301
|
Lu H, Salimian S, Gamelin E, Wang G, Fedorowski J, LaCourse W, Greenberg JT. Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:401-12. [PMID: 19144005 PMCID: PMC2727925 DOI: 10.1111/j.1365-313x.2009.03791.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathogen infection leads to the activation of defense signaling networks in plants. To study these networks and the relationships between their components, we introduced various defense mutations into acd6-1, a constitutive gain-of-function Arabidopsis mutant that is highly disease resistant. acd6-1 plants show spontaneous cell death, reduced stature, and accumulate high levels of camalexin (an anti-fungal compound) and salicylic acid (SA; a signaling molecule). Disruption of several defense genes revealed that in acd6-1, SA levels/signaling were positively correlated with the degree of disease resistance and defense gene expression. Salicylic acid also modulates the severity of cell death. However, accumulation of camalexin in acd6-1 is largely unaffected by reducing the level of SA. In addition, acd6-1 shows ethylene- and jasmonic acid-mediated signaling that is antagonized and therefore masked by the presence of SA. Mutant analysis revealed a new relationship between the signaling components NPR1 and PAD4 and also indicated that multiple defense pathways were required for phenotypes conferred by acd6-1. In addition, our data confirmed that the size of acd6-1 was inversely correlated with SA levels/signaling. We exploited this unique feature of acd6-1 to identify two genes disrupted in acd6-1 suppressor (sup) mutants: one encodes a known SA biosynthetic component (SID2) and the other encodes an uncharacterized putative metalloprotease (At5g20660). Taken together, acd6-1 is a powerful tool not only for dissecting defense regulatory networks but also for discovering novel defense genes.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- To whom correspondence should be addressed: , 410-455-5972 (phone); 410-455-3875 (fax)
| | - Sasan Salimian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Emily Gamelin
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 E. 57 street, Chicago, IL 60637
| | - Guoying Wang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jennifer Fedorowski
- Department of Biochemistry and Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - William LaCourse
- Department of Biochemistry and Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 E. 57 street, Chicago, IL 60637
| |
Collapse
|
302
|
Lee TF, McNellis TW. Evidence that the BONZAI1/COPINE1 protein is a calcium- and pathogen-responsive defense suppressor. PLANT MOLECULAR BIOLOGY 2009; 69:155-166. [PMID: 18855102 DOI: 10.1007/s11103-008-9413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/29/2008] [Indexed: 05/26/2023]
Abstract
Copines are calcium-responsive, phospholipid-binding proteins involved in cellular signaling. The Arabidopsis BONZAI1/COPINE1 (BON1/CPN1) gene is a suppressor of defense responses controlled by the disease resistance (R) gene homolog SNC1. The BON1/CPN1 null mutant cpn1-1 has a recessive, temperature- and humidity-dependent, lesion mimic phenotype that includes activation of Pathogenesis-Related (PR) gene expression. Here, we demonstrated that the accumulation of BON1/CPN1 protein in wild-type plants was up-regulated by bacterial pathogen inoculation and by the activation of defense signaling responses controlled by two R genes, SNC1 and RPS2. Interestingly, however, over-accumulation of BON1/CPN1 in two BON1/CPN1 promoter T-DNA insertion mutants did not affect resistance to a bacterial pathogen. Promoter deletion analysis identified a 280 bp segment of the BON1/CPN1 promoter as being required for pathogen-induced gene expression; the same promoter region was also required for calcium ionophore-induced gene expression. Leaf infiltration with calcium ionophore triggered high-level PR gene expression specifically in cpn1-1 plants grown under permissive conditions, while co-infiltration of the calcium chelator EGTA attenuated this effect. These results explain the conditional nature of the cpn1-1 phenotype and are consistent with BON1/CPN1 being a calcium- and pathogen-responsive plant defense suppressor.
Collapse
Affiliation(s)
- Tzuu-Fen Lee
- 211 Buckhout Laboratory, Plant Pathology Department, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
303
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1360] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
304
|
DeFraia CT, Schmelz EA, Mou Z. A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. PLANT METHODS 2008; 4:28. [PMID: 19117519 PMCID: PMC2654556 DOI: 10.1186/1746-4811-4-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/31/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-beta-D-glucoside or SAG). Recently, Huang et al. developed a bacterial biosensor that responds to free SA but not SAG, designated as Acinetobacter sp. ADPWH_lux. In this paper we describe an improved methodology for Acinetobacter sp. ADPWH_lux-based free SA quantification, enabling high-throughput analysis, and present an approach for the quantification of SAG from crude plant extracts. RESULTS On the basis of the original biosensor-based method, we optimized extraction and quantification. SAG content was determined by treating crude extracts with beta-glucosidase, then measuring the released free SA with the biosensor. beta-glucosidase treatment released more SA in acetate buffer extract than in Luria-Bertani (LB) extract, while enzymatic hydrolysis in either solution released more free SA than acid hydrolysis. The biosensor-based method detected higher amounts of SA in pathogen-infected plants than did a GC/MS-based method. SA quantification of control and pathogen-treated wild-type and sid2 (SA induction-deficient) plants demonstrated the efficacy of the method described. Using the methods detailed here, we were able to detect as little as 0.28 mug SA/g FW. Samples typically had a standard deviation of up to 25% of the mean. CONCLUSION The ability of Acinetobacter sp. ADPWH_lux to detect SA in a complex mixture, combined with the enzymatic hydrolysis of SAG in crude extract, allowed the development of a simple, rapid, and inexpensive method to simultaneously measure free and glucose-conjugated SA. This approach is amenable to a high-throughput format, which would further reduce the cost and time required for biosensor-based SA quantification. Possible applications of this approach include characterization of enzymes involved in SA metabolism, analysis of temporal changes in SA levels, and isolation of mutants with aberrant SA accumulation.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| | - Eric A Schmelz
- Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
305
|
MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 2008; 18:1190-8. [PMID: 18982020 DOI: 10.1038/cr.2008.300] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekk1 that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complementation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases. mkk1 and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkk1 mkk2 double mutants were generated. The mkk1 mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekk1 mutants, the mkk1 mkk2 double mutant seedlings accumulate high levels of H2O2, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by flg22 is impaired in the mkk1 mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.
Collapse
|
306
|
Goritschnig S, Weihmann T, Zhang Y, Fobert P, McCourt P, Li X. A novel role for protein farnesylation in plant innate immunity. PLANT PHYSIOLOGY 2008; 148:348-57. [PMID: 18599656 PMCID: PMC2528093 DOI: 10.1104/pp.108.117663] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/20/2008] [Indexed: 05/18/2023]
Abstract
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA PARASITICA4 R gene homolog, renders plants constitutively resistant to virulent pathogens. Genetic suppressors of snc1 may carry mutations in genes encoding novel signaling components downstream of activated R proteins. One such suppressor was identified as a novel loss-of-function allele of ENHANCED RESPONSE TO ABSCISIC ACID1 (ERA1), which encodes the beta-subunit of protein farnesyltransferase. Protein farnesylation involves attachment of C15-prenyl residues to the carboxyl termini of specific target proteins. Mutant era1 plants display enhanced susceptibility to virulent bacterial and oomycete pathogens, implying a role for farnesylation in basal defense. In addition to its role in snc1-mediated resistance, era1 affects several other R-protein-mediated resistance responses against bacteria and oomycetes. ERA1 acts partly independent of abscisic acid and additively with the resistance regulator NON-EXPRESSOR OF PR GENES1 in the signaling network. Defects in geranylgeranyl transferase I, a protein modification similar to farnesylation, do not affect resistance responses, indicating that farnesylation is most likely specifically required in plant defense signaling. Taken together, we present a novel role for farnesyltransferase in plant-pathogen interactions, suggesting the importance of protein farnesylation, which contributes to the specificity and efficacy of signal transduction events.
Collapse
Affiliation(s)
- Sandra Goritschnig
- Michael Smith Laboratories , University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
307
|
Igari K, Endo S, Hibara KI, Aida M, Sakakibara H, Kawasaki T, Tasaka M. Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:14-27. [PMID: 18315541 DOI: 10.1111/j.1365-313x.2008.03466.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses.
Collapse
Affiliation(s)
- Kadunari Igari
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, The University of California, Davis, CA, USA
| | | |
Collapse
|
309
|
Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX, Zhang YY, He ZH. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. MOLECULAR PLANT 2008; 1:528-37. [PMID: 19825558 DOI: 10.1093/mp/ssn021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated uppermost internode (Eui) gene encoding a GA deactivating enzyme compromises or increases, respectively, disease resistance to bacterial blight (Xanthomonas oryzae pv. oyrzae) and rice blast (Magnaporthe oryzae). Exogenous application of GA(3) and the inhibitor of GA synthesis (uniconazol) could increase disease susceptibility and resistance, respectively, to bacterial blight. Similarly, uniconazol restored disease resistance of the eui mutant and GA(3) decreased disease resistance of the Eui overexpressors to bacterial blight. Therefore, the change of resistance attributes to GA levels. In consistency with this, the GA metabolism genes OsGA20ox2 and OsGA2ox1 were down-regulated during pathogen challenge. We also found that PR1a induction was enhanced but the SA level was decreased in the Eui overexpressor, while the JA level was reduced in the eui mutant. Together, our current study indicates that GAs play a negative role in rice basal disease resistance, with EUI as a positive modulator through regulating the level of bioactive GAs.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:452-65. [PMID: 18266921 DOI: 10.1111/j.1365-313x.2008.03439.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant infection responses result from the interaction of pathogen-derived molecules with host components. For the bacterial pathogen Pseudomonas syringae, these molecules are often effector proteins (Hops) that are injected into plant cells. P. syringae carrying hopW1-1 have restricted host range on some Arabidopsis thaliana accessions. At least two Arabidopsis genomic regions are important for the natural variation that conditions resistance to P. syringae/hopW1-1. HopW1-1 elicits a resistance response, and consequently the accumulation of the signal molecule salicylic acid (SA) and transcripts of HWI1 (HopW1-1-Induced Gene1). This work identified three HopW1-1-interacting (WIN) plant proteins: a putative acetylornithine transaminase (WIN1), a protein phosphatase (WIN2) and a firefly luciferase superfamily protein (WIN3). Importantly, WIN2 and WIN3 are partially required for HopW1-1-induced disease resistance, SA production and HWI1 expression. The requirement for WIN2 is specific for HopW1-1-induced resistance, whereas WIN3 is important for responses to several effectors. Overexpression of WIN2 or WIN3 confers resistance to virulent P. syringae, which is consistent with these proteins being defense components. Several known genes important for SA production or signaling are also partially (EDS1, NIM1/NPR1, ACD6 and ALD1) or strongly (PAD4) required for the robust resistance induced by HopW1-1, suggesting a key role for SA in the HopW1-1-induced resistance response. Finally, WIN1 is an essential protein, the overexpression of which over-rides the resistance response to HopW1-1 (and several other defense-inducing effectors), and delays SA and HWI1 induction. Thus, the WIN proteins have different roles in modulating plant defense.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA
| | | | | |
Collapse
|
311
|
Zhang Z, Lenk A, Andersson MX, Gjetting T, Pedersen C, Nielsen ME, Newman MA, Hou BH, Somerville SC, Thordal-Christensen H. A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. MOLECULAR PLANT 2008; 1:510-27. [PMID: 19825557 DOI: 10.1093/mp/ssn011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildew-induced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPR1-dependent. These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.
Collapse
Affiliation(s)
- Ziguo Zhang
- Plant and Soil Science, Dept of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Yi H, Richards EJ. Phenotypic instability of Arabidopsis alleles affecting a disease Resistance gene cluster. BMC PLANT BIOLOGY 2008; 8:36. [PMID: 18410684 PMCID: PMC2374787 DOI: 10.1186/1471-2229-8-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/14/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Three mutations in Arabidopsis thaliana strain Columbia - cpr1, snc1, and bal - map to the RPP5 locus, which contains a cluster of disease Resistance genes. The similar phenotypes, gene expression patterns, and genetic interactions observed in these mutants are related to constitutive activation of pathogen defense signaling. However, these mutant alleles respond differently to various conditions. Exposure to mutagens, such as ethyl methanesulfonate (EMS) and gamma-irradiation, induce high frequency phenotypic instability of the bal allele. In addition, a fraction of the bal and cpr1 alleles segregated from bal x cpr1 F1 hybrids also show signs of phenotypic instability. To gain more insight into the mechanism of phenotypic instability of the bal and cpr1 mutations, we systematically compared the behavior of these unusual alleles with that of the missense gain-of-function snc1 allele in response to DNA damage or passage through F1 hybrids. RESULTS We found that the cpr1 allele is similar to the bal allele in its unstable behavior after EMS mutagenesis. For both the bal and cpr1 mutants, destabilization of phenotypes was observed in more than 10% of EMS-treated plants in the M1 generation. In addition, exceptions to simple Mendelian inheritance were identified in the M2 generation. Like cpr1 x bal F1 hybrids, cpr1 x snc1 F1 hybrids and bal x snc1 F1 hybrids exhibited dwarf morphology. While only dwarf F2 plants were produced from bal x snc1 F1 hybrids, about 10% wild-type F2 progeny were produced from cpr1 x snc1 F1 hybrids, as well as from cpr1 x bal hybrids. Segregation analysis suggested that the cpr1 allele in cpr1 x snc1 crosses was destabilized during the late F1 generation to early F2 generation. CONCLUSION With exposure to EMS or different F1 hybrid contexts, phenotypic instability is induced for the bal and cpr1 alleles, but not for the snc1 allele. Our results suggest that the RPP5 locus can adopt different metastable genetic or epigenetic states, the stability of which is highly susceptible to mutagenesis and pairing of different alleles.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | - Eric J Richards
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
313
|
Wubben MJE, Jin J, Baum TJ. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:424-32. [PMID: 18321188 DOI: 10.1094/mpmi-21-4-0424] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Compatible plant-nematode interactions involve the formation of an elaborate feeding site within the host root that requires the evasion of plant defense mechanisms by the parasite. Little is known regarding plant defense signaling pathways that limit nematode parasitism during a compatible interaction. Therefore, we utilized Arabidopsis thaliana mutants perturbed in salicylic acid (SA) biosynthesis or signal transduction to investigate the role of SA in inhibiting parasitism by the beet cyst nematode Heterodera schachtii. We determined that SA-deficient mutants (sid2-1, pad4-1, and NahG) exhibited increased susceptibility to H. schachtii. In contrast, SA-treated wild-type plants showed decreased H. schachtii susceptibility. The npr1-2 and npr1-3 mutants, which are impaired in SA signaling, also showed increased susceptibility to H. schachtii, whereas the npr1-suppressor mutation sni1 showed decreased susceptibility. Constitutive pathogenesis-related (PR) gene-expressing mutants (cpr1 and cpr6) did not show altered susceptibility to H. schachtii; however, constitutive PR gene expression was restricted to cpr1 shoots with wild-type levels of PR-1 transcript present in cpr1 roots. Furthermore, we determined that H. schachtii infection elicits SA-independent PR-2 and PR-5 induction in wild-type roots, while PR-1 transcript and total SA levels remained unaltered. This was in contrast to shoots of infected plants where PR-1 transcript abundance and total SA levels were elevated. We conclude that SA acts via NPR1 to inhibit nematode parasitism which, in turn, is negatively regulated by SNI1. Our results show an inverse correlation between root basal PR-1 expression and plant susceptibility to H. schachtii and suggest that successful cyst nematode parasitism may involve a local suppression of SA signaling in roots.
Collapse
Affiliation(s)
- Martin John Evers Wubben
- United States Department of Agriculture-Agricultural Research Service, Crop Science Research Laboratory, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
314
|
Lim RYH, Ullman KS, Fahrenkrog B. Biology and biophysics of the nuclear pore complex and its components. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:299-342. [PMID: 18544502 DOI: 10.1016/s1937-6448(08)00632-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleocytoplasmic exchange of proteins and ribonucleoprotein particles occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope (NE). Significant progress has been made during the past few years in obtaining better structural resolution of the three-dimensional architecture of NPC with the help of cryo-electron tomography and atomic structures of domains from nuclear pore proteins (nucleoporins). Biophysical and imaging approaches have helped elucidate how nucleoporins act as a selective barrier in nucleocytoplasmic transport. Nucleoporins act not only in trafficking of macromolecules but also in proper microtubule attachment to kinetochores, in the regulation of gene expression and signaling events associated with, for example, innate and adaptive immunity, development and neurodegenerative disorders. Recent research has also been focused on the dynamic processes of NPC assembly and disassembly that occur with each cell cycle. Here we review emerging results aimed at understanding the molecular arrangement of the NPC and how it is achieved, defining the roles of individual nucleoporins both at the NPC and at other sites within the cell, and finally deciphering how the NPC serves as both a barrier and a conduit of active transport.
Collapse
Affiliation(s)
- Roderick Y H Lim
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
315
|
Abstract
Plant resistance proteins directly or indirectly perceive the presence of pathogen virulence factors and trigger an effective form of plant immunity that often includes programmed host cell death. Because the activation of resistance proteins has the potential to be detrimental to the plant, this process is tightly regulated on multiple levels. Several resistance genes have been shown to be alternatively spliced. Depending on the resistance gene, alternative transcripts are thought to limit the expression of R proteins or encode truncated R proteins with a positive role in defense activation. In addition, R gene alternative splicing is dynamic during the defense response. Possible mechanisms of R gene alternative splicing regulation and how alternative R gene transcripts fit into the current view of resistance protein-mediated defense responses are discussed.
Collapse
Affiliation(s)
- W Gassmann
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, USA.
| |
Collapse
|
316
|
Nuclear Pores in Plant Cells: Structure, Composition, and Functions. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
317
|
Xu XM, Meier I. The nuclear pore comes to the fore. TRENDS IN PLANT SCIENCE 2008; 13:20-7. [PMID: 18155634 DOI: 10.1016/j.tplants.2007.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/09/2007] [Accepted: 12/10/2007] [Indexed: 05/08/2023]
Abstract
The nuclear pore complex is the gateway of macromolecular trafficking between the nucleus and the cytoplasm. Although its composition is well characterized in yeast and mammalian systems, little is known about the plant nuclear pore. Several recent reports describe complex whole-organism phenotypes based on mutations in plant nucleoporins. The pathways affected include plant-microbe interactions, auxin response, cold-stress tolerance and flowering-time regulation. The effects are probably based, at least in part, on changes in protein import and/or RNA export (including regulatory small RNAs). Here, we review these new findings while comparing and contrasting them with what is known about nucleoporin functions from non-plant organisms, including nucleoporin activities not linked to nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Xianfeng M Xu
- Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
318
|
Zhou F, Mosher S, Tian M, Sassi G, Parker J, Klessig DF. The Arabidopsis gain-of-function mutant ssi4 requires RAR1 and SGT1b differentially for defense activation and morphological alterations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:40-49. [PMID: 18052881 DOI: 10.1094/mpmi-21-1-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A gain-of-function mutation in resistance (R) gene SSI4 causes constitutive activation of defense responses, spontaneous necrotic lesion formation, enhanced resistance against virulent pathogens, and a severe dwarf phenotype. Genetic analysis revealed that ssi4-induced H(2)O(2) accumulation and spontaneous cell death require RAR1, whereas ssi4-mediated stunting is dependent on SGT1b. By contrast, both RAR1 and SGT1b are required in a genetically additive manner for ssi4-induced disease resistance, SA accumulation, and lesion formation after pathogen infection. These data point to cooperative yet distinct functions of RAR1 and SGT1b in responses conditioned by a deregulated nucleotide-binding leucine-rich repeat protein. We also found that RAR1 and SGT1b together contribute to basal resistance because an ssi4 rar1 sgt1b triple mutant exhibited enhanced susceptibility to virulent pathogen infection compared with wild-type SSI4 plants. All ssi4-induced phenotypes were suppressed when plants were grown at 22 degrees C under high relative humidity. However, low temperature (16 degrees C) triggered ssi4-mediated cell death via an RAR1-dependent pathway even in the presence of high humidity. Thus, multiple environmental factors impact on ssi4 signaling, as has been observed for other constitutive defense mutants and R gene-triggered pathways.
Collapse
Affiliation(s)
- Fasong Zhou
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
319
|
Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 2007; 5:e236. [PMID: 17803357 PMCID: PMC1964774 DOI: 10.1371/journal.pbio.0050236] [Citation(s) in RCA: 393] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/03/2007] [Indexed: 01/11/2023] Open
Abstract
Epistatic interactions between genes are a major factor in evolution. Hybrid necrosis is an example of a deleterious phenotype caused by epistatic interactions that is observed in many intra- and interspecific plant hybrids. A large number of hybrid necrosis cases share phenotypic similarities, suggesting a common underlying mechanism across a wide range of plant species. Here, we report that approximately 2% of intraspecific crosses in Arabidopsis thaliana yield F1 progeny that express necrosis when grown under conditions typical of their natural habitats. We show that several independent cases result from epistatic interactions that trigger autoimmune-like responses. In at least one case, an allele of an NB-LRR disease resistance gene homolog is both necessary and sufficient for the induction of hybrid necrosis, when combined with a specific allele at a second locus. The A. thaliana cases provide insights into the molecular causes of hybrid necrosis, and serve as a model for further investigation of intra- and interspecific incompatibilities caused by a simple epistatic interaction. Moreover, our finding that plant immune-system genes are involved in hybrid necrosis suggests that selective pressures related to host-pathogen conflict might cause the evolution of gene flow barriers in plants.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Janne Lempe
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Petra Epple
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Norman Warthmann
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christa Lanz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
320
|
Li Y, Yang S, Yang H, Hua J. The TIR-NB-LRR gene SNC1 is regulated at the transcript level by multiple factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1449-56. [PMID: 17977156 DOI: 10.1094/mpmi-20-11-1449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SNC1 (suppressor of NPR1, constitutive 1) is a haplotype-specific Toll and interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat type of resistance (R)-like gene possibly mediating race-specific disease resistance. Inactivation of its negative regulator BON1 (BONZAI1)/CPN1 and BAP1 genes or upregulation of its expression epigenetically lead to constitutive defense responses and dwarf phenotype. Here, we report an autoactivation of SNC1 by introducing it into Arabidopsis as a transgene. The SNC1 genomic fragment confers a dwarf phenotype induced by defense response upregulation associated with a higher SNC1 transcript level. Analysis of the beta-glucuronidase reporter gene under the control of the SNC1 promoter suggests three modes of regulation on the SNC1 transcript level: a repression by the chromosomal structure, a feedback amplification from SNC1 on its promoter sequences, and a repression by BON1. These regulations appear to be independent of each other. The regulation of SNC1 possibly exemplifies a universally complex control of R genes to ensure a repression of R activation under nonstress conditions and a robust activation of defense responses once the R gene is induced.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Plant Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | |
Collapse
|
321
|
Shen QH, Schulze-Lefert P. Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. EMBO J 2007; 26:4293-301. [PMID: 17853890 PMCID: PMC2034664 DOI: 10.1038/sj.emboj.7601854] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/23/2007] [Indexed: 01/26/2023] Open
Abstract
Plants and animals have evolved structurally related innate immune sensors inside cells to detect the presence of microbial molecules. An evolutionary ancient folding machinery becomes engaged for the synthesis of autorepressed receptor forms in both kingdoms. The receptors act as regulatory signal transduction switches and are activated upon direct or indirect perception of non-self structures. Recent findings indicate that nucleo-cytoplasmic partitioning and nuclear activity is critical for the function of several plant immune sensors, thereby linking receptor function to transcriptional reprogramming of host cells for pathogen defense. This implies short signalling pathways and reveals parallels with regulatory control mechanisms of animal steroid receptors.
Collapse
Affiliation(s)
- Qian-Hua Shen
- Department of Plant Microbe Interactions, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, Köln, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, Köln, Germany
| |
Collapse
|
322
|
Yang H, Yang S, Li Y, Hua J. The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. PLANT PHYSIOLOGY 2007; 145:135-46. [PMID: 17631528 PMCID: PMC1976577 DOI: 10.1104/pp.107.100800] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here we identify the BAP1 and BAP2 genes of Arabidopsis (Arabidopsis thaliana) as general inhibitors of programmed cell death (PCD) across the kingdoms. These two homologous genes encode small proteins containing a calcium-dependent phospholipid-binding C2 domain. BAP1 and its functional partner BON1 have been shown to negatively regulate defense responses and a disease resistance gene SNC1. Genetic studies here reveal an overlapping function of the BAP1 and BAP2 genes in cell death control. The loss of BAP2 function induces accelerated hypersensitive responses but does not compromise plant growth or confer enhanced resistance to virulent bacterial or oomycete pathogens. The loss of both BAP1 and BAP2 confers seedling lethality mediated by PAD4 and EDS1, two regulators of cell death and defense responses. Overexpression of BAP1 or BAP2 with their partner BON1 inhibits PCD induced by pathogens, the proapoptotic gene BAX, and superoxide-generating paraquat in Arabidopsis or Nicotiana benthamiana. Moreover, expressing BAP1 or BAP2 in yeast (Saccharomyces cerevisiae) alleviates cell death induced by hydrogen peroxide. Thus, the BAP genes function as general negative regulators of PCD induced by biotic and abiotic stimuli including reactive oxygen species. The dual roles of BAP and BON genes in repressing defense responses mediated by disease resistance genes and in inhibiting general PCD has implications in understanding the evolution of plant innate immunity.
Collapse
Affiliation(s)
- Huijun Yang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
323
|
Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. THE PLANT CELL 2007; 19:2929-39. [PMID: 17890374 PMCID: PMC2048694 DOI: 10.1105/tpc.107.051821] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 05/17/2023]
Abstract
The RPP5 (for recognition of Peronospora parasitica 5) locus in the Arabidopsis thaliana Columbia strain contains a cluster of paralogous disease Resistance (R) genes that play important roles in innate immunity. Among the R genes in this locus, RPP4 confers resistance to two races of the fungal pathogen Hyaloperonospora parasitica, while activation of SNC1 (for suppressor of npr1-1, constitutive 1) results in the resistance to another race of H. parasitica and to pathovars of the bacterial pathogen Pseudomonas syringae through the accumulation of salicylic acid (SA). Here, we demonstrate that other Columbia RPP5 locus R genes can be induced by transgenic overexpression of SNC1, which itself is regulated by a positive amplification loop involving SA accumulation. We also show that small RNA species that can target RPP5 locus R genes are produced in wild-type plants and that these R genes can be cosuppressed in transgenic plants overexpressing SNC1. Steady state expression levels of SNC1 increase in some mutants (dcl4-4, ago1-36, and upf1-5) defective in RNA silencing as well as in transgenic plants expressing the P1/Helper Component-Protease viral suppressor of RNA silencing. However, steady state levels of small RNA species do not change in mutants that upregulate SNC1. These data indicate many Columbia RPP5 locus R genes can be coordinately regulated both positively and negatively and suggest that the RPP5 locus is poised to respond to pathogens that disturb RNA silencing.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
324
|
Palma K, Zhao Q, Cheng YT, Bi D, Monaghan J, Cheng W, Zhang Y, Li X. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes Dev 2007; 21:1484-93. [PMID: 17575050 PMCID: PMC1891426 DOI: 10.1101/gad.1559607] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members--MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)--that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity.
Collapse
Affiliation(s)
- Kristoffer Palma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qingguo Zhao
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dongling Bi
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Jacqueline Monaghan
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wei Cheng
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Yuelin Zhang
- National Institute of Biological Sciences (NIBS), Zhongguancun Life Science Park, Beijing 102206, People’s Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Corresponding author.E-MAIL ; FAX (604) 822-2114
| |
Collapse
|
325
|
Wiermer M, Palma K, Zhang Y, Li X. Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cell Microbiol 2007; 9:1880-90. [PMID: 17506817 DOI: 10.1111/j.1462-5822.2007.00962.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Communication between the cytoplasm and the nucleus is a fundamental feature of eukaryotic cells. Bidirectional transport of macromolecules across the nuclear envelope is typically mediated by receptors and occurs exclusively through nuclear pore complexes (NPCs). The components and molecular mechanisms regulating nucleocytoplasmic trafficking and signalling processes are well studied in animals and yeast but are poorly understood in plants. Current work shows that components of the NPC and the nuclear import and export machinery play essential roles in plant innate immunity. Translocation of defence regulators and Resistance (R) proteins between the cytoplasm and the nucleus are recently uncovered aspects of plant defence responses against pathogens. Future studies will reveal more details on the spatial and temporal dynamics and regulation of this process.
Collapse
Affiliation(s)
- Marcel Wiermer
- Michael Smith Laboratories, Room 301, 2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | |
Collapse
|
326
|
Tameling WIL, Baulcombe DC. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. THE PLANT CELL 2007; 19:1682-94. [PMID: 17526750 PMCID: PMC1913736 DOI: 10.1105/tpc.107.050880] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 05/15/2023]
Abstract
Nucleotide binding leucine-rich repeat (NB-LRR) proteins play an important role in plant and mammalian innate immunity. In plants, these resistance proteins recognize specific pathogen-derived effector proteins. Recognition subsequently triggers a rapid and efficient defense response often associated with the hypersensitive response and other poorly understood processes that suppress the pathogen. To investigate mechanisms associated with the activation of disease resistance responses, we investigated proteins binding to the potato (Solanum tuberosum) NB-LRR protein Rx that confers extreme resistance to Potato virus X (PVX) in potato and Nicotiana benthamiana. By affinity purification experiments, we identified an endogenous N. benthamiana Ran GTPase-Activating Protein2 (RanGAP2) as an Rx-associated protein in vivo. Further characterization confirmed the specificity of this interaction and showed that the association occurs through their N-terminal domains. By specific virus-induced gene silencing of RanGAP2 in N. benthamiana carrying Rx, we demonstrated that this interaction is required for extreme resistance to PVX and suggest that RanGAP2 is part of the Rx signaling complex. These results implicate RanGAP-mediated cellular mechanisms, including nucleocytoplasmic trafficking, in the activation of disease resistance.
Collapse
|
327
|
Affiliation(s)
- Jeffery L Dangl
- Department of Biology, the Curriculum in Genetics, and the Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
328
|
DeYoung BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 2007; 7:1243-9. [PMID: 17110940 PMCID: PMC1973153 DOI: 10.1038/ni1410] [Citation(s) in RCA: 454] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/12/2006] [Indexed: 11/08/2022]
Abstract
Plant proteins belonging to the nucleotide-binding site-leucine-rich repeat (NBS-LRR) family are used for pathogen detection. Like the mammalian Nod-LRR protein 'sensors' that detect intracellular conserved pathogen-associated molecular patterns, plant NBS-LRR proteins detect pathogen-associated proteins, most often the effector molecules of pathogens responsible for virulence. Many virulence proteins are detected indirectly by plant NBS-LRR proteins from modifications the virulence proteins inflict on host target proteins. However, some NBS-LRR proteins directly bind pathogen proteins. Association with either a modified host protein or a pathogen protein leads to conformational changes in the amino-terminal and LRR domains of plant NBS-LRR proteins. Such conformational alterations are thought to promote the exchange of ADP for ATP by the NBS domain, which activates 'downstream' signaling, by an unknown mechanism, leading to pathogen resistance.
Collapse
Affiliation(s)
- Brody J DeYoung
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
329
|
Goritschnig S, Zhang Y, Li X. The ubiquitin pathway is required for innate immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:540-51. [PMID: 17217463 DOI: 10.1111/j.1365-313x.2006.02978.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant defences require a multitude of tightly regulated resistance responses. In Arabidopsis, the unique gain-of-function mutant suppressor of npr1-1 constitutive 1 (snc1) carries a point mutation in a Resistance (R)-gene, resulting in constitutive activation of defence responses without interaction with pathogens. This has allowed us to identify various downstream signalling components essential in multiple defence pathways. One mutant that suppresses snc1-mediated constitutive resistance is modifier of snc1 5 (mos5), which carries a 15-bp deletion in UBA1, one of two ubiquitin-activating enzyme genes in Arabidopsis. A mutation in UBA2 does not suppress snc1, suggesting that these two genes are not equally required in Arabidopsis disease resistance. On the other hand, a mos5 uba2 double mutant is lethal, implying partial redundancy of the two homologues. Apart from affecting snc1-mediated resistance, mos5 also exhibits enhanced disease susceptibility to a virulent pathogen and is impaired in response to infection with avirulent bacteria carrying the protease elicitor AvrRpt2. The mos5 mutation in the C-terminus of UBA1 might affect binding affinity of the downstream ubiquitin-conjugating enzymes, thus perturbing ubiquitination of target proteins. Furthermore, SGT1b and RAR1, which are necessary for resistance conferred by the SNC1-related R-genes RPP4 and RPP5, are dispensable in snc1-mediated resistance. Our data reveal the definite requirement for the ubiquitination pathway in the activation and downstream signalling of several R-proteins.
Collapse
Affiliation(s)
- Sandra Goritschnig
- Michael Smith Laboratories, Room 301, 2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
330
|
Rairdan G, Moffett P. Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect 2007; 9:677-86. [PMID: 17379561 DOI: 10.1016/j.micinf.2007.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plant and animal genomes encode proteins with nucleotide binding domains fused to leucine-rich repeat domains that are involved in responses to pathogens. While these domain structures are probably an example of convergent evolution, there are a number of similarities in the core mechanisms by which these proteins are regulated.
Collapse
Affiliation(s)
- Greg Rairdan
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
331
|
van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW. Structure and function of resistance proteins in solanaceous plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:43-72. [PMID: 17367271 DOI: 10.1146/annurev.phyto.45.062806.094430] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Gene-for-gene resistance in plants is based on the presence of a resistance (R) gene in the host and a matching Avirulence (Avr) gene in the pathogen. Many R genes have been cloned over the past two decades, mostly from the Solanaceae. The gene products, called R proteins, display modular domain structures. R protein function has recently been shown to require dynamic interactions between the various domains. In addition to these intramolecular interactions, R proteins interact with other proteins to form signaling complexes that are able to activate an innate immune response that arrests proliferation of the invading pathogen, thereby conferring disease resistance. In this review, we summarize current understanding of R protein structure and function, as well as the molecular mechanisms underlying the activation of defense signaling processes. As well as being a rich source for R genes, Solanaceae are a leading model system in which to study inter- and intramolecular interactions of R proteins.
Collapse
Affiliation(s)
- Gerben van Ooijen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
332
|
Ayliffe MA, Pryor AJ. Activation tagging in plants—generation of novel, gain-of-function mutations. ACTA ACUST UNITED AC 2007. [DOI: 10.1071/ar06154] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation tagging is a mutagenesis strategy that generates dominant, gain-of-function mutations as a consequence of gene over-expression. These mutations cause a class of mutant previously unobtainable by conventional mutagenesis. Unlike most mutant phenotypes, which are generally a consequence of gene inactivation, activation tagged phenotypes arise from excess functional gene product. Gene over-expression mutations are obtained by randomly inserting regulatory sequences throughout the genome, using either high-throughput plant transformation or mobile transposable elements to distribute these regulatory elements. Since the sequence of the regulatory element vector is known, it acts as a molecular tag, making isolation of the over-expressed gene a relatively straightforward process using standard molecular biological techniques. Activation tagged phenotypes have been generated by the over-expression of genes encoding a diverse range of protein and RNA products that are involved in all aspects of plant biogenesis. This mutation approach has been used extensively in Arabidopsis and to a lesser extent in several other species. In this review we summarise activation tagging in plants and suggest that the development of this mutagenesis strategy in more plants of agronomic significance is highly desirable.
Collapse
|
333
|
Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee SY, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:79-90. [PMID: 17163880 DOI: 10.1111/j.1365-313x.2006.02947.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reversible modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins are involved in many cellular processes in yeast and animals. Yet little is known about the function of sumoylation in plants. Here, we show that the SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, regulates innate immunity. Mutant siz1 plants exhibit constitutive systemic-acquired resistance (SAR) characterized by elevated accumulation of salicylic acid (SA), increased expression of pathogenesis-related (PR) genes, and increased resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Transfer of the NahG gene to siz1 plants results in reversal of these phenotypes back to wild-type. Analyses of the double mutants, npr1 siz1, pad4 siz1 and ndr1 siz1 revealed that SIZ1 controls SA signalling. SIZ1 interacts epistatically with PAD4 to regulate PR expression and disease resistance. Consistent with these observations, siz1 plants exhibited enhanced resistance to Pst DC3000 expressing avrRps4, a bacterial avirulence determinant that responds to the EDS1/PAD4-dependent TIR-NBS-type R gene. In contrast, siz1 plants were not resistant to Pst DC3000 expressing avrRpm1, a bacterial avirulence determinant that responds to the NDR1-dependent CC-NBS-type R gene. Jasmonic acid (JA)-induced PDF1.2 expression and susceptibility to Botrytis cinerea were unaltered in siz1 plants. Taken together, these results demonstrate that SIZ1 is required for SA and PAD4-mediated R gene signalling, which in turn confers innate immunity in Arabidopsis.
Collapse
Affiliation(s)
- Jiyoung Lee
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnolgy Research Center and Environmental Biotechnology National Core Research Center, Graduate School of Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Yoo CY, Miura K, Jin JB, Lee J, Park HC, Salt DE, Yun DJ, Bressan RA, Hasegawa PM. SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. PLANT PHYSIOLOGY 2006; 142:1548-58. [PMID: 17041025 PMCID: PMC1676064 DOI: 10.1104/pp.106.088831] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation/deconjugation to heat shock transcription factors regulates DNA binding of the peptides and activation of heat shock protein gene expression that modulates thermal adaptation in metazoans. SIZ1 is a SUMO E3 ligase that facilitates SUMO conjugation to substrate target proteins (sumoylation) in Arabidopsis (Arabidopsis thaliana). siz1 T-DNA insertional mutations (siz1-2 and siz1-3; Miura et al., 2005) cause basal, but not acquired, thermosensitivity that occurs in conjunction with hyperaccumulation of salicylic acid (SA). NahG encodes a salicylate hydroxylase, and expression in siz1-2 seedlings reduces endogenous SA accumulation to that of wild-type levels and further increases thermosensitivity. High temperature induces SUMO1/2 conjugation to peptides in wild type but to a substantially lesser degree in siz1 mutants. However, heat shock-induced expression of genes, including heat shock proteins, ascorbate peroxidase 1 and 2, is similar in siz1 and wild-type seedlings. Together, these results indicate that SIZ1 and, by inference, sumoylation facilitate basal thermotolerance through processes that are SA independent.
Collapse
Affiliation(s)
- Chan Yul Yoo
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Zhang Y, Cheng YT, Qu N, Zhao Q, Bi D, Li X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:647-56. [PMID: 17076807 DOI: 10.1111/j.1365-313x.2006.02903.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
NPR1 is required for systemic acquired resistance, and there are five NPR1 paralogs in Arabidopsis. Here we report knockout analysis of two of these, NPR3 and NPR4. npr3 single mutants have elevated basal PR-1 expression and the npr3 npr4 double mutant shows even higher expression. The double mutant plants also display enhanced resistance against virulent bacterial and oomycete pathogens. This enhanced disease resistance is partially dependent on NPR1, can be in part complemented by either wild-type NPR3 or NPR4, and is not associated with an elevated level of salicylic acid. NPR3 and NPR4 interact with TGA2, TGA3, TGA5 and TGA6 in yeast two-hybrid assays. Using bimolecular fluorescence complementation analysis, we show that NPR3 interacts with TGA2 in the nucleus of onion epidermal cells and Arabidopsis mesophyll protoplasts. Combined with our previous finding that basal PR-1 levels are also elevated in the tga2 tga5 tga6 triple mutant, we propose that NPR3 and NPR4 negatively regulate PR gene expression and pathogen resistance through their association with TGA2 and its paralogs.
Collapse
Affiliation(s)
- Yuelin Zhang
- National Institute of Biological Sciences, #7 Science Park Road, Zhongguancun Life Science Park, Beijing, People's Republic of China 102206.
| | | | | | | | | | | |
Collapse
|
336
|
Michael Weaver L, Swiderski MR, Li Y, Jones JDG. The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:829-40. [PMID: 16889647 DOI: 10.1111/j.1365-313x.2006.02834.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Specific recognition of Hyaloperonospora parasitica isolate Cala2 by Arabidopsis thaliana Ws-0 is mediated by the resistance gene RPP1A. Transient expression of different truncations of RPP1A in tobacco leaves revealed that its TIR-NB-ARC portion is sufficient to induce an elicitor-independent cell death. In stable transgenic lines of Arabidopsis, overexpression of the RPP1A TIR-NB-ARC domains (E12) using the 35S promoter leads to broad-spectrum resistance to virulent strains of H. parasitica and Pseudomonas syringae DC3000. The TIR-NB-ARC-mediated constitutive immunity is due to activation of the salicylic acid-dependent resistance pathway and is relieved by either a mutation in EDS1 or the presence of the salicylate hydroxylase gene, NahG. Growth of 35S::E12 plants is reduced, a phenotype observed in many constitutively resistant mutants. RPP1A carries a hydrophobic peptide at its N-terminus that directs the RPP1A protein into membranes, though it may not be the sole determinant mediating membrane association of RPP1A. Two-phase partitioning and sucrose density gradient sedimentation established that RPP1A resides in the endoplasmic reticulum and/or Golgi apparatus.
Collapse
Affiliation(s)
- L Michael Weaver
- Sainsbury Laboratory, John Innes Centre, Norwich Research Park Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
337
|
Grant M, Lamb C. Systemic immunity. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:414-20. [PMID: 16753329 DOI: 10.1016/j.pbi.2006.05.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/18/2006] [Indexed: 05/10/2023]
Abstract
Systemic acquired resistance (SAR) provides enhanced, long-lasting systemic immunity to secondary infection by a range of biotrophic, hemibiotrophic and necrotrophic pathogens that have diverse modes of infection. Considerable effort has focussed on the conserved central positive regulator of SAR, NON-EXPRESSOR OF PATHOGENESIS-RELATED1 (NPR1), and its control by changes in cellular redox potential. Recently, genetic and genomic approaches have highlighted a critical role for nucleocytoplasmic communication and protein secretion in establishing effective systemic immunity. Identification of the mobile signals and the mechanisms by which they are perceived in distal tissues remains challenging, but emerging evidence suggests that signal translocation uses lipid-derived (possibly jasmonate-based) signals and lipid-binding chaperones. Furthermore, the demonstration that autophagy interdicts and inactivates a systemic cell death signal adds further complexity to elucidating how mobile signals are decoded and transduced for effective immunity.
Collapse
Affiliation(s)
- Murray Grant
- Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2AZ, UK
| | | |
Collapse
|
338
|
Zhang Y, Cheng YT, Bi D, Palma K, Li X. MOS2, a protein containing G-patch and KOW motifs, is essential for innate immunity in Arabidopsis thaliana. Curr Biol 2006; 15:1936-42. [PMID: 16271871 DOI: 10.1016/j.cub.2005.09.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/22/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Innate immunity is critical for sensing and defending against microbial infections in multicellular organisms. In plants, disease resistance genes (R genes) play central roles in recognizing pathogens and initiating downstream defense cascades. Arabidopsis SNC1 encodes a TIR-NBS-LRR-type R protein with a similar structure to nucleotide binding oligomerization domain (Nod) proteins in animals. A point mutation in the region between the NBS and LRR of SNC1 results in constitutive activation of defense responses in the snc1 mutant. Here, we report the identification and characterization of mos2-1, a mutant suppressing the constitutive defense responses in snc1. Analysis of mos2 single mutants indicated that it is not only required for resistance specified by multiple R genes, but also for basal resistance. Map-based cloning of MOS2 revealed that it encodes a novel nuclear protein that contains one G-patch and two KOW domains and has homologs across the animal kingdom. The presence of both G-patch and KOW domains in the MOS2 protein suggests that it probably functions as an RNA binding protein critical for plant innate immunity. Our discovery on the biological functions of MOS2 will shed light on functions of the MOS2 homologs in animals, where they may also play important roles in innate immunity.
Collapse
Affiliation(s)
- Yuelin Zhang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Room 301, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
339
|
Barker CL, Talbot SJ, Jones JDG, Jones DA. A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contains a recombinant Hcr9 gene encoding an autoactive protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:369-84. [PMID: 16623899 DOI: 10.1111/j.1365-313x.2006.02698.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tomato Cf-9 gene confers resistance to races of the leaf mould fungus Cladosporium fulvum that carry the Avr9 avirulence gene. Cf-9 resides at a locus containing five paralogous genes and was isolated by transposon tagging using a modified maize Dissociation (Ds) element. The tagging experiment generated an allelic series of Ds-induced mutations of Cf-9, most of which were wild type in appearance. However, one mutant, designated M205, showed stunted growth, wilting, progressive leaf chlorosis and necrosis and constitutive expression of defence genes. The phenotype of M205 was caused by a semidominant, Avr9-independent mutation that co-segregated with a Ds element insertion at the Cf-9 locus. Molecular genetic analysis indicated that the Cf-9 locus of M205 had undergone recombination, generating a chimeric gene, designated Hcr9-M205, that comprised an in-frame fusion between the 5' coding region of the Cf-9 paralogue, Hcr9-9A, and the 3' coding region of Cf-9. The presence of a possible excision footprint adjacent to the junction between Hcr9-9A and Cf-9, and a Ds insertion at the homologous position in the downstream paralogue Hcr9-9D, is consistent with recombination between Hcr9-9A and Cf-9 promoted by transposition of Ds from Cf-9 into Hcr9-9D. Agrobacterium tumefaciens-mediated transient expression of Hcr9-M205 in Nicotiana tabacum caused chlorosis and the accumulation of defence gene transcripts, indicating that the protein encoded by this novel Hcr9 gene is autoactive.
Collapse
Affiliation(s)
- Claire L Barker
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
340
|
Couch BC, Spangler R, Ramos C, May G. Pervasive purifying selection characterizes the evolution of I2 homologs. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:288-303. [PMID: 16570659 DOI: 10.1094/mpmi-19-0288] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We sampled 384 sequences related to the Solanum pimpinellifolium (=Lycopersicon pimpinellifolium) disease resistance (R) gene 12 from six species, potato, S. demissum, tomato, eggplant, pepper, and tobacco. These species represent increasing phylogenetic distance from potato to tobacco, within the family Solanaceae. Using sequence data from the nucleotide binding site (NBS) region of this gene, we tested models of gene family evolution and inferred patterns of selection acting on the NBS gene region and I2 gene family. We find that the I2 family has diversified within the family Solanaceae for at least 14 million years and evolves through a slow birth-and-death process requiring approximately 12 million years to homogenize gene copies within a species. Analyses of selection resolved a general pattern of strong purifying selection acting on individual codon positions within the NBS and on NBS lineages through time. Surprisingly, we find nine codon positions strongly affected by positive selection and six pairs of codon positions demonstrating correlated amino acid substitutions. Evolutionary analyses serve as bioinformatic tools with which to sort through the vast R gene diversity in plants and find candidates for new resistance specificities or to identify specific amino acid positions important for biochemical function. The slow birth-and-death evolution of I2 genes suggests that some NBS-leucine rich repeat-mediated resistances may not be overcome rapidly by virulence evolution and that the natural diversity of R genes is a potentially valuable source for durable resistance.
Collapse
Affiliation(s)
- Brett C Couch
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
341
|
Thompson GA, Goggin FL. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:755-66. [PMID: 16495409 DOI: 10.1093/jxb/erj135] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The relationship between phloem-feeding insects (PFIs) and plants offers an intriguing example of a highly specialized biotic interaction. These insects have evolved to survive on a nutritionally imbalanced diet of phloem sap, and to minimize wound responses in their host plants. As a consequence, plant perception of and responses to PFIs differ from plant interactions with other insect-feeding guilds. Transcriptome-wide analyses of gene expression are currently being applied to characterize plant responses to PFIs in crop plants with race-specific innate resistance, as well as in compatible interactions with susceptible hosts. Recent studies indicate that PFIs induce transcriptional reprogramming in their host plants, and that plant responses to PFIs appear to be quantitatively and qualitatively different from responses to other insects or pathogens. Transcript profiling studies also suggest that PFIs induce cell wall modifications, reduce photosynthetic activity, manipulate source-sink relations, and modify secondary metabolism in their hosts, and many of these responses appear to occur within the phloem tissue. Plant responses to these insects appear to be regulated in part by the salicylate, jasmonate, and ethylene signalling pathways. As additional transcript profiling data become available, forward and reverse genetic approaches will be necessary to determine which changes in gene expression influence resistance or susceptibility to PFIs.
Collapse
Affiliation(s)
- Gary A Thompson
- Department of Applied Science, University of Arkansas at Little Rock, 2801 South University Ave, Little Rock, 72204-1099, USA.
| | | |
Collapse
|
342
|
Pegadaraju V, Knepper C, Reese J, Shah J. Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. PLANT PHYSIOLOGY 2005; 139:1927-34. [PMID: 16299172 PMCID: PMC1310570 DOI: 10.1104/pp.105.070433] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 05/05/2023]
Abstract
Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.
Collapse
Affiliation(s)
- Venkatramana Pegadaraju
- Division of Biology and the Molecular Cellular and Developmental Biology Program, Kansas State University, Manhattan, Kansas 66506-4901, USA
| | | | | | | |
Collapse
|
343
|
Palma K, Zhang Y, Li X. An importin alpha homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 2005; 15:1129-35. [PMID: 15964279 DOI: 10.1016/j.cub.2005.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/06/2005] [Accepted: 05/09/2005] [Indexed: 12/28/2022]
Abstract
Plant disease resistance is the consequence of an innate defense mechanism mediated by Resistance (R) genes [1]. The conserved structure of one class of R protein is reminiscent of Toll-like receptors (TLRs) and Nucleotide binding oligomerization domain (NOD) proteins-immune-response perception modules in animal cells [2, 3, and 4]. The Arabidopsis snc1 (suppressor of npr1-1, constitutive, 1) mutant contains a mutation in a TIR-NBS-LRR-type of R gene that renders resistance responses constitutively active without interaction with pathogens [5]. Few components of the downstream signaling network activated by snc1 are known. To search for regulators of R-gene-mediated resistance, we screened for genetic suppressors of snc1. Three alleles of the mutant mos6 (modifier of snc1, 6) partially suppressed constitutive-resistance responses and immunity to virulent pathogens in snc1. Furthermore, the mos6-1 single mutant exhibited enhanced disease susceptibility to a virulent oomycete pathogen. MOS6, identified by positional cloning, encodes importin alpha3, one of eight alpha importins in Arabidopsis [6]. alpha importins mediate the import of specific proteins across the nuclear envelope. We previously reported that MOS3, a protein homologous to human nucleoporin 96, is required for constitutive resistance in snc1 [7]. Our data highlight an essential role for nucleo-cytoplasmic trafficking, especially protein import, in plant innate immunity.
Collapse
Affiliation(s)
- Kristoffer Palma
- Michael Smith Laboratories, Room 301, 2185 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
344
|
Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P. The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:155-66. [PMID: 16167903 DOI: 10.1111/j.1365-313x.2005.02517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on constitutive subtilisin3 (csb3), an Arabidopsis mutant showing strikingly enhanced resistance to biotrophic pathogens. Epistasis analyses with pad4, sid2, eds5, NahG, npr1, dth9 and cpr1 mutants revealed that the enhanced resistance of csb3 plants requires intact salicylic acid (SA) synthesis and perception. CSB3 encodes a 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase, the enzyme controlling the penultimate step of the biosynthesis of isopentenyl diphosphate via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the chloroplast. CSB3 is expressed constitutively in healthy plants, and shows repression in response to bacterial infection. We also show the pharmacological complementation of the enhanced-resistance phenotype of csb3 plants with fosmidomycin, an inhibitor of the MEP pathway, and propose that CSB3 represents a point of metabolic convergence modulating the magnitude of SA-mediated disease resistance to biotrophic pathogens.
Collapse
Affiliation(s)
- M José Gil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
345
|
Nakayama N, Arroyo JM, Simorowski J, May B, Martienssen R, Irish VF. Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. THE PLANT CELL 2005; 17:2486-506. [PMID: 16055634 PMCID: PMC1197429 DOI: 10.1105/tpc.105.033985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To identify genes involved in Arabidopsis thaliana petal and stamen organogenesis, we used a gene trap approach to examine the patterns of reporter expression at each stage of flower development of 1765 gene trap lines. In 80 lines, the reporter gene showed petal- and/or stamen-specific expression or lack of expression, or expression in distinct patterns within the petals and/or the stamens, including distinct suborgan domains of expression, such as tissue-specific lines marking epidermis and vasculature, as well as lines demarcating the proximodistal or abaxial/adaxial axes of the organs. Interestingly, reporter gene expression was typically restricted along the proximodistal axis of petals and stamens, indicating the importance of this developmental axis in patterning of gene expression domains in these organs. We identified novel domains of gene expression along the axis marking the midregion of the petals and apical and basal parts of the anthers. Most of the genes tagged in these 80 lines were identified, and their possible functions in petal and/or stamen differentiation are discussed. We also scored the floral phenotypes of the 1765 gene trap lines and recovered two mutants affecting previously uncharacterized genes. In addition to revealing common domains of gene expression, the gene trap lines reported here provide both useful markers and valuable starting points for reverse genetic analyses of the differentiation pathways in petal and stamen development.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | |
Collapse
|
346
|
Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. THE PLANT CELL 2005; 17:2601-13. [PMID: 16040633 PMCID: PMC1197438 DOI: 10.1105/tpc.105.033910] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant innate immunity against invasive biotrophic pathogens depends on the intracellular defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). We show here that Arabidopsis thaliana EDS1 interacts in vivo with another protein, SENESCENCE-ASSOCIATED GENE101 (SAG101), discovered through a proteomic approach to identify new EDS1 pathway components. Together with PHYTOALEXIN-DEFICIENT4 (PAD4), a known EDS1 interactor, SAG101 contributes intrinsic and indispensable signaling activity to EDS1-dependent resistance. The combined activities of SAG101 and PAD4 are necessary for programmed cell death triggered by the Toll-Interleukin-1 Receptor type of nucleotide binding/leucine-rich repeat immune receptor in response to avirulent pathogen isolates and in restricting the growth of normally virulent pathogens. We further demonstrate by a combination of cell fractionation, coimmunoprecipitation, and fluorescence resonance energy transfer experiments the existence of an EDS1-SAG101 complex inside the nucleus that is molecularly and spatially distinct from EDS1-PAD4 associations in the nucleus and cytoplasm. By contrast, EDS1 homomeric interactions were detected in the cytoplasm but not inside the nucleus. These data, combined with evidence for coregulation between individual EDS1 complexes, suggest that dynamic interactions of EDS1 and its signaling partners in multiple cell compartments are important for plant defense signal relay.
Collapse
Affiliation(s)
- Bart J Feys
- Sainsbury Laboratory, John Ines Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
347
|
Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:873-88. [PMID: 16146526 DOI: 10.1111/j.1365-313x.2005.02500.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this study we characterized the sensitive to low humidity 1 (slh1) mutant of Arabidopsis ecotype No-0 which exhibits normal growth on agar plate medium but which on transfer to soil shows growth arrest and development of necrotic lesions. cDNA microarray hybridization and RNA gel blot analysis revealed that genes associated with activation of disease resistance were upregulated in the slh1 mutants in response to conditions of low humidity. Furthermore, the slh1 mutants accumulate callose, autofluorescent compounds and salicylic acid (SA). We demonstrate that SA is required for the slh1 phenotype but not PAD4 or NPR1. SLH1 was isolated by map-based cloning and it encodes a resistance (R)-like protein consisting of a domain with Toll and interleukin-1 receptor homology (TIR), a nucleotide-binding domain (NB), leucine-rich repeats (LRR) and a carboxy-terminal WRKY domain. SLH1 is identical to the R gene RRS1-R of the Arabidopsis ecotype Nd-1, a gene which confers resistance to the bacterial pathogen Ralstonia solanacearum GMI1000 and also functions as an R gene to this pathogen in No-0. We identified a 3 bp insertion mutation in slh1 that results in the addition of a single amino acid in the WRKY domain; thereby impairing its DNA-binding activity. Our data suggest that SLH1 disease resistance signaling may be negatively regulated by its WRKY domain in the R protein and that the constitutive defense activation conferred by the slh1 mutation is inhibited by conditions of high humidity.
Collapse
Affiliation(s)
- Yoshiteru Noutoshi
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
348
|
Wiermer M, Feys BJ, Parker JE. Plant immunity: the EDS1 regulatory node. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:383-9. [PMID: 15939664 DOI: 10.1016/j.pbi.2005.05.010] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 05/19/2005] [Indexed: 05/02/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and its interacting partner, PHYTOALEXIN DEFICIENT 4 (PAD4), constitute a regulatory hub that is essential for basal resistance to invasive biotrophic and hemi-biotrophic pathogens. EDS1 and PAD4 are also recruited by Toll-Interleukin-1 receptor (TIR)-type nucleotide binding-leucine rich repeat (NB-LRR) proteins to signal isolate-specific pathogen recognition. Recent work points to a fundamental role of EDS1 and PAD4 in transducing redox signals in response to certain biotic and abiotic stresses. These intracellular proteins are important activators of salicylic acid (SA) signaling and also mediate antagonism between the jasmonic acid (JA) and ethylene (ET) defense response pathways. EDS1 forms several molecularly and spatially distinct complexes with PAD4 and a newly discovered in vivo signaling partner, SENESCENCE ASSOCIATED GENE 101 (SAG101). Together, EDS1, PAD4 and SAG101 provide a major barrier to infection by both host-adapted and non-host pathogens.
Collapse
Affiliation(s)
- Marcel Wiermer
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | |
Collapse
|
349
|
Heidel AJ, Clarke JD, Antonovics J, Dong X. Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 2005; 168:2197-206. [PMID: 15611186 PMCID: PMC1448715 DOI: 10.1534/genetics.104.032193] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study investigated the fitness effects of four mutations (npr1, cpr1, cpr5, and cpr6) and two transgenic genotypes (NPR1-L and NPR1-H) affecting different points of the systemic acquired resistance (SAR) signaling pathway associated with pathogen defense in Arabidopsis thaliana. The npr1 mutation, which resulted in a failure to express SAR, had no effect on fitness under growth chamber conditions, but decreased fitness in the field. The expression of NPR1 positively correlated with the fitness in the field. Constitutive activation of SAR by cpr1, cpr5, and cpr6 generally decreased fitness in the field and under two nutrient levels in two growth chamber conditions. At low-nutrient levels, fitness differences between wild type and the constitutive mutants were unchanged or reduced (especially in cpr5). The reduced fitness of the constitutive mutants suggests that this pathway is costly, with the precise fitness consequences highly dependent on the environmental context.
Collapse
Affiliation(s)
- Andrew J Heidel
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
350
|
Abstract
Nods are cytosolic proteins that contain a nucleotide-binding oligomerization domain (NOD). These proteins include key regulators of apoptosis and pathogen resistance in mammals and plants. A large number of Nods contain leucine-rich repeats (LRRs), hence referred to as NOD-LRR proteins. Genetic variation in several NOD-LRR proteins, including human Nod2, Cryopyrin, and CIITA, as well as mouse Naip5, is associated with inflammatory disease or increased susceptibility to microbial infections. Nod1, Nod2, Cryopyrin, and Ipaf have been implicated in protective immune responses against pathogens. Together with Toll-like receptors, Nod1 and Nod2 appear to play important roles in innate and acquired immunity as sensors of bacterial components. Specifically, Nod1 and Nod2 participate in the signaling events triggered by host recognition of specific motifs in bacterial peptidoglycan and, upon activation, induce the production of proinflammatory mediators. Naip5 is involved in host resistance to Legionella pneumophila through cell autonomous mechanisms, whereas CIITA plays a critical role in antigen presentation and development of antigen-specific T lymphocytes. Thus, NOD-LRR proteins appear to be involved in a diverse array of processes required for host immune reactions against pathogens.
Collapse
|