301
|
Metformin Corrects Glucose Metabolism Reprogramming and NLRP3 Inflammasome-Induced Pyroptosis via Inhibiting the TLR4/NF- κB/PFKFB3 Signaling in Trophoblasts: Implication for a Potential Therapy of Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1806344. [PMID: 34804360 PMCID: PMC8601820 DOI: 10.1155/2021/1806344] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome-mediated pyroptosis is a crucial event in the preeclamptic pathogenesis, tightly linked with the uteroplacental TLR4/NF-κB signaling. Trophoblastic glycometabolism reprogramming has now been noticed in the preeclampsia pathogenesis, plausibly modulated by the TLR4/NF-κB signaling as well. Intriguingly, cellular pyroptosis and metabolic phenotypes may be inextricably linked and interacted. Metformin (MET), a widely accepted NF-κB signaling inhibitor, may have therapeutic potential in preeclampsia while the underlying mechanisms remain unclear. Herein, we investigated the role of MET on trophoblastic pyroptosis and its relevant metabolism reprogramming. The safety of pharmacologic MET concentration to trophoblasts was verified at first, which had no adverse effects on trophoblastic viability. Pharmacological MET concentration suppressed NLRP3 inflammasome-induced pyroptosis partly through inhibiting the TLR4/NF-κB signaling in preeclamptic trophoblast models induced via low-dose lipopolysaccharide. Besides, MET corrected the glycometabolic reprogramming and oxidative stress partly via suppressing the TLR4/NF-κB signaling and blocking transcription factor NF-κB1 binding on the promoter PFKFB3, a potent glycolytic accelerator. Furthermore, PFKFB3 can also enhance the NF-κB signaling, reduce NLRP3 ubiquitination, and aggravate pyroptosis. However, MET suppressed pyroptosis partly via inhibiting PFKFB3 as well. These results provided that the TLR4/NF-κB/PFKFB3 pathway may be a novel link between metabolism reprogramming and NLRP3 inflammasome-induced pyroptosis in trophoblasts. Further, MET alleviates the NLRP3 inflammasome-induced pyroptosis, which partly relies on the regulation of TLR4/NF-κB/PFKFB3-dependent glycometabolism reprogramming and redox disorders. Hence, our results provide novel insights into the pathogenesis of preeclampsia and propose MET as a potential therapy.
Collapse
|
302
|
Guharajan S, Chhabra S, Parisutham V, Brewster RC. Quantifying the regulatory role of individual transcription factors in Escherichia coli. Cell Rep 2021; 37:109952. [PMID: 34758318 PMCID: PMC8667592 DOI: 10.1016/j.celrep.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Gene regulation often results from the action of multiple transcription factors (TFs) acting at a promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic target genes that isolate individual TFs' regulatory effects. Using a thermodynamic model, each TF's regulatory interactions are decoupled from TF occupancy and interpreted as acting through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that the contribution of each mechanism depends on TF identity and binding location; regulation immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, wherein the TF regulates two distinct steps with opposing effects.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivani Chhabra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
303
|
Huang JQ, Zhang H, Guo XW, Lu Y, Wang SN, Cheng B, Dong SH, Lyu XL, Li FS, Li YW. Mechanically Activated Calcium Channel PIEZO1 Modulates Radiation-Induced Epithelial-Mesenchymal Transition by Forming a Positive Feedback With TGF-β1. Front Mol Biosci 2021; 8:725275. [PMID: 34722630 PMCID: PMC8548710 DOI: 10.3389/fmolb.2021.725275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
TGF-β-centered epithelial-mesenchymal transition (EMT) is a key process involved in radiation-induced pulmonary injury (RIPI) and pulmonary fibrosis. PIEZO1, a mechanosensitive calcium channel, is expressed in myeloid cell and has been found to play an important role in bleomycin-induced pulmonary fibrosis. Whether PIEZO1 is related with radiation-induced EMT remains elusive. Herein, we found that PIEZO1 is functional in rat primary type II epithelial cells and RLE-6TN cells. After irradiation, PIEZO1 expression was increased in rat lung alveolar type II epithelial cells and RLE-6TN cell line, which was accompanied with EMT changes evidenced by increased TGF-β1, N-cadherin, Vimentin, Fibronectin, and α-SMA expression and decreased E-cadherin expression. Addition of exogenous TGF-β1 further enhanced these phenomena in vitro. Knockdown of PIEZO1 partly reverses radiation-induced EMT in vitro. Mechanistically, we found that activation of PIEZO1 could upregulate TGF-β1 expression and promote EMT through Ca2+/HIF-1α signaling. Knockdown of HIF-1α partly reverses enhanced TGF-β1 expression caused by radiation. Meanwhile, the expression of PIEZO1 was up-regulated after TGF-β1 co-culture, and the mechanism could be traced to the inhibition of transcription factor C/EBPβ expression by TGF-β1. Irradiation also caused a decrease in C/EBPβ expression in RLE-6TN cells. Dual luciferase reporter assay and chromatin immunoprecipitation assay (ChIP) confirmed that C/EBPβ represses PIEZO1 expression by binding to the PIEZO1 promoter. Furthermore, overexpression of C/EBPβ by using the synonymous mutation to C/EBPβ siRNA could reverse siRNA-induced upregulation of PIEZO1. In summary, our research suggests a critical role of PIEZO1 signaling in radiation-induced EMT by forming positive feedback with TGF-β1.
Collapse
Affiliation(s)
- Jia-Qi Huang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Zhang
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xue-Wei Guo
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China.,Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan Lu
- Department of Neurology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Nian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Cheng
- Pathology Department, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Su-He Dong
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiao-Li Lyu
- Medical College of Soochow University, Suzhou, China
| | - Feng-Sheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yong-Wang Li
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China.,The Third people's Hospital of Longgang District Shenzhen, Shenzhen, China
| |
Collapse
|
304
|
Wu B, Ye Y, Xie S, Li Y, Sun X, Lv M, Yang L, Cui N, Chen Q, Jensen LD, Cui D, Huang G, Zuo J, Zhang S, Liu W, Yang Y. Megakaryocytes Mediate Hyperglycemia-Induced Tumor Metastasis. Cancer Res 2021; 81:5506-5522. [PMID: 34535458 DOI: 10.1158/0008-5472.can-21-1180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
High blood glucose has long been established as a risk factor for tumor metastasis, yet the molecular mechanisms underlying this association have not been elucidated. Here we describe that hyperglycemia promotes tumor metastasis via increased platelet activity. Administration of glucose, but not fructose, reprogrammed the metabolism of megakaryocytes to indirectly prime platelets into a prometastatic phenotype with increased adherence to tumor cells. In megakaryocytes, a glucose metabolism-related gene array identified the mitochondrial molecular chaperone glucose-regulated protein 75 (GRP75) as a trigger for platelet activation and aggregation by stimulating the Ca2+-PKCα pathway. Genetic depletion of Glut1 in megakaryocytes blocked MYC-induced GRP75 expression. Pharmacologic blockade of platelet GRP75 compromised tumor-induced platelet activation and reduced metastasis. Moreover, in a pilot clinical study, drinking a 5% glucose solution elevated platelet GRP75 expression and activated platelets in healthy volunteers. Platelets from these volunteers promoted tumor metastasis in a platelet-adoptive transfer mouse model. Together, under hyperglycemic conditions, MYC-induced upregulation of GRP75 in megakaryocytes increases platelet activation via the Ca2+-PKCα pathway to promote cancer metastasis, providing a potential new therapeutic target for preventing metastasis. SIGNIFICANCE: This study provides mechanistic insights into a glucose-megakaryocyte-platelet axis that promotes metastasis and proposes an antimetastatic therapeutic approach by targeting the mitochondrial protein GRP75.
Collapse
Affiliation(s)
- Biying Wu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Ye
- Department of Oral Implantology, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Sisi Xie
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yintao Li
- Phase I Clinical Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengyuan Lv
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiying Chen
- Department of Cardiology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Lasse D Jensen
- Department of Medicine, Health and Caring Science, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Dongmei Cui
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Guichun Huang
- Medical Oncology Department of Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
305
|
Davis BH, Beasley TM, Amaral M, Szaflarski JP, Gaston T, Perry Grayson L, Standaert DG, Bebin EM, Limdi NA, the UAB CBD Study Group (includes all the investigators involved in the UAB EAP CBD program). Pharmacogenetic Predictors of Cannabidiol Response and Tolerability in Treatment-Resistant Epilepsy. Clin Pharmacol Ther 2021; 110:1368-1380. [PMID: 34464454 PMCID: PMC8530979 DOI: 10.1002/cpt.2408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
In patients with treatment-resistant epilepsy (TRE), cannabidiol (CBD) produces variable improvement in seizure control. Patients in the University of Alabama at Birmingham CBD Expanded Access Program (EAP) were enrolled in the genomic study and genotyped using the Affymetrix Drug Metabolizing Enzymes and Transporters plus array. Associations between variants and CBD response (≥50% seizure reduction) and tolerability (diarrhea, sedation, and abnormal liver function) was evaluated under dominant and recessive models. Expression quantitative trait loci (eQTL) influencing potential CBD targets was evaluated in the UK Brain Expression Consortium data set (Braineac), and genetic co-expression examined. Of 169 EAP patients, 112 (54.5% pediatric and 50.0% female) were included in the genetic analyses. Patients with AOX1 rs6729738 CC (aldehyde oxidase; odds ratio (OR) 6.69, 95% confidence interval (CI) 2.19-20.41, P = 0.001) or ABP1 rs12539 (diamine oxidase; OR 3.96, 95% CI 1.62-9.73, P = 0.002) were more likely to respond. Conversely, patients with SLC15A1 rs1339067 TT had lower odds of response (OR 0.06, 95% CI 0.01-0.56, P = 0.001). ABCC5 rs3749442 was associated with lower likelihood of response and abnormal liver function tests, and higher likelihood of sedation. The eQTL revealed that rs1339067 decreased GPR18 expression (endocannabinoid receptor) in white matter (P = 5.6 × 10-3 ), and rs3749442 decreased hippocampal HTR3E expression (serotonin 5-HT3E ; P = 8.5 × 10-5 ). Furthermore, 75% of genes associated with lower likelihood of response were co-expressed. Pharmacogenetic variation is associated with CBD response and influences expression of CBD targets in TRE. Implicated pathways, including cholesterol metabolism and glutathione conjugation, demonstrate potential interactions between CBD and common medications (e.g., statins and acetaminophen) that may require closer monitoring. These results highlight the role of pharmacogenes in fundamental biologic processes and potential genetic underpinnings of treatment-resistance.
Collapse
Affiliation(s)
- Brittney H. Davis
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - T. Mark Beasley
- Department of BiostatisticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Jerzy P. Szaflarski
- Department of NeurologyUAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tyler Gaston
- Department of NeurologyUAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Leslie Perry Grayson
- Department of NeurologyUAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - David G Standaert
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - E. Martina Bebin
- Department of NeurologyUAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nita A. Limdi
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | |
Collapse
|
306
|
Man JJ, Lu Q, Moss ME, Carvajal B, Baur W, Garza AE, Freeman R, Anastasiou M, Ngwenyama N, Adler GK, Alcaide P, Jaffe IZ. Myeloid Mineralocorticoid Receptor Transcriptionally Regulates P-Selectin Glycoprotein Ligand-1 and Promotes Monocyte Trafficking and Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:2740-2755. [PMID: 34615372 PMCID: PMC8601161 DOI: 10.1161/atvbaha.121.316929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Objective MR (mineralocorticoid receptor) activation associates with increased risk of cardiovascular ischemia while MR inhibition reduces cardiovascular-related mortality and plaque inflammation in mouse atherosclerosis. MR in myeloid cells (My-MR) promotes inflammatory cell infiltration into injured tissues and atherosclerotic plaque inflammation by unclear mechanisms. Here, we examined the role of My-MR in leukocyte trafficking and the impact of sex. Approach and Results We confirm in vivo that My-MR deletion (My-MR-KO) in ApoE-KO mice decreased plaque size. Flow cytometry revealed fewer plaque macrophages with My-MR-KO. By intravital microscopy, My-MR-KO significantly attenuated monocyte slow-rolling and adhesion to mesenteric vessels and decreased peritoneal infiltration of myeloid cells in response to inflammatory stimuli in male but not female mice. My-MR-KO mice had significantly less PSGL1 (P-selectin glycoprotein ligand 1) mRNA in peritoneal macrophages and surface PSGL1 protein on circulating monocytes in males. In vitro, MR activation with aldosterone significantly increased PSGL1 mRNA only in monocytes from MR-intact males. Similarly, aldosterone induced, and MR antagonist spironolactone inhibited, PSGL1 expression in human U937 monocytes. Mechanistically, aldosterone stimulated MR binding to a predicted MR response element in intron-1 of the PSGL1 gene by ChIP-qPCR. Reporter assays demonstrated that this PSGL1 MR response element is necessary and sufficient for aldosterone-activated, MR-dependent transcriptional activity. Conclusions These data identify PSGL1 as a My-MR target gene that drives leukocyte trafficking to enhance atherosclerotic plaque inflammation. These novel and sexually dimorphic findings provide insight into increased ischemia risk with MR activation, cardiovascular protection in women, and the role of MR in atherosclerosis and tissue inflammation.
Collapse
MESH Headings
- Adult
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion/drug effects
- Disease Models, Animal
- Female
- HEK293 Cells
- Humans
- Hypoglycemia/drug therapy
- Hypoglycemia/genetics
- Hypoglycemia/metabolism
- Leukocyte Rolling/drug effects
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Randomized Controlled Trials as Topic
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Sex Factors
- Signal Transduction
- Spironolactone/therapeutic use
- Transcription, Genetic
- Transendothelial and Transepithelial Migration
- Treatment Outcome
- U937 Cells
- Young Adult
- Mice
Collapse
Affiliation(s)
- Joshua J Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M. Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Wendy Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA
- Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
307
|
Urashima K, Miramontes A, Garcia LA, Coletta DK. Potential evidence for epigenetic biomarkers of metabolic syndrome in human whole blood in Latinos. PLoS One 2021; 16:e0259449. [PMID: 34714849 PMCID: PMC8555810 DOI: 10.1371/journal.pone.0259449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is highly prevalent worldwide. In the United States, estimates show that more than 30% of the adult population has MetS. MetS consists of multiple phenotypes, including obesity, dyslipidemia, and impaired glucose tolerance. Therefore, identifying the molecular mechanisms to explain this complex disease is critical for diagnosing and treating MetS. We previously showed 70 increased genes and 20 decreased genes in whole blood in MetS participants. The present study aimed to identify blood-based DNA methylation biomarkers in non-MetS versus MetS participants. The present study analyzed whole blood DNA samples from 184 adult participants of Latino descent from the Arizona Insulin Resistance (AIR) registry. We used the National Cholesterol Education Program Adult Treatment Panel III (NCEP: ATP III) criteria to identify non-MetS (n = 110) and MetS (n = 74) participants. We performed whole blood methylation analysis on select genes: ATP Synthase, H+ Transporting mitochondrial F1 Complex, Epsilon Subunit (ATP5E), Cytochrome C Oxidase Subunit VIc (COX6C), and Ribosomal Protein L9 (RPL9). The pyrosequencing analysis was a targeted approach focusing on the promoter region of each gene that specifically captured CpG methylation sites. In MetS participants, we showed decreased methylation in two CpG sites in COX6C and three CpG sites in RPL9, all p < 0.05 using the Mann-Whitney U test. There were no ATP5E CpG sites differently methylated in the MetS participants. Furthermore, while adjusting for age, gender, and smoking status, logistic regression analysis reaffirmed the associations between MetS and mean methylation within COX6C and RPL9 (both p < 0.05). In addition, Spearman's correlation revealed a significant inverse relationship between the previously published gene expression data and methylation data for RPL9 (p < 0.05). In summary, these results highlight potential blood DNA methylation biomarkers for the MetS phenotype. However, future validation studies are warranted to strengthen our findings.
Collapse
Affiliation(s)
- Keane Urashima
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anastasia Miramontes
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
| | - Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| | - Dawn K. Coletta
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, United States of America
- Center for Disparities in Diabetes Obesity, and Metabolism, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
308
|
Kim YC, Jeong MJ, Jeong BH. Regulatory Single Nucleotide Polymorphism of the Bovine IFITM3 Gene Induces Differential Transcriptional Capacities of Hanwoo and Holstein Cattle. Genes (Basel) 2021; 12:genes12111662. [PMID: 34828268 PMCID: PMC8619045 DOI: 10.3390/genes12111662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3), a crucial effector of the host's innate immune system, prohibits an extensive range of viruses. Previous studies have reported that single nucleotide polymorphisms (SNPs) of the IFITM3 gene are associated with the expression level and length of the IFITM3 protein and can impact susceptibility to infectious viruses and the severity of infection with these viruses. However, there have been no studies on polymorphisms of the bovine IFITM3 gene. In the present study, we finely mapped the bovine IFITM3 gene and annotated the identified polymorphisms. We investigated polymorphisms of the bovine IFITM3 gene in 108 Hanwoo and 113 Holstein cattle using direct sequencing and analyzed genotype, allele, and haplotype frequencies and linkage disequilibrium (LD) between the IFITM3 genes of the two cattle breeds. In addition, we analyzed transcription factor-binding sites and transcriptional capacity using PROMO and luciferase assays, respectively. Furthermore, we analyzed the effect of a nonsynonymous SNP of the IFITM3 gene using PolyPhen-2, PANTHER, and PROVEAN. We identified 23 polymorphisms in the bovine IFITM3 gene and found significantly different genotype, allele, and haplotype frequency distributions and LD scores between polymorphisms of the bovine IFITM3 gene in Hanwoo and Holstein cattle. In addition, the ability to bind the transcription factor Nkx2-1 and transcriptional capacities were significantly different depending on the c.-193T > C allele. Furthermore, nonsynonymous SNP (F121L) was predicted to be benign. To the best of our knowledge, this is the first genetic study of bovine IFITM3 polymorphisms.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea; (Y.-C.K.); (M.-J.J.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea; (Y.-C.K.); (M.-J.J.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea; (Y.-C.K.); (M.-J.J.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-900-4040; Fax: +82-63-900-4012
| |
Collapse
|
309
|
Association of CYP26C1 Promoter Hypomethylation with Small Vessel Occlusion in Korean Subjects. Genes (Basel) 2021; 12:genes12101622. [PMID: 34681016 PMCID: PMC8535232 DOI: 10.3390/genes12101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The risk factors for stroke, a fatal disease, include type two diabetes, hypertension, and genetic influences. Small vessel occlusion (SVO) can be affected by epigenetic alterations, but an association between SVO and the methylation of cytochrome P450 family 26 subfamily C member 1 (CYP26C1) has not been identified. In this study, we measured the level of DNA methylation in the CYP26C1 promoter and the 5′ untranslated region of 115 normal subjects and 56 patients with SVO in Korea. The DNA methylation level of each subject was measured by bisulfite amplicon sequencing, and statistical analysis was performed using the general linear model or Pearson’s correlation. The average level of DNA methylation was markedly lower in patients with SVO than in normal subjects (20.4% vs. 17.5%). We found that the methylation of CYP26C1 has a significant positive correlation with blood parameters including white blood cells, hematocrit, lactate dehydrogenase, and Na+ in subjects with SVO. We predicted that binding of RXR-α and RAR-β might be affected by CYP26C1 methylation at CpG sites −246–237 and −294–285. These findings suggest that CYP26C1 methylation in the promoter region may be a predictor of SVO.
Collapse
|
310
|
Su YC, Chen YC, Tseng YL, Shieh GS, Wu P, Shiau AL, Wu CL. The Pro-Survival Oct4/Stat1/Mcl-1 Axis Is Associated with Poor Prognosis in Lung Adenocarcinoma Patients. Cells 2021; 10:cells10102642. [PMID: 34685622 PMCID: PMC8534205 DOI: 10.3390/cells10102642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
The embryonic stem cell marker Oct4 is expressed in several human cancers and is positively correlated with a poor outcome in cancer patients. However, its physiological role in cancer progression remains poorly understood. Tumor cells block apoptosis to escape cell death so that they can proliferate indefinitely, leading to ineffective therapy for cancer patients. In this study, we investigated whether Oct4 regulates the apoptosis pathway and contributes to poor prognosis in patients with lung adenocarcinoma. Our results revealed that Oct4 expression is correlated with Stat1 expression in lung adenocarcinoma patients and Oct4 is directly bound to the Stat1 promoter to transactivate Stat1 in lung adenocarcinoma cells. Expression of the Stat1 downstream gene Mcl-1 increased in Oct4-overexpressing cancer cells, while Stat1 knockdown in Oct4-overexpressing cancer cells sensitized them to cisplatin-induced apoptosis. Furthermore, Oct4 promoted Stat1 expression and tumor growth, whereas silencing of Stat1 reduced Oct4-induced tumor growth in human lung tumor xenograft models. Taken together, we demonstrate that Oct4 is a pro-survival factor by inducing Stat1 expression and that the Oct4/Stat1/Mcl-1 axis may be a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yu-Chu Su
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan 70043, Taiwan;
| | - Pensee Wu
- Keele Cardiovascular Research Group, School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
- Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, Staffordshire ST4 6QG, UK
| | - Ai-Li Shiau
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (A.-L.S.); (C.-L.W.); Tel.: +886-6-2353535 (ext. 5629) (A.-L.S.); Tel.: +886-5-2765041 (ext. 8321) (C.L.W.)
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Correspondence: (A.-L.S.); (C.-L.W.); Tel.: +886-6-2353535 (ext. 5629) (A.-L.S.); Tel.: +886-5-2765041 (ext. 8321) (C.L.W.)
| |
Collapse
|
311
|
Shukla A, Srivastava S, Darokar J, Kulshreshtha R. HIF1α and p53 Regulated MED30, a Mediator Complex Subunit, is Involved in Regulation of Glioblastoma Pathogenesis and Temozolomide Resistance. Cell Mol Neurobiol 2021; 41:1521-1535. [PMID: 32705436 PMCID: PMC11448581 DOI: 10.1007/s10571-020-00920-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Glioblastoma (GBM) is the most common, malignant, and aggressive form of glial cell cancer with unfavorable clinical outcomes. It is believed that a better understanding of the mechanisms of gene deregulation may lead to novel therapeutic approaches for this yet incurable cancer. Mediator complex is a crucial component of enhancer-based gene expression and works as a transcriptional co-activator. Many of the mediator complex subunits are found to be deregulated/mutated in various malignancies; however, their status and role in GBM remains little studied. We report that MED30, a core subunit of the head module, is overexpressed in GBM tissues and cell lines. MED30 was found to be induced by conditions present in the tumor microenvironment such as hypoxia, serum, and glucose deprivation. MED30 harbors hypoxia response elements (HREs) and p53 binding site in its promoter and is induced in a HIF1α and p53 dependent manner. Further, MED30 levels also significantly positively correlated with p53 and HIF1α levels in GBM tissues. Using both MED30 overexpression and knockdown approach, we show that MED30 promotes cell proliferation while reduces the migration capabilities in GBM cell lines. Notably, MED30 was also found to confer sensitivity to chemodrug, temozolomide, in GBM cells and modulate the level of p53 in vitro. Overall, this is the first report showing MED30 overexpression in GBM and its involvement in GBM pathogenesis suggesting its diagnostic and therapeutic potential urging the need for further systematic exploration of MED30 interactome and target networks.
Collapse
Affiliation(s)
- Anubha Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jayant Darokar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
312
|
Transcriptional Regulation of the Human IL5RA Gene through Alternative Promoter Usage during Eosinophil Development. Int J Mol Sci 2021; 22:ijms221910245. [PMID: 34638583 PMCID: PMC8549700 DOI: 10.3390/ijms221910245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Regulation of the IL-5 receptor alpha (IL5RA) gene is complicated, with two known promoters (P1 and P2) driving transcription, and two known isoforms (transmembrane and soluble) dichotomously affecting the signaling potential of the protein products. Here, we sought to determine the patterns of P1 and P2 promoter usage and transcription factor occupancy during primary human eosinophil development from CD34+ hematopoietic stem cell progenitors. We found that during eosinophilopoiesis, both promoters were active but subject to distinct temporal regulation, coincident with combinatorial interactions of transcription factors, including GATA-1, PU.1, and C/EBP family members. P1 displayed a relatively constant level of activity throughout eosinophil development, while P2 activity peaked early and waned thereafter. The soluble IL-5Rα mRNA peaked early and showed the greatest magnitude fold-induction, while the signaling-competent transmembrane isoform peaked moderately. Two human eosinophilic cell lines whose relative use of P1 and P2 were similar to eosinophils differentiated in culture were used to functionally test putative transcription factor binding sites. Transcription factor occupancy was then validated in primary cultures by ChIP. We conclude that IL-5-dependent generation of eosinophils from CD34+ precursors involves complex and dynamic activity including both promoters, several interacting transcription factors, and both signaling and antagonistic protein products.
Collapse
|
313
|
Kunz M, Wolf B, Fuchs M, Christoph J, Xiao K, Thum T, Atlan D, Prokosch HU, Dandekar T. A comprehensive method protocol for annotation and integrated functional understanding of lncRNAs. Brief Bioinform 2021; 21:1391-1396. [PMID: 31578571 PMCID: PMC7373182 DOI: 10.1093/bib/bbz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are of fundamental biological importance; however, their functional role is often unclear or loosely defined as experimental characterization is challenging and bioinformatic methods are limited. We developed a novel integrated method protocol for the annotation and detailed functional characterization of lncRNAs within the genome. It combines annotation, normalization and gene expression with sequence-structure conservation, functional interactome and promoter analysis. Our protocol allows an analysis based on the tissue and biological context, and is powerful in functional characterization of experimental and clinical RNA-Seq datasets including existing lncRNAs. This is demonstrated on the uncharacterized lncRNA GATA6-AS1 in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beat Wolf
- University of Applied Sciences and Arts of Western Switzerland, Perolles 80, 1700 Fribourg, Switzerland
| | - Maximilian Fuchs
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Germany
| | - Jan Christoph
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK
| | - David Atlan
- Phenosystems SA, 137 Rue de Tubize, 1440 Braine le Château, Belgium
| | - Hans-Ulrich Prokosch
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Germany
| |
Collapse
|
314
|
Sarfaraz D, Karimian M, Farmohammadi A, Yaghini J. The -592C>A Variation of IL-10 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study and In-Silico Analysis. J Oral Biosci 2021; 63:378-387. [PMID: 34547455 DOI: 10.1016/j.job.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic periodontitis (CP) is a common inflammatory disorder with a considerable impact of genetic variations in the interleukin family on predisposition to this disease. This study aimed to investigate the association between the -592C>A polymorphism of the interleukin 10 (IL-10) gene with CP risk in an Iranian population. This experimental study was followed by a meta-analysis and in silico examination. METHODS In a case-control study, 270 subjects, including 135 patients with CP and 135 healthy controls, were enrolled. The -592C>A genotyping was performed using the PCR-RFLP method. In the meta-analysis, valid databases were systematically searched to identify relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed to examine the association between -592C>A and CP. In silico analysis was conducted using bioinformatics tools to evaluate the impact of the -592C>A polymorphism on IL-10 gene function. RESULTS Our case-control study revealed a significant association between polymorphism and CP risk. Overall, we found significant associations between -592C>A genetic variation and CP and stratified meta-analysis. In silico analysis revealed that this polymorphism could change the pattern of the transcription binding site upstream of the IL-10 gene. It may also alter the hsa-miR-101-3p miRNA-targeted sequence upstream of IL-10. CONCLUSIONS Based on our results, the -592C>A variation in IL-10 may be a genetic risk factor for susceptibility to chronic periodontitis. However, further studies in different ethnicities and results adjusted for clinical and demographic characteristics are needed to obtain more accurate deductions.
Collapse
Affiliation(s)
- Dorna Sarfaraz
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Amir Farmohammadi
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
315
|
CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Sci Rep 2021; 11:18380. [PMID: 34526543 PMCID: PMC8443613 DOI: 10.1038/s41598-021-97058-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
The imprinted H19 long non-coding RNA, a knowing oncofetal gene, presents a controversial role during the carcinogenesis process since its tumor suppressor or oncogenic activity is not completely elucidated. Since H19 lncRNA is involved in many biological pathways related to tumorigenesis, we sought to develop a non-cancer lineage with CRISPR-Cas9-mediated H19 knockdown (H19-) and observe the changes in a cellular context. To edit the promoter region of H19, two RNA guides were designed, and the murine C2C12 myoblast cells were transfected. H19 deletion was determined by DNA sequencing and gene expression by qPCR. We observed a small deletion (~ 60 bp) in the promoter region that presented four predicted transcription binding sites. The deletion reduced H19 expression (30%) and resulted in increased proliferative activity, altered morphological patterns including cell size and intracellular granularity, without changes in viability. The increased proliferation rate in the H19- cell seems to facilitate chromosomal abnormalities. The H19- myoblast presented characteristics similar to cancer cells, therefore the H19 lncRNA may be an important gene during the initiation of the tumorigenic process. Due to CRISPR/Cas9 permanent edition, the C2C12 H19- knockdown cells allows functional studies of H19 roles in tumorigenesis, prognosis, metastases, as well as drug resistance and targeted therapy.
Collapse
|
316
|
Seo MK, Lee JG, Park SW. Early life stress induces age-dependent epigenetic changes in p11 gene expression in male mice. Sci Rep 2021; 11:10663. [PMID: 34471143 PMCID: PMC8410943 DOI: 10.1038/s41598-021-89593-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Early life stress (ELS) causes long-lasting changes in gene expression through epigenetic mechanisms. However, little is known about the effects of ELS in adulthood, specifically across different age groups. In this study, the epigenetic modifications of p11 expression in adult mice subjected to ELS were investigated in different stages of adulthood. Pups experienced maternal separation (MS) for 3 h daily from postnatal day 1 to 21. At young and middle adulthood, behavioral test, hippocampal p11 expression levels, and levels of histone acetylation and methylation and DNA methylation at the hippocampal p11 promoter were measured. Middle-aged, but not young adult, MS mice exhibited increased immobility time in the forced swimming test. Concurrent with reduced hippocampal p11 levels, mice in both age groups showed a decrease in histone acetylation (AcH3) and permissive histone methylation (H3K4me3) at the p11 promoter, as well as an increase in repressive histone methylation (H3K27me3). Moreover, our results showed that the expression, AcH3 and H3Kme3 levels of p11 gene in response to MS were reduced with age. DNA methylation analysis of the p11 promoter revealed increased CpG methylation in middle-aged MS mice only. The results highlight the age-dependent deleterious effects of ELS on the epigenetic modifications of p11 transcription.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, 48108, Republic of Korea.
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, 47392, Republic of Korea. .,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, 47392, Republic of Korea.
| |
Collapse
|
317
|
Mesic A, Rogar M, Hudler P, Bilalovic N, Eminovic I, Komel R. Genetic variations in AURORA cell cycle kinases are associated with glioblastoma multiforme. Sci Rep 2021; 11:17444. [PMID: 34465813 PMCID: PMC8408269 DOI: 10.1038/s41598-021-96935-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent type of primary astrocytomas. We examined the association between single nucleotide polymorphisms (SNPs) in Aurora kinase A (AURKA), Aurora kinase B (AURKB), Aurora kinase C (AURKC) and Polo-like kinase 1 (PLK1) mitotic checkpoint genes and GBM risk by qPCR genotyping. In silico analysis was performed to evaluate effects of polymorphic biological sequences on protein binding motifs. Chi-square and Fisher statistics revealed a significant difference in genotypes frequencies between GBM patients and controls for AURKB rs2289590 variant (p = 0.038). Association with decreased GBM risk was demonstrated for AURKB rs2289590 AC genotype (OR = 0.54; 95% CI = 0.33-0.88; p = 0.015). Furthermore, AURKC rs11084490 CG genotype was associated with lower GBM risk (OR = 0.57; 95% CI = 0.34-0.95; p = 0.031). Bioinformatic analysis of rs2289590 polymorphic region identified additional binding site for the Yin-Yang 1 (YY1) transcription factor in the presence of C allele. Our results indicated that rs2289590 in AURKB and rs11084490 in AURKC were associated with a reduced GBM risk. The present study was performed on a less numerous but ethnically homogeneous population. Hence, future investigations in larger and multiethnic groups are needed to strengthen these results.
Collapse
Affiliation(s)
- Aner Mesic
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Marija Rogar
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Nurija Bilalovic
- Clinical Pathology and Cytology, University Clinical Centre Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Izet Eminovic
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
318
|
Up-regulation of the manganese transporter SLC30A10 by hypoxia-inducible factors defines a homeostatic response to manganese toxicity. Proc Natl Acad Sci U S A 2021; 118:2107673118. [PMID: 34446561 DOI: 10.1073/pnas.2107673118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity-elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.
Collapse
|
319
|
Munsamy Y, Seedat RY, Sekee TR, Bester PA, Burt FJ. Complete genome sequence of a HPV31 isolate from laryngeal squamous cell carcinoma and biological consequences for p97 promoter activity. PLoS One 2021; 16:e0252524. [PMID: 34432812 PMCID: PMC8386840 DOI: 10.1371/journal.pone.0252524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 31, although detected less frequently than HPV types 16 and 18, is associated with head and neck squamous cell carcinomas. Previous studies suggest that polymorphisms in the long control region (LCR) may alter the oncogenic potential of the virus. This study reports the first complete genome of a South African HPV31 isolate from a laryngeal squamous cell carcinoma. Sequence variations relative to the HPV31 prototype sequence were identified. The pBlue-Topo® vector, a reporter gene system was used to investigate the possible influence of these variations on the LCR promoter activity in vitro. Using mutagenesis to create two different fragments, β-galactosidase assays were used to monitor the effect of nucleotide variations on the p97 promoter. Increased β-galactosidase expression was observed in mutants when compared to the South African HPV31 LCR isolate. Enhanced transcriptional activity was observed with the mutant that possessed a single nucleotide change within the YY1 transcription factor binding site. In conclusion, sequence variation within the LCR of HPV31 isolates may have a functional effect on viral p97 promoter activity.
Collapse
Affiliation(s)
- Yuri Munsamy
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Riaz Y. Seedat
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Otorhinolaryngology, Universitas Academic Hospital, Bloemfontein, South Africa
| | - Tumelo R. Sekee
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Phillip A. Bester
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Virology, National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| | - Felicity J. Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Virology, National Health Laboratory Service, Universitas, Bloemfontein, South Africa
- * E-mail:
| |
Collapse
|
320
|
Liu T, Shi Q, Yang L, Wang S, Song H, Wang Z, Xu X, Liu H, Zheng H, Shen Z. Long non-coding RNAs HERH-1 and HERH-4 facilitate cyclin A2 expression and accelerate cell cycle progression in advanced hepatocellular carcinoma. BMC Cancer 2021; 21:957. [PMID: 34445994 PMCID: PMC8390207 DOI: 10.1186/s12885-021-08714-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The advanced hepatocellular carcinoma (HCC), such as the recurrent tumor after liver transplantation (LT), is an obstacle of HCC treatment. The aim of this study was to discover the underlying mechanism of HCC progression caused by non-coding RNAs (ncRNAs). METHODS To this end, we investigated the selected patient cohort of matching primary and recurrent HCC after receiving LT. The recurrent tumors after LT were regarded as clinical models of the advanced HCC. Microarrays were used to profile lncRNA and mRNA expression in HCC recurrent and primary tissue samples. The mRNA profile characteristics were analyzed by bioinformatics. Two cell lines, HepG2 and QGY-7703, were used as HCC cell models. The protein-coding potential, length, and subcellular location of the interested lncRNAs were examined by bioinformatics, Northern blot, fluorescent in situ hybridization (FISH), and quantitative RT-PCR (qRT-PCR) assays. HCC cell proliferation was detected by CCK-8, doubling time and proliferation marker gene quantitation assays. DNA replication during the cell cycle was measured by EdU/PI staining and flow cytometry analyses. Promoter activity was measured using a luciferase reporter assay. Interactions between DNA, RNA, and protein were examined by immunoprecipitation and pull-down assays. The miRNA-target regulation was validated by a fluorescent reporter assay. RESULTS Both lncRNA and mRNA profiles exhibited characteristic alterations in the recurrent tumor cells compared with the primary HCC. The mRNA profile in the HCC recurrent tissues, which served as model of advanced HCC, showed an aberrant cell cycle regulation. Two lncRNAs, the highly expressed lncRNA in recurrent HCC (HERH)-1 and HERH-4, were upregulated in the advanced HCC cells. HERH-1/4 enhanced proliferation and promoted DNA replication and G1-S transition during the cell cycle in HCC cells. HERH-1 interacted with the transcription factor CREB1. CREB1 enhanced cyclin A2 (CCNA2) transcription, depending on HERH-1-CREB1 interaction. HERH-4 acted as an miR-29b/c sponge to facilitate CCNA2 protein translation through a competing endogenous RNA (ceRNA) pathway. CONCLUSIONS The oncogenic lncRNA HERH-1/4 promoted CCNA2 expression at the transcriptional and post-transcriptional levels and accelerated cell cycle progression in HCC cells. The HERH-1-CREB1-CCNA2 and HERH-4-miR-29b/c-CCNA2 axes served as molecular stimuli for HCC advance.
Collapse
Affiliation(s)
- Tao Liu
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| | - Qiao Shi
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lei Yang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Shusen Wang
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Hongli Song
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zhenglu Wang
- Biological Sample Resource Sharing Center (BSRSC), Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Xinnv Xu
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Hongsheng Liu
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Hong Zheng
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Zhongyang Shen
- National Health Commission's Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
- Organ Transplant Center, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
321
|
Li H, Li Y, Zhang Y, Tan B, Huang T, Xiong J, Tan X, Ermolaeva MA, Fu L. MAPK10 Expression as a Prognostic Marker of the Immunosuppressive Tumor Microenvironment in Human Hepatocellular Carcinoma. Front Oncol 2021; 11:687371. [PMID: 34408980 PMCID: PMC8366563 DOI: 10.3389/fonc.2021.687371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a devastating malignancy worldwide due to lack of effective therapy. The immune-rich contexture of HCC tumor microenvironment (TME) makes this tumor an appealing target for immune-based therapies; however, the immunosuppressive TME is still a major challenge for more efficient immunotherapy in HCC. Using bioinformatics analysis based on the TCGA database, here we found that MAPK10 is frequently down-regulated in HCC tumors and significantly correlates with poor survival of HCC patients. HCC patients with low MAPK10 expression have lower expression scores of tumor infiltration lymphocytes (TILs) and stromal cells in the TME and increased scores of tumor cells than those with high MAPK10 expression. Further transcriptomic analyses revealed that the immune activity in the TME of HCC was markedly reduced in the low-MAPK10 group of HCC patients compared to the high-MAPK10 group. Additionally, we identified 495 differentially expressed immune-associated genes (DIGs), with 482 genes down-regulated and 13 genes up-regulated in parallel with the decrease of MAPK10 expression. GO enrichment and KEGG pathway analyses indicated that the biological functions of these DIGs included cell chemotaxis, leukocyte migration and positive regulation of the response to cytokine–cytokine receptor interaction, T cell receptor activation and MAPK signaling pathway. Protein–protein interaction (PPI) analyses of the 495 DIGs revealed five potential downstream hub genes of MAPK10, including SYK, CBL, VAV1, LCK, and CD3G. Several hub genes such as SYK, LCK, and VAV1 could respond to the immunological costimulatory signaling mediated by the transmembrane protein ICAM1, which was identified as a down-regulated DIG associated with low-MAPK10 expression. Moreover, ectopic overexpression or knock-down of MAPK10 could up-regulate or down-regulate ICAM1 expression via phosphorylation of c-jun at Ser63 in HCC cell lines, respectively. Collectively, our results demonstrated that MAPK10 down-regulation likely contributes to the immunosuppressive TME of HCC, and this gene might serve as a potential immunotherapeutic target and a prognostic factor for HCC patients.
Collapse
Affiliation(s)
- Huahui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.,Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Shenzhen University-Friedrich Schiller Universitat Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Ying Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Binbin Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jixian Xiong
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangyu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Maria A Ermolaeva
- Group of Homeostasis and Stress Tolerance, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
322
|
Jahantigh D, Mirani Sargazi F, Sargazi S, Saravani R, Ghazaey Zidanloo S, Heidari Nia M, Piri M. Relationship between Functional miR-143/145 Cluster Variants and Susceptibility to Type 2 Diabetes Mellitus: A Preliminary Case-Control Study and Bioinformatics Analyses. Endocr Res 2021; 46:129-139. [PMID: 33870836 DOI: 10.1080/07435800.2021.1914079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purpose: To investigate the link between two variants (rs4705342 and rs4705343) in the promoter of the miR-143/145 cluster with Type 2 diabetes mellitus (T2DM) risk. Methods:A total of 1200 subjects were genotyped using the ARMS-PCR method. Results: The rs4705342 variant enhanced the risk of T2DM under codominant CC (OR = 3.24; 95% CI: 1.89-5.60), recessive TT+TC (OR = 3.02; 95% CI: 1.77-5.17), and dominant TC+CC (OR = 1.35; 95% CI: 1.08-1.71) genetic models. Individuals carrying the C allele of rs4705342 conferred a 1.43 fold increased risk of T2DM. As regards rs4705343, decreased risk of T2DM was observed under codominant TC (OR = 0.53; 95% CI: 0.42-0.67), over-dominant TT+CC (OR = 0.51; 95% CI: 0.40-0.64), and dominant TC+CC (OR = 0.59; 95% CI: 0.48-0.75) models. Haplotype analysis of the variants showed a 1.941-fold increased risk of T2DM regarding the C T combination. Significant associations were noticed between different haplotypes and lipid indices of T2DM patients. There were no notable changes in p-values after adjustment for BMI. Computational analysis revealed that miR143 and/or miR145 target important genes involved in glucose and lipid metabolism. Conclusions: Functional miR-143/145 variants might influence the risk of T2DM. Hence, clarifying the precise regulatory mechanisms of gene expression in the development of T2DM will significantly guide researchers to find a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Ali Asghar Hospital, Zahedan University of Medical Sciences, Zahedan, IR Iran
| |
Collapse
|
323
|
Mózner O, Zámbó B, Sarkadi B. Modulation of the Human Erythroid Plasma Membrane Calcium Pump (PMCA4b) Expression by Polymorphic Genetic Variants. MEMBRANES 2021; 11:membranes11080586. [PMID: 34436349 PMCID: PMC8401972 DOI: 10.3390/membranes11080586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
In the human ATP2B4 gene, coding for the plasma membrane calcium pump PMCA4b, a minor haplotype results in the decreased expression of this membrane protein in erythroid cells. The presence of this haplotype and the consequently reduced PMCA4b expression have been suggested to affect red blood cell hydration and malaria susceptibility. By using dual-luciferase reporter assays, we have localized the erythroid-specific regulatory region within the haplotype of the ATP2B4 gene, containing predicted GATA1 binding sites that are affected by SNPs in the minor haplotype. Our results show that, in human erythroid cells, the regulation of ATP2B4 gene expression is significantly affected by GATA1 expression, and we document the role of specific SNPs involved in predicted GATA1 binding. Our findings provide a mechanistic explanation at the molecular level for the reduced erythroid-specific PMCA4b expression in carriers of ATP2B4 gene polymorphic variants.
Collapse
Affiliation(s)
- Orsolya Mózner
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Doctoral School of Molecular Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
324
|
Vrettou M, Yan L, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. DNA methylation of Vesicular Glutamate Transporters in the mesocorticolimbic brain following early-life stress and adult ethanol exposure-an explorative study. Sci Rep 2021; 11:15322. [PMID: 34321562 PMCID: PMC8319394 DOI: 10.1038/s41598-021-94739-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation and gene expression can be altered by early life stress (ELS) and/or ethanol consumption. The present study aimed to investigate whether DNA methylation of the Vesicular Glutamate Transporters (Vglut)1-3 is related to previously observed Vglut1-3 transcriptional differences in the ventral tegmental area (VTA), nucleus accumbens (Acb), dorsal striatum (dStr) and medial prefrontal cortex (mPFC) of adult rats exposed to ELS, modelled by maternal separation, and voluntary ethanol consumption. Targeted next-generation bisulfite sequencing was performed to identify the methylation levels on 61 5′-cytosine-phosphate-guanosine-3′ sites (CpGs) in potential regulatory regions of Vglut1, 53 for Vglut2, and 51 for Vglut3. In the VTA, ELS in ethanol-drinking rats was associated with Vglut1-2 CpG-specific hypomethylation, whereas bidirectional Vglut2 methylation differences at single CpGs were associated with ELS alone. Exposure to both ELS and ethanol, in the Acb, was associated with lower promoter and higher intronic Vglut3 methylation; and in the dStr, with higher and lower methylation in 26% and 43% of the analyzed Vglut1 CpGs, respectively. In the mPFC, lower Vglut2 methylation was observed upon exposure to ELS or ethanol. The present findings suggest Vglut1-3 CpG-specific methylation signatures of ELS and ethanol drinking, underlying previously reported Vglut1-3 transcriptional differences in the mesocorticolimbic brain.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Uppsala, Sweden.,The School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | | | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
325
|
Transcriptional regulation of CYP19 by cohesin-mediated chromosome tethering in human granulosa cells. Biochem Biophys Rep 2021; 27:101086. [PMID: 34368471 PMCID: PMC8326343 DOI: 10.1016/j.bbrep.2021.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Human CYP19 spans a region of chromosome 15 of approximately 130 kb and encodes aromatase, an enzyme required for estrogen synthesis. In the human granulosa cell-line KGN, there are seven open chromatin regions within the CYP19 locus. In this study, we demonstrate that two of these regions ~40 kb upstream and ~15 kb downstream of the CYP19 promoter are cohesin-loading sites, physically interacting with the promoter to negatively and positively regulate transcription, respectively. These observations suggest that CYP19 expression is controlled by a balance between the upstream silencer and downstream enhancer. When cohesin is depleted, CYP19 expression is elevated since the silencer is 2.5-fold further from the promoter than the enhancer and most likely depends on cohesin-mediated tethering to influence expression. Silencer and enhancer elements of CYP19 were identified in the human granulosa cell-line KGN. The silencer and enhancer elements both interacted with the CYP19 promoter through cohesin-mediated chromosome tethering. A balance between the activity of the silencer and enhancer element controls CYP19 expression.
Collapse
|
326
|
Penugurti V, Khumukcham SS, Padala C, Dwivedi A, Kamireddy KR, Mukta S, Bhopal T, Manavathi B. HPIP protooncogene differentially regulates metabolic adaptation and cell fate in breast cancer cells under glucose stress via AMPK and RNF2 dependent pathways. Cancer Lett 2021; 518:243-255. [PMID: 34302919 DOI: 10.1016/j.canlet.2021.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
While cancer cells rewire metabolic pathways to sustain growth and survival under metabolic stress in solid tumors, the molecular mechanisms underlying these processes remain largely unknown. In this study, cancer cells switched from survival to death during the early to late phases of metabolic stress by employing a novel signaling switch from AMP activated protein kinase (AMPK)-Forkhead box O3 (FOXO3a)-hematopoietic PBX1-interacting protein (HPIP) to the ring finger protein 2 (RNF2)-HPIP-ubiquitin (Ub) pathway. Acute metabolic stress induced proto-oncogene HPIP expression in an AMPK-FOXO3a-dependent manner in breast cancer (BC) cells. HPIP depletion reduced cell survival and tumor formation in mouse xenografts, which was accompanied by diminished intracellular ATP levels and increased apoptosis in BC cells in response to metabolic (glucose) stress. Glutamine flux (13C-labeled) analysis further suggested that HPIP rewired glutamine metabolism by controlling the expression of the solute carrier family 1 member 5 (SLC1A5) and glutaminase (GLS) genes by acting as a coactivator of MYC to ensure cell survival upon glucose deprivation. However, in response to chronic glucose stress, HPIP was ubiquitinated by the E3-Ub ligase, RNF2, and was concomitantly degraded by the proteasome-mediated pathway, ensuring apoptosis. In support of these data, clinical analyses further indicated that elevated levels of HPIP correlated with AMPK activation in BC. Taken together, these data suggest that HPIP is a signal coordinator during metabolic stress and thus serves as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Saratchandra Singh Khumukcham
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Chiranjeevi Padala
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anju Dwivedi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Karthik Reddy Kamireddy
- Molecular and Cellular Biology Laboratory, Baylor College of Medicine, Houston, TX, United States
| | - Srinivasulu Mukta
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Triveni Bhopal
- MNJ Institute of Oncology and Regional Cancer Center, Hyderabad, 500004, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
327
|
Lin S, Zhang W, Shi Z, Tan L, Zhu Y, Li H, Peng X. β-Catenin/LEF-1 transcription complex is responsible for the transcriptional activation of LINC01278. Cancer Cell Int 2021; 21:380. [PMID: 34273985 PMCID: PMC8285859 DOI: 10.1186/s12935-021-02082-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background Our previous study shows that LINC01278 inhibits the malignant proliferation and invasion of papillary thyroid carcinoma (PTC) cells by regulating the miR-376c-3p/DNM3 axis. However, the regulation mechanism of LINC01278 expression in PTC cells is still unclear. Methods The luciferase reporter and ChIP assays were used to confirm the binding of LEF-1 to the putative promoter site of LINC01278 gene. The RNA immunoprecipitation and RNA pulldown were used to determine the enrichment of LINC01278 in β-catenin protein. The proteasome inhibitors (MG132) was used for detecting the β-catenin ubiquitination-proteasome degradation. Wnt/β-catenin specific agonists (LiCI), inhibitors (WiKI4) and TOP/FOP-flash reporter assay were used for detecting the activation of Wnt/β-catenin signal. Western blot was used to detected the expression of target proteins. Results The online PROMO algorithm determines a putative LEF-1 binding site on LINC01278 promoter, the LEF-1 binds to the putative promoter site of LINC01278 gene, and β-catenin enhances the binding of LEF-1 to the LINC01278 gene promoter. Furthermore, LINC01278 negatively regulated the protein accumulation of β-catenin in the cytoplasm, into nucleus, and ultimately inhibited the transcription of downstream target genes activated by Wnt/β-catenin signal. The results of RNA immunoprecipitation and RNA pulldown proved the direct binding of LINC01278 to β-catenin protein. In addition, the combination of LINC01278 and β-catenin promotes the β-catenin ubiquitination-proteasome degradation. Conclusion In summary, we found the transcriptional activation of LINC01278 by the β-catenin/LEF-1 transcription factor, and the negative feedback regulation of LINC01278 onβ-catenin signal.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Weiwei Zhang
- Department of Ultrasound, Guangdong Province Traditional Chinese Medical Hospital, No. 111 of Dade Road, Guangzhou, Guangdong, People's Republic of China
| | - Ziwen Shi
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Langping Tan
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yue Zhu
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Honghao Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, No. 107 of Yanjiangxi Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Sun Yat-Sen University, No. 74 of Zhongshaner Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
328
|
Abstract
The tumor suppressor p53 prevents tumorigenesis, while inactivation of p53 promotes cancer development and drug resistance. Here, we identify that a long noncoding RNA, the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP), promotes growth and proliferation of colorectal cancer cells by inhibiting p53 activity. Mechanistically, RMRP retains SNRPA1 in the nucleus, thus preventing its lysosomal degradation. The nuclear SNRPA1 then prompts MDM2-mediated p53 ubiquitination and degradation. Remarkably, RMRP expression is induced by poly (ADP-ribose) polymerase (PARP) inhibitors, a group of targeted anticancer drugs, through the transcription factor C/EBPβ. Targeting RMRP significantly enhances sensitivity of colorectal cancer cells to PARP inhibition by reactivating p53. Our study provides a possible mechanism underling tumor resistance to PARP inhibitors. p53 inactivation is highly associated with tumorigenesis and drug resistance. Here, we identify a long noncoding RNA, the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP), as an inhibitor of p53. RMRP is overexpressed and associated with an unfavorable prognosis in colorectal cancer. Ectopic RMRP suppresses p53 activity by promoting MDM2-induced p53 ubiquitination and degradation, while depletion of RMRP activates the p53 pathway. RMRP also promotes colorectal cancer growth and proliferation in a p53-dependent fashion in vitro and in vivo. This anti-p53 action of RMRP is executed through an identified partner protein, SNRPA1. RMRP can interact with SNRPA1 and sequester it in the nucleus, consequently blocking its lysosomal proteolysis via chaperone-mediated autophagy. The nuclear SNRPA1 then interacts with p53 and enhances MDM2-induced proteasomal degradation of p53. Remarkably, ablation of SNRPA1 completely abrogates RMRP regulation of p53 and tumor cell growth, indicating that SNRPA1 is indispensable for the anti-p53 function of RMRP. Interestingly and significantly, poly (ADP-ribose) polymerase (PARP) inhibitors induce RMRP expression through the transcription factor C/EBPβ, and RMRP confers tumor resistance to PARP inhibition by preventing p53 activation. Altogether, our study demonstrates that RMRP plays an oncogenic role by inactivating p53 via SNRPA1 in colorectal cancer.
Collapse
|
329
|
Lin H, Ma X, Xiao F, Su H, Shi Y, Liu Y, Song L, Zhang Z, Zhang C, Peng H. Identification of a special cell type as a determinant of the kidney tropism of SARS-CoV-2. FEBS J 2021; 288:5163-5178. [PMID: 34228902 PMCID: PMC8420455 DOI: 10.1111/febs.16114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
The kidney tropism of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been well‐validated clinically and often leads to various forms of renal damage in coronavirus disease‐2019 (COVID‐19) patients. However, the underlying mechanisms and diagnostic approaches remain to be determined. We interrogated the expression of virus‐related host factors in single‐cell RNA sequencing (scRNA‐seq) datasets of normal human kidneys and kidneys with pre‐existing diseases and validated the results with urinary proteomics of COVID‐19 patients and healthy individuals. We also assessed the effects of genetic variants on kidney susceptibility using expression quantitative trait loci (eQTLs) databases. We identified a subtype of tubular cells, which we named PT‐3 cells, as being vulnerable to SARS‐CoV‐2 infections in the kidneys. PT‐3 cells were enriched in viral entry factors and replication and assembly machinery but lacked antiviral restriction factors. Immunohistochemistry confirmed positive staining of PT‐3 cell marker SCL36A2 on kidney sections from COVID‐19 patients. Urinary proteomic analyses of COVID‐19 patients revealed that markers of PT‐3 cells were significantly increased, along with elevated viral receptor angiotensin‐converting enzyme 2. We further found that the proportion of PT‐3 cells increased in diabetic nephropathy but decreased in kidney allografts and lupus nephropathy, suggesting that kidney susceptibility varied among these diseases. We finally identified several eQTLs that regulate the expression of host factors in kidney cells. PT‐3 cells may represent a key determinant for the kidney tropism of SARS‐CoV‐2, and detection of PT‐3 cells may be used to assess the risk of renal infection during COVID‐19.
Collapse
Affiliation(s)
- Hongchun Lin
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinxin Ma
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fang Xiao
- Department of Cadres Medical Care and Geriatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuntao Liu
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lan Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeOmics, China
| | - Zhongde Zhang
- Department of Emergency, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Peng
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
330
|
Wang J, Zhu W, Han J, Yang X, Zhou R, Lu H, Yu H, Yuan W, Li P, Tao J, Lu Q, Wei J, Yang H. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond) 2021; 41:560-575. [PMID: 33991457 PMCID: PMC8286140 DOI: 10.1002/cac2.12158] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a rate-limiting enzyme of glycolysis, pyruvate kinase muscle isozyme M2 (PKM2) participates in tumor metabolism and growth. The regulatory network of PKM2 in cancer is complex and has not been fully studied in bladder cancer. The 5-methylcytidine (m5C) modification in PKM2 mRNA might participate in the pathogenesis of bladder cancer and need to be further clarified. This study aimed to investigate the biological function and regulatory mechanism of PKM2 in bladder cancer. METHODS The expression of PKM2 and Aly/REF export factor (ALYREF) was measured by Western blotting, qRT-PCR, and immunohistochemistry. The bioprocesses of bladder cancer cells were demonstrated by a series of experiments in vitro and in vivo. RNA immunoprecipitation, RNA-sequencing, and dual-luciferase reporter assays were conducted to explore the potential regulatory mechanisms of PKM2 in bladder cancer. RESULTS In bladder cancer, we first demonstrated that ALYREF stabilized PKM2 mRNA and bound to its m5C sites in 3'-untranslated regions. Overexpression of ALYREF promoted bladder cancer cell proliferation by PKM2-mediated glycolysis. Furthermore, high expression of PKM2 and ALYREF predicted poor survival in bladder cancer patients. Finally, we found that hypoxia-inducible factor-1alpha (HIF-1α) indirectly up-regulated the expression of PKM2 by activating ALYREF in addition to activating its transcription directly. CONCLUSIONS The m5C modification in PKM2 mRNA in the HIF-1α/ALYREF/PKM2 axis may promote the glucose metabolism of bladder cancer, providing a new promising therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Jing‐Zi Wang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Wei Zhu
- Research Division of Clinical Pharmacologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Jie Han
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Xiao Yang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Rui Zhou
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Hong‐Cheng Lu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Hao Yu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Wen‐Bo Yuan
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Peng‐Chao Li
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Jun Tao
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Qiang Lu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Ji‐Fu Wei
- Research Division of Clinical Pharmacologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| | - Haiwei Yang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210000P. R. China
| |
Collapse
|
331
|
Yang H, Lee BR, Lee HC, Choi H, Jung SK, Kim JY, No J, Shanmugam S, Jo YJ, Oh KB, Kim KW, Byun SJ. Development and in vitro evaluation of recombinant chicken promoters to efficiently drive transgene expression in chicken oviduct cells. Poult Sci 2021; 100:101365. [PMID: 34375836 PMCID: PMC8358702 DOI: 10.1016/j.psj.2021.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Virus injection into EGK-X embryos is a well-defined approach in avian transgenesis. This system uses a chicken ovalbumin gene promoter to induce transgene expression in the chicken oviduct. Although a reconstructed chicken ovalbumin promoter that links an ovalbumin promoter and estrogen-responsive enhancer element (ERE) is useful, a large viral vector containing the ovalbumin promoter and a target gene restricts viral packaging capacity and produces low-titer virus particles. We newly developed recombinant chicken promoters by linking regulatory regions of ovalbumin and other oviduct-specific genes. Putative enhancer fragments of the genes, such as ovotransferrin (TF), ovomucin alpha subunit (OVOA), and ovalbumin-related protein X (OVALX), were placed at the 5`-flanking region of the 2.8-kb ovalbumin promoter. Basal promoter fragments of the genes, namely, pTF, lysozyme (pLYZ), and ovomucoid (pOVM), were placed at the 3`-flanking region of the 1.6-kb ovalbumin ERE. The recombinant promoters cloned into each reporter vector were evaluated using a dual luciferase assay in human and chicken somatic cells, and LMH/2A cells treated with 0-1,000 nM estrogen, and cultured primary chicken oviduct cells. The recombinant promoters with linking ovalbumin and TF, OVOA, pOVM, and pLYZ regulatory regions had 2.1- to 19.5-fold (P < 0.05) higher luciferase activity than the reconstructed ovalbumin promoter in chicken oviduct cells. Therefore, recombinant promoters may be used to efficiently drive transgene expression in transgenic chickens.
Collapse
Affiliation(s)
- Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Hoonsung Choi
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Ji-Youn Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Jingu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sureshkumar Shanmugam
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyung Woon Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea.
| |
Collapse
|
332
|
Jeong S, Lee SG, Kim H, Lee G, Park S, Kim IK, Lee J, Jo YS. Simultaneous Expression of Long Non-Coding RNA FAL1 and Extracellular Matrix Protein 1 Defines Tumour Behaviour in Young Patients with Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13133223. [PMID: 34203279 PMCID: PMC8268647 DOI: 10.3390/cancers13133223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary FAL1 upregulation has been reported in many types of human cancers. The up-regulatory mechanism was identified in ovarian cancer but was not investigated in other type of cancers. Using The Cancer Genome Atlas (TCGA) database, we identified simultaneous upregulation of FAL1 adjacent to chromosome 1q21.3. Among 53 putative transcription factors for FAL1 and neighbouring genes, we selected c-JUN and JUND as the best candidates. This simultaneous upregulation defines molecular biological features representing RAS-driven PTC-enriched immune-related gene sets. These findings suggest that the simultaneous upregulation might be a potential diagnostic and therapeutic target for RAS-driven PTC. Abstract We investigated the regulatory mechanism of FAL1 and unravelled the molecular biological features of FAL1 upregulation in papillary thyroid cancer (PTC). Correlation analyses of FAL1 and neighbouring genes adjacent to chromosome 1q21.3 were performed. Focal amplification was performed using data from copy number alterations in The Cancer Genome Atlas (TCGA) database. To identify putative transcriptional factors, PROMO and the Encyclopaedia of DNA Elements (ENCODE) were used. To validate c-JUN and JUND as master transcription factors for FAL1 and ECM1, gene set enrichment analysis was performed according to FAL1 and ECM1 expression. Statistical analyses of the molecular biological features of FAL1- and ECM1-upregulated PTCs were conducted. FAL1 expression significantly correlated with that of neighbouring genes. Focal amplification of chromosome 1q21.3 was observed in ovarian cancer but not in thyroid carcinoma. However, PROMO suggested 53 transcription factors as putative common transcriptional factors for FAL1 and ECM1 simultaneously. Among them, we selected c-JUN and JUND as the best candidates based on ENCODE results. The expression of target genes of JUND simultaneously increased in FAL1- and ECM1-upregulated PTCs, especially in young patients. The molecular biological features represented RAS-driven PTC and simultaneously enriched immune-related gene sets. FAL1 and ECM1 expression frequently increased simultaneously and could be operated by JUND. The simultaneous upregulation might be a potential diagnostic and therapeutic target for RAS-driven PTC.
Collapse
Affiliation(s)
- Seonhyang Jeong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
| | - Seul-Gi Lee
- Department of Surgery, Eulji University School of Medicine, 95 Dunsanseo-ro, Seo-gu, Daejeon 35233, Korea;
| | - Hyunji Kim
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Gibbeum Lee
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Sunmi Park
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
| | - In-Kyu Kim
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
| | - Jandee Lee
- Yonsei Cancer Center, Open NBI Convergence Technology Research Laboratory, Severance Hospital, Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (H.K.); (G.L.); (I.-K.K.)
- Correspondence: (J.L.); (Y.-S.J.); Tel.: +82-2-2228-2100 (J.L.); +82-2-2228-0752 (Y.-S.J.); Fax: +82-2-313-8289 (J.L.); +82-2-393-6884 (Y.-S.J.)
| | - Young-Suk Jo
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (S.J.); (S.P.)
- Correspondence: (J.L.); (Y.-S.J.); Tel.: +82-2-2228-2100 (J.L.); +82-2-2228-0752 (Y.-S.J.); Fax: +82-2-313-8289 (J.L.); +82-2-393-6884 (Y.-S.J.)
| |
Collapse
|
333
|
Kanojia D, Panek WK, Cordero A, Fares J, Xiao A, Savchuk S, Kumar K, Xiao T, Pituch KC, Miska J, Zhang P, Kam KL, Horbinski C, Balyasnikova IV, Ahmed AU, Lesniak MS. BET inhibition increases βIII-tubulin expression and sensitizes metastatic breast cancer in the brain to vinorelbine. Sci Transl Med 2021; 12:12/558/eaax2879. [PMID: 32848091 DOI: 10.1126/scitranslmed.aax2879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Metastases from primary breast cancer result in poor survival. βIII-tubulin (TUBB3) has been established as a therapeutic target for breast cancer metastases specifically to the brain. In this study, we conducted a systematic analysis to determine the regulation of TUBB3 expression in breast cancer metastases to the brain and strategically target these metastases using vinorelbine (VRB), a drug approved by the U.S. Food and Drug Administration (FDA). We found that human epidermal growth factor receptor 2 (HER2) signaling regulates TUBB3 expression in both trastuzumab-sensitive and trastuzumab-resistant neoplastic cells. We further discovered that bromodomain and extra-terminal domain (BET) inhibition increases TUBB3 expression, rendering neoplastic cells more susceptible to apoptosis by VRB. Orthotopic xenograft assays using two different breast cancer cell models revealed a reduction in tumor volume with BET inhibition and VRB treatment. In addition, in vivo studies using a model of multiple brain metastasis (BM) showed improved survival with the combination of radiation + BET inhibitor (iBET-762) + VRB (75% long-term survivors, P < 0.05). Using in silico analysis and BET inhibition, we found that the transcription factor myeloid zinc finger-1 (MZF-1) protein binds to the TUBB3 promoter. BET inhibition decreases MZF-1 expression and subsequently increases TUBB3 expression. Overexpression of MZF-1 decreases TUBB3 expression and reduces BM in vivo, whereas its knockdown increases TUBB3 expression in breast cancer cells. In summary, this study demonstrates a regulatory mechanism of TUBB3 and provides support for an application of BET inhibition to sensitize breast cancer metastases to VRB-mediated therapy.
Collapse
Affiliation(s)
- Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Annie Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Solomiia Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kwok-Ling Kam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
334
|
Yang W, Li Y, Bai J, You T, Yi K, Xie D, Zhang X, Xie X. A Functional Variant Rs492554 Associated With Congenital Heart Defects Modulates SESN2 Expression Through POU2F1. Front Cell Dev Biol 2021; 9:668474. [PMID: 34249922 PMCID: PMC8260953 DOI: 10.3389/fcell.2021.668474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia exposure is responsible for the high incidence of congenital heart defects (CHDs) in high-altitude areas, which is nearly 20 times higher than that in low-altitude areas. However, the genetic factors involved are rarely reported. Sestrin2 (SESN2), a hypoxia stress-inducible gene, protects cardiomyocyte viability under stress; thus, SESN2 polymorphism may be a potential risk factor for CHD. We performed an association study of the SESN2 polymorphisms with CHD risk in two independent groups of the Han Chinese population from two different altitude areas. The allele-specific effects of lead single-nucleotide polymorphisms (SNPs) were assessed by expression quantitative trait locus, electrophoretic mobility shift, and luciferase reporter assays. The molecular mechanism of Sesn2 action against hypoxia-induced cell injury was investigated in embryonic rat-heart-derived H9c2 cells treated with or without hypoxia-mimetic cobalt chloride. SNP rs492554 was significantly associated with reduced CHD risk in the high-altitude population, but not in the low-altitude population. The protective T allele of rs492554 was correlated with higher SESN2 expression and showed a preferential binding affinity to POU2F1. We then identified SNP rs12406992 in strong linkage disequilibrium with rs492554 and mapped it within the binding motif of POU2F1. The T-C haplotype of rs492554-rs12406992 could increase luciferase expression, whereas POU2F1 knockdown effectively suppressed it. Mechanistically, increased Sesn2 protects against oxidative stress and cell apoptosis and maintains cell viability and proliferation. In summary, CHD-associated SNP rs492554 acts as an allele-specific distal enhancer to modulate SESN2 expression via interaction with POU2F1, which might provide new mechanistic insights into CHD pathogenesis.
Collapse
Affiliation(s)
- Wenke Yang
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China
| | - Yi Li
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Department of Hematology, Gansu Provincial Key Laboratory of Hematology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Tao You
- Department of Cardiac Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Kang Yi
- Department of Cardiac Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Dingxiong Xie
- Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China
| | - Xiaowei Zhang
- Department of Hematology, Gansu Provincial Key Laboratory of Hematology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Cardiovascular Institute, People's Hospital of Lanzhou City, Lanzhou, China.,Genetics Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| |
Collapse
|
335
|
Yu J, Zhu C, Wang X, Kim K, Bartolome A, Dongiovanni P, Yates KP, Valenti L, Carrer M, Sadowski T, Qiang L, Tabas I, Lavine JE, Pajvani UB. Hepatocyte TLR4 triggers inter-hepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Sci Transl Med 2021; 13:eabe1692. [PMID: 34162749 PMCID: PMC8792974 DOI: 10.1126/scitranslmed.abe1692] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022]
Abstract
Aberrant hepatocyte Notch activity is critical to the development of nonalcoholic steatohepatitis (NASH)-induced liver fibrosis, but mechanisms underlying Notch reactivation in developed liver are unclear. Here, we identified that increased expression of the Notch ligand Jagged1 (JAG1) tracked with Notch activation and nonalcoholic fatty liver disease (NAFLD) activity score (NAS) in human liver biopsy specimens and mouse NASH models. The increase in Jag1 was mediated by hepatocyte Toll-like receptor 4 (TLR4)-nuclear factor κB (NF-κB) signaling in pericentral hepatocytes. Hepatocyte-specific Jag1 overexpression exacerbated fibrosis in mice fed a high-fat diet or a NASH-provoking diet rich in palmitate, cholesterol, and sucrose and reversed the protection afforded by hepatocyte-specific TLR4 deletion, whereas hepatocyte-specific Jag1 knockout mice were protected from NASH-induced liver fibrosis. To test therapeutic potential of this biology, we designed a Jag1-directed antisense oligonucleotide (ASO) and a hepatocyte-specific N-acetylgalactosamine (GalNAc)-modified siRNA, both of which reduced NASH diet-induced liver fibrosis in mice. Overall, these data demonstrate that increased hepatocyte Jagged1 is the proximal hit for Notch-induced liver fibrosis in mice and suggest translational potential of Jagged1 inhibitors in patients with NASH.
Collapse
Affiliation(s)
- Junjie Yu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alberto Bartolome
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Katherine P Yates
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan 20122, Italy
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | | | | | - Li Qiang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Physiology, Columbia University, New York, NY 10032, USA
| | - Joel E Lavine
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
336
|
SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci Rep 2021; 11:12893. [PMID: 34145313 PMCID: PMC8213802 DOI: 10.1038/s41598-021-92223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Atypical Teratoid Rhabdoid Tumor (AT/RT) is a rare pediatric central nervous system cancer often characterized by deletion or mutation of SMARCB1, a tumor suppressor gene. In this study, we found that SMARCB1 regulates Human Endogenous Retrovirus K (HERV-K, subtype HML-2) expression. HML-2 is a repetitive element scattered throughout the human genome, encoding several intact viral proteins that have been associated with stem cell maintenance and tumorigenesis. We found HML-2 env expression in both the intracellular and extracellular compartments in all AT/RT cell lines (n = 4) and in 95% of AT/RT patient tissues (n = 37) evaluated. SMARCB1 knock-down in neural stem cells (NSCs) led to an upregulation of HML-2 transcription. We found that SMARCB1 binds adjacent to the HML-2 promoter, repressing its transcription via chromatin immunoprecipitation; restoration of SMARCB1 expression in AT/RT cell lines significantly downregulated HML-2 expression. Further, targeted downregulation of HML-2 transcription via CRISPR-dCas9 coupled with suppressor proteins led to cellular dispersion, decreased proliferation, and cell death in vitro. HML-2 knock-down with shRNA, siRNA, and CRISPR-dCas9 significantly decreased Ras expression as measured by qRT-PCR, suggesting that HML-2 modulates MAPK/ERK signaling in AT/RT cells. Overexpression of NRAS was sufficient to restore cellular proliferation, and MYC, a transcription factor downstream of NRAS, was bound to the HERV-K LTR significantly more in the absence of SMARCB1 expression in AT/RT cells. We show a mechanism by which these undifferentiated tumors remain pluripotent, and we demonstrate that their formation is aided by aberrant HML-2 activation, which is dependent on SMARCB1 and its interaction with MYC.
Collapse
|
337
|
Panagopoulou M, Cheretaki A, Karaglani M, Balgkouranidou I, Biziota E, Amarantidis K, Xenidis N, Kakolyris S, Baritaki S, Chatzaki E. Methylation Status of Corticotropin-Releasing Factor (CRF) Receptor Genes in Colorectal Cancer. J Clin Med 2021; 10:2680. [PMID: 34207031 PMCID: PMC8234503 DOI: 10.3390/jcm10122680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
The corticotropin-releasing factor (CRF) system has been strongly associated with gastrointestinal pathophysiology, including colorectal cancer (CRC). We previously showed that altered expression of CRF receptors (CRFRs) in the colon critically affects CRC progression and aggressiveness through regulation of colonic inflammation. Here, we aimed to assess the potential of CRFR methylation levels as putative biomarkers in CRC. In silico methylation analysis of CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) was performed using methylome data derived by CRC and Crohn's disease (CD) tissues and CRC-derived circulating cell-free DNAs (ccfDNAs). In total, 32 and 33 differentially methylated sites of CpGs (DMCs) emerged in CRFR1 and CRFR2, respectively, between healthy and diseased tissues. The methylation patterns were verified in patient-derived ccfDNA samples by qMSP and associated with clinicopathological characteristics. An automated machine learning (AutoML) technology was applied to ccfDNA samples for classification analysis. In silico analysis revealed increased methylation of both CRFRs in CRC tissue and ccfDNA-derived datasets. CRFR1 hypermethylation was also noticed in gene body DMCs of CD patients. CRFR1 hypermethylation was further validated in CRC adjuvant-derived ccfDNA samples, whereas CRFR1 hypomethylation, observed in metastasis-derived ccfDNAs, was correlated to disease aggressiveness and adverse prognostic characteristics. AutoML analysis based on CRFRs methylation status revealed a three-feature high-performing biosignature for CRC diagnosis with an estimated AUC of 0.929. Monitoring of CRFRs methylation-based signature in CRC tissues and ccfDNAs may be of high diagnostic and prognostic significance in CRC.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Antonia Cheretaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Ioanna Balgkouranidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Eirini Biziota
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Hellenic Mediterranean University Research Centre, Institute of Agri-Food and Life Sciences, GR-71410 Heraklion, Greece
| |
Collapse
|
338
|
Barella LF, Rossi M, Pydi SP, Meister J, Jain S, Cui Y, Gavrilova O, Fulgenzi G, Tessarollo L, Wess J. β-Arrestin-1 is required for adaptive β-cell mass expansion during obesity. Nat Commun 2021; 12:3385. [PMID: 34099679 PMCID: PMC8184739 DOI: 10.1038/s41467-021-23656-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity is the key driver of peripheral insulin resistance, one of the key features of type 2 diabetes (T2D). In insulin-resistant individuals, the expansion of beta-cell mass is able to delay or even prevent the onset of overt T2D. Here, we report that beta-arrestin-1 (barr1), an intracellular protein known to regulate signaling through G protein-coupled receptors, is essential for beta-cell replication and function in insulin-resistant mice maintained on an obesogenic diet. Specifically, insulin-resistant beta-cell-specific barr1 knockout mice display marked reductions in beta-cell mass and the rate of beta-cell proliferation, associated with pronounced impairments in glucose homeostasis. Mechanistic studies suggest that the observed metabolic deficits are due to reduced Pdx1 expression levels caused by beta-cell barr1 deficiency. These findings indicate that strategies aimed at enhancing barr1 activity and/or expression in beta-cells may prove useful to restore proper glucose homeostasis in T2D.
Collapse
Affiliation(s)
- Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Bethesda, MD, USA
| | - Gianluca Fulgenzi
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
339
|
Koufaris C, Kirmizis A. Identification of NAA40 as a Potential Prognostic Marker for Aggressive Liver Cancer Subtypes. Front Oncol 2021; 11:691950. [PMID: 34150665 PMCID: PMC8208081 DOI: 10.3389/fonc.2021.691950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.
Collapse
|
340
|
Teng YS, Chen WY, Yan ZB, Lv YP, Liu YG, Mao FY, Zhao YL, Peng LS, Cheng P, Duan MB, Chen W, Wang Y, Luo P, Zou QM, Chen J, Zhuang Y. L-Plastin Promotes Gastric Cancer Growth and Metastasis in a Helicobacter pylori cagA-ERK-SP1-Dependent Manner. Mol Cancer Res 2021; 19:968-978. [PMID: 33771880 DOI: 10.1158/1541-7786.mcr-20-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Actin cytoskeleton dynamic rearrangement is required for tumor cell metastasis and is a key characteristic of Helicobacter pylori (H. pylori)-infected host cells. Actin cytoskeleton modulation is coordinated by multiple actin-binding proteins (ABP). Through Kyoto encyclopedia of gene and genomes database, GEPIA website, and real-time PCR data, we found that H. pylori infection significantly induced L-plastin, a key ABP, in gastric cancer cells. We further explored the regulation and function of L-plastin in H. pylori-associated gastric cancer and found that, mechanistically, H. pylori infection induced gastric cancer cells to express L-plastin via cagA-activated ERK signaling pathway to mediate SP1 binding to L-plastin promoter. Moreover, this increased L-plastin promoted gastric cancer cell proliferation and migration in vitro and facilitated the growth and metastasis of gastric cancer in vivo. Finally, we detected the expression pattern of L-plastin in gastric cancer tissues, and found that L-plastin was increased in gastric cancer tissues and that this increase of L-plastin positively correlated with cagA + H. pylori infection status. Overall, our results elucidate a novel mechanism of L-plastin expression induced by H. pylori, and a new function of L-plastin-facilitated growth and metastasis of gastric cancer, and thereby implicating L-plastin as a potential therapeutic target against gastric cancer. IMPLICATIONS: Our results elucidate a novel mechanism of L-plastin expression induced by H. pylori in gastric cancer, and a new function of L-plastin-facilitated gastric cancer growth and metastasis, implicating L-plastin as a potential therapeutic target against gastric cancer.
Collapse
Affiliation(s)
- Yong-Sheng Teng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Wan-Yan Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Zong-Bao Yan
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yi-Pin Lv
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Yu-Gang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Fang-Yuan Mao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Yong-Liang Zhao
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Liu-Sheng Peng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Ping Cheng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Mu-Bing Duan
- La Trobe Institute of Molecular Science, La Trobe University, Victoria, Australia
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Victoria, Australia
| | - Yu Wang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Ping Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Quan-Ming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China.
| | - Jun Chen
- Department of General Surgery and Centre of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China.
| | - Yuan Zhuang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, P.R. China.
| |
Collapse
|
341
|
Tuazon FB, Wang X, Andrade JL, Umulis D, Mullins MC. Proteolytic Restriction of Chordin Range Underlies BMP Gradient Formation. Cell Rep 2021; 32:108039. [PMID: 32814043 PMCID: PMC7731995 DOI: 10.1016/j.celrep.2020.108039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in developmental biology is how morphogens, such as bone morphogenetic protein (BMP), form precise signaling gradients to impart positional and functional identity to the cells of the early embryo. We combine rigorous mutant analyses with quantitative immunofluorescence to determine that the proteases Bmp1a and Tolloid spatially restrict the BMP antagonist Chordin in dorsoventral (DV) axial patterning of the early zebrafish gastrula. We show that maternally deposited Bmp1a plays an unexpected and non-redundant role in establishing the BMP signaling gradient, while the Bmp1a/Tolloid antagonist Sizzled is surprisingly dispensable. Combining computational modeling and in vivo analyses with an immobile Chordin construct, we demonstrate that long-range Chordin diffusion is not necessary for BMP gradient formation and DV patterning. Our data do not support a counter-gradient of Chordin and instead favor a Chordin sink, established by Bmp1a and Tolloid, as the primary mechanism that drives BMP gradient formation. The BMP morphogen generates a precise signaling gradient during axial patterning. In the zebrafish embryo, Tuazon et al. find that proteases Bmp1a/Tolloid are key to this process, preventing the long-range diffusion of the BMP antagonist, Chordin. By regionally restricting Chordin, Bmp1a/Tolloid establish the signaling sink that drives BMP gradient formation.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu Wang
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Lee Andrade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Umulis
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
342
|
Merino-Wong M, Niemeyer BA, Alansary D. Plasma Membrane Calcium ATPase Regulates Stoichiometry of CD4 + T-Cell Compartments. Front Immunol 2021; 12:687242. [PMID: 34093590 PMCID: PMC8175910 DOI: 10.3389/fimmu.2021.687242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.
Collapse
Affiliation(s)
| | | | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
343
|
Shen D, Gao Y, Huang Q, Xuan Y, Yao Y, Gu L, Huang Y, Zhang Y, Li P, Fan Y, Tang L, Du S, Wu S, Wang H, Wang C, Gong H, Pang Y, Ma X, Wang B, Zhang X. E2F1 promotes proliferation and metastasis of clear cell renal cell carcinoma via activation of SREBP1-dependent fatty acid biosynthesis. Cancer Lett 2021; 514:48-62. [PMID: 34019961 DOI: 10.1016/j.canlet.2021.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Enhanced synthesis or uptake of lipids contributes to rapid cancer cell proliferation and tumor progression. In recent years, cell cycle regulators have been shown to be involved in the control of lipid synthesis, in addition to their classical function of controlling the cell cycle. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is characterized by lipid-rich cytoplasmic deposition. However, the relationship between altered lipid metabolism and tumor progression in ccRCC is poorly understood. Here, we demonstrated that E2F transcription factor 1 (E2F1), in addition to its key role in regulating the cell cycle, induces extensive lipid accumulation and elevated levels of lipogenic enzymes in ccRCC cells by upregulating sterol regulatory element-binding protein 1 (SREBP1). E2F1 knockdown or SREBP1 suppression attenuated fatty acid (FA) de novo synthesis, cell proliferation and epithelial-mesenchymal transition (EMT) in ccRCC cells. Furthermore, overexpression of E2F1 promoted lipid storage, tumor growth and metastasis in a mouse xenograft model, whereas E2F1 downregulation or SREBP1 inhibition reversed these effects. In ccRCC patients, high levels of E2F1 and SREBP1 were associated with increased lipid accumulation and correlated with poor prognosis. Our results demonstrate that E2F1 can increase proliferation and metastasis through SREBP1-induced aberrant lipid metabolism, which is a novel critical signaling mechanism driving human ccRCC progression.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yundong Xuan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China.
| | - Yan Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Pin Li
- Department of Pediatric Urology, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100007, PR China.
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Songliang Du
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China; School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Shengpan Wu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Hanfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Chenfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Huijie Gong
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Yuewen Pang
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
344
|
Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Adv 2021; 4:141-153. [PMID: 31935288 DOI: 10.1182/bloodadvances.2019000947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cell kinase (HCK) is an SRC family member that is aberrantly upregulated in B-cell neoplasms dependent on MYD88-activating mutations and supports their growth and survival. We showed herein that activation of Toll-like receptor (TLR) signaling in MYD88 wild-type B cells also triggered HCK expression, denoting on path regulatory function for HCK by MYD88. To clarify the signaling cascades responsible for aberrant HCK expression in MYD88-mutated B-cell lymphomas, we performed promoter-binding transcription factor (TF) profiling, PROMO weighted TF consensus binding motif analysis, and chromatin immunoprecipitation studies. We identified PAX5, and the mutated MYD88 downstream signaling mediators STAT3, NF-κB, and AP-1, as important drivers of HCK transcription. Knockdown of PAX5, a crucial regulatory factor required for B-cell commitment and identity, abrogated HCK transcription in MYD88-mutated lymphoma cells. Among AP-1 complex components, JunB showed greatest relevance to TLR/MYD88 signaling and HCK transcription regulation. In MYD88-mutated Waldenström macroglobulinemia and activated B-cell-diffuse large B-cell lymphoma cells, knockdown of MYD88 reduced phosphorylation of JunB but not c-Jun, and knockdown of JunB reduced HCK protein levels. Deletion of STAT3, NF-κB, and AP-1 binding sites reduced corresponding TFs binding and HCK promoter activity. Moreover, inhibitors to STAT3, NF-κB, and AP-1 reduced HCK promoter activity and messenger RNA levels, particularly in combination, in MYD88-mutated lymphoma cells. The findings provide new insights into the transcriptional regulation of HCK prosurvival signaling by mutated MYD88, and the importance of JunB as a downstream mediator of the MYD88-directed signaling apparatus.
Collapse
|
345
|
Yang X, Shao F, Guo D, Wang W, Wang J, Zhu R, Gao Y, He J, Lu Z. WNT/β-catenin-suppressed FTO expression increases m 6A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis 2021; 12:462. [PMID: 33966037 PMCID: PMC8106678 DOI: 10.1038/s41419-021-03739-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
FTO removes the N6-methyladenosine (m6A) modification from genes and plays a critical role in cancer development. However, the mechanisms underlying the regulation of FTO and its subsequent impact on the regulation of the epitranscriptome remain to be further elucidated. Here, we demonstrate that FTO expression is downregulated and inversely correlated with poor survival of lung adenocarcinoma patients. Mechanistically, Wnt signaling induces the binding of EZH2 to β-catenin. This protein complex binds to the LEF/TCF-binding elements at the promoter region of FTO, where EZH2 enhances H3K27me3 and inhibits FTO expression. Downregulated FTO expression substantially enhances the m6A levels in the mRNAs of a large number of genes in critical pathways, particularly metabolic pathway genes, such as MYC. Enhanced m6A levels on MYC mRNA recruit YTHDF1 binding, which promotes MYC mRNA translation and a subsequent increase in glycolysis and proliferation of tumor cells and tumorigenesis. Our findings uncovered a critical mechanism of epitranscriptome regulation by Wnt/β-catenin-mediated FTO downregulation and underscored the role of m6A modifications of MYC mRNA in regulating tumor cell glycolysis and growth.
Collapse
Affiliation(s)
- Xueying Yang
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Fei Shao
- grid.412521.1The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, 266071 Qingdao, Shandong China
| | - Dong Guo
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Wei Wang
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Juhong Wang
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Rongxuan Zhu
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Yibo Gao
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Jie He
- grid.506261.60000 0001 0706 7839Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China
| | - Zhimin Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China ,grid.13402.340000 0004 1759 700XZhejiang University Cancer Center, 310029 Hangzhou, China
| |
Collapse
|
346
|
Mathyer ME, Brettmann EA, Schmidt AD, Goodwin ZA, Oh IY, Quiggle AM, Tycksen E, Ramakrishnan N, Matkovich SJ, Guttman-Yassky E, Edwards JR, de Guzman Strong C. Selective sweep for an enhancer involucrin allele identifies skin barrier adaptation out of Africa. Nat Commun 2021; 12:2557. [PMID: 33963188 PMCID: PMC8105351 DOI: 10.1038/s41467-021-22821-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
The genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.
Collapse
Affiliation(s)
- Mary Elizabeth Mathyer
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Erin A. Brettmann
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Alina D. Schmidt
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Zane A. Goodwin
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Inez Y. Oh
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Ashley M. Quiggle
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Eric Tycksen
- grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Natasha Ramakrishnan
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Scot J. Matkovich
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Emma Guttman-Yassky
- grid.59734.3c0000 0001 0670 2351Department of Dermatology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029 USA
| | - John R. Edwards
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| | - Cristina de Guzman Strong
- grid.4367.60000 0001 2355 7002Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Center for the Study of Itch & Sensory Disorders, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
347
|
Dong XH, Dai D, Yang ZD, Yu XO, Li H, Kang H. S100 calcium binding protein A6 and associated long noncoding ribonucleic acids as biomarkers in the diagnosis and staging of primary biliary cholangitis. World J Gastroenterol 2021; 27:1973-1992. [PMID: 34007134 PMCID: PMC8108032 DOI: 10.3748/wjg.v27.i17.1973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a chronic and slowly progressing cholestatic disease, which causes damage to the small intrahepatic bile duct by immuno-regulation, and may lead to cholestasis, liver fibrosis, cirrhosis and, eventually, liver failure.
AIM To explore the potential diagnosis and staging value of plasma S100 calcium binding protein A6 (S100A6) messenger ribonucleic acid (mRNA), LINC00312, LINC00472, and LINC01257 in primary biliary cholangitis.
METHODS A total of 145 PBC patients and 110 healthy controls (HCs) were enrolled. Among them, 80 PBC patients and 60 HCs were used as the training set, and 65 PBC patients and 50 HCs were used as the validation set. The relative expression levels of plasma S100A6 mRNA, long noncoding ribonucleic acids LINC00312, LINC00472 and LINC01257 were analyzed using quantitative reverse transcription-polymerase chain reaction. The bile duct ligation (BDL) mouse model was used to simulate PBC. Then double immunofluorescence was conducted to verify the overexpression of S100A6 protein in intrahepatic bile duct cells of BDL mice. Human intrahepatic biliary epithelial cells were treated with glycochenodeoxycholate to simulate the cholestatic environment of intrahepatic biliary epithelial cells in PBC.
RESULTS The expression of S100A6 protein in intrahepatic bile duct cells was up-regulated in the BDL mouse model compared with sham mice. The relative expression levels of plasma S100A6 mRNA, log10 LINC00472 and LINC01257 were up-regulated while LINC00312 was down-regulated in plasma of PBC patients compared with HCs (3.01 ± 1.04 vs 2.09 ± 0.87, P < 0.0001; 2.46 ± 1.03 vs 1.77 ± 0.84, P < 0.0001; 3.49 ± 1.64 vs 2.37 ± 0.96, P < 0.0001; 1.70 ± 0.33 vs 2.07 ± 0.53, P < 0.0001, respectively). The relative expression levels of S100A6 mRNA, LINC00472 and LINC01257 were up-regulated and LINC00312 was down-regulated in human intrahepatic biliary epithelial cells treated with glycochenodeoxycholate compared with control (2.97 ± 0.43 vs 1.09 ± 0.08, P = 0.0018; 2.70 ± 0.26 vs 1.10 ± 0.10, P = 0.0006; 2.23 ± 0.21 vs 1.10 ± 0.10, P = 0.0011; 1.20 ± 0.04 vs 3.03 ± 0.15, P < 0.0001, respectively). The mean expression of S100A6 in the advanced stage (III and IV) of PBC was up-regulated compared to that in HCs and the early stage (II) (3.38 ± 0.71 vs 2.09 ± 0.87, P < 0.0001; 3.38 ± 0.71 vs 2.57 ± 1.21, P = 0.0003, respectively); and in the early stage (II), it was higher than that in HCs (2.57 ± 1.21 vs 2.09 ± 0.87, P = 0.03). The mean expression of LINC00312 in the advanced stage was lower than that in the early stage and HCs (1.39 ± 0.29 vs 1.56 ± 0.33, P = 0.01; 1.39 ± 0.29 vs 2.07 ± 0.53, P < 0.0001, respectively); in addition, the mean expression of LINC00312 in the early stage was lower than that in HCs (1.56 ± 0.33 vs 2.07 ± 0.53, P < 0.0001). The mean expression of log10 LINC00472 in the advanced stage was higher than those in the early stage and HCs (2.99 ± 0.87 vs 1.81 ± 0.83, P < 0.0001; 2.99 ± 0.87 vs 1.77 ± 0.84, P < 0.0001, respectively). The mean expression of LINC01257 in both the early stage and advanced stage were up-regulated compared with HCs (3.88 ± 1.55 vs 2.37 ± 0.96, P < 0.0001; 3.57 ± 1.79 vs 2.37 ± 0.96, P < 0.0001, respectively). The areas under the curves (AUC) for S100A6, LINC00312, log10 LINC00472 and LINC01257 in PBC diagnosis were 0.759, 0.7292, 0.6942 and 0.7158, respectively. Furthermore, the AUC for these four genes in PBC staging were 0.666, 0.661, 0.839 and 0.5549, respectively. The expression levels of S100A6 mRNA, log10 LINC00472, and LINC01257 in plasma of PBC patients were decreased (2.35 ± 1.02 vs 3.06 ± 1.04, P = 0.0018; 1.99 ± 0.83 vs 2.33 ± 0.96, P = 0.036; 2.84 ± 0.92 vs 3.69 ± 1.54, P = 0.0006), and the expression level of LINC00312 was increased (1.95 ± 0.35 vs 1.73 ± 0.32, P = 0.0007) after treatment compared with before treatment using the paired t-test. Relative expression of S100A6 mRNA was positively correlated with log10 LINC00472 (r = 0.683, P < 0.0001); serum level of collagen type IV was positively correlated with the relative expression of log10 LINC00472 (r = 0.482, P < 0.0001); relative expression of S100A6 mRNA was positively correlated with the serum level of collagen type IV (r = 0.732, P < 0.0001). The AUC for the four biomarkers obtained in the validation set were close to the training set.
CONCLUSION These four genes may potentially act as novel biomarkers for the diagnosis of PBC. Moreover, LINC00472 acts as a potential biomarker for staging in PBC.
Collapse
Affiliation(s)
- Xi-Hua Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Di Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhi-Dong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiao-Ou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hua Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
348
|
Li G, Kryczek I, Nam J, Li X, Li S, Li J, Wei S, Grove S, Vatan L, Zhou J, Du W, Lin H, Wang T, Subramanian C, Moon JJ, Cieslik M, Cohen M, Zou W. LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nat Cell Biol 2021; 23:526-537. [PMID: 33958760 PMCID: PMC8122078 DOI: 10.1038/s41556-021-00672-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
MHC-I presents tumor antigens to CD8+ T cells and triggers anti-tumor immunity. Humans may have 30,000-60,000 long noncoding RNAs (lncRNAs). However, it remains poorly understood whether lncRNAs may affect tumor immunity. Here, we identify a LncRNA, capable of Inducing MHC-I and Immunogenicity of Tumor (LIMIT) in humans and mice. We found IFNγ stimulated LIMIT, LIMIT cis-activated guanylate binding protein (GBP) gene cluster, and GBPs disrupted the association between HSP90 and heat shock factor-1 (HSF1) - thereby resulting in HSF1 activation and transcription of MHC-I machinery, but not PD-L1. RNA-guided CRISPR activation of LIMIT boosted GBPs and MHC-I, and potentiated tumor immunogenicity and checkpoint therapy. Silencing LIMIT, GBPs, and/or HSF1 diminished MHC-I, impaired antitumor immunity, and blunted immunotherapy efficacy. Clinically, LIMIT, GBPs- and HSF1-signaling transcripts and proteins correlated with MHC-I, tumor infiltrating T cells, and checkpoint blockade response in cancer patients. Altogether, we demonstrate LIMIT is a previously unknown cancer immunogenic lncRNA and the LIMIT-GBP-HSF1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Gaopeng Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jutaek Nam
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Wan Du
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heng Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ton Wang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA. .,Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Graduate Programs in Immunology, University of Michigan, Ann Arbor, MI, USA. .,Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
349
|
Kiser JN, Wang Z, Zanella R, Scraggs E, Neupane M, Cantrell B, Van Tassell CP, White SN, Taylor JF, Neibergs HL. Functional Variants Surrounding Endothelin 2 Are Associated With Mycobacterium avium Subspecies paratuberculosis Infection. Front Vet Sci 2021; 8:625323. [PMID: 34026885 PMCID: PMC8131860 DOI: 10.3389/fvets.2021.625323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Bovine paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), continues to impact the dairy industry through increased morbidity, mortality, and lost production. Although genome-wide association analyses (GWAAs) have identified loci associated with susceptibility to MAP, limited progress has been made in identifying mutations that cause disease susceptibility. A 235-kb region on Bos taurus chromosome 3 (BTA3), containing a 70-kb haplotype block surrounding endothelin 2 (EDN2), has previously been associated with the risk of MAP infection. EDN2 is highly expressed in the gut and is involved in intracellular calcium signaling and a wide array of biological processes. The objective of this study was to identify putative causal mutations for disease susceptibility in the region surrounding EDN2 in Holstein and Jersey cattle. Using sequence data from 10 Holstein and 10 Jersey cattle, common variants within the 70-kb region containing EDN2 were identified. A custom SNP genotyping array fine-mapped the region using 221 Holstein and 51 Jersey cattle and identified 17 putative causal variants (P < 0.01) located in the 5′ region of EDN2 and a SNP in the 3′ UTR (P = 0.00009) associated with MAP infection. MicroRNA interference assays, mRNA stability assays, and electrophoretic mobility shift assays were performed to determine if allelic changes at each SNP resulted in differences in EDN2 stability or expression. Two SNPs [rs109651404 (G/A) and rs110287192 (G/T)] located within the promoter region of EDN2 displayed differential binding affinity for transcription factors in binding sequences harboring the alternate SNP alleles. The luciferase reporter assay revealed that the transcriptional activity of the EDN2 promoter was increased (P < 0.05) with the A allele for rs109651404 and the G allele for rs110287192. These results suggest that the variants rs109651404 and rs110287192 are mutations that alter transcription and thus may alter susceptibility to MAP infection in Holstein and Jersey cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Zeping Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Ricardo Zanella
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Erik Scraggs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mahesh Neupane
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Bonnie Cantrell
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Stephen N White
- Animal Disease Research, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States.,Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
350
|
Wu L, Jiao Y, Li Y, Jiang J, Zhao L, Li M, Li B, Yan Z, Chen X, Li X, Lu Y. Hepatic Gadd45β promotes hyperglycemia and glucose intolerance through DNA demethylation of PGC-1α. J Exp Med 2021; 218:e20201475. [PMID: 33688917 PMCID: PMC7953268 DOI: 10.1084/jem.20201475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022] Open
Abstract
Although widely used for their potent anti-inflammatory and immunosuppressive properties, the prescription of glucocorticoid analogues (e.g., dexamethasone) has been associated with deleterious glucose metabolism, compromising their long-term therapeutic use. However, the molecular mechanism remains poorly understood. In the present study, through transcriptomic and epigenomic analysis of two mouse models, we identified a growth arrest and DNA damage-inducible β (Gadd45β)-dependent pathway that stimulates hepatic glucose production (HGP). Functional studies showed that overexpression of Gadd45β in vivo or in cultured hepatocytes activates gluconeogenesis and increases HGP. In contrast, liver-specific Gadd45β-knockout mice were resistant to high-fat diet- or steroid-induced hyperglycemia. Of pathophysiological significance, hepatic Gadd45β expression is up-regulated in several mouse models of obesity and diabetic patients. Mechanistically, Gadd45β promotes DNA demethylation of PGC-1α promoter in conjunction with TET1, thereby stimulating PGC-1α expression to promote gluconeogenesis and hyperglycemia. Collectively, these findings unveil an epigenomic signature involving Gadd45β/TET1/DNA demethylation in hepatic glucose metabolism, enabling the identification of pathogenic factors in diabetes.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|