract
Background Protease-activated receptors (PAR) are present in the urinary bladder, and their expression is altered in response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in inflammation, the effect of PAR activation on the downstream transcriptome is unknown. We have shown that intravesical administration of PAR-activating peptides leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS), substance P (SP), and antigen was strongly attenuated by PAR1- and to a lesser extent by PAR2-deficiency. Results Here, cDNA array experiments determined inflammatory genes whose expression is dependent on PAR1 activation. For this purpose, we compared the alteration in gene expression in wild type and PAR1-/- mice induced by classical pro-inflammatory stimuli (LPS, SP, and antigen). 75 transcripts were considered to be dependent on PAR-1 activation and further annotated in silico by Ingenuity Pathways Analysis (IPA) and gene ontology (GO). Selected transcripts were target validated by quantitative PCR (Q-PCR). Among PAR1-dependent transcripts, the following have been implicated in the inflammatory process: b2m, ccl7, cd200, cd63, cdbpd, cfl1, dusp1, fkbp1a, fth1, hspb1, marcksl1, mmp2, myo5a, nfkbia, pax1, plaur, ppia, ptpn1, ptprcap, s100a10, sim2, and tnfaip2. However, a balanced response to signals of injury requires a transient cellular activation of a panel of genes together with inhibitory systems that temper the overwhelming inflammation. In this context, the activation of genes such as dusp1 and nfkbia seems to counter-balance the inflammatory response to PAR activation by limiting prolonged activation of p38 MAPK and increased cytokine production. In contrast, transcripts such as arf6 and dcnt1 that are involved in the mechanism of PAR re-sensitization would tend to perpetuate the inflammatory reaction in response to common pro-inflammatory stimuli. Conclusion The combination of cDNA array results and genomic networks reveals an overriding participation of PAR1 in bladder inflammation, provides a working model for the involvement of downstream signaling, and evokes testable hypotheses regarding the transcriptome downstream of PAR1 activation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestation of cystitis.
Collapse
Affiliation(s)
- Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael R D'Andrea
- J&J Pharmaceutical Research and Development Spring House, PA 19477-0776, USA
| | | | - Claudia K Derian
- J&J Pharmaceutical Research and Development Spring House, PA 19477-0776, USA
| | - Igor Dozmorov
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray/Euk. Genomics Core Facility, Oklahoma City, Oklahoma 73104, USA
| | - Michael A Ihnat
- Department of Cell Biology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Cindy Simpson
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
334
|
Löwenberg M, Verhaar AP, van den Brink GR, Hommes DW. Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression. Trends Mol Med 2007; 13:158-63. [PMID: 17293163 DOI: 10.1016/j.molmed.2007.02.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/23/2007] [Accepted: 02/01/2007] [Indexed: 01/28/2023]
Abstract
Glucocorticoids were long believed to exert their effects through transcriptional regulation of glucocorticoid-receptor target genes. However, there is accumulating evidence for nongenomic glucocorticoid-receptor-dependent modulation of signal transduction pathways. Here, we review rapid glucocorticoid activities and focus on a novel mechanism that underlies nongenomic glucocorticoid-induced immunosuppression in T cells. The findings demonstrate a physical and functional interaction between the glucocorticoid receptor and the T-cell receptor (TCR) complex. In its unligated state, the glucocorticoid receptor has an important role in TCR signaling but, after glucocorticoid-receptor-ligand binding (caused by short-term treatment with the synthetic glucocorticoid dexamethasone), the TCR complex is disrupted, leading to impaired TCR signaling. These data reveal a dichotomal functional role for glucocorticoid receptors: one in the cytosol as part of the TCR complex and the other as a nuclear regulator of gene transcription. Drugs that selectively target membrane-bound glucocorticoid receptors might represent a novel immunosuppressive approach.
Collapse
Affiliation(s)
- Mark Löwenberg
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
335
|
Salojin K, Oravecz T. Regulation of innate immunity by MAPK dual-specificity phosphatases: knockout models reveal new tricks of old genes. J Leukoc Biol 2007; 81:860-9. [PMID: 17289800 DOI: 10.1189/jlb.1006639] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive measures against bacterial and viral pathogens and protective measures against unwarranted destruction of the host by the activated immune system. Kinases and phosphatases encompassing the MAPK pathway are key players in the orderly action of pro- and anti-inflammatory processes, forming numerous promiscuous interactions. Several lines of evidence demonstrate that the phosphorylation and activation status of kinases in the MAPK system has crucial impact on the outcome of downstream events that regulate cytokine production. At least 13 members of the family of dual-specificity phosphatases (DUSP) display unique substrate specificities for MAPKs. Despite the considerable amount of information obtained about the contribution of the different DUSP to MAPK-mediated signaling and innate immunity, the interpretation of available data remains problematic. The in vitro and ex vivo findings are often complicated by functional redundancy of signaling molecules and do not always accurately predict the situation in vivo. Until recently, DUSP research has been hampered by the lack of relevant mammalian knockout (KO) models, which is a powerful tool for delineating in vivo function and redundancy in gene families. This situation changed dramatically over the last year, and this review integrates recent insights into the precise biological role of the DUSP family in innate immunity gained from a comprehensive analysis of mammalian KO models.
Collapse
Affiliation(s)
- Konstantin Salojin
- Lexicon Genetics Incorporated, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | |
Collapse
|
336
|
Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O'Neill LAJ, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21:325-32. [PMID: 17267386 PMCID: PMC3119634 DOI: 10.1096/fj.06-7227rev] [Citation(s) in RCA: 821] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Thorn 724, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Bhattacharyya S, Brown DE, Brewer JA, Vogt SK, Muglia LJ. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 2007; 109:4313-9. [PMID: 17255352 PMCID: PMC1885507 DOI: 10.1182/blood-2006-10-048215] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To explore the role of glucocorticoids in regulation of kinase pathways during innate immune responses, we generated mice with conditional deletion of glucocorticoid receptor (GR) in macrophages (MGRKO). Activation of toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) caused greater mortality and cytokine production in MGRKO mice than in controls. Ex vivo, treatment with dexamethasone (Dex) markedly inhibited LPS-mediated induction of inflammatory genes in control but not GR-deficient macrophages. We show that Dex inhibits p38 MAPK, but not PI3K/Akt, ERK, or JNK, in control macrophages. Associated with p38 inhibition, Dex induced MAP kinase phosphatase-1 (MKP-1) in control, but not MGRKO, macrophages. Consistent with the ex vivo studies, treatment with a p38 MAPK-specific inhibitor resulted in rescue of MGRKO mice from LPS-induced lethality. Taken together, we identify p38 MAPK and its downstream targets as essential for GR-mediated immunosuppression in macrophages.
Collapse
Affiliation(s)
- Sandip Bhattacharyya
- Departments of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
338
|
Dickinson RJ, Keyse SM. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006; 119:4607-15. [PMID: 17093265 DOI: 10.1242/jcs.03266] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A structurally distinct subfamily of ten dual-specificity (Thr/Tyr) protein phosphatases is responsible for the regulated dephosphorylation and inactivation of mitogen-activated protein kinase (MAPK) family members in mammals. These MAPK phosphatases (MKPs) interact specifically with their substrates through a modular kinase-interaction motif (KIM) located within the N-terminal non-catalytic domain of the protein. In addition, MAPK binding is often accompanied by enzymatic activation of the C-terminal catalytic domain, thus ensuring specificity of action. Despite our knowledge of the biochemical and structural basis for the catalytic mechanism of the MKPs, we know much less about their regulation and physiological functions in mammalian cells and tissues. However, recent studies employing a range of model systems have begun to reveal essential non-redundant roles for the MKPs in determining the outcome of MAPK signalling in a variety of physiological contexts. These include development, immune system function, metabolic homeostasis and the regulation of cellular stress responses. Interestingly, these functions may reflect both restricted subcellular MKP activity and changes in the levels of signalling through multiple MAPK pathways.
Collapse
Affiliation(s)
- Robin J Dickinson
- Cancer Research UK Stress Response Laboratory, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | |
Collapse
|
339
|
Abraham SM, Clark AR. Dual-specificity phosphatase 1: a critical regulator of innate immune responses. Biochem Soc Trans 2006; 34:1018-23. [PMID: 17073741 DOI: 10.1042/bst0341018] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Innate immune responses are critically dependent on MAPK (mitogen-activated protein kinase) signalling pathways, in particular JNK (c-Jun N-terminal kinase) and p38 MAPK. Both of these kinases are negatively regulated via their dephosphorylation by DUSP1 (dual-specificity phosphatase 1). Several pro- and anti-inflammatory stimuli converge to regulate the DUSP1 gene and to modulate the time course of its expression. In turn, the pattern of expression of DUSP1 dictates the kinetics of activation of JNK and p38 MAPK, and this influences the expression of several mediators of innate immunity. DUSP1 is therefore a central regulator of innate immunity, and its expression can profoundly affect the outcome of inflammatory challenges. We discuss possible implications for immune-mediated inflammatory diseases and their treatment.
Collapse
Affiliation(s)
- S M Abraham
- Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
340
|
Sawmynaden P, Perretti M. Glucocorticoid upregulation of the annexin-A1 receptor in leukocytes. Biochem Biophys Res Commun 2006; 349:1351-5. [PMID: 16973129 DOI: 10.1016/j.bbrc.2006.08.179] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/31/2006] [Indexed: 11/16/2022]
Abstract
We tested here whether glucocorticoids modulated myeloid cell expression of a specific G-coupled receptor, termed formyl-peptide receptor like-1 (FPRL-1), recently shown to mediate the anti-inflammatory actions of annexin-A1. Real-time PCR and flow cytometry demonstrated rapid up-regulation of mRNA followed by the protein in HL-60 cells incubated with dexamethasone, with peaks at 2 and 24h, respectively. This effect was not restricted to dexamethasone, since reproduced by glucocorticoids. In addition, it was not restricted to the cell line, since replicated with human peripheral blood monocytes. Glucocorticoid ability to upregulate cell surface expression of FPRL-1 was specific, since no effects upon the related receptor FPR or the integrin CD11b could be detected. In view of the wide range of endogenous ligands known to interact with FPRL-1, including the anti-inflammatory protein annexin-A1, we speculate that the novel effect here described may impact on the clinical immunosuppressive and anti-inflammatory properties of glucocorticoids.
Collapse
Affiliation(s)
- Prescilla Sawmynaden
- The William Harvey Research Institute, Bart's and the London, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|