301
|
Andrews NW, Corrotte M, Castro-Gomes T. Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 2015; 45:10-7. [PMID: 26433178 DOI: 10.1016/j.semcdb.2015.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
The study of plasma membrane repair is coming of age. Mirroring human adolescence, the field shows at the same time signs of maturity and significant uncertainty, confusion and skepticism. Here we discuss concepts that emerged from experimental data over the years, some of which are solidly established while others are still subject to different interpretations. The firmly established concepts include the critical requirement for Ca(2+) in wound repair, and the role of rapid exocytosis of intracellular vesicles. Lysosomes are being increasingly recognized as the major vesicles involved in injury-induced exocytosis in many cell types, as a growing number of laboratories detect markers for these organelles on the cell surface and lysosomal hydrolases in the supernatant of wounded cells. The more recent observation of massive endocytosis following Ca(2+)-triggered exocytosis initially came as a surprise, but this finding is also being increasingly reported by different groups, shifting the discussion to the mechanisms by which endocytosis promotes repair, and whether it operates or not in parallel with the shedding of membrane blebs. We discuss how the abundant intracellular vesicles that undergo homotypic fusion close to wound sites, previously interpreted as exocytic membrane patches, actually acquire extracellular tracers demonstrating their endocytic origin. We also suggest that an initial, temporary patch that prevents cytosol loss until the bilayer is restored might result not from vesicular fusion, but from rapid Ca(2+)-dependent crosslinking and aggregation of cytosolic proteins. Finally, we propose that cell surface remodeling, orchestrated by the extracellular release of lysosomal hydrolases and perhaps also cytosolic molecules, may represent a key aspect of the plasma membrane repair mechanism that has received little attention so far.
Collapse
Affiliation(s)
- N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - M Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - T Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
302
|
Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci U S A 2015; 112:E5543-51. [PMID: 26324913 DOI: 10.1073/pnas.1510516112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.
Collapse
|
303
|
Abstract
The ESCRT proteins are an ancient system that buds membranes and severs membrane necks from their inner face. Three "classical" functions of the ESCRTs have dominated research into these proteins since their discovery in 2001: the biogenesis of multivesicular bodies in endolysosomal sorting; the budding of HIV-1 and other viruses from the plasma membrane of infected cells; and the membrane abscission step in cytokinesis. The past few years have seen an explosion of novel functions: the biogenesis of microvesicles and exosomes; plasma membrane wound repair; neuron pruning; extraction of defective nuclear pore complexes; nuclear envelope reformation; plus-stranded RNA virus replication compartment formation; and micro- and macroautophagy. Most, and perhaps all, of the functions involve the conserved membrane-neck-directed activities of the ESCRTs, revealing a remarkably widespread role for this machinery through a broad swath of cell biology.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| |
Collapse
|
304
|
Avalos-Padilla Y, Betanzos A, Javier-Reyna R, García-Rivera G, Chávez-Munguía B, Lagunes-Guillén A, Ortega J, Orozco E. EhVps32 Is a Vacuole-Associated Protein Involved in Pinocytosis and Phagocytosis of Entamoeaba histolytica. PLoS Pathog 2015; 11:e1005079. [PMID: 26230715 PMCID: PMC4521941 DOI: 10.1371/journal.ppat.1005079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022] Open
Abstract
Here, we investigated the role of EhVps32 protein (a member of the endosomal-sorting complex required for transport) in endocytosis of Entamoeba histolytica, a professional phagocyte. Confocal microscopy, TEM and cell fractionation revealed EhVps32 in cytoplasmic vesicles and also located adjacent to the plasma membrane. Between 5 to 30 min of phagocytosis, EhVps32 was detected on some erythrocytes-containing phagosomes of acidic nature, and at 60 min it returned to cytoplasmic vesicles and also appeared adjacent to the plasma membrane. TEM images revealed it in membranous structures in the vicinity of ingested erythrocytes. EhVps32, EhADH (an ALIX family member), Gal/GalNac lectin and actin co-localized in the phagocytic cup and in some erythrocytes-containing phagosomes, but EhVps32 was scarcely detected in late phagosomes. During dextran uptake, EhVps32, EhADH and Gal/GalNac lectin, but not actin, co-localized in pinosomes. EhVps32 recombinant protein formed oligomers composed by rings and filaments. Antibodies against EhVps32 monomers stained cytoplasmic vesicles but not erythrocytes-containing phagosomes, suggesting that in vivo oligomers are formed on phagosome membranes. The involvement of EhVps32 in phagocytosis was further study in pNeoEhvps32-HA-transfected trophozoites, which augmented almost twice their rate of erythrophagocytosis as well as the membranous concentric arrays built by filaments, spirals and tunnel-like structures. Some of these structures apparently connected phagosomes with the phagocytic cup. In concordance, the EhVps32-silenced G3 trophozoites ingested 80% less erythrocytes than the G3 strain. Our results suggest that EhVps32 participates in E. histolytica phagocytosis and pinocytosis. It forms oligomers on erythrocytes-containing phagosomes, probably as a part of the scission machinery involved in membrane invagination and intraluminal vesicles formation. Trophozoites of E. histolytica represent an excellent model to study endosomal-sorting complex required for transport components due to their high endocytic activity and vesicle trafficking. The key role of EhVps32 on phagocytosis is supported by: i) its presence on phagosomes, ii) its interaction with EhADH (an erythrocytes receptor), Gal/GalNac lectin and actin, iii) the higher rate of erythrophagocytosis showed by EhVps32 overexpressing trophozoites, iv) the diminish rate of phagocytosis in EhVps32-silenced G3 trophozoites, and v) its location in erythrocytes-containing acidic phagosomes. Here, we discovered the presence of membranous concentric helicoidally and tunnel-like structures constituted by EhVps32 and EhADH that may have a dynamic role in membrane remodeling and in the generation of intraluminal vesicles in the phagosomes. Elucidating molecular mechanisms of endocytosis-exocytosis pathways will help us to better understand the pathogenic process of E. histolytica and develop new drugs for diagnosis and vaccine methods.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Jaime Ortega
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
305
|
Affiliation(s)
- Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
306
|
Watson JA, Bhattacharyya BJ, Vaden JH, Wilson JA, Icyuz M, Howard AD, Phillips E, DeSilva TM, Siegal GP, Bean AJ, King GD, Phillips SE, Miller RJ, Wilson SM. Motor and Sensory Deficits in the teetering Mice Result from Mutation of the ESCRT Component HGS. PLoS Genet 2015; 11:e1005290. [PMID: 26115514 PMCID: PMC4482608 DOI: 10.1371/journal.pgen.1005290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission. Endocytic trafficking involves the internalization, endosomal sorting and lysosomal degradation of cell surface cargo. Many factors involved in endosomal sorting in mammalian cells have been identified, and mutations in these components are associated with a variety of neurological disorders. While the function of endosomal sorting components has been intensely studied in immortalized cell lines, it is not known what role these factors play in endosomal sorting in the nervous system. In this study, we show that the teetering (tn) gene encodes the hepatocytegrowth factor regulated tyrosine kinasesubstrate (Hgs), a core component of the endosomal sorting pathway. The tn mice exhibit several signs of motor neuron disease, including reduced muscle mass, muscle weakness and motor abnormalities. Although HGS is predicted to be required for the lysosomal degradation of receptor tyrosine kinases, there was no change in the levels of receptor tyrosine kinases in the spinal cords of the tn mice. Instead, we found that HGS is required for synaptic transmission at the neuromuscular junction and for the proper myelination of the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer A. Watson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Jada H. Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Mert Icyuz
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alan D. Howard
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Edward Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Tara M. DeSilva
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gene P. Siegal
- Departments of Pathology, Surgery and Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gwendalyn D. King
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
307
|
|
308
|
Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 2015; 522:231-5. [DOI: 10.1038/nature14408] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
|
309
|
Unravelling the pivotal role of Alix in MVB sorting and silencing of the activated EGFR. Biochem J 2015; 466:475-87. [PMID: 25510652 DOI: 10.1042/bj20141156] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endosomal sorting complex required for transport (ESCRT)-III-mediated membrane invagination and scission are a critical step in multivesicular body (MVB) sorting of ubiquitinated membrane receptors, and generally thought to be required for degradation of these receptors in lysosomes. The adaptor protein Alix is critically involved in multiple ESCRT-III-mediated, membrane-remodelling processes in mammalian cells. However, Alix knockdown does not inhibit degradation of the activated epidermal growth factor receptor (EGFR) in mammalian cell lines, leading to a widely held notion that Alix is not critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells. In the present study, we demonstrate that, despite its non-essential role in degradation of the activated EGFR, Alix plays a critical role in its MVB sorting and silencing Epidermal growth factor (EGF) stimulation of mammalian cell lines induces Alix's interaction with the ubiquitinated EGFR via the Alix V domain, and increases Alix's association with membrane-bound charged multivesicular body protein 4 (CHMP4) via the Alix Bro1 domain. Under both continuous and pulse-chase EGF stimulation conditions, inhibition of Alix's interaction with membrane-bound CHMP4, inhibition of Alix dimerization through the V domain or Alix knockdown dramatically inhibits MVB sorting of the activated EGFR and promotes sustained activation of extracellular-signal regulated kinase (ERK)1/2. Under the continuous EGF stimulation conditions, these cell treatments also retard degradation of the activated EGFR. These findings indicate that Alix is critically involved in MVB sorting of ubiquitinated membrane receptors in mammalian cells.
Collapse
|
310
|
Bowman SL, Puthenveedu MA. Postendocytic Sorting of Adrenergic and Opioid Receptors: New Mechanisms and Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:189-206. [PMID: 26055059 DOI: 10.1016/bs.pmbts.2015.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
311
|
Webster BM, Colombi P, Jäger J, Lusk CP. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 2015; 159:388-401. [PMID: 25303532 DOI: 10.1016/j.cell.2014.09.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/07/2014] [Accepted: 09/04/2014] [Indexed: 12/19/2022]
Abstract
The maintenance of nuclear compartmentalization by the nuclear envelope and nuclear pore complexes (NPCs) is essential for cell function; loss of compartmentalization is associated with cancers, laminopathies, and aging. We uncovered a pathway that surveils NPC assembly intermediates to promote the formation of functional NPCs. Surveillance is mediated by Heh2, a member of the LEM (Lap2-emerin-MAN1) family of integral inner nuclear membrane proteins, which binds to an early NPC assembly intermediate, but not to mature NPCs. Heh2 recruits the endosomal sorting complex required for transport (ESCRT)-III subunit Snf7 and the AAA-ATPase Vps4 to destabilize and clear defective NPC assembly intermediates. When surveillance or clearance is compromised, malformed NPCs accumulate in a storage of improperly assembled nuclear pore complexes compartment, or SINC. The SINC is retained in old mothers to prevent loss of daughter lifespan, highlighting a continuum of mechanisms to ensure nuclear compartmentalization.
Collapse
Affiliation(s)
- Brant M Webster
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paolo Colombi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jens Jäger
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
312
|
Chassefeyre R, Martínez-Hernández J, Bertaso F, Bouquier N, Blot B, Laporte M, Fraboulet S, Couté Y, Devoy A, Isaacs AM, Pernet-Gallay K, Sadoul R, Fagni L, Goldberg Y. Regulation of postsynaptic function by the dementia-related ESCRT-III subunit CHMP2B. J Neurosci 2015; 35:3155-73. [PMID: 25698751 PMCID: PMC4331633 DOI: 10.1523/jneurosci.0586-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
The charged multivesicular body proteins (Chmp1-7) are an evolutionarily conserved family of cytosolic proteins that transiently assembles into helical polymers that change the curvature of cellular membrane domains. Mutations in human CHMP2B cause frontotemporal dementia, suggesting that this protein may normally control some neuron-specific process. Here, we examined the function, localization, and interactions of neuronal Chmp2b. The protein was highly expressed in mouse brain and could be readily detected in neuronal dendrites and spines. Depletion of endogenous Chmp2b reduced dendritic branching of cultured hippocampal neurons, decreased excitatory synapse density in vitro and in vivo, and abolished activity-induced spine enlargement and synaptic potentiation. To understand the synaptic effects of Chmp2b, we determined its ultrastructural distribution by quantitative immuno-electron microscopy and its biochemical interactions by coimmunoprecipitation and mass spectrometry. In the hippocampus in situ, a subset of neuronal Chmp2b was shown to concentrate beneath the perisynaptic membrane of dendritic spines. In synaptoneurosome lysates, Chmp2b was stably bound to a large complex containing other members of the Chmp family, as well as postsynaptic scaffolds. The supramolecular Chmp assembly detected here corresponds to a stable form of the endosomal sorting complex required for transport-III (ESCRT-III), a ubiquitous cytoplasmic protein complex known to play a central role in remodeling of lipid membranes. We conclude that Chmp2b-containing ESCRT-III complexes are also present at dendritic spines, where they regulate synaptic plasticity. We propose that synaptic ESCRT-III filaments may function as a novel element of the submembrane cytoskeleton of spines.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - José Martínez-Hernández
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Federica Bertaso
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Nathalie Bouquier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Marine Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Yohann Couté
- INSERM, Unité 1038, F-38054 Grenoble, France, Commissariat à l'Energie Atomique (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), Laboratoire de Biologie à Grande Echelle, F-38054 Grenoble, France
| | - Anny Devoy
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, University College London Institute of Neurology, London WC1N 3BG, United Kingdom, and
| | - Karin Pernet-Gallay
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France,
| | - Laurent Fagni
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34094 Montpellier, France, Universités de Montpellier 1 & 2, UMR-5203, F-34094 Montpellier, France, INSERM, Unité 661, F-34094 Montpellier, France
| | - Yves Goldberg
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 836, F-38042 Grenoble, France, Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), F-38042 Grenoble, France, CEA, iRTSV, Groupe Physiopathologie du Cytosquelette (GPC), F-38054 Grenoble, France
| |
Collapse
|
313
|
Loncle N, Agromayor M, Martin-Serrano J, Williams DW. An ESCRT module is required for neuron pruning. Sci Rep 2015; 5:8461. [PMID: 25676218 PMCID: PMC4327575 DOI: 10.1038/srep08461] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022] Open
Abstract
Neural circuits are refined by both functional and structural changes. Structural remodeling by large-scale pruning occurs where relatively long neuronal branches are cut away from their parent neuron and removed by local degeneration. Until now, the molecular mechanisms executing such branch severing events have remained poorly understood. Here, we reveal a role for the Endosomal Sorting Complex Required for Transport (ESCRT) machinery during neuronal remodeling. Our data show that a specific ESCRT pruning module, including members of the ESCRT-I and ESCRT-III complexes, but not ESCRT-0 or ESCRT-II, are required for the neurite scission event during pruning. Furthermore we show that this ESCRT module requires a direct, in vivo, interaction between Shrub/CHMP4B and the accessory protein Myopic/HD-PTP.
Collapse
Affiliation(s)
- Nicolas Loncle
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| | - Monica Agromayor
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Juan Martin-Serrano
- Department of Infectious Diseases, Second Floor Borough Wing, Guy's Hospital, London, SE1 9RT
| | - Darren W Williams
- MRC Centre for Developmental Neurobiology, King's College London, London, SE1 1UL
| |
Collapse
|
314
|
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015; 25:364-72. [PMID: 25683921 DOI: 10.1016/j.tcb.2015.01.004] [Citation(s) in RCA: 1075] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Long- and short-distance communication can take multiple forms. Among them are exosomes and ectosomes, extracellular vesicles (EVs) released from the cell to deliver signals to target cells. While most of our understanding of how these vesicles are assembled and work comes from mechanistic studies performed on exosomes, recent studies have begun to shift their focus to ectosomes. Unlike exosomes, which are released on the exocytosis of multivesicular bodies (MVBs), ectosomes are ubiquitous vesicles assembled at and released from the plasma membrane. Here we review the similarities and differences between these two classes of vesicle, suggesting that, despite their considerable differences, the functions of ectosomes may be largely analogous to those of exosomes. Both vesicles appear to be promising targets in the diagnosis and therapy of diseases, especially cancer.
Collapse
Affiliation(s)
- Emanuele Cocucci
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Jacopo Meldolesi
- Vita-Salute San Raffaele University, 20132 Milan, Italy; San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
315
|
Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M, Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis. THE PLANT CELL 2015; 27:391-402. [PMID: 25649438 PMCID: PMC4456926 DOI: 10.1105/tpc.114.135939] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 12/25/2014] [Accepted: 01/17/2015] [Indexed: 05/18/2023]
Abstract
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents.
Collapse
Affiliation(s)
- Christoph Spitzer
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Faqiang Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Rafael Buono
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Taijoon Chung
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Min Zhang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Richard D Vierstra
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706 Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
316
|
Vild CJ, Li Y, Guo EZ, Liu Y, Xu Z. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5. J Biol Chem 2015; 290:7291-303. [PMID: 25637630 DOI: 10.1074/jbc.m114.616730] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. Here, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct from what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr(182)) at the core of LIP5NTD structure. Mutation of Tyr(182) partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.
Collapse
Affiliation(s)
- Cody J Vild
- From the Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| | - Yan Li
- From the Life Sciences Institute and
| | | | - Yuan Liu
- From the Life Sciences Institute and
| | - Zhaohui Xu
- From the Life Sciences Institute and Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
317
|
Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem 2015; 290:6810-24. [PMID: 25605718 DOI: 10.1074/jbc.m114.606699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.
Collapse
Affiliation(s)
- Rita Verma
- From the Biochemistry and Molecular Biology Program, and
| | - Adriano Marchese
- From the Biochemistry and Molecular Biology Program, and Department of Molecular Pharmacology and Therapeutics, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
318
|
Tan X, Sun Y, Thapa N, Liao Y, Hedman AC, Anderson RA. LAPTM4B is a PtdIns(4,5)P2 effector that regulates EGFR signaling, lysosomal sorting, and degradation. EMBO J 2015; 34:475-90. [PMID: 25588945 DOI: 10.15252/embj.201489425] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysosomal degradation is essential for the termination of EGF-stimulated EGF receptor (EGFR) signaling. This requires EGFR sorting to the intraluminal vesicles (ILVs) of multi-vesicular endosomes (MVEs). Cytosolic proteins including the ESCRT machineries are key regulators of EGFR intraluminal sorting, but roles for endosomal transmembrane proteins in receptor sorting are poorly defined. Here, we show that LAPTM4B, an endosomal transmembrane oncoprotein, inhibits EGF-induced EGFR intraluminal sorting and lysosomal degradation, leading to enhanced and prolonged EGFR signaling. LAPTM4B blocks EGFR sorting by promoting ubiquitination of Hrs (an ESCRT-0 subunit), which inhibits the Hrs association with ubiquitinated EGFR. This is counteracted by the endosomal PIP kinase, PIPKIγi5, which directly binds LAPTM4B and neutralizes the inhibitory function of LAPTM4B in EGFR sorting by generating PtdIns(4,5)P2 and recruiting SNX5. PtdIns(4,5)P2 and SNX5 function together to protect Hrs from ubiquitination, thereby promoting EGFR intraluminal sorting. These results reveal an essential layer of EGFR trafficking regulated by LAPTM4B, PtdIns(4,5)P2 signaling, and the ESCRT complex and define a mechanism by which the oncoprotein LAPTM4B can transform cells and promote tumor progression.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Yue Sun
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Yihan Liao
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Andrew C Hedman
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
319
|
Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 2014; 5:5649. [DOI: 10.1038/ncomms6649] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022] Open
|
320
|
Schmid SL, Sorkin A, Zerial M. Endocytosis: Past, present, and future. Cold Spring Harb Perspect Biol 2014; 6:a022509. [PMID: 25359499 DOI: 10.1101/cshperspect.a022509] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
321
|
Baum DA, Baum B. An inside-out origin for the eukaryotic cell. BMC Biol 2014; 12:76. [PMID: 25350791 PMCID: PMC4210606 DOI: 10.1186/s12915-014-0076-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. RESULTS Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. CONCLUSIONS The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.
Collapse
|
322
|
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 2014; 9:674-87. [PMID: 25373905 DOI: 10.1016/j.celrep.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Collapse
Affiliation(s)
- Karen Handschuh
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Risolino
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle A Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Denis Bénazet
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiao P Peng
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK; Department of Othopaedic Surgery, UCSF, San Francisco, CA 94110, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA; Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Baolin Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Roberta Rivi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Vaccari
- IFOM-FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
323
|
Brodsky FM, Sosa RT, Ybe JA, O'Halloran TJ. Unconventional functions for clathrin, ESCRTs, and other endocytic regulators in the cytoskeleton, cell cycle, nucleus, and beyond: links to human disease. Cold Spring Harb Perspect Biol 2014; 6:a017004. [PMID: 25183831 DOI: 10.1101/cshperspect.a017004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, Departments of Pharmaceutical Chemistry and Microbiology and Immunology, The G.W. Hooper Foundation, University of California, San Francisco, San Francisco, California 94143-0552
| | - R Thomas Sosa
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | - Joel A Ybe
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Theresa J O'Halloran
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| |
Collapse
|
324
|
Andrews NW, Almeida PE, Corrotte M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 2014; 24:734-42. [PMID: 25150593 DOI: 10.1016/j.tcb.2014.07.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
When wounded, eukaryotic cells reseal in a few seconds. Ca(2+) influx induces exocytosis of lysosomes, a process previously thought to promote repair by 'patching' wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase (ASM) triggers endocytosis of lesions followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small-wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal that are distinct from the patch model.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA.
| | - Patricia E Almeida
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA; Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| |
Collapse
|
325
|
Abstract
The endocytic network comprises a vast and intricate system of membrane-delimited cell entry and cargo sorting routes running between biochemically and functionally distinct intracellular compartments. The endocytic network caters to the organization and redistribution of diverse subcellular components, and mediates appropriate shuttling and processing of materials acquired from neighboring cells or the extracellular milieu. Such trafficking logistics, despite their importance, represent only one facet of endocytic function. The endocytic network also plays a key role in organizing, mediating, and regulating cellular signal transduction events. Conversely, cellular signaling processes tightly control the endocytic pathway at different steps. The present article provides a perspective on the intimate relationships that exist between particular endocytic and cellular signaling processes in mammalian cells, within the context of understanding the impact of this nexus on integrated physiology.
Collapse
Affiliation(s)
- Pier Paolo Di Fiore
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mark von Zastrow
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94158 Department of Cellular & Molecular Pharmacology, University of California San Francisco School of Medicine, San Francisco, California 94158
| |
Collapse
|
326
|
ESCRT: nipping the wound in the bud? Trends Biochem Sci 2014; 39:307-9. [PMID: 24957736 DOI: 10.1016/j.tibs.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/21/2022]
Abstract
Rapid repair of plasma membrane wounds is critical for cellular survival. Exocytic patches, membrane tension reduction and endocytosis were previously proposed to mediate resealing. A recent study implicating the ESCRT complex adds to the growing evidence that repair involves removal of damaged plasma membrane, and not simply patching the wound.
Collapse
|
327
|
Abstract
There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, and Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Queensland 4072, Brisbane, Australia
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
328
|
Cashikar AG, Shim S, Roth R, Maldazys MR, Heuser JE, Hanson PI. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 2014; 3. [PMID: 24878737 PMCID: PMC4073282 DOI: 10.7554/elife.02184] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/27/2014] [Indexed: 12/23/2022] Open
Abstract
The ESCRT machinery along with the AAA+ ATPase Vps4 drive membrane scission for trafficking into multivesicular bodies in the endocytic pathway and for the topologically related processes of viral budding and cytokinesis, but how they accomplish this remains unclear. Using deep-etch electron microscopy, we find that endogenous ESCRT-III filaments stabilized by depleting cells of Vps4 create uniform membrane-deforming conical spirals which are assemblies of specific ESCRT-III heteropolymers. To explore functional roles for ESCRT-III filaments, we examine HIV-1 Gag-mediated budding of virus-like particles and find that depleting Vps4 traps ESCRT-III filaments around nascent Gag assemblies. Interpolating between the observed structures suggests a new role for Vps4 in separating ESCRT-III from Gag or other cargo to allow centripetal growth of a neck constricting ESCRT-III spiral. DOI:http://dx.doi.org/10.7554/eLife.02184.001 Cells contain compartments called organelles that are enclosed within membranes similar to the plasma membrane that surrounds the cell itself. Cells police the proteins on their membranes and move old or damaged proteins into a type of organelle called an endosome. This involves the membrane folding in on itself to form a multivesicular body. The multivesicular bodies deliver their contents to organelles called lysosomes where the old proteins are destroyed. Although it is known that over 30 proteins are involved in the formation of multivesicular bodies, many aspects of how they operate are not well understood. Moreover, disruptions to this process contribute to a large number of diseases including forms of cancer and neurodegeneration. Importantly, the same proteins are hijacked by viruses such as HIV to help them escape from the cells they have infected. Most of the proteins involved in forming multivesicular bodies are part of the ESCRT (Endosomal Sorting Complex Required for Transport) system of proteins. A special set of these proteins—ESCRT-III—is thought to cut the membrane to release vesicles and viruses, as well as helping the membrane to deform. Previously, researchers have been unsure how the ESCRT-III complex works because it has a short lifespan and is too small to see on cellular membranes using standard techniques. Now Cashikar, Shim et al. have used a technique called deep-etch electron microscopy in combination with gene knockdown strategies to reveal the structure of the ESCRT-III complex inside cells. A protein called Vps4 is known to recycle ESCRT-III complexes, so Cashikar, Shim et al. studied cells in which the levels of Vps4 had been depleted in order to increase the lifespan of ESCRT-III complexes. In these cells filaments made of ESCRT-III complexes tended to form conical spirals that matched the size and shape of the vesicles and viruses ESCRT-III is thought to produce. ESCRT-III filaments also accumulated as rings around the molecules destined for incorporation into a vesicle or virus. This indicated a new role for Vps4: it separates ESCRT-III from the contents of the vesicle, leaving it free to form a spiral that drives release of the vesicle or virus from the cell. The next challenge will be to test the predictions of this model using techniques that can capture individual vesicle formation events in real time. Understanding the function of ESCRT-III in greater detail may suggest ways to manipulate this pathway to limit the replication of viruses or the degradation of membrane proteins. DOI:http://dx.doi.org/10.7554/eLife.02184.002
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Soomin Shim
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Michael R Maldazys
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - John E Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
329
|
Abstract
Live-cell imaging reveals the endolysosomal system as a complex and highly dynamic network of interacting compartments. Distinct types of endosomes are discerned by kinetic, molecular, and morphological criteria. Although none of these criteria, or combinations thereof, can capture the full complexity of the endolysosomal system, they are extremely useful for experimental purposes. Some membrane domain specializations and specific morphological characteristics can only be seen by ultrastructural analysis after preparation for electron microscopy (EM). Immuno-EM allows a further discrimination of seemingly identical compartments by their molecular makeup. In this review we provide an overview of the ultrastructural characteristics and membrane organization of endosomal compartments, along with their organizing machineries.
Collapse
Affiliation(s)
- Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Graça Raposo
- Institut Curie, Centre de Recherche, Paris F-75248, France Structure and Membrane Compartments CNRS UMR144, Paris F-75248, France
| |
Collapse
|
330
|
Rossy J, Ma Y, Gaus K. The organisation of the cell membrane: do proteins rule lipids? Curr Opin Chem Biol 2014; 20:54-9. [PMID: 24815858 DOI: 10.1016/j.cbpa.2014.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Cell membranes are a complex adaptive system: they are constantly re-organised in response to extra- and intracellular inputs and their local and global structure ultimately determines how, where and when these inputs are processed. This requires a tight coupling of signalling and membranes in localised and specialised compartments. While lipids are essential components of cell membranes, they mostly lack a direct link to the input signals. Here we review how proteins can deform locally membranes, modify and reorganise lipids to form membrane domains and regulate properties like membrane charges and diffusion. From this point-of-view, it appears that proteins play a central role in regulating membrane organisation.
Collapse
Affiliation(s)
- Jérémie Rossy
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Yuanqing Ma
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
331
|
Abstract
Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here.
Collapse
Affiliation(s)
- Sharon A Tooze
- London Research Institute, Cancer Research UK, Secretory Pathways Laboratory, London WC2A 3LY, United Kingdom
| | | | | |
Collapse
|
332
|
Holleman J, Marchese A. The ubiquitin ligase deltex-3l regulates endosomal sorting of the G protein-coupled receptor CXCR4. Mol Biol Cell 2014; 25:1892-904. [PMID: 24790097 PMCID: PMC4055268 DOI: 10.1091/mbc.e13-10-0612] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G protein-coupled receptor (GPCR) sorting into the degradative pathway is important for limiting the duration and magnitude of signaling. Agonist activation of the GPCR CXCR4 induces its rapid ubiquitination and sorting to lysosomes via the endosomal sorting complex required for transport (ESCRT) pathway. We recently reported that ESCRT-0 ubiquitination is linked to the efficiency with which CXCR4 is sorted for lysosomal degradation; however mechanistic insight is lacking. Here we define a novel role for the really interesting new gene-domain E3 ubiquitin ligase deltex-3-like (DTX3L) in regulating CXCR4 sorting from endosomes to lysosomes. We show that DTX3L localizes to early endosomes upon CXCR4 activation and interacts directly with and inhibits the activity of the E3 ubiquitin ligase atrophin-1 interacting protein 4. This serves to limit the extent to which ESCRT-0 is ubiquitinated and is able to sort CXCR4 for lysosomal degradation. Therefore we define a novel role for DTX3L in GPCR endosomal sorting and reveal an unprecedented link between two distinct E3 ubiquitin ligases to control the activity of the ESCRT machinery.
Collapse
Affiliation(s)
- Justine Holleman
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Adriano Marchese
- Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
333
|
Wideman JG, Leung KF, Field MC, Dacks JB. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb Perspect Biol 2014; 6:a016998. [PMID: 24478384 DOI: 10.1101/cshperspect.a016998] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary cell biology can afford an interdisciplinary comparative view that gives insights into both the functioning of modern cells and the origins of cellular systems, including the endocytic organelles. Here, we explore several recent evolutionary cell biology studies, highlighting investigations into the origin and diversity of endocytic systems in eukaryotes. Beginning with a brief overview of the eukaryote tree of life, we show how understanding the endocytic machinery in a select, but diverse, array of organisms provides insights into endocytic system origins and predicts the likely configuration in the last eukaryotic common ancestor (LECA). Next, we consider three examples in which a comparative approach yielded insight into the function of modern cellular systems. First, using ESCRT-0 as an example, we show how comparative cell biology can discover both lineage-specific novelties (ESCRT-0) as well as previously ignored ancient proteins (Tom1), likely of both evolutionary and functional importance. Second, we highlight the power of comparative cell biology for discovery of previously ignored but potentially ancient complexes (AP5). Finally, using examples from ciliates and trypanosomes, we show that not all organisms possess canonical endocytic pathways, but instead likely evolved lineage-specific mechanisms. Drawing from these case studies, we conclude that a comparative approach is a powerful strategy for advancing knowledge about the general mechanisms and functions of endocytic systems.
Collapse
Affiliation(s)
- Jeremy G Wideman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
334
|
Soetedjo L, Jin H. Agonist-induced GPCR shedding from the ciliary surface is dependent on ESCRT-III and VPS4. Curr Biol 2014; 24:509-18. [PMID: 24530064 DOI: 10.1016/j.cub.2014.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/18/2013] [Accepted: 01/03/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Membrane trafficking of G protein-coupled receptors (GPCRs) is crucial for temporal and spatial control of cell-surface GPCR signaling. Receptor internalization is a well-documented method cells use for regulating a wide variety of GPCRs following their exposure to agonists. RESULTS We report that, upon agonist stimulation, a GPCR called vasoactive intestinal peptide receptor 2 (VPAC2) is shed, rather than being internalized, in vitro and in vivo, from the membrane of primary cilia--solitary hair-like organelles that project from the cell surface. VPAC2 is released into the extracellular milieu in the form of ciliary ectosomes that are devoid of exosome markers. The agonist-induced VPAC2 shedding is selective, as shown by the fact that other ciliary membrane proteins including two ciliary GPCRs are not shed with VPAC2. VPAC2 ectosome shedding is dependent on several components of endosomal sorting complexes required for transport (ESCRT), including a subset of ESCRT-III, VPS4, and LIP5. Agonist-stimulated VPAC2 is important for ciliary-ectosome generation because it allows VPS4 and LIP5 to transiently accumulate in primary cilia. Shedding of VPAC2 from the ciliary surface results in termination of intracellular VPAC2 signaling. CONCLUSIONS Agonist-induced GPCR shedding from the ciliary surface may represent an additional mode of GPCR trafficking and signal regulation.
Collapse
Affiliation(s)
- Livana Soetedjo
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hua Jin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
335
|
Gascon E, Gao FB. The emerging roles of microRNAs in the pathogenesis of frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum disorders. J Neurogenet 2014; 28:30-40. [PMID: 24506814 DOI: 10.3109/01677063.2013.876021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) share some clinical, pathological, and molecular features as part of a common neurodegenerative spectrum disorder. In recent years, enormous progress has been made in identifying both pathological proteins and genetic mutations associated with FTD-ALS. However, the molecular pathogenic mechanisms of disease onset and progression remain largely unknown. Recent studies have uncovered unexpected links between FTD-ALS and multiple aspects of RNA metabolism, setting the stage for further understanding of the disorder. Here, the authors will focus on microRNAs and review the emerging roles of these small RNAs in several aspects of FTD-ALS pathogenesis.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts , USA
| | | |
Collapse
|
336
|
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016808. [PMID: 24384571 DOI: 10.1101/cshperspect.a016808] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries.
Collapse
Affiliation(s)
- Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
337
|
Johannes L, Wunder C, Bassereau P. Bending "on the rocks"--a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016741. [PMID: 24384570 DOI: 10.1101/cshperspect.a016741] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous biological processes rely on endocytosis. The construction of endocytic pits is achieved by a bewildering complexity of biochemical factors that function in clathrin-dependent and -independent pathways. In this review, we argue that this complexity can be conceptualized by a deceptively small number of physical principles that fall into two broad categories: passive mechanisms, such as asymmetric transbilayer stress, scaffolding, line tension, and crowding, and active mechanisms driven by mechanochemical enzymes and/or cytoskeleton. We illustrate how the functional identity of biochemical modules depends on system parameters such as local protein density on membranes, thus explaining some of the controversy in the field. Different modules frequently operate in parallel in the same step and often are shared by apparently divergent uptake processes. The emergence of a novel endocytic classification system may thus be envisioned in which functional modules are the elementary bricks.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie-Centre de Recherche, Traffic, Signaling and Delivery Group, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
338
|
Endocytic trafficking of chemokine receptors. Curr Opin Cell Biol 2013; 27:72-7. [PMID: 24680433 DOI: 10.1016/j.ceb.2013.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/24/2013] [Indexed: 12/23/2022]
Abstract
Chemokine receptors belong to the super family of G protein-coupled receptors (GPCRs). The cognate ligands for chemokine receptors are small circulating proteins known as chemokines. Upon binding to their cognate chemokines, receptors are rapidly desensitized, internalized onto early endosomes and sorted either into a recycling pathway or degradative pathway. Chemokine receptor trafficking is essential because it limits the magnitude and duration of signaling by removing receptors from the cell surface thereby limiting access to their ligands, but it also delivers bound chemokines to lysosomes for degradation. Receptor sorting into the recycling pathway contributes to resensitization of receptor signaling, whereas sorting into the degradative pathway leads to long-term attenuation of signaling. Recent studies have revealed some key information regarding the molecular determinants mediating chemokine receptor internalization and have shed light on the mechanisms dictating sorting into either the recycling or degradative pathways. Here I discuss our current understanding of the mechanisms mediating chemokine receptor trafficking with a focus primarily on recent findings for the chemokine receptor CXCR4.
Collapse
|
339
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
340
|
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Bei Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
341
|
Abstract
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Collapse
Affiliation(s)
- Christin Bissig
- Biochemistry Department, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|