301
|
Agee AE, Surpin M, Sohn EJ, Girke T, Rosado A, Kram BW, Carter C, Wentzell AM, Kliebenstein DJ, Jin HC, Park OK, Jin H, Hicks GR, Raikhel NV. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase-associated protein involved in endomembrane protein trafficking. PLANT PHYSIOLOGY 2010; 152:120-32. [PMID: 19880612 PMCID: PMC2799351 DOI: 10.1104/pp.109.145078] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We identified an Arabidopsis (Arabidopsis thaliana) ethyl methanesulfonate mutant, modified vacuole phenotype1-1 (mvp1-1), in a fluorescent confocal microscopy screen for plants with mislocalization of a green fluorescent protein-delta tonoplast intrinsic protein fusion. The mvp1-1 mutant displayed static perinuclear aggregates of the reporter protein. mvp1 mutants also exhibited a number of vacuole-related phenotypes, as demonstrated by defects in growth, utilization of stored carbon, gravitropic response, salt sensitivity, and specific susceptibility to the fungal necrotroph Alternaria brassicicola. Similarly, crosses with other endomembrane marker fusions identified mislocalization to aggregate structures, indicating a general defect in protein trafficking. Map-based cloning showed that the mvp1-1 mutation altered a gene encoding a putative myrosinase-associated protein, and glutathione S-transferase pull-down assays demonstrated that MVP1 interacted specifically with the Arabidopsis myrosinase protein, THIOGLUCOSIDE GLUCOHYDROLASE2 (TGG2), but not TGG1. Moreover, the mvp1-1 mutant showed increased nitrile production during glucosinolate hydrolysis, suggesting that MVP1 may play a role in modulation of myrosinase activity. We propose that MVP1 is a myrosinase-associated protein that functions, in part, to correctly localize the myrosinase TGG2 and prevent inappropriate glucosinolate hydrolysis that could generate cytotoxic molecules.
Collapse
|
302
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
303
|
Hase S. Pyridylamination as a means of analyzing complex sugar chains. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:378-90. [PMID: 20431262 PMCID: PMC3417801 DOI: 10.2183/pjab.86.378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/09/2010] [Indexed: 05/23/2023]
Abstract
Herein, I describe pyridylamination for versatile analysis of sugar chains. The reducing ends of the sugar chains are tagged with 2-aminopyridine and the resultant chemically stable fluorescent derivatives are used for structural/functional analysis. Pyridylamination is an effective "operating system" for increasing sensitivity and simplifying the analytical procedures including mass spectrometry and NMR. Excellent separation of isomers is achieved by reversed-phase HPLC. However, separation is further improved by two-dimensional HPLC, which involves a combination of reversed-phase HPLC and size-fractionation HPLC. Moreover, a two-dimensional HPLC map is also useful for structural analysis. I describe a simple procedure for preparing homogeneous pyridylamino sugar chains that is less laborious than existing techniques and can be used for functional analysis (e.g., sugar-protein interaction). This novel approach was applied and some of the results are described: i) a glucosyl-serine type sugar chain found in blood coagulation factors; ii) discovery of endo-beta-mannosidase (EC 3.2.1.152) and a new type plant alpha1,2-L-fucosidase; and iii) novel substrate specificity of a cytosolic alpha-mannosidase. Moreover, using homogeneous sugar chains of a size similar to in vivo substrates we were able to analyze interactions between sugar chains and proteins such as enzymes and lectins in detail. Interestingly, our studies reveal that some enzymes recognize a wider region of the substrate than anticipated.
Collapse
Affiliation(s)
- Sumihiro Hase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, Japan
| |
Collapse
|
304
|
Abstract
Ca(2+) signals are a core regulator of plant cell physiology and cellular responses to the environment. The channels, pumps, and carriers that underlie Ca(2+) homeostasis provide the mechanistic basis for generation of Ca(2+) signals by regulating movement of Ca(2+) ions between subcellular compartments and between the cell and its extracellular environment. The information encoded within the Ca(2+) transients is decoded and transmitted by a toolkit of Ca(2+)-binding proteins that regulate transcription via Ca(2+)-responsive promoter elements and that regulate protein phosphorylation. Ca(2+)-signaling networks have architectural structures comparable to scale-free networks and bow tie networks in computing, and these similarities help explain such properties of Ca(2+)-signaling networks as robustness, evolvability, and the ability to process multiple signals simultaneously.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Biology, University of York, York, United Kingdom.
| | | | | |
Collapse
|
305
|
Hanitzsch M, Schnitzer D, Seidel T, Golldack D, Dietz KJ. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G inArabidopsis thaliana. Mol Membr Biol 2009; 24:507-18. [PMID: 17710654 DOI: 10.1080/09687680701447393] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of isogenes encoding V-ATPase subunits seems to be a characteristic for plants. Twenty-eight genes encode for the 13 different subunits in Arabidopsis thaliana, 23 genes each are known in tomato (Solanum lycopersicum) and can be identified in rice (Oryza sativa), respectively. In Arabidopsis the four subunits VHA-B, -E, -G and -a are encoded by three isogenes each. The transcript levels of these subunits were analysed by in silico evaluation of transcript pattern derived from the NASC-array database and exemplarily confirmed by semiquantitative RT-PCR. A tissue specifity was observed for the isoforms of VHA-E and VHA-G, whereas expression of VHA-a isoforms appeared independent of the tissue. Inflicting environmental stresses upon plants resulted in differentiated expression patterns of VHA-isoforms. Whereas salinity had minor effect on the expression of V-ATPase genes in A. thaliana, heat and drought stress led to alterations in transcript amount and preference of isoforms. Correlation analysis identified two clusters of isoforms, which were co-regulated on the transcript level.
Collapse
Affiliation(s)
- Miriam Hanitzsch
- Plant Biochemistry and Physiology, Faculty of Biology-W5, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
306
|
Zhao J, Connorton JM, Guo Y, Li X, Shigaki T, Hirschi KD, Pittman JK. Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 2009; 284:34075-83. [PMID: 19819871 PMCID: PMC2797178 DOI: 10.1074/jbc.m109.070235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Indexed: 11/06/2022] Open
Abstract
In plants, high capacity tonoplast cation/H(+) antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca(2+) transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca(2+) transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca(2+) transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.
Collapse
Affiliation(s)
- Jian Zhao
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - James M. Connorton
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom, and
| | - YingQing Guo
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Xiangkai Li
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Toshiro Shigaki
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Kendal D. Hirschi
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
- the Vegetable and Fruit Improvement Center, Texas A & M University, College Station, Texas 77845
| | - Jon K. Pittman
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom, and
| |
Collapse
|
307
|
Mano S, Miwa T, Nishikawa SI, Mimura T, Nishimura M. Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics. PLANT & CELL PHYSIOLOGY 2009; 50:2000-2014. [PMID: 19755394 DOI: 10.1093/pcp/pcp128] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.
Collapse
Affiliation(s)
- Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
308
|
Gebert M, Meschenmoser K, Svidová S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V. A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. THE PLANT CELL 2009; 21:4018-30. [PMID: 19966073 PMCID: PMC2814501 DOI: 10.1105/tpc.109.070557] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/17/2009] [Indexed: 05/19/2023]
Abstract
The MRS2/MGT gene family in Arabidopsis thaliana belongs to the superfamily of CorA-MRS2-ALR-type membrane proteins. Proteins of this type are characterized by a GMN tripeptide motif (Gly-Met-Asn) at the end of the first of two C-terminal transmembrane domains and have been characterized as magnesium transporters. Using the recently established mag-fura-2 system allowing direct measurement of Mg(2+) uptake into mitochondria of Saccharomyces cerevisiae, we find that all members of the Arabidopsis family complement the corresponding yeast mrs2 mutant. Highly different patterns of tissue-specific expression were observed for the MRS2/MGT family members in planta. Six of them are expressed in root tissues, indicating a possible involvement in plant magnesium supply and distribution after uptake from the soil substrate. Homozygous T-DNA insertion knockout lines were obtained for four members of the MRS2/MGT gene family. A strong, magnesium-dependent phenotype of growth retardation was found for mrs2-7 when Mg(2+) concentrations were lowered to 50 microM in hydroponic cultures. Ectopic overexpression of MRS2-7 from the cauliflower mosaic virus 35S promoter results in complementation and increased biomass accumulation. Green fluorescent protein reporter gene fusions indicate a location of MRS2-7 in the endomembrane system. Hence, contrary to what is frequently found in analyses of plant gene families, a single gene family member knockout results in a strong, environmentally dependent phenotype.
Collapse
Affiliation(s)
- Michael Gebert
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Karoline Meschenmoser
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Soňa Svidová
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Julian Weghuber
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Rudolf Schweyen
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Karolin Eifler
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Henning Lenz
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Katrin Weyand
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
309
|
Barkla BJ, Vera-Estrella R, Hernández-Coronado M, Pantoja O. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. THE PLANT CELL 2009; 21:4044-58. [PMID: 20028841 PMCID: PMC2814500 DOI: 10.1105/tpc.109.069211] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 05/18/2023]
Abstract
To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na(+) sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H(+)-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H(+)-pump activity.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Miraval, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
310
|
Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:882-93. [PMID: 19709388 DOI: 10.1111/j.1365-313x.2009.04008.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St Paul's) University, Nishi-Ikebukuro, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Hamaji K, Nagira M, Yoshida K, Ohnishi M, Oda Y, Uemura T, Goh T, Sato MH, Morita MT, Tasaka M, Hasezawa SI, Nakano A, Hara-Nishimura I, Maeshima M, Fukaki H, Mimura T. Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:2023-33. [PMID: 19880402 DOI: 10.1093/pcp/pcp143] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The intracellular membrane dynamics of Arabidopsis cells under high salt treatment were investigated. When Arabidopsis was treated with high levels of NaCl in hydroponic culture, root tip cells showed rapid changes in the vacuolar volume, a decrease in the number of small acid compartments, active movement of vesicles and accumulation of Na(+) both in the central vacuole and in the vesicles around the main vacuole observed with the Na(+)-dependent fluorescence of Sodium Green. Detailed observation of Arabidopsis suspension-cultured cells under high salt treatment showed a similar pattern of response to that observed in root tip cells. Immunostaining of suspension-cultured cells with antibodies against AtNHX1 clearly showed the occurrence of dotted fluorescence in the cytoplasm only under salt treatment. We also confirmed the existence of AtNHX1 in the vacuolar membrane isolated from suspension-cultured cells with immunofluorescence. Knockout of the vacuolar Q(a)-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein VAM3/SYP22 caused an increase in salt tolerance. In mutant plants, the distribution of Na(+) between roots and shoots differed from that of wild-type plants, with Na(+) accumulating more in roots and less in the shoots of the mutant plants. The role of vesicle traffic under salt stress is discussed.
Collapse
Affiliation(s)
- Kohei Hamaji
- Graduate School of Science, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Kajiura H, Koiwa H, Nakazawa Y, Okazawa A, Kobayashi A, Seki T, Fujiyama K. Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology 2009; 20:235-47. [PMID: 19914916 DOI: 10.1093/glycob/cwp170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-Glycosylation is an important post-translational modification that occurs in many secreted and membrane proteins in eukaryotic cells. Golgi alpha-mannosidase I hydrolases (MANI) are key enzymes that play a role in the early N-glycan modification pathway in the Golgi apparatus. In Arabidopsis thaliana, two putative MANI genes, AtMANIa (At3g21160) and AtMANIb (At1g51590), were identified. Biochemical analysis using bacterially produced recombinant AtMANI isoforms revealed that both AtMANI isoforms encode 1-deoxymannojirimycin-sensitive alpha-mannosidase I and act on Man(8)GlcNAc(2) and Man(9)GlcNAc(2) structures to yield Man(5)GlcNAc(2). Structures of hydrolytic intermediates accumulated in the AtMANI reactions indicate that AtMANIs employ hydrolytic pathways distinct from those of mammalian MANIs. In planta, AtMANI-GFP/DsRed fusion proteins were detected in the Golgi stacks. Arabidopsis mutant lines manIa-1, manIa-2, manIb-1, and manIb-2 showed N-glycan profiles similar to that of wild type. On the other hand, the manIa manIb double mutant lines produced Man(8)GlcNAc(2) as the predominant N-glycan and lacked plant-specific complex and hybrid N-glycans. These data indicate that either AtMANIa or AtMANIb can function as the Golgi alpha-mannosidase I that produces the Man(5)GlcNAc(2) N-glycan structure necessary for complex N-glycan synthesis.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
313
|
Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. PLANT PHYSIOLOGY 2009; 151:1354-65. [PMID: 19748917 PMCID: PMC2773057 DOI: 10.1104/pp.109.142505] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/07/2009] [Indexed: 05/19/2023]
Abstract
Relatively little is known about the small subset of peroxisomal proteins with predicted protease activity. Here, we report that the peroxisomal LON2 (At5g47040) protease facilitates matrix protein import into Arabidopsis (Arabidopsis thaliana) peroxisomes. We identified T-DNA insertion alleles disrupted in five of the nine confirmed or predicted peroxisomal proteases and found only two-lon2 and deg15, a mutant defective in the previously described PTS2-processing protease (DEG15/At1g28320)-with phenotypes suggestive of peroxisome metabolism defects. Both lon2 and deg15 mutants were mildly resistant to the inhibitory effects of indole-3-butyric acid (IBA) on root elongation, but only lon2 mutants were resistant to the stimulatory effects of IBA on lateral root production or displayed Suc dependence during seedling growth. lon2 mutants displayed defects in removing the type 2 peroxisome targeting signal (PTS2) from peroxisomal malate dehydrogenase and reduced accumulation of 3-ketoacyl-CoA thiolase, another PTS2-containing protein; both defects were not apparent upon germination but appeared in 5- to 8-d-old seedlings. In lon2 cotyledon cells, matrix proteins were localized to peroxisomes in 4-d-old seedlings but mislocalized to the cytosol in 8-d-old seedlings. Moreover, a PTS2-GFP reporter sorted to peroxisomes in lon2 root tip cells but was largely cytosolic in more mature root cells. Our results indicate that LON2 is needed for sustained matrix protein import into peroxisomes. The delayed onset of matrix protein sorting defects may account for the relatively weak Suc dependence following germination, moderate IBA-resistant primary root elongation, and severe defects in IBA-induced lateral root formation observed in lon2 mutants.
Collapse
|
314
|
Farag MA, Deavours BE, de Fátima Â, Naoumkina M, Dixon RA, Sumner LW. Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. PLANT PHYSIOLOGY 2009; 151:1096-113. [PMID: 19571306 PMCID: PMC2773099 DOI: 10.1104/pp.109.141481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/29/2009] [Indexed: 05/08/2023]
Abstract
Metabolic profiling of elicited barrel medic (Medicago truncatula) cell cultures using high-performance liquid chromatography coupled to photodiode and mass spectrometry detection revealed the accumulation of the aurone hispidol (6-hydroxy-2-[(4-hydroxyphenyl)methylidene]-1-benzofuran-3-one) as a major response to yeast elicitor. Parallel, large-scale transcriptome profiling indicated that three peroxidases, MtPRX1, MtPRX2, and MtPRX3, were coordinately induced with the accumulation of hispidol. MtPRX1 and MtPRX2 exhibited aurone synthase activity based upon in vitro substrate specificity and product profiles of recombinant proteins expressed in Escherichia coli. Hispidol possessed significant antifungal activity relative to other M. truncatula phenylpropanoids tested but has not been reported in this species before and was not found in differentiated roots in which high levels of the peroxidase transcripts accumulated. We propose that hispidol is formed in cell cultures by metabolic spillover when the pool of its precursor, isoliquiritigenin, builds up as a result of an imbalance between the upstream and downstream segments of the phenylpropanoid pathway, reflecting the plasticity of plant secondary metabolism. The results illustrate that integration of metabolomics and transcriptomics in genetically reprogrammed plant cell cultures is a powerful approach for the discovery of novel bioactive secondary metabolites and the mechanisms underlying their generation.
Collapse
Affiliation(s)
| | | | | | | | | | - Lloyd W. Sumner
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (M.A.F., B.E.D., M.N., R.A.D., L.W.S.); Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt 11562 (M.A.F.); Department of Biology, Colorado State University, Fort Collins, Colorado 80523 (B.E.D.); and Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270–901, Brazil (Â.d.F.)
| |
Collapse
|
315
|
Partridge M, Murphy DJ. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:796-806. [PMID: 19467604 DOI: 10.1016/j.plaphy.2009.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/15/2009] [Accepted: 04/27/2009] [Indexed: 05/20/2023]
Abstract
We report here the localisation and properties of a new membrane-bound isoform of caleosin and its putative role as a peroxygenase involved in oxylipin metabolism during biotic and abiotic stress responses in Arabidopsis. Caleosins are a family of lipid-associated proteins that are ubiquitous in plants and true fungi. Previous research has focused on lipid-body associated, seed-specific caleosins that have peroxygenase activity. Here, we demonstrate that a separate membrane-bound constitutively expressed caleosin isoform (Clo-3) is highly upregulated following exposure to abiotic stresses, such as salt and drought, and to biotic stress such as pathogen infection. The Clo-3 protein binds one atom of calcium per molecule, is phosphorylated in response to stress, and has a similar peroxygenase activity to the seed-specific Clo-1 isoform. Clo-3 is present in microsomal and chloroplast envelope fractions and has a type I membrane orientation with about 2 kDa of the C terminal exposed to the cytosol. Analysis of Arabidopsis ABA and related mutant lines implies that Clo-3 is involved in the generation of oxidised fatty acids in stress related signalling pathways involving both ABA and salicylic acid. We propose that Clo-3 is part of an oxylipin pathway induced by multiple stresses and may also generate fatty acid derived anti-fungal compounds for plant defence.
Collapse
Affiliation(s)
- Mark Partridge
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, United Kingdom
| | | |
Collapse
|
316
|
Limpens E, Ivanov S, van Esse W, Voets G, Fedorova E, Bisseling T. Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. THE PLANT CELL 2009; 21:2811-28. [PMID: 19734435 PMCID: PMC2768938 DOI: 10.1105/tpc.108.064410] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Rhizobium bacteria form N(2)-fixing organelles, called symbiosomes, inside the cells of legume root nodules. The bacteria are generally thought to enter the cells via an endocytosis-like process. To examine this, we studied the identity of symbiosomes in relation to the endocytic pathway. We show that in Medicago truncatula, the small GTPases Rab5 and Rab7 are endosomal membrane identity markers, marking different (partly overlapping) endosome populations. Although symbiosome formation is considered to be an endocytosis-like process, symbiosomes do not acquire Rab5 at any stage during their development, nor do they accept the trans-Golgi network identity marker SYP4, presumed to mark early endosomes in plants. By contrast, the endosomal marker Rab7 does occur on symbiosomes from an early stage of development when they have stopped dividing up to the senescence stage. However, the symbiosomes do not acquire vacuolar SNAREs (SYP22 and VTI11) until the onset of their senescence. By contrast, symbiosomes acquire the plasma membrane SNARE SYP132 from the start of symbiosome formation throughout their development. Therefore, symbiosomes appear to be locked in a unique SYP132- and Rab7-positive endosome stage and the delay in acquiring (lytic) vacuolar identity (e.g., vacuolar SNAREs) most likely ensures their survival and maintenance as individual units.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Sergey Ivanov
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127392, Russia
| | - Wilma van Esse
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Guido Voets
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Elena Fedorova
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127392, Russia
| | - Ton Bisseling
- Laboratory of Molecular Biology, Graduate School of Experimental Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
317
|
Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 2009; 9:2668-77. [PMID: 19391183 DOI: 10.1002/pmic.200800806] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although the vacuole is the most important final store for toxic heavy metals like cadmium (Cd(2+)), our knowledge on how they are transported into the vacuole is still insufficient. It has been suggested that Cd(2+) can be transported as phytochelatin-Cd(2+) by an unknown ABC transporter or in exchange with protons by cation/proton exchanger (CAX) transporters. To unravel the contribution of vacuolar transporters to Cd(2+) detoxification, a quantitative proteomics approach was performed. Highly purified vacuoles were isolated from barley plants grown under minus, low (20 microM), and high (200 microM) Cd(2+ )conditions and protein levels of the obtained tonoplast samples were analyzed using isobaric tag for relative and absolute quantitation (iTRAQ). Although 56 vacuolar transporter proteins were identified, only a few were differentially expressed. Under low-Cd(2+) conditions, an inorganic pyrophosphatase and a gamma-tonoplast intrinsic protein (gamma-TIP) were up-regulated, indicating changes in energization and water fluxes. In addition, the protein ratio of a CAX1a and a natural resistance-associated macrophage protein (NRAMP), responsible for vacuolar Fe(2+) export was increased. CAX1a might play a role in vacuolar Cd(2+) transport. An increase in NRAMP activity leads to a higher cytosolic Fe(2+) concentration, which may prevent the exchange of Fe(2+) by toxic Cd(2+). Additionally, an ABC transporter homolog to AtMRP3 showed up-regulation. Under high Cd(2+) conditions, the plant response was more specific. Only a protein homologous to AtMRP3 that showed already a response under low Cd(2+) conditions, was up-regulated. Interestingly, AtMRP3 is able to partially rescue a Cd(2+)-sensitive yeast mutant. The identified transporters are good candidates for further investigation of their roles in Cd(2+) detoxification.
Collapse
Affiliation(s)
- Thomas Schneider
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Silva P, Gerós H. Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. PLANT SIGNALING & BEHAVIOR 2009; 4:718-26. [PMID: 19820346 PMCID: PMC2801382 DOI: 10.4161/psb.4.8.9236] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 05/20/2023]
Abstract
Over the last decades several efforts have been carried out to determine the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na(+) excess from the cytoplasm and vacuolar Na(+) accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na(+)/H(+) antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na(+)/H(+) exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements in the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H(+)-ATPase and by the vacuolar membrane H(+)-ATPase and H(+)-pyrophosphatase and it has been shown that the activity of these proteins responds to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na(+)/H(+) exchangers and on the signalling pathways involved in salt sensing.
Collapse
Affiliation(s)
- Paulo Silva
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB); Portugal
- Departamento de Biologia; Universidade do Minho; Braga, Portugal
| |
Collapse
|
319
|
Gao XQ, Wang XL, Ren F, Chen J, Wang XC. Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement. PLANT, CELL & ENVIRONMENT 2009; 32:1108-16. [PMID: 19422610 DOI: 10.1111/j.1365-3040.2009.01993.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vacuoles and actin filaments are important cytoarchitectures involved in guard cell function. The changes in the morphology and number of vacuoles and the regulation of ion channel activity in tonoplast of guard cells are essential for stomatal movement. A number of studies have investigated the regulation of ion channels in animal and plant cells; however, little is known about the regulating mechanism for vacuolar dynamics in stomatal movement. Actin filaments of guard cells are remodelling with the changes in the stomatal aperture; however, the dynamic functions of actin filaments in stomatal movement remain elusive. In this paper, we summarize the recent developments in the understanding of the dynamics of actin filaments and vacuoles of guard cells during stomatal movement. All relevant studies suggest that actin filaments might be involved in stomatal movement by regulating vacuolar dynamics and the ion channels in tonoplast. The future study could be focused on the linker protein mediating the interaction between actin filaments and tonoplast, which will provide insights into the interactive function of actin and vacuole in stomatal movement regulation.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Taiwan
| | | | | | | | | |
Collapse
|
320
|
Thomas H, Huang L, Young M, Ougham H. Evolution of plant senescence. BMC Evol Biol 2009; 9:163. [PMID: 19602260 PMCID: PMC2716323 DOI: 10.1186/1471-2148-9-163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 07/14/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. RESULTS Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. CONCLUSION The expression and phylogenetic characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.
Collapse
Affiliation(s)
- Howard Thomas
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Lin Huang
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Mike Young
- IBERS, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Helen Ougham
- IBERS, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
321
|
Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:169-78. [PMID: 19309456 PMCID: PMC4854200 DOI: 10.1111/j.1365-313x.2009.03851.x] [Citation(s) in RCA: 479] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.
Collapse
Affiliation(s)
- Niko Geldner
- Howard Hughes Medical Institute and The Salk Institute, Plant Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
322
|
Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, de Oliveira C, Galvão VC, Margis R, Engler G, Sachetto-Martins G. AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. PLANTA 2009; 230:253-65. [PMID: 19434422 DOI: 10.1007/s00425-009-0940-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/22/2009] [Indexed: 05/10/2023]
Abstract
Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, C.P. 68011, 21941-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Preger V, Tango N, Marchand C, Lemaire SD, Carbonera D, Di Valentin M, Costa A, Pupillo P, Trost P. Auxin-responsive genes AIR12 code for a new family of plasma membrane b-type cytochromes specific to flowering plants. PLANT PHYSIOLOGY 2009; 150:606-20. [PMID: 19386804 PMCID: PMC2689961 DOI: 10.1104/pp.109.139170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 05/05/2023]
Abstract
We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a beta-sandwich domain and belonging to the DOMON (for dopamine beta-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical alpha-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast.
Collapse
Affiliation(s)
- Valeria Preger
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Pradedova EV, Isheeva OD, Salyaev RK. Superoxide dismutase of plant cell vacuoles. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s1990747809010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
325
|
Enrichment and Preparation of Plasma Membrane Proteins from Arabidopsis thaliana for Global Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry. Proteomics 2009; 564:341-55. [DOI: 10.1007/978-1-60761-157-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
326
|
Feng B, Li L, Zhou X, Stanley B, Ma H. Analysis of the Arabidopsis floral proteome: detection of over 2 000 proteins and evidence for posttranslational modifications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:207-23. [PMID: 19200160 DOI: 10.1111/j.1744-7909.2008.00787.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The proteome of the Arabidopsis flower has not been extensively studied previously. Here, we report a proteomic analysis of the wild type Arabidopsis flower. Using both two-dimensional electrophoresis/mass spectrometry (2-DGE/MS) and multi-dimensional protein identification technology (MudPIT) approaches, we identified 2,446 proteins. Although a single experiment or analysis uncovered only a subset of the proteins we identified, a combination of multiple experiments and analyses facilitated the detection of a greater number of proteins. When proteins are grouped according to RNA expression levels revealed by microarray experiments, we found that proteins encoded by genes with relatively high levels of expression were detected with greater frequencies. On the other hand, at the level of the individual gene/protein, there was not a good correlation between protein spot intensity and microarray values. We also obtained strong evidence for post-translational modification from 2-DGE and MudPIT data. We detected proteins that are annotated to function in protein synthesis, folding, modification, and degradation, as well as the presence of regulatory proteins such as transcription factors and protein kinases. Finally, sequence and evolutionary analysis of genes for active methyl group metabolisms suggests that these genes are highly conserved. Our results allow the formulation of hypotheses regarding post-translational regulation of proteins in the flower, providing new understanding about Arabidopsis flower development and physiology.
Collapse
Affiliation(s)
- Baomin Feng
- Department of Biology, the Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
327
|
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:894-904. [PMID: 19036834 PMCID: PMC2633814 DOI: 10.1104/pp.108.130294] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/21/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) Heavy Metal Associated3 (AtHMA3) protein belongs to the P1B-2 subgroup of the P-type ATPase family, which is involved in heavy metal transport. In a previous study, we have shown, using heterologous expression in the yeast Saccharomyces cerevisiae, that in the presence of toxic metals, AtHMA3 was able to phenotypically complement the cadmium/lead (Cd/Pb)-hypersensitive strain ycf1 but not the zinc (Zn)-hypersensitive strain zrc1. In this study, we demonstrate that AtHMA3 in planta is located in the vacuolar membrane, with a high expression level in guard cells, hydathodes, vascular tissues, and the root apex. Confocal imaging in the presence of the Zn/Cd fluorescent probe BTC-5N revealed that AtHMA3 participates in the vacuolar storage of Cd. A T-DNA insertional mutant was found more sensitive to Zn and Cd. Conversely, ectopic overexpression of AtHMA3 improved plant tolerance to Cd, cobalt, Pb, and Zn; Cd accumulation increased by about 2- to 3-fold in plants overexpressing AtHMA3 compared with wild-type plants. Thus, AtHMA3 likely plays a role in the detoxification of biological (Zn) and nonbiological (Cd, cobalt, and Pb) heavy metals by participating in their vacuolar sequestration, an original function for a P1B-2 ATPase in a multicellular eukaryote.
Collapse
Affiliation(s)
- Mélanie Morel
- l'Energie Atomique, DSV, IBEB, Lab Echanges Membran and Signalisation, Saint-Paul-lez-Durance F-13108, France
| | | | | | | | | | | | | |
Collapse
|
328
|
Dixon DP, Hawkins T, Hussey PJ, Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1207-18. [PMID: 19174456 PMCID: PMC2657551 DOI: 10.1093/jxb/ern365] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/01/2008] [Accepted: 12/22/2008] [Indexed: 05/18/2023]
Abstract
Enzyme screens with Strep-tagged recombinant proteins and expression studies with the respective green fluorescent protein (GFP) fusions have been employed to examine the functional activities and subcellular localization of members of the Arabidopsis glutathione transferase (GST) superfamily. Fifty-one of 54 GST family members were transcribed and 41 found to express as functional glutathione-dependent enzymes in Escherichia coli. Functional redundancy was observed and in particular three theta (T) class GSTs showed conserved activities as hydroperoxide-reducing glutathione peroxidases (GPOXs). When expressed in tobacco as GFP fusions, all three GSTTs localized to the peroxisome, where their GPOX activity could prevent membrane damage arising from fatty acid oxidation. Through alternative splicing, two of these GSTTs form fusions with Myb transcription factor-like domains. Examination of one of these variants showed discrete localization within the nucleus, possibly serving a role in reducing nucleic acid hydroperoxides or in signalling. Based on this unexpected differential sub-cellular localization, 15 other GST family members were expressed as GFP fusions in tobacco. Most accumulated in the cytosol, but GSTU12 localized to the nucleus, a family member resembling a bacterial tetrachlorohydroquinone dehalogenase selectively associated with the plasma membrane, and a lambda GSTL2 was partially directed to the peroxisome after removal of a putative chloroplast transit peptide. Based on the results obtained with the GSTTs, it was concluded that these proteins can exert identical protective functions in differing subcellular compartments.
Collapse
Affiliation(s)
| | | | | | - Robert Edwards
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
329
|
Zhang Y, Lv Z, Chen J, Chen Q, Quan Y, Kong L, Zhang H, Li S, Zheng Q, Chen J, Nie Z, Wang J, Jin Y, Wu X. A novel method for isolation of membrane proteins: a baculovirus surface display system. Proteomics 2009; 8:4178-85. [PMID: 18814327 DOI: 10.1002/pmic.200800133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have developed a novel baculovirus surface display (BVSD) system for the isolation of membrane proteins. We expressed a reporter gene that encoded hemagglutinin gene fused in frame with the signal peptide and transmembrane domain of the baculovirus gp64 protein, which is displayed on the surface of BmNPV virions. The expression of this fusion protein on the virion envelope allowed us to develop two methods for isolating membrane proteins. In the first method, we isolated proteins directly from the envelope of budding BmNPV virions. In the second method, we isolated proteins from cellular membranes that had disintegrated due to viral egress. We isolated 6756 proteins. Of these, 1883 have sequence similarities to membrane proteins and 1550 proteins are homologous to known membrane proteins. This study indicates that membrane proteins can be effectively isolated using our BVSD system. Using an analogous method, membrane proteins can be isolated from other eukaryotic organisms, including human beings, by employing a host cell-specific budding virus.
Collapse
Affiliation(s)
- Yaozhou Zhang
- The Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province; Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Bassham DC. Function and regulation of macroautophagy in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1397-403. [PMID: 19272302 DOI: 10.1016/j.bbamcr.2009.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 02/03/2023]
Abstract
The plant vacuole is a major site for the degradation of macromolecules, which are transferred from the cytoplasm by autophagy via double-membrane vesicles termed autophagosomes. Autophagy functions at a basal level under normal growth conditions and is induced during senescence and upon exposure to stress conditions to recycle nutrients or degrade damaged proteins and organelles. Autophagy is also required for the regulation of programmed cell death as a response to pathogen infection and possibly during certain developmental processes. Little is known about how autophagy is regulated under these different conditions in plants, but recent evidence suggests that plants contain a functional TOR pathway which may control autophagy induction in conjunction with hormonal and/or environmental signals.
Collapse
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, 253 Bessey Hall, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
331
|
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:391-408. [PMID: 19088338 DOI: 10.1093/jxb/ern318] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In higher plants, class III peroxidases exist as large multigene families (e.g. 73 genes in Arabidopsis thaliana). The diversity of processes catalysed by peroxidases as well as the large number of their genes suggests the possibility of a functional specialization of each isoform. In addition, the fact that peroxidase promoter sequences are very divergent and that protein sequences contain both highly conserved domains and variable regions supports this hypothesis. However, two difficulties are associated with the study of the function of specific peroxidase genes: (i) the modification of the expression of a single peroxidase gene often results in no visible mutant phenotype, because it is compensated by redundant genes; and (ii) peroxidases show low substrate specificity in vitro resulting in an unreliable indication of peroxidase specific activity unless complementary data are available. The generalization of molecular biology approaches such as whole transcriptome analysis and recombinant DNA combined with biochemical approaches provide unprecedented tools for overcoming these difficulties. This review highlights progress made with these new techniques for identifying the specific function of individual class III peroxidase genes taking as an example the model plant A. thaliana, as well as discussing some other plants.
Collapse
Affiliation(s)
- Claudia Cosio
- Laboratory of Plant Physiology, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
332
|
Chapter 3. New insights into plant vacuolar structure and dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:103-35. [PMID: 19766968 DOI: 10.1016/s1937-6448(09)77003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is a multifunctional organelle and is essential for plant development and growth. The most distinctive feature of the plant vacuole is its size, which usually occupies over 80-90% of the cell volume in well-developed somatic cells, and is therefore highly involved in cell growth and plant body size. Recent progress in the visualization of the vacuole, together with developments in image analysis, has revealed the highly organized and complex morphology of the vacuole, as well as its dynamics. The plant vacuolar membrane (VM) forms not only a typically large vacuole but also other structures, such as tubular structures, transvacuolar strands, bulbs, and sheets. In higher plant cells, actin microfilaments are mainly located near the VM and are involved in vacuolar shape changes with the actin-myosin systems. Most recently, microtubule-dependent regulation of vacuolar structures in moss plant cells was reported, suggesting a diversity of mechanisms regulating vacuolar morphogenesis.
Collapse
|
333
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
334
|
Endler A, Reiland S, Gerrits B, Schmidt UG, Baginsky S, Martinoia E. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 2009; 9:310-21. [DOI: 10.1002/pmic.200800323] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
335
|
Chapter 4 Functions of RAB and SNARE Proteins in Plant Life. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:183-233. [DOI: 10.1016/s1937-6448(08)02004-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
336
|
Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:367-76. [PMID: 19264758 DOI: 10.1093/jxb/ern278] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lignification is a cell wall fortifying process which occurs in xylem tissue in a scheduled manner during tissue differentiation. In this review, enzymes and the genes responsible for lignin biosynthesis have been studied with an emphasis on lignin polymerizing class III secretable plant peroxidases. Our aim is to understand the cell and molecular biology of the polymerization of lignin especially in tracheids and vessels of woody species but much of the experimental evidence comes from herbaceous plants. Class III peroxidases pose many problems for empirical work as their encoding genes are variable, their substrate specificities are wide and the half-life of many of the isozymes is very long. However, there is some evidence for the role of specific peroxidases in lignin polymerization through antisense mutants in tobacco and poplar and from tissue and cell culture lines of Picea abies and Zinnia elegans. Peroxidase enzyme action has been shown by substrate specificity studies and, for example, RT-PCR results have pointed out that many peroxidases have tissue-specific expression patterns. Tissue-level location of gene expression of some peroxidases has been studied by in situ hybridization and their cellular localization with antibodies and using EGFP-fusion genes. From these, it can be concluded that, although many of the xylem class III peroxidases have the potential for functioning in the synthesis of the lignin polymer, the combined information of catalytic properties, expression, and localization can reveal differences in the significance of different peroxidases in the lignification process.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- Technical Research Center of Finland (VTT), PL 1000, 02044 VTT, Finland
| | | | | |
Collapse
|
337
|
Van den Ende W, Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:9-18. [PMID: 19036839 DOI: 10.1093/jxb/ern297] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In nature, no single plant completes its life cycle without encountering environmental stress. When plant cells surpass stress threshold stimuli, chemically reactive oxygen species (ROS) are generated that can cause oxidative damage or act as signals. Plants have developed numerous ROS-scavenging systems to minimize the cytotoxic effects of ROS. The role of sucrosyl oligosaccharides (SOS), including fructans and the raffinose family oligosaccharides (RFOs), is well established during stress physiology. They are believed to act as important membrane protectors in planta. So far a putative role for sucrose and SOS during oxidative stress has largely been neglected, as has the contribution of the vacuolar compartment. Recent studies suggest a link between SOS and oxidative defence and/or scavenging. SOS might be involved in stabilizing membrane-associated peroxidases and NADPH oxidases, and SOS-derived radicals might fulfil an intermediate role in oxido-reduction reactions taking place in the vicinity of membranes. Here, these emerging features are discussed and perspectives for future research are provided.
Collapse
Affiliation(s)
- Wim Van den Ende
- Laboratory for Molecular Plant Physiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium.
| | | |
Collapse
|
338
|
Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH. Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. PLANT PHYSIOLOGY 2008; 148:1809-29. [PMID: 18931141 PMCID: PMC2593673 DOI: 10.1104/pp.108.129999] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/10/2008] [Indexed: 05/17/2023]
Abstract
Peroxisomes play key roles in energy metabolism, cell signaling, and plant development. A better understanding of these important functions will be achieved with a more complete definition of the peroxisome proteome. The isolation of peroxisomes and their separation from mitochondria and other major membrane systems have been significant challenges in the Arabidopsis (Arabidopsis thaliana) model system. In this study, we present new data on the Arabidopsis peroxisome proteome obtained using two new technical advances that have not previously been applied to studies of plant peroxisomes. First, we followed density gradient centrifugation with free-flow electrophoresis to improve the separation of peroxisomes from mitochondria. Second, we used quantitative proteomics to identify proteins enriched in the peroxisome fractions relative to mitochondrial fractions. We provide evidence for peroxisomal localization of 89 proteins, 36 of which have not previously been identified in other analyses of Arabidopsis peroxisomes. Chimeric green fluorescent protein constructs of 35 proteins have been used to confirm their localization in peroxisomes or to identify endoplasmic reticulum contaminants. The distribution of many of these peroxisomal proteins between soluble, membrane-associated, and integral membrane locations has also been determined. This core peroxisomal proteome from nonphotosynthetic cultured cells contains a proportion of proteins that cannot be predicted to be peroxisomal due to the lack of recognizable peroxisomal targeting sequence 1 (PTS1) or PTS2 signals. Proteins identified are likely to be components in peroxisome biogenesis, beta-oxidation for fatty acid degradation and hormone biosynthesis, photorespiration, and metabolite transport. A considerable number of the proteins found in peroxisomes have no known function, and potential roles of these proteins in peroxisomal metabolism are discussed. This is aided by a metabolic network analysis that reveals a tight integration of functions and highlights specific metabolite nodes that most probably represent entry and exit metabolites that could require transport across the peroxisomal membrane.
Collapse
Affiliation(s)
- Holger Eubel
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316 , University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Zhao Z, Zhang W, Stanley BA, Assmann SM. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. THE PLANT CELL 2008; 20:3210-26. [PMID: 19114538 PMCID: PMC2630442 DOI: 10.1105/tpc.108.063263] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 05/17/2023]
Abstract
We isolated a total of 3 x 10(8) guard cell protoplasts from 22,000 Arabidopsis thaliana plants and identified 1734 unique proteins using three complementary proteomic methods: protein spot identification from broad and narrow pH range two-dimensional (2D) gels, and 2D liquid chromatography-matrix assisted laser desorption/ionization multidimensional protein identification technology. This extensive single-cell-type proteome includes 336 proteins not previously represented in transcriptome analyses of guard cells and 52 proteins classified as signaling proteins by Gene Ontology analysis, of which only two have been previously assessed in the context of guard cell function. THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1), a myrosinase that catalyzes the production of toxic isothiocyanates from glucosinolates, showed striking abundance in the guard cell proteome. tgg1 mutants were hyposensitive to abscisic acid (ABA) inhibition of guard cell inward K(+) channels and stomatal opening, revealing that the glucosinolate-myrosinase system, previously identified as a defense against biotic invaders, is required for key ABA responses of guard cells. Our results also suggest a mechanism whereby exposure to abiotic stresses may enhance plant defense against subsequent biotic stressors and exemplify how enhanced knowledge of the signaling networks of a specific cell type can be gained by proteomics approaches.
Collapse
Affiliation(s)
- Zhixin Zhao
- Biology Department, Pen State University, University Park, Pensylvania 16802, USA
| | | | | | | |
Collapse
|
340
|
Chamberlain KL, Marshall RS, Jolliffe NA, Frigerio L, Ceriotti A, Lord JM, Roberts LM. Ricin B chain targeted to the endoplasmic reticulum of tobacco protoplasts is degraded by a CDC48- and vacuole-independent mechanism. J Biol Chem 2008; 283:33276-86. [PMID: 18832379 PMCID: PMC2586253 DOI: 10.1074/jbc.m805222200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/19/2008] [Indexed: 12/04/2022] Open
Abstract
The B chain of ricin was expressed and delivered to the endoplasmic reticulum of tobacco protoplasts where it disappeared with time in a manner consistent with degradation. This turnover did not occur in the vacuoles or upon secretion. Indeed, several lines of evidence indicate that, in contrast to the turnover of endoplasmic reticulum-targeted ricin A chain in the cytosol, the bulk of expressed ricin B chain was degraded in the secretory pathway.
Collapse
Affiliation(s)
- Kerry L Chamberlain
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
341
|
Whiteman SA, Serazetdinova L, Jones AME, Sanders D, Rathjen J, Peck SC, Maathuis FJM. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 2008; 8:3536-47. [PMID: 18686298 DOI: 10.1002/pmic.200701104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant vacuoles play essential roles in many physiological processes, particularly in mineral nutrition, turgor provision and cellular signalling. The vacuolar membrane, the tonoplast, contains many membrane transporters that are critical in the execution of these processes. However, although increasing knowledge is available about the identity of proteins involved in these processes very little is known about the regulation of tonoplast transporters. By studying the phosphoproteome of tonoplast-enriched membranes, we identified 66 phosphorylation sites on 58 membrane proteins. Amongst these, 31 sites were identified in 28 membrane transporters of various families including tonoplast anion transporters of the CLC family, potassium transporters of the KUP family, tonoplast sugar transporters and ABC transporters. In a number of cases, the detected sites were well conserved across isoforms of one family pointing to common mechanisms of regulation. In other cases, isoform-unique sites were present, suggesting regulatory mechanisms tailored to the function of individual proteins. These results provide the basis for future studies to elucidate the mechanistic regulation of tonoplast membrane transporters.
Collapse
|
342
|
Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T. A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. THE PLANT CELL 2008; 20:3006-21. [PMID: 18984676 PMCID: PMC2613668 DOI: 10.1105/tpc.107.057711] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 09/23/2008] [Accepted: 10/24/2008] [Indexed: 05/18/2023]
Abstract
The SNARE complex is a key regulator of vesicular traffic, executing membrane fusion between transport vesicles or organelles and target membranes. A functional SNARE complex consists of four coiled-coil helical bundles, three of which are supplied by Q-SNAREs and another from an R-SNARE. Arabidopsis thaliana VAMP727 is an R-SNARE, with homologs only in seed plants. We have found that VAMP727 colocalizes with SYP22/ VAM3, a Q-SNARE, on a subpopulation of prevacuolar compartments/endosomes closely associated with the vacuolar membrane. Genetic and biochemical analyses, including examination of a synergistic interaction of vamp727 and syp22 mutations, histological examination of protein localization, and coimmunoprecipitation from Arabidopsis lysates indicate that VAMP727 forms a complex with SYP22, VTI11, and SYP51 and that this complex plays a crucial role in vacuolar transport, seed maturation, and vacuole biogenesis. We suggest that the VAMP727 complex mediates the membrane fusion between the prevacuolar compartment and the vacuole and that this process has evolved as an essential step for seed development.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Morris J, Tian H, Park S, Sreevidya CS, Ward JM, Hirschi KD. AtCCX3 is an Arabidopsis endomembrane H+ -dependent K+ transporter. PLANT PHYSIOLOGY 2008; 148:1474-86. [PMID: 18775974 PMCID: PMC2577254 DOI: 10.1104/pp.108.118810] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/30/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na(+), K(+), and Mn(2+) transport. We also report high-capacity uptake of (86)Rb(+) in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of (86)Rb(+) uptake in AtCCX3 cells by excess Na(+), K(+), and Mn(2+). Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl(2). Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na(+) accumulation and increased (86)Rb(+) transport. Uptake of (86)Rb(+) increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H(+)-dependent K(+) transporter with apparent Na(+) and Mn(2+) transport properties distinct from those of previously characterized plant transporters.
Collapse
Affiliation(s)
- Jay Morris
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845, USA
| | | | | | | | | | | |
Collapse
|
344
|
Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa. EUKARYOTIC CELL 2008; 7:2113-22. [PMID: 18849472 DOI: 10.1128/ec.00466-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In this study, we characterize components of a MAPK cascade in Neurospora crassa (mik-1, MAPKKK; mek-1, MAPKK; and mak-1, MAPK) homologous to that controlling cell wall integrity in Saccharomyces cerevisiae. Growth of basal hyphae is significantly reduced in mik-1, mek-1, and mak-1 deletion mutants on solid medium. All three mutants formed short aerial hyphae and the formation of asexual macroconidia was reduced in Deltamik-1 mutants and almost abolished in Deltamek-1 and Deltamak-1 strains. In contrast, the normally rare asexual spores, arthroconidia, were abundant in cultures of the three mutants. Deltamik-1, Deltamek-1, and Deltamak-1 mutants were unable to form protoperithecia or perithecia when used as females in a sexual cross. The MAK-1 MAPK was not phosphorylated in Deltamik-1 and Deltamek-1 mutants, consistent with the involvement of MIK-1, MEK-1, and MAK-1 in the same signaling cascade. Interestingly, we observed increased levels of mRNA and protein for tyrosinase in the mutants under nitrogen starvation, a condition favoring sexual differentiation. Tyrosinase is an enzyme that catalyzes production of the secondary metabolite l-DOPA melanin. These results implicate the MAK-1 pathway in regulation of development and secondary metabolism in filamentous fungi.
Collapse
|
345
|
Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D. AtPTR1 and AtPTR5 transport dipeptides in planta. PLANT PHYSIOLOGY 2008; 148:856-69. [PMID: 18753286 PMCID: PMC2556804 DOI: 10.1104/pp.108.123844] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/22/2008] [Indexed: 05/18/2023]
Abstract
Transporters for di- and tripeptides belong to the large and poorly characterized PTR/NRT1 (peptide transporter/nitrate transporter 1) family. A new member of this gene family, AtPTR5, was isolated from Arabidopsis (Arabidopsis thaliana). Expression of AtPTR5 was analyzed and compared with tissue specificity of the closely related AtPTR1 to discern their roles in planta. Both transporters facilitate transport of dipeptides with high affinity and are localized at the plasma membrane. Mutants, double mutants, and overexpressing lines were exposed to several dipeptides, including toxic peptides, to analyze how the modified transporter expression affects pollen germination, growth of pollen tubes, root, and shoot. Analysis of atptr5 mutants and AtPTR5-overexpressing lines showed that AtPTR5 facilitates peptide transport into germinating pollen and possibly into maturating pollen, ovules, and seeds. In contrast, AtPTR1 plays a role in uptake of peptides by roots indicated by reduced nitrogen (N) levels and reduced growth of atptr1 mutants on medium with dipeptides as the sole N source. Furthermore, overexpression of AtPTR5 resulted in enhanced shoot growth and increased N content. The function in peptide uptake was further confirmed with toxic peptides, which inhibited growth. The results show that closely related members of the PTR/NRT1 family have different functions in planta. This study also provides evidence that the use of organic N is not restricted to amino acids, but that dipeptides should be considered as a N source and transport form in plants.
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Molecular Plant Physiology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I. Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3845-55. [PMID: 18832189 PMCID: PMC2576637 DOI: 10.1093/jxb/ern225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 05/09/2023]
Abstract
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.
Collapse
Affiliation(s)
- V. Pérez
- Centro Universitario de Investigaciones Biomédicas. Universidad de Colima, 28045 Colima, Col., México
| | - T. Wherrett
- School of Agricultural Science, University of Tasmania, Tas7001, Australia
| | - S. Shabala
- School of Agricultural Science, University of Tasmania, Tas7001, Australia
| | - J. Muñiz
- Centro Universitario de Investigaciones Biomédicas. Universidad de Colima, 28045 Colima, Col., México
| | - O. Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas. Universidad de Colima, 28045 Colima, Col., México
| | - I. Pottosin
- Centro Universitario de Investigaciones Biomédicas. Universidad de Colima, 28045 Colima, Col., México
| |
Collapse
|
347
|
Hwang I. Sorting and anterograde trafficking at the Golgi apparatus. PLANT PHYSIOLOGY 2008; 148:673-83. [PMID: 18838501 PMCID: PMC2556845 DOI: 10.1104/pp.108.124925] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/28/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Inhwan Hwang
- Center for Plant Protein Distribution System, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
| |
Collapse
|
348
|
Sadowski PG, Groen AJ, Dupree P, Lilley KS. Sub-cellular localization of membrane proteins. Proteomics 2008; 8:3991-4011. [DOI: 10.1002/pmic.200800217] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
349
|
Whiteman SA, Nühse TS, Ashford DA, Sanders D, Maathuis FJM. A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:146-56. [PMID: 18557835 DOI: 10.1111/j.1365-313x.2008.03578.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Proteomic and phosphoproteomic analyses of rice shoot and root tonoplast-enriched and plasma membrane-enriched membrane fractions were carried out to look at tissue-specific expression, and to identify putative regulatory sites of membrane transport proteins. Around 90 unique membrane proteins were identified, which included primary and secondary transporters, ion channels and aquaporins. Primary H(+) pumps from the AHA family showed little isoform specificity in their tissue expression pattern, whereas specific isoforms of the Ca(2+) pump ECA/ACA family were expressed in root and shoot tissues. Several ABC transporters were detected, particularly from the MDR and PDR subfamilies, which often showed expression in either roots or shoots. Ammonium transporters were expressed in root, but not shoot, tissue. Large numbers of sugar transporters were expressed, particularly in green tissue. The occurrence of phosphorylation sites in rice transporters such as AMT1;1 and PIP2;6 agrees with those previously described in other species, pointing to conserved regulatory mechanisms. New phosphosites were found in many transporters, including H(+) pumps and H(+):cation antiporters, often at residues that are well conserved across gene families. Comparison of root and shoot tissue showed that phosphorylation of AMT1;1 and several further transporters may be tissue dependent.
Collapse
|
350
|
Sottomayor M, Duarte P, Figueiredo R, Ros Barceló A. A vacuolar class III peroxidase and the metabolism of anticancer indole alkaloids in Catharanthus roseus: Can peroxidases, secondary metabolites and arabinogalactan proteins be partners in microcompartmentation of cellular reactions? PLANT SIGNALING & BEHAVIOR 2008; 3:899-901. [PMID: 19704535 PMCID: PMC2634410 DOI: 10.4161/psb.3.10.6576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/10/2008] [Indexed: 05/03/2023]
Abstract
Plants possess a unique metabolic diversity commonly designated as secondary metabolism, of which the anticancer alkaloids from Catharanthus roseus are among the most studied. Recently, in a classical function-to-protein-to-gene approach, we have characterized the main class III peroxidase (Prx) expressed in C. roseus leaves, CrPrx1, implicated in a key biosynthetic step of the anticancer alkaloids. We have shown the vacuolar sorting determination of CrPrx1 using GFP fusions and we have obtained further evidence supporting the role of this enzyme in alkaloid biosynthesis, indicating the potential of CrPrx1 as a molecular tool for the manipulation of alkaloid metabolism. Here, we discuss how plant cells may regulate Prx reactions. In fact, Prxs form a large multigenic family whose members accept a broad range of substrates and, in their two subcellular localizations, the cell wall and the vacuole, Prxs co-locate with a large variety of secondary metabolites which can be accepted as substrates. How then, are Prx reactions regulated? Localization data obtained in our lab suggest that arabinogalactan proteins (AGPs) and Prxs may be associated in membrane microdomains, evocative of lipid rafts. Whether plasma membrane and/or tonoplast microcompartmentation involve AGPs and Prxs and whether this enables metabolic channeling determining Prx substrate selection are challenging questions ahead.
Collapse
Affiliation(s)
- Mariana Sottomayor
- IBMC—Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Botânica; Faculdade de Ciências; Universidade do Porto; Porto Portugal
| | - Patrícia Duarte
- IBMC—Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Raquel Figueiredo
- IBMC—Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Botânica; Faculdade de Ciências; Universidade do Porto; Porto Portugal
| | - Alfonso Ros Barceló
- Departmento de Biología Vegetal; Facultad de Biología; Universidad de Murcia; Murcia Spain
| |
Collapse
|