301
|
Deng Z, Huang K, Xie P, Xie S, Zhang N, Yin H, Ping M, Wang Y. The complete chloroplast genome sequence of Sedum bulbiferum (Crassulaceae). Mitochondrial DNA B Resour 2023; 8:598-602. [PMID: 37250209 PMCID: PMC10210845 DOI: 10.1080/23802359.2022.2160220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/15/2022] [Indexed: 05/31/2023] Open
Abstract
Sedum bulbiferum is a traditional medicinal plant in China, with few reports on its chloroplast genome. In this study, the chloroplast genome of Sedum bulbiferum was characterized, and its phylogenetic position among other closely related species was studied. The results showed that the full length of the chloroplast genome was 150,074 bp, containing a large single-copy (LSC) region and a small single-copy (SSC) region of 81,730 and 16,726 bp, respectively, as well as two inverted repeat regions (IRs) of 25,809 bp like other plants. A total of 128 genes were found, including 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that Sedum bulbiferum is closely related to Sedum emarginatum, Sedum alfredii, Sedum tricarpum, Sedum plumbizincicola, and Sedum sarmentosum.
Collapse
Affiliation(s)
- Zijie Deng
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Kerui Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Peng Xie
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Suisui Xie
- The First High School of Changsha, China
| | - Ningyun Zhang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Hanbin Yin
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Mo Ping
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Yun Wang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| |
Collapse
|
302
|
Ahmad W, Asaf S, Al-Rawahi A, Al-Harrasi A, Khan AL. Comparative plastome genomics, taxonomic delimitation and evolutionary divergences of Tetraena hamiensis var. qatarensis and Tetraena simplex (Zygophyllaceae). Sci Rep 2023; 13:7436. [PMID: 37156827 PMCID: PMC10167353 DOI: 10.1038/s41598-023-34477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
The Zygophyllum and Tetraena genera are intriguingly important ecologically and medicinally. Based on morphological characteristics, T. hamiensis var. qatarensis, and T. simplex were transferred from Zygophyllum to Tetraena with the least genomic datasets available. Hence, we sequenced the T. hamiensis and T. simplex and performed in-depth comparative genomics, phylogenetic analysis, and estimated time divergences. The complete plastomes ranged between 106,720 and 106,446 bp-typically smaller than angiosperms plastomes. The plastome circular genomes are divided into large single-copy regions (~ 80,964 bp), small single-copy regions (~ 17,416 bp), and two inverted repeats regions (~ 4170 bp) in both Tetraena species. An unusual shrinkage of IR regions 16-24 kb was identified. This resulted in the loss of 16 genes, including 11 ndh genes which encode the NADH dehydrogenase subunits, and a significant size reduction of Tetraena plastomes compared to other angiosperms. The inter-species variations and similarities were identified using genome-wide comparisons. Phylogenetic trees generated by analyzing the whole plastomes, protein-coding genes, matK, rbcL, and cssA genes exhibited identical topologies, indicating that both species are sisters to the genus Tetraena and may not belong to Zygophyllum. Similarly, based on the entire plastome and proteins coding genes datasets, the time divergence of Zygophyllum and Tetraena was 36.6 Ma and 34.4 Ma, respectively. Tetraena stem ages were 31.7 and 18.2 Ma based on full plastome and protein-coding genes. The current study presents the plastome as a distinguishing and identification feature among the closely related Tetraena and Zygophyllum species. It can be potentially used as a universal super-barcode for identifying plants.
Collapse
Affiliation(s)
- Waqar Ahmad
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, USA.
| |
Collapse
|
303
|
Zhang X, Shan Y, Li J, Qin Q, Yu J, Deng H. Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome. Int J Mol Sci 2023; 24:ijms24098366. [PMID: 37176072 PMCID: PMC10179450 DOI: 10.3390/ijms24098366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Collapse
Affiliation(s)
- Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qiulin Qin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
304
|
Zhai Y, Zhang T, Guo Y, Gao C, Zhou L, Feng L, Zhou T, Xumei W. Phylogenomics, phylogeography and germplasms authentication of the Rheum palmatum complex based on complete chloroplast genomes. JOURNAL OF PLANT RESEARCH 2023; 136:291-304. [PMID: 36808315 DOI: 10.1007/s10265-023-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.
Collapse
Affiliation(s)
- Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanbing Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wang Xumei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
305
|
Liu Q, Yuan H, Xu J, Cui D, Xiong G, Schwarzacher T, Heslop-Harrison JS. The mitochondrial genome of the diploid oat Avena longiglumis. BMC PLANT BIOLOGY 2023; 23:218. [PMID: 37098475 PMCID: PMC10131481 DOI: 10.1186/s12870-023-04217-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Avena longiglumis Durieu (2n = 2x = 14) is a wild relative of cultivated oat (Avena sativa, 2n = 6x = 42) with good agronomic and nutritional traits. The plant mitochondrial genome has a complex organization and carries genetic traits of value in exploiting genetic resources, not least male sterility alleles used to generate F1 hybrid seeds. Therefore, we aim to complement the chromosomal-level nuclear and chloroplast genome assemblies of A. longiglumis with the complete assembly of the mitochondrial genome (mitogenome) based on Illumina and ONT long reads, comparing its structure with Poaceae species. RESULTS The complete mitochondrial genome of A. longiglumis can be represented by one master circular genome being 548,445 bp long with a GC content of 44.05%. It can be represented by linear or circular DNA molecules (isoforms or contigs), with multiple alternative configurations mediated by long (4,100-31,235 bp) and medium (144-792 bp) size repeats. Thirty-five unique protein-coding genes, three unique rRNA genes, and 11 unique tRNA genes are identified. The mitogenome is rich in duplications (up to 233 kb long) and multiple tandem or simple sequence repeats, together accounting for more than 42.5% of the total length. We identify homologous sequences between the mitochondrial, plastid and nuclear genomes, including the exchange of eight plastid-derived tRNA genes, and nuclear-derived retroelement fragments. At least 85% of the mitogenome is duplicated in the A. longiglumis nuclear genome. We identify 269 RNA editing sites in mitochondrial protein-coding genes including stop codons truncating ccmFC transcripts. CONCLUSIONS Comparative analysis with Poaceae species reveals the dynamic and ongoing evolutionary changes in mitochondrial genome structure and gene content. The complete mitochondrial genome of A. longiglumis completes the last link of the oat reference genome and lays the foundation for oat breeding and exploiting the biodiversity in the genus.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Hongyu Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Xu
- College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Dongli Cui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
306
|
Zhou C, Wang P, Zeng Q, Zeng R, Hu W, Sun L, Liu S, Luan F, Zhu Q. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Sci Rep 2023; 13:6779. [PMID: 37185306 PMCID: PMC10130142 DOI: 10.1038/s41598-023-34046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
Citrullus ecirrhosus, Citrullus rehmii, and Citrullus naudinianus are three important related wild species of watermelon in the genus Citrullus, and their morphological differences are clear, however, their chloroplast genome differences remain unknown. This study is the first to assemble, analyze, and publish the complete chloroplast genomes of C. ecirrhosus, C. rehmii, and C. naudinianus. A comparative analysis was then conducted among the complete chloroplast genomes of seven extant Citrullus species, and the results demonstrated that the average genome sizes of Citrullus is 157,005 bp, a total of 130-133 annotated genes were identified, including 8 rRNA, 37 tRNA and 85-88 protein-encoding genes. Their gene content, order, and genome structure were similar. However, noncoding regions were more divergent than coding regions, and rps16-trnQ was a hypervariable fragment. Thirty-four polymorphic SSRs, 1,271 SNPs and 234 INDELs were identified. Phylogenetic trees revealed a clear phylogenetic relationship of Citrullus species, and the developed molecular markers (SNPs and rps16-trnQ) could be used for taxonomy in Citrullus. Three genes (atpB, clpP1, and rpoC2) were identified to undergo selection and would promote the environmental adaptation of Citrullus.
Collapse
Affiliation(s)
- Cong Zhou
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Putao Wang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Qun Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Rongbin Zeng
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Wei Hu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China
| | - Lei Sun
- Department of Agronomy and Horticulture, Liaoning Agricultural Technical College, Yingkou, 115009, People's Republic of China
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianglong Zhu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, NO. 1101 Zhimin Street, Qingshanhu District, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
307
|
Darshetkar AM, Pable AA, Nadaf AB, Barvkar VT. Understanding parasitism in Loranthaceae: Insights from plastome and mitogenome of Helicanthes elastica. Gene 2023; 861:147238. [PMID: 36736502 DOI: 10.1016/j.gene.2023.147238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.
Collapse
Affiliation(s)
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
308
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
309
|
Niu Y, Zhang T, Chen M, Chen G, Liu Z, Yu R, Han X, Chen K, Huang A, Chen C, Yang Y. Analysis of the Complete Mitochondrial Genome of the Bitter Gourd ( Momordica charantia). PLANTS (BASEL, SWITZERLAND) 2023; 12:1686. [PMID: 37111909 PMCID: PMC10143269 DOI: 10.3390/plants12081686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd's mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes.
Collapse
Affiliation(s)
- Yu Niu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Ting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muxi Chen
- Guangdong Helinong Biological Seeds Co., Ltd., Shantou 515800, China
- Guangdong Helinong Agricultural Research Institute Co., Ltd., Shantou 515800, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaohua Liu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Renbo Yu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Xu Han
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Kunhao Chen
- Guangdong Helinong Biological Seeds Co., Ltd., Shantou 515800, China
- Guangdong Helinong Agricultural Research Institute Co., Ltd., Shantou 515800, China
| | - Aizheng Huang
- Institute of Agricultural Science Research of Jiangmen, Jiangmen 529060, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Yang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| |
Collapse
|
310
|
Chen H, Huang L, Yu J, Miao Y, Liu C. Mitochondrial genome of Artemisia argyi L. suggested conserved mitochondrial protein-coding genes among genera Artemisia, Tanacetum and Chrysanthemum. Gene 2023; 871:147427. [PMID: 37044183 DOI: 10.1016/j.gene.2023.147427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time. RESULTS The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 others Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values≤0.05) in three tissues (root, leaf and stem). CONCLUSIONS In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.
Collapse
Affiliation(s)
- Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.
| | - Jing Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.
| | - Yujing Miao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.
| |
Collapse
|
311
|
Jiang Y, Zhu C, Wang S, Wang F, Sun Z. Identification of three cultivated varieties of Scutellaria baicalensis using the complete chloroplast genome as a super-barcode. Sci Rep 2023; 13:5602. [PMID: 37019975 PMCID: PMC10075158 DOI: 10.1038/s41598-023-32493-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Scutellaria baicalensis has been one of the most commonly used traditional Chinese medicinal plants in China for more than 2000 years. The three new varieties cultivated could not be distinguished by morphology before flowering. It will hinder the promotion of later varieties. Chloroplast DNA has been widely used in species identification. Moreover, previous studies have shown that complete chloroplast genome sequences have been suggested as super barcodes for identifying plants. Therefore, we sequenced and annotated the complete chloroplast genomes of three cultivated varieties. The chloroplast genomes of SBW, SBR, and SBP were 151,702 bp, 151,799 bp, and 151,876 bp, which contained 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes shared a high degree of conservation. However, the sliding window results show significant differences among the three cultivated varieties in matK-rps16 and petA-psbJ. And we found that the matK-rps16 sequence can be used as a barcode for the identification of three varieties. In addition, the complete chloroplast genome contains more variations and can be used as a super-barcode to identify these three cultivated varieties. Based on the protein-coding genes, the phylogenetic tree demonstrated that SBP was more closely related to SBW, in the three cultivated varieties. Interestingly, we found that S. baicalensis and S. rehderiana are closely related, which provides new ideas for the development of S. baicalensis. The divergence time analysis showed that the three cultivated varieties diverged at about 0.10 Mya. Overall, this study showed that the complete chloroplast genome could be used as a super-barcode to identify three cultivated varieties of S. baicalensis and provide biological information, and it also contributes to bioprospecting.
Collapse
Affiliation(s)
- Yuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi, China.
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
312
|
Zhao H, Zhang Z, Li X, Tian Y, Zhao J, Liu J, Shi L. The complete chloroplast genome of Pseudostellaria davidii (franch.) Pax, 1934. Mitochondrial DNA B Resour 2023; 8:471-474. [PMID: 37025399 PMCID: PMC10071897 DOI: 10.1080/23802359.2023.2195514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Pseudostellaria davidii (Franch.) Pax belongs to subseries distancs of Pseudostellaria (Caryophyllaceae), and is mainly distributed in north-eastern Asia. The complete chloroplast (cp) genome of P. davidii was assembled and annotated for the first time in this study. The cp genome of P. davidii is 149,732 bp in length with the GC content of 36.57%, and it consists of four subregions: a large single-copy (LSC) region of 81,156 bp, a small single-copy (SSC) region of 16,894 bp and two inverted repeats (IR) regions of 25,841 bp each. The cp genome of P. davidii encodes a total of 111 unique genes, which are 77 protein-coding genes, four rRNA genes, and 30 tRNA genes. The results of phylogenetic analysis strongly suggested that Pseudostellaria was a monophyletic group and P. davidii forms an independent sister clade to other species of Pseudostellaria.
Collapse
Affiliation(s)
- Hongye Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
| | - Zhaolei Zhang
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Xinyi Li
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
| | - Yu Tian
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
| | - Jingyi Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
| | - Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- CONTACT Jinxin Liu
| | - Linchun Shi
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Linchun Shi Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, P.R. China
| |
Collapse
|
313
|
Zou Y, Wang X, Xu X, Yu D. Ruppia mongolica (Ruppiaceae), a new species from Inner Mongolia (China), based on morphological and genetic data. Ecol Evol 2023; 13:e9989. [PMID: 37038521 PMCID: PMC10082167 DOI: 10.1002/ece3.9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Ruppia mongolica Y. Zou & X.W. Xu, a new species from Inner Mongolia, China, is described and illustrated. The phylogenetic position of the new species within the genus was analyzed based on eight chloroplast DNA fragments and an ingroup sampling of all Eurasian species of Ruppia. The results showed that R. mongolica formed a separate branch between R. sinensis and the clade of R. maritima, R. brevipedunculata, R. drepanensis, and R. cirrhosa. Based on molecular and geographical evidence, our study reveals that R. mongolica is closely related to R. sinensis and R. brevipedunculata but differs from the former in the length and shape of the peduncle and seed size, and from the latter in the length of the peduncle, number of carpels per flower, and seed size. In addition, the karyotype analysis revealed that R. mongolica is octoploid, which is first reported within Ruppia, further supporting R. mongolica as a new species.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaofan Wang
- Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life SciencesWuhan UniversityWuhanChina
| | - Dan Yu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
314
|
Jiang M, Ni Y, Li J, Liu C. Characterisation of the complete mitochondrial genome of Taraxacum mongolicum revealed five repeat-mediated recombinations. PLANT CELL REPORTS 2023; 42:775-789. [PMID: 36774424 DOI: 10.1007/s00299-023-02994-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome. Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.
Collapse
Affiliation(s)
- Mei Jiang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
315
|
Liu S, Ni Y, Li J, Zhang X, Yang H, Chen H, Liu C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol Ecol Resour 2023; 23:694-704. [PMID: 36587992 DOI: 10.1111/1755-0998.13729] [Citation(s) in RCA: 277] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 01/03/2023]
Abstract
Chloroplast genomes have been widely used in studying plant phylogeny and evolution. Several chloroplast genome visualization tools have been developed to display the distribution of genes on the genome. However, these tools do not draw features, such as exons, introns, repetitive elements, and variable sites, disallowing in-depth examination of the genome structures. Here, we developed and validated a software package called Chloroplast Genome Viewers (CPGView). CPGView can draw three maps showing (i) the distributions of genes, variable sites, and repetitive sequences, including microsatellites, tandem and dispersed repeats; (ii) the structure of the cis-splicing genes after adjusting the exon-intron boundary positions using a coordinate scaling algorithm, and (iii) the structure of the trans-splicing gene rps12. To test the accuracy of CPGView, we sequenced, assembled, and annotated 31 chloroplast genomes from 31 genera of 22 families. CPGView drew maps correctly for all the 31 chloroplast genomes. Lastly, we used CPGView to examine 5998 publicly released chloroplast genomes from 2513 genera of 553 families. CPGView succeeded in plotting maps for 5882 but failed to plot maps for 116 chloroplast genomes. Further examination showed that the annotations of these 116 genomes had various errors needing manual correction. The test on newly generated data and publicly available data demonstrated the ability of CPGView to identify errors in the annotations of chloroplast genomes. CPGView will become a widely used tool to study the detailed structure of chloroplast genomes. The web version of CPGView can be accessed from http://www.1kmpg.cn/cpgview.
Collapse
Affiliation(s)
- Shengyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Heyu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
316
|
Zhou L, Chen T, Qiu X, Liu J, Guo S. Evolutionary differences in gene loss and pseudogenization among mycoheterotrophic orchids in the tribe Vanilleae (subfamily Vanilloideae). FRONTIERS IN PLANT SCIENCE 2023; 14:1160446. [PMID: 37035052 PMCID: PMC10073425 DOI: 10.3389/fpls.2023.1160446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Galeola lindleyana is a mycoheterotrophic orchid belonging to the tribe Vanilleae within the subfamily Vanilloideae. METHODS In this study, the G. lindleyana plastome was assembled and annotated, and compared with other Vanilleae orchids, revealing the evolutionary variations between the photoautotrophic and mycoheterotrophic plastomes. RESULTS The G. lindleyana plastome was found to include 32 protein-coding genes, 16 tRNA genes and four ribosomal RNA genes, including 11 pseudogenes. Almost all of the genes encoding photosynthesis have been lost physically or functionally, with the exception of six genes encoding ATP synthase and psaJ in photosystem I. The length of the G. lindleyana plastome has decreased to 100,749 bp, while still retaining its typical quadripartite structure. Compared with the photoautotrophic Vanilloideae plastomes, the inverted repeat (IR) regions and the large single copy (LSC) region of the mycoheterotrophic orchid's plastome have contracted, while the small single copy (SSC) region has expanded significantly. Moreover, the difference in length between the two ndhB genes was found to be 682 bp, with one of them spanning the IRb/SSC boundary. The Vanilloideae plastomes were varied in their structural organization, gene arrangement, and gene content. Even the Cyrtosia septentrionalis plastome which was found to be closest in length to the G. lindleyana plastome, differed in terms of its gene arrangement and gene content. In the LSC region, the psbA, psbK, atpA and psaB retained in the G. lindleyana plastome were missing in the C. septentrionalis plastome, while, the matK, rps16, and atpF were incomplete in the C. septentrionalis plastome, yet still complete in that of the G. lindleyana. Lastly, compared with the G. lindleyana plastome, a 15 kb region located in the SSC area between ndhB-rrn16S was found to be inverted in the C. septentrionalis plastome. These changes in gene content, gene arrangment and gene structure shed light on the polyphyletic evolution of photoautotrophic orchid plastomes to mycoheterotrophic orchid plastomes. DISCUSSION Thus, this study's decoding of the mycoheterotrophic G. lindleyana plastome provides valuable resource data for future research and conservation of endangered orchids.
Collapse
Affiliation(s)
| | | | | | - Jinxin Liu
- *Correspondence: Jinxin Liu, ; Shunxing Guo,
| | | |
Collapse
|
317
|
Zhang M, Zhang XH, Shi S, Chen BH. Lithocarpusdahuensis (Fagaceae), a new species from Fujian Province based on morphology and genomic data. PHYTOKEYS 2023; 222:1-18. [PMID: 37252639 PMCID: PMC10209513 DOI: 10.3897/phytokeys.222.99370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/26/2023] [Indexed: 05/31/2023]
Abstract
Lithocarpusdahuensis, a new Fagaceae species from Fujian Province, China, is described and illustrated. The new species is morphologically similar to L.konishii, but its oblanceolate leaf blade has more pairs of acute teeth on the margin, denser lateral veins, smaller cupules enclosing up to 1/4-1/3 of the nut, and its nut is only half as long as those of L.konishii. The plastome of L.dahuensis was 161,303 bp in length and displayed the typical quadripartite structure. Phylogenetic analyses distinguished L.dahuensis from L.konishii with strong support based on whole plastome and nrITS, respectively.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xiao-Hui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shi Shi
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bing-Hua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
318
|
Zhang D, Tu J, Ding X, Guan W, Gong L, Qiu X, Huang Z, Su H. Analysis of the chloroplast genome and phylogenetic evolution of Bidens pilosa. BMC Genomics 2023; 24:113. [PMID: 36918765 PMCID: PMC10015693 DOI: 10.1186/s12864-023-09195-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Chloroplast genomes for 3 Bidens plants endemic to China (Bidens bipinnata Linn., Bidens pilosa Linn., and Bidens alba var. radiata) have been sequenced, assembled and annotated in this study to distinguish their molecular characterization and phylogenetic relationships. The chloroplast genomes are in typical quadripartite structure with two inverted repeat regions separating a large single copy region and a small single copy region, and ranged from 151,599 to 154,478 bp in length. Similar number of SSRs and long repeats were found in Bidens, wherein mononucleotide repeats (A/T), forward and palindromic repeats were the most in abundance. Gene loss of clpP and psbD, IR expansion and contraction were detected in these Bidens plants. It seems that ndhE, ndhF, ndhG, and rpl32 from the Bidens plants were under positive selection while the majority of chloroplast genes were under purifying selection. Phylogenetic analysis revealed that 3 Bidens plants clustered together and further formed molophyletic clade with other Bidens species, indicating Bidens plants might be under radiation adaptive selection to the changing environment world-widely. Moreover, mutation hotspot analysis and in silico PCR analysis indicated that inter-genic regions of ndhD-ccsA, ndhI-ndhG, ndhF-rpl32, trnL_UAG-rpl32, ndhE-psaC, matK-rps16, rps2-atpI, cemA-petA, petN-psbM were candidate markers of molecular identification for Bidens plants. This study may provide useful information for genetic diversity analysis and molecular identification for Bidens species.
Collapse
Affiliation(s)
- Danchun Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiajun Tu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxia Ding
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wan Guan
- Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Lu Gong
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| | - He Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
319
|
Bi D, Han S, Zhou J, Zhao M, Zhang S, Kan X. Codon Usage Analyses Reveal the Evolutionary Patterns among Plastid Genes of Saxifragales at a Larger-Sampling Scale. Genes (Basel) 2023; 14:genes14030694. [PMID: 36980966 PMCID: PMC10048229 DOI: 10.3390/genes14030694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Saxifragales is a 15-family order of early-divergent Eudicots with a rich morphological diversity and an ancient rapid radiation. Codon usage bias (CUB) analyses have emerged as an essential tool for understanding the evolutionary dynamics in genes. Thus far, the codon utilization patterns had only been reported in four separate genera within Saxifragales. This study provides a comprehensive assessment of the codon manipulation based on 50 plastid genes, covering 11 constituent families at a larger sampling scale. Our results first showed a high preference for AT bases and AT-ending codons. We then used effective number of codons (ENC) to assess a range of codon bias levels in the plastid genes. We also detected high-informative intrafamilial differences of ENC in three families. Subsequently, parity rule 2 (PR2) plot analyses revealed both family-unique and order-shared bias patterns. Most importantly, the ENC plots and neutrality analyses collectively supported the dominant roles of selection in the CUB of Saxifragales plastid genes. Notably, the phylogenetic affinities inferred by both ML and BI methods were consistent with each other, and they all comprised two primary clades and four subclades. These findings significantly enhance our understanding of the evolutionary processes of the Saxifrage order, and could potentially inspire more CUB analyses at higher taxonomic levels.
Collapse
Affiliation(s)
- De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jun Zhou
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Maojin Zhao
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: ; Tel.: +86-139-5537-2268
| |
Collapse
|
320
|
Gao L, Xu W, Xin T, Song J. Application of third-generation sequencing to herbal genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1124536. [PMID: 36959935 PMCID: PMC10027759 DOI: 10.3389/fpls.2023.1124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
There is a long history of traditional medicine use. However, little genetic information is available for the plants used in traditional medicine, which limits the exploitation of these natural resources. Third-generation sequencing (TGS) techniques have made it possible to gather invaluable genetic information and develop herbal genomics. In this review, we introduce two main TGS techniques, PacBio SMRT technology and Oxford Nanopore technology, and compare the two techniques against Illumina, the predominant next-generation sequencing technique. In addition, we summarize the nuclear and organelle genome assemblies of commonly used medicinal plants, choose several examples from genomics, transcriptomics, and molecular identification studies to dissect the specific processes and summarize the advantages and disadvantages of the two TGS techniques when applied to medicinal organisms. Finally, we describe how we expect that TGS techniques will be widely utilized to assemble telomere-to-telomere (T2T) genomes and in epigenomics research involving medicinal plants.
Collapse
|
321
|
Yin H, Huang K, Xie P, Mo P, Zhang N, Wang Y. Characterization and phylogenetic analysis of the chloroplast genome of galium spurium. MITOCHONDRIAL DNA PART B 2023; 8:443-446. [PMID: 37006957 PMCID: PMC10062210 DOI: 10.1080/23802359.2023.2172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Galium spurium is a farmland weed, with strong stress resistance. However, its chloroplast genome has never been reported. In this study, the complete sequence of the chloroplast genome of G. spurium was characterized, which is a circular molecule, 153,481 bp in length, and with a large single copy region of 84,334 bp, a small single copy region of 17,057 bp, and a pair of inverted repeat regions of 26,045 bp. The whole genome contained 127 genes, including 82 protein-coding genes, 37 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic analysis shows that it relates closely to G. aparine. This study provides a basis for the further phylogenic study of Galium.
Collapse
|
322
|
Wei Q, Liu AC, Chen C, Lu Y, Zhang Y, Li SJ. The complete chloroplast genome of Nymphaea atrans (Surrey Wilfrid Laurance Jacobs, 1992: Nymphaeaceae). MITOCHONDRIAL DNA PART B 2023; 8:430-433. [PMID: 36998788 PMCID: PMC10044148 DOI: 10.1080/23802359.2023.2190426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Nymphaea atrans belongs to the subgenus Anecphya and displays varied flower colors over successive days. Because of its excellent ornamental characteristics, this species is widely cultivated in waterscape gardens worldwide. Here, we have sequenced the complete chloroplast genome of N. atrans. The whole genome size is 160,990 bp in length with four subregions: large and small single-copy regions of 90,879 and 19,699 bp, respectively, separated by a pair of inverted repeat regions of 25,206 bp each. A total of 126 genes were annotated, including 82 coding genes, eight ribosomal RNAs, and 36 transfer RNAs. The total GC content of the complete genome was 39%. Phylogenetic analysis showed that N. atrans was closely related to N. immutabilis. In this study, we have provided the chloroplast genome of N. atrans as a valuable resource for further phylogenetic analysis of Nymphaea species.
Collapse
|
323
|
Lin HY, Cai CN. The complete chloroplast genome and phylogenetic analysis of Stewartia sichuanensis (Theaceae), a Chinese endemic tree with narrow distribution. MITOCHONDRIAL DNA PART B 2023; 8:457-460. [PMID: 37006956 PMCID: PMC10062219 DOI: 10.1080/23802359.2023.2192829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Stewartia sichuanensis is a rare plant species of Theaceae and is endemic to China. Its distribution area is highly restricted, and genomic information is extremely limited. The present study reports the first complete chloroplast of S. sichuanensis. The chloroplast genome length was 158,903 bp, with a GC content of 37.3%. The chloroplast genome was comprised of an 87,736 bp long large single copy (LSC), an 18,435 bp long small single copy (SSC), and two copies of inverted repeat (IR) regions of 26,366 bp. It contained 129 genes, including 85 encoding, 36 transfer RNA, and eight ribosomal RNA genes. The phylogenetic analysis suggested that S. sichuanensis was closely related to S. laotica and S. pteropetiolata.
Collapse
|
324
|
Kim Y, Nam BM, Kim I, Deng T, Kim C. Characterization of the complete chloroplast genome of Amsonia elliptica (Apocynaceae). MITOCHONDRIAL DNA PART B 2023; 8:461-465. [PMID: 37006955 PMCID: PMC10062215 DOI: 10.1080/23802359.2023.2192834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Amsonia elliptica (Apocynaceae), endangered species in Korea, is a perennial herb that is economically important as traditional medicine and used as ornamentals. Natural populations of this species are facing extinction due to small population size and isolated distribution. Here, we report the complete chloroplast (cp) genome of A. elliptica using Illumina HiSeq sequencing and its phylogenetic position in subfamily Rauvolfioideae based on 20 Apocynaceae cp genomes. The cp genome of A. elliptica was 154,242 bp in length with a pair of inverted repeats of 25,711 bp, separated by large single-copy and small single-copy regions of 85,382 bp and 17,438 bp, respectively. Our phylogenomic analyses revealed that A. elliptica was closely related to Rhazya stricta in Rauvolfioideae (Apocynaceae).
Collapse
|
325
|
Zhong W, Du X, Wang X, Cao L, Mu Z, Zhong G. Comparative analyses of five complete chloroplast genomes from the endemic genus Cremanthodium (Asteraceae) in Himalayan and adjacent areas. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:409-420. [PMID: 37033762 PMCID: PMC10073364 DOI: 10.1007/s12298-023-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Cremanthodium Benth. is an endemic genus in the Himalayas and adjacent areas. Some plants of the genus are traditional medicinal plants in Tibetan medicine. In this study, the chloroplast genomes of five species (Cremanthodium arnicoides (DC. ex Royle) Good, Cremanthodium brunneopilosum S. W. Liu, Cremanthodium ellisii (Hook. f.) Kitam., Cremanthodium nervosum S. W. Liu, and Cremanthodium rhodocephalum Diels) were collected for sequencing. The sequencing results showed that the size of the chloroplast genome ranged from 150,985 to 151,284 bp and possessed a typical quadripartite structure containing one large single copy (LSC) region (83,326-83,369 bp), one small single copy (SSC) region (17,956-18,201 bp), and a pair of inverted repeats (IR) regions (24,830-24,855 bp) in C. arnicoides, C. brunneopilosum, C. ellisii, C. nervosum, and C. rhodocephalum. The chloroplast genomes encoded an equal number of genes, of which 88 were protein-coding genes, 37 were transfer ribonucleic acid genes, and eight were ribosomal ribonucleic acid genes, and were highly similar in overall size, genome structure, gene content, and order. In comparison with other species in the Asteraceae family, their chloroplast genomes share similarities but show some structural variations. There was no obvious expansion or contraction in the LSC, SSC or IR regions among the five species, indicating that the chloroplast gene structure of the genus was highly conserved. Collinearity analysis showed that there was no gene rearrangement. The results of the phylogenetic tree showed that the whole chloroplast genomes of the five species were closely related, and the plants of this genus were grouped into one large cluster with Ligularia Cass. and Farfugium Lindl.
Collapse
Affiliation(s)
- Weihong Zhong
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaolang Du
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Xiaoyun Wang
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Lan Cao
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Zejing Mu
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
| | - Guoyue Zhong
- Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Research Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Nanchang, People’s Republic of China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang, People’s Republic of China
| |
Collapse
|
326
|
Ramadan AM, Mohammed T, Al-Ghamdi KM, Alghamdi AJ, Atef A. The first report describes features of the chloroplast genome of Withania frutescens. Saudi J Biol Sci 2023; 30:103600. [PMID: 36874202 PMCID: PMC9975694 DOI: 10.1016/j.sjbs.2023.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Genomic studies not only help researcher not only to identify genomic features in organisms, but also facilitate understanding of evolutionary relationships. Species in the Withania genus have medicinal benefits, and one of them is Withania frutescens, which is used to treat various diseases. This report investigates the nucleotides and genic features of chloroplast genome of Withania frutescens and trying to clarify the evolutionary relationship with Withania sp and family Solanaceae. We found that the total size of Withania frutescens chloroplast genome was 153.771 kb (the smallest chloroplast genome in genus Withania). A large single-copy region (91.285 kb), a small single-copy region (18.373 kb) form the genomic region, and are distinct from each other by a large inverted repeat (22.056 kb). 137 chloroplast genes are found including 4 rRNAs, 38 tRNAs and 83 protein-coding genes. The Withania frutescens chloroplast genome as well as four closest relatives was compared for features such as structure, nucleotide composition, simple sequence repeats (SSRs) and codon bias. Compared to other Withania species, Withania frutescens has unique characteristics. It has the smallest chloroplast genome of any Withania species, isoleucine is the major amino acid, and tryptophan is the minor, In addition, there are no ycf3 and ycf4 genes, fourth, there are only fifteen replicative genes, while in most other species there are more. Using fast minimum evolution and neighbor joining, we have reconstructed the trees to confirm the relationship with other Solanacaea species. The Withania frutescens chloroplast genome is submitted under accession no. ON153173.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Plant Molecular Biology Department, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
- Corresponding author at: Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia.
| | - Taimyiah Mohammed
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M Al-Ghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah J Alghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Atef
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Najla bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
327
|
Vega M, Quintero‐Corrales C, Mastretta‐Yanes A, Casas A, López‐Hilario V, Wegier A. Multiple domestication events explain the origin of Gossypium hirsutum landraces in Mexico. Ecol Evol 2023; 13:e9838. [PMID: 36911302 PMCID: PMC9994486 DOI: 10.1002/ece3.9838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
Several Mesoamerican crops constitute wild-to-domesticated complexes generated by multiple initial domestication events, and continuous gene flow among crop populations and between these populations and their wild relatives. It has been suggested that the domestication of cotton (Gossypium hirsutum) started in the northwest of the Yucatán Peninsula, from where it spread to other regions inside and outside of Mexico. We tested this hypothesis by assembling chloroplast genomes of 23 wild, landraces, and breeding lines (transgene-introgressed and conventional). The phylogenetic analysis showed that the evolutionary history of cotton in Mexico involves multiple events of introgression and genetic divergence. From this, we conclude that Mexican landraces arose from multiple wild populations. Our results also revealed that their structural and functional chloroplast organizations had been preserved. However, genetic diversity decreases as a consequence of domestication, mainly in transgene-introgressed (TI) individuals (π = 0.00020, 0.00001, 0.00016, 0, and 0, of wild, TI-wild, landraces, TI-landraces, and breeding lines, respectively). We identified homologous regions that differentiate wild from domesticated plants and indicate a relationship among the samples. A decrease in genetic diversity associated with transgene introgression in cotton was identified for the first time, and our outcomes are therefore relevant to both biosecurity and agrobiodiversity conservation.
Collapse
Affiliation(s)
- Melania Vega
- Genética de la Conservación, Jardín BotánicoInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Christian Quintero‐Corrales
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Alicia Mastretta‐Yanes
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)Ciudad de MéxicoMexico
- Consejo Nacional de Ciencia y Tecnología (CONACYT) Programa de Investigadores e Investigadoras por MéxicoCiudad de MéxicoMexico
| | - Alejandro Casas
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico
| | | | - Ana Wegier
- Genética de la Conservación, Jardín BotánicoInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
328
|
Zhang M, Gao Y, Su X, Liu W, Guo Y, Jiang J, Ma W. Characterization of the complete chloroplast genome of Betula pendula purple rain (betulaceae). Mitochondrial DNA B Resour 2023; 8:281-284. [PMID: 36845004 PMCID: PMC9946319 DOI: 10.1080/23802359.2023.2176182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Betula pendula purple rain is a variety of Betula pendula that is native to Europe and has important ornamental and economic value. In this study, we sequenced the complete chloroplast genome of B. pendula purple rain. This genome had a typical quadripartite structure with 160,552 bases, including a large single copy (LSC) region of 89,433 bases, a small single copy (SCC) region of 19,007 bases and two inverted repeat (IR) regions of 26,056 bases. The GC content of the chloroplast genome was 36% and contained 124 genes, including 79 protein-coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood phylogenetic analysis of reported chloroplast genomes showed that B. pendula purple rain was most closely related to Betula occidentalis and Betula platyphylla.
Collapse
Affiliation(s)
- Meiqi Zhang
- Forestry College, Northeast Forestry University, Harbin, China
| | - Yuan Gao
- Chemical Engineering and Resource utilization College, Northeast Forestry University, Harbin, China
| | - Xiaoyue Su
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Weili Liu
- Experiment and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanli Guo
- Experiment and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Jiang
- Forestry College, Northeast Forestry University, Harbin, China,Jing Jiang Forestry College, Northeast Forestry University, Harbin150006, China
| | - Wei Ma
- Experiment and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China,CONTACT Wei Ma Pharmacy College, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
329
|
Xiang R, Wang S, Wan H. The complete chloroplast genome of Holarrhena pubescens and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:266-269. [PMID: 36816055 PMCID: PMC9937002 DOI: 10.1080/23802359.2022.2162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Holarrhena pubescens Wall. ex G. Don, 1837 is an important medicinal plant belonging to the Holarrhena genus in the Apocynaceae family. In this study, the complete chloroplast (cp) genome sequence of H. pubescens was sequenced using the Illumina NovaSeq platform. The cp genome of H. pubescens was 160,108 bp in length with 37.21% overall GC content. The cp genome of H. pubescens containing a large single-copy region (LSC, 88,685 bp), a small single-copy region (SSC, 18,671 bp), and a pair of inverted repeat regions (SSC, 26,376 bp). The cp genome encoded 129 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on complete protein coding genes sequences revealed that H. pubescens was closest to Beaumontia murtonii.
Collapse
Affiliation(s)
- Rushuang Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,College of Pharmaceutical, Dali University, Dali, China
| | - Sijia Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,School of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China,CONTACT Huihua Wan Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing100070, China
| |
Collapse
|
330
|
Quiñones KJO, Gentallan RP, Bartolome MCB, Madayag RE, Vera Cruz JRA, Cirunay ART, Endonela LE, Timog EBS, Borromeo TH, Altoveros NC, Alvaran BBS, Magtoltol JB, Cejalvo RD. The complete chloroplast genome of Senna alata (L.) Roxb., an important medicinal plant from the Philippines. Mitochondrial DNA B Resour 2023; 8:244-248. [PMID: 36816058 PMCID: PMC9930843 DOI: 10.1080/23802359.2023.2172973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Senna alata, a flowering shrub, is widely cultivated in the Philippines for its anti-fungal properties. Despite this, its chloroplast genome is not yet established. We assembled and annotated the complete chloroplast genome of accession from the germplasm collection of the Institute of Crop Science, University of the Philippines, Los Baños, using Illumina sequencing data. The complete cp genome was 159,176-bp long characterized by a large single copy of 88,769 bp, short single-copy of 18,301 bp and a pair of inverted repeat regions of 26,053 bp each. The overall GC content of the chloroplast genome was 36.4%. The plastome comprised 37 tRNA genes, 8 rRNA genes and 78 mRNA genes. Phylogenetic analysis showed that S. alata is closely related to S. siamea.
Collapse
Affiliation(s)
- Kristine J. O. Quiñones
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Renerio P. Gentallan
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Michael C. B. Bartolome
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Roselle E. Madayag
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines,Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Juan R. A. Vera Cruz
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Angeleigh R. T. Cirunay
- Institute of Food Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Leah E. Endonela
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Emmanuel B. S. Timog
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines,Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Teresita H. Borromeo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Nestor C. Altoveros
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Bartimeus B. S. Alvaran
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines,Institute of Food Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Jessabel B. Magtoltol
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines,Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines
| | - Reneliza D. Cejalvo
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños,4031Laguna, Philippines,CONTACT Renerio P. Gentallan Jr. Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| |
Collapse
|
331
|
Song S, Cameron KM, Wang Y, Wang S, Jin X, Hina F, Yang Z, Li P. Phylogenomics and phylogeography of Menispermum (Menispermaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1116300. [PMID: 36909420 PMCID: PMC9992823 DOI: 10.3389/fpls.2023.1116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Phylogenomics have been widely used to resolve ambiguous and controversial evolutionary relationships among plant species and genera, and the identification of unique indels in plastomes may even help to understand the evolution of some plant families. Menispermum L. (Menispermaceae) consists of three species, M. dauricum DC., M. canadense L., and M. mexicanum Rose, which are disjuncly distributed among East Asia, Eastern North America and Mexico. Taxonomists continue to debate whether M. mexicanum is a distinct species, a variety of M. dauricum, or simply a synonym of M. canadense. To date, no molecular systematics studies have included this doubtful species in phylogenetic analyses. METHODS In this study, we examined phylogenomics and phylogeography of Menispermum across its entire range using 29 whole plastomes of Menispermaceae and 18 ITS1&ITS2 sequences of Menispermeae. We reconstructed interspecific relationships of Menispermum and explored plastome evolution in Menispermaceae, revealing several genomic hotspot regions for the family. RESULTS AND DISCUSSION Phylogenetic and network analyses based on whole plastome and ITS1&ITS2 sequences show that Menispermum clusters into two clades with high support values, Clade A (M. dauricum) and Clade B (M. canadense + M. mexicanum). However, M. mexicanum is nested within M. canadense and, as a result, we support that M. mexicanum is a synonym of M. canadense. We also identified important molecular variations in the plastomes of Menispermaceae. Several indels and consequently premature terminations of genes occur in Menispermaceae. A total of 54 regions were identified as the most highly variable plastome regions, with nucleotide diversity (Pi) values > 0.05, including two coding genes (matK, ycf1), four introns (trnK intron, rpl16 intron, rps16 intron, ndhA intron), and 48 intergenic spacer (IGS) regions. Of these, four informative hotspot regions (trnH-psbA, ndhF-rpl32, trnK-rps16, and trnP-psaJ) should be especially useful for future studies of phylogeny, phylogeography and conservation genetics of Menispermaceae.
Collapse
Affiliation(s)
- Shiqiang Song
- College of Life Sciences and Technologies, Tarim University, Alar, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kenneth M. Cameron
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Shenyi Wang
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Faiza Hina
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoping Yang
- College of Life Sciences and Technologies, Tarim University, Alar, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
332
|
Cao P, Huang Y, Zong M, Xu Z. De Novo Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Chaenomeles speciosa (Sweet) Nakai Revealed the Existence of Two Structural Isomers. Genes (Basel) 2023; 14:526. [PMID: 36833452 PMCID: PMC9957484 DOI: 10.3390/genes14020526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
As a valuable Chinese traditional medicinal species, Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a natural resource with significant economic and ornamental value. However, its genetic information is not well understood. In this study, the complete mitochondrial genome of C. speciosa was assembled and characterized to explore the repeat sequences, recombination events, rearrangements, and IGT, to predict RNA editing sites, and to clarify the phylogenetic and evolutionary relationship. The C. speciosa mitochondrial genome was found to have two circular chromosomes as its major conformation, with a total length of 436,464 bp and 45.2% GC content. The mitochondrial genome contained 54 genes, including 33 unique protein-coding genes, 18 tRNAs, and 3 rRNA genes. Seven pairs of repeat sequences involving recombination events were analyzed. Both the repeat pairs, R1 and R2, played significant roles in mediating the major and minor conformations. In total, 18 MTPTs were identified, 6 of which were complete tRNA genes. There were 454 RNA editing sites in the 33 protein-coding sequences predicted by the PREPACT3 program. A phylogenetic analysis based on 22 species of mitochondrial genomes was constructed and indicated highly conserved PCG sequences. Synteny analyses showed extensive genomic rearrangements in the mitochondrial genome of C. speciosa and closely related species. This work is the first to report the C. speciosa mitochondrial genome, which is of great significance for conducting additional genetic studies on this organism.
Collapse
Affiliation(s)
- Pei Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Huang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mei Zong
- College of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Zilong Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
333
|
Liu J, Ni Y, Liu C. Polymeric structure of the Cannabis sativa L. mitochondrial genome identified with an assembly graph model. Gene 2023; 853:147081. [PMID: 36470482 DOI: 10.1016/j.gene.2022.147081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Cannabis sativa L. belongs to the family Cannabaceae in Rosales. It has been widely used as medicines, building materials, and textiles. Elucidating its genome is critical for molecular breeding and synthetic biology study. Many studies have shown that the mitochondrial genomes (mitogenomes) and even chloroplast genomes (plastomes) had complex polymeric structures. Using the Nanopore sequencing platform, we sequenced, assembled, and analyzed its mitogenome and plastome. The resulting unitig graph suggested that the mitogenome had a complex polymeric structure. However, a gap-free, circular sequence was further assembled from the unitig graph. In contrast, a circular sequence representing the plastome was obtained. The mitogenome major conformation was 415,837 bp long, and the plastome was 153,927 bp long. To test if the repeat sequences promote recombination, which corresponds to the branch points in the structure, we tested the sequences around repeats by long-read mapping. Among 208 pairs of predicted repeats, the mapping results supported the presence of cross-over around 25 pairs of repeats. Subsequent PCR amplification confirmed the presence of cross-over around 15 of the 25 repeats. By comparing the mitogenome and plastome sequences, we identified 19 mitochondria plastid DNAs, including seven complete genes (trnW-CCA, trnP-UGG, psbJ, trnN-GUU, trnD-GUC, trnH-GUG, trnM-CAU) and nine gene fragments. Furthermore, the selective pressure analysis results showed that five genes (atp1, ccmB, ccmC, cox1, nad7) had 19 positively selected sites. Lastly, we predicted 28 RNA editing sites. A total of 8 RNA editing sites located in the coding regions were successfully validated by PCR amplification and Sanger sequencing, of which four were synonymous, and four were nonsynonymous. In particular, the RNA editing events appeared to be tissue-specific in C. sativa mitogenome. In summary, we have confirmed the major confirmation of C. sativa mitogenome and characterized its structural features in detail. These results provide critical information for future variety breeding and resource development for C. sativa.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
334
|
Bai X, Wang G, Ren Y, Su Y, Han J. Insights into taxonomy and phylogenetic relationships of eleven Aristolochia species based on chloroplast genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1119041. [PMID: 36860895 PMCID: PMC9969298 DOI: 10.3389/fpls.2023.1119041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The Aristolochia, as an important genus comprised of over 400 species, has attracted much interest because of its unique chemical and pharmacological properties. However, the intrageneric taxonomy and species identification within Aristolochia have long been difficult because of the complexity of their morphological variations and lack of high-resolution molecular markers. METHODS In this study, we sampled 11 species of Aristolochia collected from distinct habitats in China, and sequenced their complete chloroplast (cp) genomes. RESULTS The 11 cp genomes of Aristolochia ranged in size from 159,375bp (A. tagala) to 160,626 bp (A. tubiflora), each containing a large single-copy (LSC) region (88,914-90,251 bp), a small single-copy (SSC) region (19,311-19,917 bp), and a pair of inverted repeats (IR) (25,175-25,698 bp). These cp genomes contained 130-131 genes each, including 85 protein-coding genes (CDS), 8 ribosomal RNA genes, and 37-38 transfer RNA genes. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in Aristolochia species. A. littoralis had the highest number of repeats (168), while A. tagala had the lowest number (42). The total number of simple sequence repeats (SSRs) is at least 99 in A. kwangsiensis, and, at most, 161 in A. gigantea. Interestingly, we detected eleven highly mutational hotspot regions, including six gene regions (clpP, matK, ndhF, psbT, rps16, trnK-UUU) and five intergenic spacer regions (ccsA-ndhD, psbZ-trnG-GCC, rpl33-rps18, rps16-trnQ-UUG, trnS-GCU-trnG-UCC). The phylogenetic analysis based on the 72 protein-coding genes showed that 11 Aristolochia species were divided into two clades which strongly supported the generic segregates of the subgenus Aristolochia and Siphisia. DISCUSSION This research will provide the basis for the classification, identification, and phylogeny of medicinal plants of Aristolochiaceae.
Collapse
|
335
|
Li M, Tang L, Deng J, Tang H, Shao S, Xing Z, Luo Y. Comparative chloroplast genomics of three species of Bulbophyllum section Cirrhopetalum (Orchidaceae), with an emphasis on the description of a new species from Eastern Himalaya. PeerJ 2023; 11:e14721. [PMID: 36793888 PMCID: PMC9924136 DOI: 10.7717/peerj.14721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Background Chloroplast (cp) genomes are useful and informative molecular markers used for species determination and phylogenetic analysis. Bulbophyllum is one of the most taxonomically complex taxa in Orchidaceae. However, the genome characteristics of Bulbophyllum are poorly understood. Methods Based on comparative morphological and genomic analysis, a new species Bulbophyllum pilopetalum from eastern Himalaya belonging to section Cirrhopetalum is described and illustrated. This study used chloroplast genomic sequences and ribosomal DNA (nrDNA) analysis to distinguish the new Bulbophyllum species and determine its phylogenetic position. An additional phylogenetic analysis was conducted using 74 coding sequences from 15 complete chloroplast genomes from the genus Bulbophyllum, as well as nrDNA sequences and two chloroplast DNA sequences from 33 Bulbophyllun species. Results The new species is morphologically similar to B. pingnanense, B. albociliatum, and B. brevipedunculatum in vegetative and floral morphology, but it can be distinguished by its ovate-triangle dorsal sepal without a marginal ciliate. The chloroplast genome of the new Bulbophyllum species is 151,148 bp in length, and includes a pair of inverted repeats (IRs) of 25,833 bp, a large single-copy region (LSC) of 86,138 bp, and a small single-copy region (SSC) of 13,300 bp. The chloroplast genome includes 108 unique genes encoding 75 proteins, 30 tRNAs, and four rRNAs. Compared with the cp genomes of its two most closely-related species, B. pingnanense and B. albociliatum, this chloroplast genome exhibited great interspecific divergence and contained several Indels that were specific to the new species. The plastid tree showed that B. pilopetalum is most closely-related to B. pingnanense. The phylogenetic tree based on combined nrDNA and chloroplast DNA sequences indicated that section Cirrhopetalum was monophyletic and B. pilopetalum was a member of this section. Discussion The taxonomic status of the new species is strongly supported by cp genome data. Our study highlights the importance of using the complete cp genome to identify species, elucidate the taxonomy, and reconstruct the phylogeny of plant groups with complicated taxonomic problems.
Collapse
Affiliation(s)
- Mengkai Li
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China,Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Lu Tang
- Center for Gardening and Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jianping Deng
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Hanqing Tang
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Shicheng Shao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Zhen Xing
- Resources & Environment College, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
336
|
Xu Y, Liu Y, Yu Z, Jia X. Complete Chloroplast Genome Sequence of the Long Blooming Cultivar Camellia 'Xiari Qixin': Genome Features, Comparative and Phylogenetic Analysis. Genes (Basel) 2023; 14:460. [PMID: 36833387 PMCID: PMC9956581 DOI: 10.3390/genes14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The camellia flower is a famous woody plant with a long-cultivated history and high ornamental value. It is extensively planted and utilized around the world and owns a massive germplasm resource. Camellia 'Xiari Qixin' belongs to one of the typical cultivars in the four seasons camellia hybrids series. Due to its long flowering period, this kind of cultivar is identified as a precious resource of camellia flowers. In this study, the complete chloroplast genome sequence of C. 'Xiari Qixin' was first reported. Its whole chloroplast genome is 157,039 bp in length with an overall GC content of 37.30%, composed of a large single copy region (LSC, 86,674 bp), a small single copy region (SSC, 18,281 bp), and a pair of inverted repeat regions (IRs, 26,042 bp each). A total of 134 genes were predicted in this genome, including 8 ribosomal RNA genes, 37 transfer RNA genes, and 89 protein-coding genes. In addition, 50 simple sequence repeats (SSRs) and 36 long repeat sequences were detected. By comparing C. 'Xiari Qixin' and seven Camellia species on the chloroplast genome, seven mutation hotspot regions were identified, including psbK, trnS (GCU)-trnG(GCC), trnG(GCC), petN-psbM, trnF(GAA)-ndhJ, trnP(UGG)-psaJ, and ycf1. Phylogenetic analysis of 30 chloroplast genomes showed that the genetic relationship between C. 'Xiari Qixin' and Camellia azalea is quite close in evolution. These results could not only provide a valuable database for determining the maternal origin of Camellia cultivars, but also contribute to the exploration of the phylogenetic relationship and utilization of germplasm resources for Camellia.
Collapse
Affiliation(s)
| | | | | | - Xiaocheng Jia
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
337
|
Chen H, Chen H, Wang B, Liu C. Conserved chloroplast genome sequences of the genus Clerodendrum Linn. (Lamiaceae) as a super-barcode. PLoS One 2023; 18:e0277809. [PMID: 36757949 PMCID: PMC9910634 DOI: 10.1371/journal.pone.0277809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The plants of the genus Clerodendrum L. have great potential for development as an ornamental and important herbal resource. There is no significant morphological difference among many species of the genus Clerodendrum, which will lead to confusion among the herbs of this genus and ultimately affect the quality of the herbs. The chloroplast genome will contribute to the development of new markers used for the identification and classification of species. METHODS AND RESULTS Here, we obtained the complete chloroplast genome sequences of Clerodendrum chinense (Osbeck) Mabberley and Clerodendrum thomsoniae Balf.f. using the next generation DNA sequencing technology. The chloroplast genomes of the two species all encode a total of 112 unique genes, including 80 protein-coding, 28 tRNA, and four rRNA genes. A total of 44-42 simple sequence repeats, 19-16 tandem repeats and 44-44 scattered repetitive sequences were identified. Phylogenetic analyses showed that the nine Clerodendrum species were classified into two clades and together formed a monophyletic group. Selective pressure analyses of 77 protein-coding genes showed that there was no gene under positive selection in the Clerodendrum branch. Analyses of sequence divergence found two intergenic regions: trnH-GUG-psbA, nhdD-psaC, exhibiting a high degree of variations. Meanwhile, there was no hypervariable region identified in protein coding genes. However, the sequence identities of these two intergenic spacers (IGSs) are greater than 99% among some species, which will result in the two IGSs not being used to distinguish Clerodendrum species. Analysis of the structure at the LSC (Large single copy) /IR (Inverted repeat) and SSC (Small single copy)/IR boundary regions showed dynamic changes. The above results showed that the complete chloroplast genomes can be used as a super-barcode to identify these Clerodendrum species. The study lay the foundation for the understanding of the evolutionary process of the genus Clerodendrum.
Collapse
Affiliation(s)
- Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- * E-mail: (HC); (CL)
| | - Haodong Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan, China
| | - Bin Wang
- School of Pharmacy, Xiangnan University, Chenzhou, Hunan, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
- * E-mail: (HC); (CL)
| |
Collapse
|
338
|
Wu T, Deng G, Yin Q, Chen S, Zhang Y, Wang B, Xiang L, Liu X. Characterization and molecular evolution analysis of Periploca forrestii inferred from its complete chloroplast genome sequence. Genome 2023; 66:34-50. [PMID: 36516428 DOI: 10.1139/gen-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Periploca forrestii, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of P. forrestii based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on P. forrestii. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the psaI and ycf2 genes, which might reflect specific adaptions to the P. forrestii particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important P. forrestii genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.
Collapse
Affiliation(s)
- Tianze Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Gang Deng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Yongping Zhang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Bo Wang
- National Engineering Technology Research Center for Miao Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Chinese Academy of Medical Sciences, Beijing 100700, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
339
|
Gao M, Huo X, Lu L, Liu M, Zhang G. Analysis of codon usage patterns in Bupleurum falcatum chloroplast genome. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
340
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
341
|
Han Y, Tong L, Zhang Z, Yang S, Yang F. The complete chloroplast genome sequence of Rubus irritans Focke 1910 (Rosaceae). Mitochondrial DNA B Resour 2023; 8:177-180. [PMID: 36733273 PMCID: PMC9888452 DOI: 10.1080/23802359.2023.2168113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Rubus irritans Focke is a type of tonifying kidney-essence herb used in China. We present the complete chloroplast (cp) genome of R. irritans, a member of the genus Rubus. The complete cp genome of R. irritans was 155,286 bp long and consisted of an 84,613 bp long large single-copy (LSC) region, an 18,697 bp long SSC region, and a pair of 25,988 bp long inverted repeats (IR). Furthermore, the plastid genome contained 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content of the genome was 37.29%. Based on the complete cp genome, phylogenetic analysis revealed that R. irritans is closely related to R. amabilis.
Collapse
Affiliation(s)
- YongXia Han
- Qinghai University School of Medicine, Xining, China
| | - Li Tong
- Qinghai University School of Medicine, Xining, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining, China
| | - ZongHao Zhang
- Animal and Veterinary Sciences Academy of Qinghai University, Xining, China
| | - ShiBing Yang
- Qinghai University School of Medicine, Xining, China
| | - Fang Yang
- Qinghai University School of Medicine, Xining, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining, China
| |
Collapse
|
342
|
Xu S, Teng K, Zhang H, Gao K, Wu J, Duan L, Yue Y, Fan X. Chloroplast genomes of four Carex species: Long repetitive sequences trigger dramatic changes in chloroplast genome structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1100876. [PMID: 36778700 PMCID: PMC9911286 DOI: 10.3389/fpls.2023.1100876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa.
Collapse
Affiliation(s)
- Shenjian Xu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Kang Gao
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liusheng Duan
- College of Plants and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
343
|
Zhao H, Qin Y, Zhu G, Han T, Liu P. Complete chloroplast genome of the oil-bearing shrub Staphylea bumalda DC (Staphyleaceae). Mitochondrial DNA B Resour 2023; 8:152-153. [PMID: 36685652 PMCID: PMC9848370 DOI: 10.1080/23802359.2022.2164701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Staphylea bumalda DC, belonging to family Staphyleaceae, is a woody understory tree that is both edible and medicinal and produces oil with high economic value. This study reports the first complete chloroplast genome sequence of S. bumalda. The complete chloroplast genome sequence of S. bumalda is 160,319 bp in length with an overall GC content of 32.79%, which is composed of a large single-copy region (LSC: 89,401 bp), a small single-copy region (SSC: 18,834 bp), and two inverted repeat regions (IR: 26,042 bp). A total of 130 genes were predicted in this genome, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic analysis based on 14 complete chloroplast sequences from related species revealed that S. bumalda is a sister to S. holocarpa.
Collapse
Affiliation(s)
- Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, PR China
| | - Yue Qin
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, PR China
| | - Gaopu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, PR China
| | - Tao Han
- State-Owned Tongbai Maoji Forest Farm Tongbai, PR China
| | - Panfeng Liu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, PR China,CONTACT Panfeng Liu Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, PR China
| |
Collapse
|
344
|
Wang W, Wang X, Shi Y, Yin Q, Gao R, Wang M, Xiang L, Wu L. Identification of Laportea bulbifera using the complete chloroplast genome as a potentially effective super-barcode. J Appl Genet 2023; 64:231-245. [PMID: 36633756 DOI: 10.1007/s13353-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.
Collapse
Affiliation(s)
- Wenting Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
345
|
Wang CK, Guo R, Guo CC, Yang GY, Zhang WG. Gelidocalamuszixingensis (Poaceae, Bambusoideae, Arundinarieae), a new species from southern China revealed by morphological and molecular evidence. PHYTOKEYS 2023; 218:29-45. [PMID: 36762271 PMCID: PMC9846285 DOI: 10.3897/phytokeys.218.96849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The genus Gelidocalamus T. H. Wen, endemic to southern China, is a small but taxonomically problematic genus of Arundinarieae (Poaceae, Bambusoideae). During field work, a population of Gelidocalamus from Zixing, Hunan, was discovered, appearing to be distinct from our previously identified collection. Comparisons of the population of Zixing were performed by using scanning electron microscopy (SEM) and a plastid genome-based phylogeny. Morphologically, it was mostly similar to G.multifolius, but differed by culm leaf erect with densely white pubescence, apical branch sheath much longer than the internodes and foliage leaf larger. Phylogenetically, the new species was well-supported as a sister to the clade of G.multifolius + G.tessellatus, and the above three taxa were clustered in the Shibataea clade (IV) of Arundinarieae. Thus, the new species, formally named as Gelidocalamuszixingensis W.G.Zhang, G.Y.Yang & C.K.Wang, was described and illustrated herein.
Collapse
Affiliation(s)
- Cheng-Kun Wang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, ChinaJiangxi Agricultural UniversityNanchangChina
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang 330045, ChinaCollaborative Innovation Center of Jiangxi Typical Trees Cultivation and UtilizationNanchangChina
| | - Rong Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, ChinaJiangxi Agricultural UniversityNanchangChina
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang 330045, ChinaCollaborative Innovation Center of Jiangxi Typical Trees Cultivation and UtilizationNanchangChina
| | - Chun-Ce Guo
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, ChinaJiangxi Agricultural UniversityNanchangChina
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang 330045, ChinaCollaborative Innovation Center of Jiangxi Typical Trees Cultivation and UtilizationNanchangChina
| | - Guang-Yao Yang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, ChinaJiangxi Agricultural UniversityNanchangChina
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang 330045, ChinaCollaborative Innovation Center of Jiangxi Typical Trees Cultivation and UtilizationNanchangChina
| | - Wen-Gen Zhang
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Forestry College, Jiangxi Agricultural University, Nanchang 330045, ChinaJiangxi Agricultural UniversityNanchangChina
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Nanchang 330045, ChinaCollaborative Innovation Center of Jiangxi Typical Trees Cultivation and UtilizationNanchangChina
| |
Collapse
|
346
|
Feng J, Xiong Y, Su X, Liu T, Xiong Y, Zhao J, Lei X, Yan L, Gou W, Ma X. Analysis of Complete Chloroplast Genome: Structure, Phylogenetic Relationships of Galega orientalis and Evolutionary Inference of Galegeae. Genes (Basel) 2023; 14:176. [PMID: 36672917 PMCID: PMC9859028 DOI: 10.3390/genes14010176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Galega orientalis, a leguminous herb in the Fabaceae family, is an ecologically and economically important species widely cultivated for its strong stress resistance and high protein content. However, genomic information of Galega orientalis has not been reported, which limiting its evolutionary analysis. The small genome size makes chloroplast relatively easy to obtain genomic sequence for phylogenetic studies and molecular marker development. Here, the chloroplast genome of Galega orientalis was sequenced and annotated. The results showed that the chloroplast genome of G. orientalis is 125,280 bp in length with GC content of 34.11%. A total of 107 genes were identified, including 74 protein-coding genes, 29 tRNAs and four rRNAs. One inverted repeat (IR) region was lost in the chloroplast genome of G. orientalis. In addition, five genes (rpl22, ycf2, rps16, trnE-UUC and pbf1) were lost compared with the chloroplast genome of its related species G. officinalis. A total of 84 long repeats and 68 simple sequence repeats were detected, which could be used as potential markers in the genetic studies of G. orientalis and related species. We found that the Ka/Ks values of three genes petL, rpl20, and ycf4 were higher than one in the pairwise comparation of G. officinalis and other three Galegeae species (Calophaca sinica, Caragana jubata, Caragana korshinskii), which indicated those three genes were under positive selection. A comparative genomic analysis of 15 Galegeae species showed that most conserved non-coding sequence regions and two genic regions (ycf1 and clpP) were highly divergent, which could be used as DNA barcodes for rapid and accurate species identification. Phylogenetic trees constructed based on the ycf1 and clpP genes confirmed the evolutionary relationships among Galegeae species. In addition, among the 15 Galegeae species analyzed, Galega orientalis had a unique 30-bp intron in the ycf1 gene and Tibetia liangshanensis lacked two introns in the clpP gene, which is contrary to existing conclusion that only Glycyrrhiza species in the IR lacking clade (IRLC) lack two introns. In conclusion, for the first time, the complete chloroplast genome of G. orientalis was determined and annotated, which could provide insights into the unsolved evolutionary relationships within the genus Galegeae.
Collapse
Affiliation(s)
- Junjie Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoli Su
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Wenlong Gou
- Sichuan Academy of Grassland Science, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
347
|
Qiao D, Yang C, Guo Y. The complete chloroplast genome sequence of Camellia sinensis var. sinensis cultivar 'FuDingDaBaiCha'. Mitochondrial DNA B Resour 2023; 8:100-104. [PMID: 36643810 PMCID: PMC9833401 DOI: 10.1080/23802359.2022.2161327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The complete chloroplast (cp) genome sequence of Camellia sinensis var. sinensis cultivar 'FuDingDaBaiCha' (FD), one of the key contributors to the history of tea breeding in China, was determined in this study. The cp genome of FD is 157,025 bp in length, including a large single-copy (LSC, 86,586 bp), a small single-copy (SSC, 18,277 bp), and a pair of inverted repeats (IRa and IRb, 26,081 bp). The overall GC content is 37.3%. A total of 137 genes were predicted, including 92 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that FD was closely related to C. sinensis cv. 'AnHua', C. sinensis cv. 'QianCha 1', and C. sinensis cv. 'BanTianYao'. The determination of the complete cp genome sequence of FD provides a way for the subsequent study of the genetic background and phylogenetic relationships of different tea plant cultivars.
Collapse
Affiliation(s)
- Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China,CONTACT Dahe Qiao Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
348
|
Fang H, Dai G, Liao B, Zhou P, Liu Y. Application of chloroplast genome in the identification of Phyllanthus urinaria and its common adulterants. FRONTIERS IN PLANT SCIENCE 2023; 13:1099856. [PMID: 36684764 PMCID: PMC9853280 DOI: 10.3389/fpls.2022.1099856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Phyllanthus urinaria L. is extensively used as ethnopharmacological material in China. In the local marketplace, this medicine can be accidentally contaminated, deliberately substituted, or mixed with other related species. The contaminants in herbal products are a threat to consumer safety. Due to the scarcity of genetic information on Phyllanthus plants, more molecular markers are needed to avoid misidentification. METHODS In this study, the complete chloroplast genome of nine species of the genus Phyllanthus was de novo assembled and characterized. RESULTS This study revealed that all of these species exhibited a conserved quadripartite structure, which includes a large single copy (LSC) region and small single copy (SSC) region, and two copies of inverted repeat regions (IRa and IRb), which separate the LSC and SSC regions. And the genome structure, codon usage, and repeat sequences were highly conserved and showed similarities among the nine species. Three highly variable regions (trnS-GCU-trnG-UCC, trnT-UGU-trnL-UAA, and petA-psbJ) might be helpful as potential molecular markers for identifying P. urinaria and its contaminants. In addition, the molecular clock analysis results showed that the divergence time of the genus Phyllanthus might occur at ~ 48.72 Ma. CONCLUSION This study provides valuable information for further species identification, evolution, and phylogenetic research of Phyllanthus.
Collapse
Affiliation(s)
| | | | | | - Ping Zhou
- *Correspondence: Yinglin Liu, ; Ping Zhou,
| | | |
Collapse
|
349
|
Liu D, Qu K, Yuan Y, Zhao Z, Chen Y, Han B, Li W, El-Kassaby YA, Yin Y, Xie X, Tong B, Liu H. Complete sequence and comparative analysis of the mitochondrial genome of the rare and endangered Clematis acerifolia, the first clematis mitogenome to provide new insights into the phylogenetic evolutionary status of the genus. Front Genet 2023; 13:1050040. [PMID: 36761694 PMCID: PMC9907779 DOI: 10.3389/fgene.2022.1050040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Clematis is one of the large worldwide genera of the Ranunculaceae Juss. Family, with high ornamental and medicinal value. China is the modern distribution centre of Clematis with abundant natural populations. Due to the complexity and high morphological diversity of Clematis, the genus is difficult to classify systematically, and in particular, the phylogenetic position of the endangered Clematis acerifolia is highly controversial. The use of the mitochondrial complete genome is a powerful molecular method that is frequently used for inferring plants phylogenies. However, studies on Clematis mitogenome are rare, thus limiting our full understanding of its phylogeny and genome evolution. Here, we sequenced and annotated the C. acerifolia mt genome using Illumina short- and Nanopore long-reads, characterized the species first complete mitogenome, and performed a comparative phylogenetic analysis with its close relatives. The total length of the C. acerifolia mitogenome is 698,247 bp and the main structure is multi-branched (linear molecule 1 and circular molecule 2). We annotated 55 genes, including 35 protein-coding, 17 tRNA, and 3 rRNA genes. The C. acerifolia mitogenome has extremely unconserved structurally, with extensive sequence transfer between the chloroplast and mitochondrial organelles, sequence repeats, and RNA editing. The phylogenetic position of C. acerifolia was determined by constructing the species mitogenome with 24 angiosperms. Further, our C. acerifolia mitogenome characteristics investigation included GC contents, codon usage, repeats and synteny analysis. Overall, our results are expected to provide fundamental information for C. acerifolia mitogenome evolution and confirm the validity of mitochondrial analysis in determining the phylogenetic positioning of Clematis plants.
Collapse
Affiliation(s)
- Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China,Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China
| | - Zhiheng Zhao
- Guangxi Forestry Research Institute, Guangxi Key Laboratory of Special Non-wood Forest Cultivation &; Utilization, Nanning, China
| | - Ying Chen
- Forestry Protection and Development Service Center of Shandong Province, Jinan, China
| | - Biao Han
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| | - Hongshan Liu
- Hebei Hongya Mountain State-Owned Forest Farm, Baoding, China,*Correspondence: Xiaoman Xie, ; Boqiang Tong, ; Hongshan Liu,
| |
Collapse
|
350
|
Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, Chen G, Ng WL, Islam MN, Punnarak P, Zheng H, Zhu X. A comparison of 25 complete chloroplast genomes between sister mangrove species Kandelia obovata and Kandelia candel geographically separated by the South China Sea. FRONTIERS IN PLANT SCIENCE 2023; 13:1075353. [PMID: 36684775 PMCID: PMC9845719 DOI: 10.3389/fpls.2022.1075353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
Collapse
Affiliation(s)
- Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuchen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qianying Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Porntep Punnarak
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|