301
|
Krasnikova MS, Milyutina IA, Bobrova VK, Ozerova LV, Troitsky AV, Solovyev AG, Morozov SY. Novel miR390-dependent transacting siRNA precursors in plants revealed by a PCR-based experimental approach and database analysis. J Biomed Biotechnol 2009; 2009:952304. [PMID: 19859540 PMCID: PMC2762245 DOI: 10.1155/2009/952304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022] Open
Abstract
TAS loci in plant genomes encode transacting small interfering RNAs (ta-siRNAs) that regulate expression of a number of genes. The function of TAS3 precursor in Arabidopsis thaliana is controlled by two miR390 target sites flanking two ta-siARF sequences targeting mRNAs of ARF transcription factors. Cleavage of the 3'-miR390-site initiates ta-siRNAs biogenesis. Here we describe the new method for identification of plant ta-siRNA precursors based on PCR with oligodeoxyribonucleotide primers mimicking miR390. The method was found to be efficient for dicotiledonous plants, cycads, and mosses. Based on sequences of amplified loci and a database analysis, a novel type of miR390-dependent TAS sequences was identified in dicots. These TAS loci are characterized by a smaller distance between miR390 sites compared to TAS3, a single copy of ta-siARF, and a sequence conservation pattern pointing to the possibility that processing of novel TAS-like locus is initiated by cleavage of the 5'-terminal miR390 target site.
Collapse
Affiliation(s)
- M. S. Krasnikova
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
| | - I. A. Milyutina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - V. K. Bobrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - L. V. Ozerova
- Main Botanic Garden Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| | - A. V. Troitsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - A. G. Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Timiryazevskaya 42, 127550 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - S. Y. Morozov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
302
|
A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 2009; 28:3646-56. [PMID: 19816405 DOI: 10.1038/emboj.2009.292] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/07/2009] [Indexed: 11/08/2022] Open
Abstract
The first step in microRNA (miRNA) biogenesis usually involves cleavage at the base of its fold-back precursor. Here, we describe a non-canonical processing mechanism for miRNAs miR319 and miR159 in Arabidopsis thaliana. We found that their biogenesis begins with the cleavage of the loop, instead of the usual cut at the base of the stem-loop structure. DICER-LIKE 1 (DCL1) proceeds then with three additional cuts until the mature miRNA is released. We further show that the conserved upper stem of the miR319 precursor is essential to organize its biogenesis, whereas sequences below the miRNA/miRNA(*) region are dispensable. In addition, the bulges present in the fold-back structure reduce the accumulation of small RNAs other than the miRNA. The biogenesis of miR319 is conserved in the moss Physcomitrella patens, showing that this processing mechanism is ancient. These results provide new insights into the plasticity of small-RNA pathways.
Collapse
|
303
|
Puzey JR, Kramer EM. Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene 2009; 448:46-56. [PMID: 19699282 DOI: 10.1016/j.gene.2009.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/06/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022]
Abstract
Aquilegia is an emerging model organism that is phylogenetically intermediate between the core eudicot and monocot models, Arabidopsis and Oryza. In this study, we have used a comparative genomics approach to identify 45 Aquilegia microRNAs that comprise 20 separate plant microRNA families. We have predicted 84 targets of these newly identified Aquilegia microRNAs including transcription factors and loci involved in metabolism, stress responses, transport, and auxin signaling. microRNA families from 16 plant species and the newly identified microRNAs from Aquilegia were analyzed in a phylogenetic context revealing 40 distantly conserved microRNA families. In addition to these highly conserved plant microRNA families, several families with disjointed phylogenetic distribution were identified. This study provides a phylogenetically important dataset for plant microRNA evolution studies. The current study is the first to identify miRNAs in a lower eudicot in which comprehensive genomic resources are becoming available.
Collapse
Affiliation(s)
- Joshua R Puzey
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
304
|
Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA. Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 2009; 19:1766-75. [PMID: 19628731 DOI: 10.1101/gr.093054.109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small regulatory RNAs have recently emerged as key regulators of eukaryotic gene expression. Here we used high-throughput sequencing to determine small RNA populations in the germline and soma of the African clawed frog Xenopus tropicalis. We identified a number of miRNAs that were expressed in the female germline. miRNA expression profiling revealed that miR-202-5p is an oocyte-enriched miRNA. We identified two novel miRNAs that were expressed in the soma. In addition, we sequenced large numbers of Piwi-associated RNAs (piRNAs) and other endogenous small RNAs, likely representing endogenous siRNAs (endo-siRNAs). Of these, only piRNAs were restricted to the germline, suggesting that endo-siRNAs are an abundant class of small RNAs in the vertebrate soma. In the germline, both endogenous small RNAs and piRNAs mapped to many high copy number loci. Furthermore, endogenous small RNAs mapped to the same specific subsets of repetitive elements in both the soma and the germline, suggesting that these RNAs might act to silence repetitive elements in both compartments. Data presented here suggest a conserved role for miRNAs in the vertebrate germline. Furthermore, this study provides a basis for the functional analysis of small regulatory RNAs in an important vertebrate model system.
Collapse
Affiliation(s)
- Javier Armisen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
305
|
Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. PLANT MOLECULAR BIOLOGY 2009; 70:385-401. [PMID: 19353277 DOI: 10.1007/s11103-009-9480-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/05/2009] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small RNA molecules recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data. We are interested in the identification of miRNAs in Phaseolus vulgaris (common bean) to uncover different plant strategies to cope with adverse conditions and because of its relevance as a crop in developing countries. Here we present the identification of conserved and candidate novel miRNAs in P. vulgaris present in different organs and growth conditions, including drought, abscisic acid treatment, and Rhizobium infection. We also identified cDNA sequences in public databases that represent the corresponding miRNA precursors. In addition, we predicted and validated target mRNAs amongst reported EST and cDNAs for P. vulgaris. We propose that the novel miRNAs present in common bean and other legumes, are involved in regulation of legume-specific processes including adaptation to diverse external cues.
Collapse
Affiliation(s)
- Catalina Arenas-Huertero
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. PLANT PHYSIOLOGY 2009; 150:1541-55. [PMID: 19465578 PMCID: PMC2705054 DOI: 10.1104/pp.109.139139] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Comprehensive expression profiles of Arabidopsis (Arabidopsis thaliana) MIRNA genes and mature microRNAs (miRs) are currently not available. We established a quantitative real-time polymerase chain reaction platform that allows rapid and sensitive quantification of 177 Arabidopsis primary miR transcripts (pri-miRs). The platform was used to detect phosphorus (P) or nitrogen (N) status-responsive pri-miR species. Several pri-miR169 species as well as pri-miR398a were found to be repressed during N limitation, whereas during P limitation, pri-miR778, pri-miR827, and pri-miR399 species were induced and pri-miR398a was repressed. The corresponding responses of the biologically active, mature miRs were confirmed using specific stem-loop reverse transcription primer quantitative polymerase chain reaction assays and small RNA sequencing. Interestingly, the latter approach also revealed high abundance of some miR star strands. Bioinformatic analysis of small RNA sequences with a modified miRDeep algorithm led to the identification of the novel P limitation-induced miR2111, which is encoded by two loci in the Arabidopsis genome. Furthermore, miR2111, miR169, a miR827-like sequence, and the abundances of several miR star strands were found to be strongly dependent on P or N status in rapeseed (Brassica napus) phloem sap, flagging them as candidate systemic signals. Taken together, these results reveal the existence of complex small RNA-based regulatory networks mediating plant adaptation to mineral nutrient availability.
Collapse
Affiliation(s)
- Bikram Datt Pant
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Devor EJ, Huang L, Abdukarimov A, Abdurakhmonov IY. Methodologies for in vitro cloning of small RNAs and application for plant genome(s). INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:915061. [PMID: 19551152 PMCID: PMC2699438 DOI: 10.1155/2009/915061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/30/2009] [Indexed: 02/05/2023]
Abstract
The "RNA revolution" that started at the end of the 20th century with the discovery of post-transcriptional gene silencing and its mechanism via RNA interference (RNAi) placed tiny 21-24 nucleotide long noncoding RNAs (ncRNAs) in the forefront of biology as one of the most important regulatory elements in a host of physiologic processes. The discovery of new classes of ncRNAs including endogenous small interfering RNAs, microRNAs, and PIWI-interacting RNAs is a hallmark in the understanding of RNA-dependent gene regulation. New generation high-throughput sequencing technologies further accelerated the studies of this "tiny world" and provided their global characterization and validation in many biological systems with sequenced genomes. Nevertheless, for the many "yet-unsequenced" plant genomes, the discovery of small RNA world requires in vitro cloning from purified cellular RNAs. Thus, reproducible methods for in vitro small RNA cloning are of paramount importance and will remain so into the foreseeable future. In this paper, we present a description of existing small RNA cloning methods as well as next-generation sequencing methods that have accelerated this research along with a description of the application of one in vitro cloning method in an initial small RNA survey in the "still unsequenced" allotetraploid cotton genome.
Collapse
Affiliation(s)
- Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 3234 MERF, Iowa City, IA 52242, USA
| | - Lingyan Huang
- Molecular Genetics, Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Abdusattor Abdukarimov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Yuqori Yuz, Qibray region Tashkent district, Tashkent 111226, Uzbekistan
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Yuqori Yuz, Qibray region Tashkent district, Tashkent 111226, Uzbekistan
| |
Collapse
|
308
|
Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K. The evolution of nuclear auxin signalling. BMC Evol Biol 2009; 9:126. [PMID: 19493348 PMCID: PMC2708152 DOI: 10.1186/1471-2148-9-126] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 06/03/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii. RESULTS Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study. CONCLUSION The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.
Collapse
Affiliation(s)
- Ivan A Paponov
- Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
309
|
Li H, Zhang Z, Huang F, Chang L, Ma Y. MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria x ananassa Duch.) plants. PLANT CELL REPORTS 2009; 28:891-902. [PMID: 19277667 DOI: 10.1007/s00299-009-0693-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which play a critical role in plant growth and development. To detect strawberry miRNAs and discover the expression difference between conventional and micropropagated strawberry plants, we carried out the detection and quantification of strawberry miRNAs by microarray. The main findings were that 74 miRNAs were checked in strawberry plants and four miRNA genes displayed clear expression difference between conventional and micropropagated strawberry plants, including two up-regulated genes (miR535 and miR390) and two down-regulated genes (miR169a and miR169d). The ratios of conventionally propagated strawberry plant/micropropagated strawberry plant for miR535, miR390, miR169a and miR169d were 2.6884, 2.2673, 0.2496 and 0.3814, respectively. Quantitative reverse transcription polymerase chain reaction applied to the two up-regulated genes (miR535 and miR390) validated the microarray result. This is the first report on differential expression of miRNAs in conventional and micropropagated plants.
Collapse
Affiliation(s)
- He Li
- College of Horticulture, Shenyang Agricultural University, Dongling Road 120, 110161, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | |
Collapse
|
310
|
Tedder P, Zubko E, Westhead DR, Meyer P. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA. RNA (NEW YORK, N.Y.) 2009; 15:1012-20. [PMID: 19369427 PMCID: PMC2685514 DOI: 10.1261/rna.1517209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5'-ligation dependent and a 5'-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection.
Collapse
Affiliation(s)
- Philip Tedder
- Institute of Molecular and Cellular Biology, The University of Leeds, Leeds LS29JT, United Kingdom
| | | | | | | |
Collapse
|
311
|
Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol 2009; 90:1014-1024. [PMID: 19264652 DOI: 10.1099/vir.0.008243-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA silencing is an important defence mechanism against virus infection, and many plant viruses encode RNA silencing suppressors as a counter defence. In this study, we analysed the RNA silencing suppression ability of multiple virus species of the genus Potexvirus. Nicotiana benthamiana plants exhibiting RNA silencing of a green fluorescent protein (GFP) transgene showed reversal of GFP fluorescence when systemically infected with potexviruses. However, the degree of GFP fluorescence varied among potexviruses. Agrobacterium-mediated transient expression assay in N. benthamiana leaves demonstrated that the triple gene block protein 1 (TGBp1) encoded by these potexviruses has drastically different levels of silencing suppressor activity, and these differences were directly related to variations in the silencing suppression ability during virus infection. These results suggest that suppressor activities differ even among homologous proteins encoded by viruses of the same genus, and that TGBp1 contributes to the variation in the level of RNA silencing suppression by potexviruses. Moreover, we investigated the effect of TGBp1 encoded by Plantago asiatica mosaic virus (PlAMV), which exhibited a strong suppressor activity, on the accumulation of microRNA, virus genomic RNA and virus-derived small interfering RNAs.
Collapse
Affiliation(s)
- Hiroko Senshu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Johji Ozeki
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kouji Hatada
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michiko Aoyama
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kagiwada
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
312
|
Gazzani S, Li M, Maistri S, Scarponi E, Graziola M, Barbaro E, Wunder J, Furini A, Saedler H, Varotto C. Evolution of MIR168 paralogs in Brassicaceae. BMC Evol Biol 2009; 9:62. [PMID: 19309501 PMCID: PMC2664809 DOI: 10.1186/1471-2148-9-62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 03/23/2009] [Indexed: 12/03/2022] Open
Abstract
Background In plants, expression of ARGONAUTE1 (AGO1), the catalytic subunit of the RNA-Induced Silencing Complex responsible for post-transcriptional gene silencing, is controlled through a feedback loop involving the miR168 microRNA. This complex auto-regulatory loop, composed of miR168-guided AGO1-catalyzed cleavage of AGO1 mRNA and AGO1-mediated stabilization of miR168, was shown to ensure the maintenance of AGO1 homeostasis that is pivotal for the correct functioning of the miRNA pathway. Results We applied different approaches to studying the genomic organization and the structural and functional evolution of MIR168 homologs in Brassicaeae. A whole genome comparison of Arabidopsis and poplar, phylogenetic footprinting and phylogenetic reconstruction were used to date the duplication events originating MIR168 homologs in these genomes. While orthology was lacking between Arabidopsis and poplar MIR168 genes, we successfully isolated orthologs of both loci present in Arabidopsis (MIR168a and MIR168b) from all the Brassicaceae species analyzed, including the basal species Aethionema grandiflora, thus indicating that (1) independent duplication events took place in Arabidopsis and poplar lineages and (2) the origin of MIR168 paralogs predates both the Brassicaceae radiation and the Arabidopsis alpha polyploidization. Different phylogenetic footprints, corresponding to known functionally relevant regions (transcription starting site and double-stranded structures responsible for microRNA biogenesis and function) or for which functions could be proposed, were found to be highly conserved among MIR168 homologs. Comparative predictions of the identified microRNAs also indicate extreme conservation of secondary structure and thermodynamic stability. Conclusion We used a comparative phylogenetic footprinting approach to identify the structural and functional constraints that shaped MIR168 evolution in Brassicaceae. Although their duplication happened at least 40 million years ago, we found evidence that both MIR168 paralogs have been maintained throughout the evolution of Brassicaceae, most likely functionally as indicated by the extremely high conservation of functionally relevant regions, predicted secondary structure and thermodynamic profile. Interestingly, the expression patterns observed in Arabidopsis indicate that MIR168b underwent partial subfunctionalization as determined by the experimental characterization of its expression pattern provided in this study. We found further evolutionary evidence that pre-miR168 lower stem (the RNA-duplex structure adjacent to the miR-miR* stem) is significantly longer than animal lower stems and probably plays a relevant role in multi-step miR168 biogenesis.
Collapse
Affiliation(s)
- Silvia Gazzani
- Environment and Natural Resources Area, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige (TN), Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine 2009; 45:58-69. [PMID: 19121586 PMCID: PMC3129852 DOI: 10.1016/j.cyto.2008.11.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/23/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.
Collapse
Affiliation(s)
- Ananthi J. Asirvatham
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - William J. Magner
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Thomas B. Tomasi
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Departments of Medicine and Microbiology & Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
314
|
Cho SH, Addo-Quaye C, Coruh C, Arif MA, Ma Z, Frank W, Axtell MJ. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet 2008; 4:e1000314. [PMID: 19096705 PMCID: PMC2600652 DOI: 10.1371/journal.pgen.1000314] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022] Open
Abstract
Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21–22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21–24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22–24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22–24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants. Very small RNAs (between ∼21 and ∼30 single-stranded bases) are a ubiquitous component of gene regulation in nearly all eukaryotic organisms. The small RNA repertoire of angiosperms (the flowering plants) is exceptionally diverse and includes conspicuous populations of 21 nt microRNAs, as well a diverse set of 24 nt short, interfering RNAs (siRNAs). The 24 nt siRNAs have well-documented roles in enforcing the silence of parasitic regions of the genome, but are not readily apparent in the small RNA populations of several lineages of ancient, non-flowering plants. We found numerous “hotspots” of small RNA production from the genome of the moss P. patens that produced a mix of 21–24 nt siRNAs. Except for their broad mix of sizes, these hotspots were reminiscent of the 24 nt siRNA loci of angiosperms: they tended to associate with decayed transposons, to avoid annotated genes, and to be densely modified with the epigenetic mark 5-methyl cytosine. Deletion of a P. patens Dicer gene abolished production of 22–24 nt siRNAs both from these loci and transcriptome-wide, especially from repetitive regions. We conclude that both microRNAs and intergenic/repeat-associated siRNAs are ancient small RNA regulators in plants, but that the sizes of the siRNAs themselves have drifted over time.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles Addo-Quaye
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ceyda Coruh
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - M. Asif Arif
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Zhaorong Ma
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Wolfgang Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michael J. Axtell
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Integrative Biosciences Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
315
|
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 2008. [PMID: 19068109 DOI: 10.1186/1471‐2164‐9‐593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing technology is capable to identify novel short RNAs in plant species. We used Solexa sequencing to find new microRNAs in one of the model legume species, barrel medic (Medicago truncatula). RESULTS 3,948,871 reads were obtained from two separate short RNA libraries generated from total RNA extracted from M. truncatula leaves, representing 1,563,959 distinct sequences. 2,168,937 reads were mapped to the available M. truncatula genome corresponding to 619,175 distinct sequences. 174,504 reads representing 25 conserved miRNA families showed perfect matches to known miRNAs. We also identified 26 novel miRNA candidates that were potentially generated from 32 loci. Nine of these loci produced eight distinct sequences, for which the miRNA* sequences were also sequenced. These sequences were not described in other plant species and accumulation of these eight novel miRNAs was confirmed by Northern blot analysis. Potential target genes were predicted for most conserved and novel miRNAs. CONCLUSION Deep sequencing of short RNAs from M. truncatula leaves identified eight new miRNAs indicating that specific miRNAs exist in legume species.
Collapse
Affiliation(s)
- Gyorgy Szittya
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
316
|
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MPS, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 2008; 9:593. [PMID: 19068109 PMCID: PMC2621214 DOI: 10.1186/1471-2164-9-593] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022] Open
Abstract
Background High-throughput sequencing technology is capable to identify novel short RNAs in plant species. We used Solexa sequencing to find new microRNAs in one of the model legume species, barrel medic (Medicago truncatula). Results 3,948,871 reads were obtained from two separate short RNA libraries generated from total RNA extracted from M. truncatula leaves, representing 1,563,959 distinct sequences. 2,168,937 reads were mapped to the available M. truncatula genome corresponding to 619,175 distinct sequences. 174,504 reads representing 25 conserved miRNA families showed perfect matches to known miRNAs. We also identified 26 novel miRNA candidates that were potentially generated from 32 loci. Nine of these loci produced eight distinct sequences, for which the miRNA* sequences were also sequenced. These sequences were not described in other plant species and accumulation of these eight novel miRNAs was confirmed by Northern blot analysis. Potential target genes were predicted for most conserved and novel miRNAs. Conclusion Deep sequencing of short RNAs from M. truncatula leaves identified eight new miRNAs indicating that specific miRNAs exist in legume species.
Collapse
Affiliation(s)
- Gyorgy Szittya
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
317
|
Lacombe S, Nagasaki H, Santi C, Duval D, Piégu B, Bangratz M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski WM, Sato Y, Echeverria M. Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC PLANT BIOLOGY 2008; 8:123. [PMID: 19055717 PMCID: PMC2607281 DOI: 10.1186/1471-2229-8-123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 12/02/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. RESULTS We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. CONCLUSION The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
Collapse
Affiliation(s)
- Séverine Lacombe
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Hiroshi Nagasaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Carole Santi
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - David Duval
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Benoît Piégu
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Martine Bangratz
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Jean-Christophe Breitler
- DAP, UMR 1098, Université de Montpellier II-CIRAD-INRA-SUPAGRO 2477 Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- DAP, UMR 1098, Université de Montpellier II-CIRAD-INRA-SUPAGRO 2477 Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Christophe Brugidou
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Judith Hirsch
- INRA-SUPAGRO, UMR BGPI, Campus Baillarguet, F-34398 Montpellier Cedex 05, France
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Claire Brice
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| | - Wojciech M Karlowski
- Bioinformatic Laboratory, A. Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Yutaka Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Manuel Echeverria
- Laboratoire Génome et Développement des Plantes, UMR5096, Université de Perpignan via Domitia – CNRS-IRD, 52, Av. Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
318
|
Ehrenreich IM, Purugganan M. MicroRNAs in plants: Possible contributions to phenotypic diversity. PLANT SIGNALING & BEHAVIOR 2008; 3:829-30. [PMID: 19704512 PMCID: PMC2634387 DOI: 10.4161/psb.3.10.5914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are important posttranscriptional regulators of gene expression in eukaryotes. In plants, most miRNAs exist in multiple copies throughout the genome and many of these miRNAs target multiple messenger RNA (mRNA) transcripts. Mutations at miRNAs in natural populations could facilitate evolutionary changes within and between species because of their positions at critical positions in gene regulatory networks. Dissecting the contribution of miRNAs to plant evolution requires the identification of potentially functional mutations at miRNAs within and between species. Recently, we and others have published papers focused on this topic, laying the foundation for studying the contributions of miRNAs to the phenotypic diversification of plants.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Department of Biology and Center for Genomics and Systems Biology; New York University; New York, New York USA
| | | |
Collapse
|
319
|
Doerner P. Phosphate starvation signaling: a threesome controls systemic P(i) homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:536-40. [PMID: 18614391 DOI: 10.1016/j.pbi.2008.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 05/03/2023]
Abstract
Systemic signaling between roots and shoots is required to maintain mineral nutrient homeostasis for optimal metabolism under varying environmental conditions. Recent work has revealed molecular components of a signaling module that controls systemic phosphate homeostasis, modulates uptake and transport in Arabidopsis. This module comprises PHO2, a protein that controls protein stability, the phloem-mobile microRNA-399 and a ribo-regulator that squelches the activity of miR399 towards PHO2 by a novel mechanism. This advance is a significant step for the design of future rational approaches to improve crop phosphate use efficiency.
Collapse
Affiliation(s)
- Peter Doerner
- Institute of Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JH, Scotland, United Kingdom.
| |
Collapse
|
320
|
Ponomarenko MP, Omel'yanchuk NA, Katokhin AV, Savinskaya SA, Kolchanov NA. The abundance of microRNA in Arabidopsis thaliana correlates with the presence of tetranucleotides WRHW and DRYD in their sequences. DOKL BIOCHEM BIOPHYS 2008; 420:150-4. [PMID: 18680914 DOI: 10.1134/s1607672908030149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M P Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk, 630090 Russia
| | | | | | | | | |
Collapse
|
321
|
Dryanova A, Zakharov A, Gulick PJ. Data mining for miRNAs and their targets in the Triticeae. Genome 2008; 51:433-43. [PMID: 18521122 DOI: 10.1139/g08-025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) and the mRNA targets of miRNAs were identified by sequence complementarity within a DNA sequence database for species of the Triticeae. Data screening identified 28 miRNA precursor sequences from 15 miRNA families that contained conserved mature miRNA sequences within predicted stem-loop structures. In addition, the identification of 337 target sequences among Triticeae genes provided further evidence of the existence of 26 miRNA families in the cereals. MicroRNA targets included genes that are homologous to known targets in diverse model species as well as novel targets. MicroRNA precursors and targets were identified in 10 related species, though the great majority of them were identified in bread wheat, Triticum aestivum, and barley, Hordeum vulgare, the two species with the largest EST data sets among the Triticeae.
Collapse
Affiliation(s)
- Ani Dryanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B1R6, Canada.
| | | | | |
Collapse
|
322
|
Heisel SE, Zhang Y, Allen E, Guo L, Reynolds TL, Yang X, Kovalic D, Roberts JK. Characterization of unique small RNA populations from rice grain. PLoS One 2008; 3:e2871. [PMID: 18716673 PMCID: PMC2518513 DOI: 10.1371/journal.pone.0002871] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/21/2008] [Indexed: 01/08/2023] Open
Abstract
Small RNAs (approximately 20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species.
Collapse
|
323
|
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 2008; 18:1602-9. [PMID: 18653800 DOI: 10.1101/gr.080127.108] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In plants there are several classes of 21-24-nt short RNAs that regulate gene expression. The most conserved class is the microRNAs (miRNAs), although some miRNAs are found only in specific species. We used high-throughput pyrosequencing to identify conserved and nonconserved miRNAs and other short RNAs in tomato fruit and leaf. Several conserved miRNAs showed tissue-specific expression, which, combined with target gene validation results, suggests that miRNAs may play a role in fleshy fruit development. We also identified four new nonconserved miRNAs. One of the validated targets of a novel miRNA is a member of the CTR family involved in fruit ripening. However, 62 predicted targets showing near perfect complementarity to potential new miRNAs did not validate experimentally. This suggests that target prediction of plant short RNAs could have a high false-positive rate and must therefore be validated experimentally. We also found short RNAs from a Solanaceae-specific foldback transposon, which showed a miRNA/miRNA*-like distribution, suggesting that this element may function as a miRNA gene progenitor. The other Solanaceae-specific class of short RNA was derived from an endogenous pararetrovirus sequence inserted into the tomato chromosomes. This study opens a new avenue in the field of fleshy fruit biology by raising the possibility that fruit development and ripening may be under miRNA regulation.
Collapse
Affiliation(s)
- Simon Moxon
- School of Computing, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
324
|
Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:131-51. [PMID: 18363789 DOI: 10.1111/j.1365-313x.2008.03497.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of </=2.5 for mismatched patterns in the miRNA:mRNA duplexes as the criterion. Six of the selected targets were validated experimentally. The expression of a majority of the novel miRNAs was altered in response to cold, heat, salt, dehydration, and mechanical stresses. Microarray analysis of known Ptc-miRNAs identified 19 additional cold stress-responsive Ptc-miRNAs from 14 miRNA gene families. Interestingly, we found that individual miRNAs of a family responded differentially to stress, which suggests that the members of a family may have different functions. These results reveal possible roles for miRNAs in the regulatory networks associated with the long-term growth of tree species and provide useful information for developing trees with a greater level of stress resistance.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
325
|
Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. PLANT MOLECULAR BIOLOGY 2008; 67:403-17. [PMID: 18392778 DOI: 10.1007/s11103-008-9329-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are approximately 21-nt RNAs that reduce target accumulation through mRNA cleavage or translational repression. Arabidopsis miR398 regulates mRNAs encoding two copper superoxide dismutase (CSD) enzymes and a cytochrome c oxidase subunit. miR398 itself is down-regulated in response to copper and stress. Here we show that miR398 is positively regulated by sucrose, resulting in decreased CSD1 and CSD2 mRNA and protein accumulation. This sucrose regulation is maintained both in the presence and absence of physiologically relevant levels of supplemental copper. Additionally, we show that plants expressing CSD1 and CSD2 mRNAs with altered miR398 complementarity sites display increased mRNA accumulation, whereas CSD1 and CSD2 protein accumulation remain sensitive to miR398 levels, suggesting that miR398 can act as a translational repressor when target site complementarity is reduced. These results reveal a novel miR398 regulatory mechanism and demonstrate that plant miRNA targets can resist miRNA regulation at the mRNA level while maintaining sensitivity at the level of protein accumulation. Our results suggest that even in plants, where miRNAs are thought to act primarily through target mRNA cleavage, monitoring target protein levels along with target mRNA levels is necessary to fully assess the consequences of disrupted miRNA-mRNA pairing. Moreover, the limited complementarity required to maintain robust miR398-directed repression of target protein accumulation suggests that similarly regulated endogenous plant miRNA targets may have eluded detection.
Collapse
Affiliation(s)
- Diana V Dugas
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
326
|
de Meaux J, Hu JY, Tartler U, Goebel U. Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2008; 105:8994-9. [PMID: 18579782 PMCID: PMC2440359 DOI: 10.1073/pnas.0803218105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Indexed: 12/21/2022] Open
Abstract
In plants and animals, gene expression can be down-regulated at the posttranscriptional level by microRNAs (miRNAs), a class of small endogenous RNA. Comparative analysis of miRNA content across species indicates continuous birth and death of these loci in the course of evolution. However, little is known about the microevolutionary dynamics of these genetic elements, especially in plants. In this article we examine polymorphism at two miRNA-encoding loci in Arabidopsis thaliana, miR856 and miR824, which are not found in rice or poplar. We compare their diversity to other miRNA-encoding loci conserved across distant taxa. We find that levels of variation vary significantly across loci and that the two recently derived loci harbor patterns of diversity deviating from neutrality. miRNA miR856 shows a weak signature of a selective sweep whereas miR824 displays signs of balancing selection. A detailed examination of structural variation among alleles found at the miR824-encoding locus suggests nonrandom evolution of a thermoresistant substructure in the precursor. Expression analysis of pre-miR824 and its target, AGL16, indicates that these structural differences likely impact the processing of mature miR824. Our work highlights the relevance of RNA structure in precursor sequence evolution, suggesting that the evolutionary dynamics of miRNA-encoding loci is more complex than suggested by the constraints exerted on the interaction between mature miRNA fragments and their target exon.
Collapse
Affiliation(s)
- Juliette de Meaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Jin-Yong Hu
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Ute Tartler
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Ulrike Goebel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| |
Collapse
|
327
|
Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. TRENDS IN PLANT SCIENCE 2008; 13:343-9. [PMID: 18502167 DOI: 10.1016/j.tplants.2008.03.009] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a specialized class of small silencing RNAs that regulate gene expression. They have a limited phylogenetic distribution among eukaryotes, suggestive of at least two independent origins from an ancestral small RNA-producing pathway. A set of 21 abundantly expressed miRNAs are clearly conserved among the angiosperms; many of these function to regulate transcription factors involved in developmental control. Recent experiments have uncovered a much larger set of weakly expressed, less conserved miRNAs in plants, and this group has provided insights into the origins of miRNAs and their targets. These data have provided a coherent set of hypotheses explaining the birth, selection and death of miRNAs in land plants.
Collapse
Affiliation(s)
- Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
328
|
Mallory AC, Bouché N. MicroRNA-directed regulation: to cleave or not to cleave. TRENDS IN PLANT SCIENCE 2008; 13:359-67. [PMID: 18501664 DOI: 10.1016/j.tplants.2008.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 05/18/2023]
Abstract
Gene expression is regulated by transcriptional and post-transcriptional pathways, which are crucial for optimizing gene output and for coordinating cellular programs. MicroRNAs (miRNAs) regulate gene expression networks necessary for proper development, cell viability and stress responses. In plants and animals, 20-24-nt miRNAs direct cleavage and translational repression of partially complementary mRNA target transcripts, through conserved ARGONAUTE proteins. In plants, certain miRNAs indirectly regulate developmental programs by instigating the production of small interfering RNAs (siRNAs). In addition, non-cleavable plant miRNA targets sequester miRNAs, thus regulating miRNA availability. This review summarizes the complexities and diversity of plant miRNA-directed gene regulatory mechanisms and highlights the use of miRNAs for the specific knockdown of gene expression in plants.
Collapse
Affiliation(s)
- Allison C Mallory
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France.
| | | |
Collapse
|
329
|
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 2008; 283:15932-45. [PMID: 18408011 PMCID: PMC3259626 DOI: 10.1074/jbc.m801406200] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/03/2008] [Indexed: 11/06/2022] Open
Abstract
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting. The down-regulation of copper/zinc superoxide dismutase expression in response to low copper involves a microRNA, miR398. Interestingly, in Arabidopsis and other plants, three additional microRNA families, miR397, miR408, and miR857, are predicted to target the transcripts for the copper protein plantacyanin and members of the laccase copper protein family. We confirmed the predicted targets of miR397, miR408, and miR857 experimentally by cleavage site analysis. To study the spatial expression pattern of these microRNAs and the effect of copper on their expression, we analyzed Arabidopsis grown hydroponically on different copper regimes. On low amounts of copper the plants accumulated miR397, miR408, and miR857. The microRNA expression pattern was negatively correlated with the accumulation of transcripts for plantacyanin and laccases. Furthermore, the expression of other laccases that are not predicted targets for known microRNAs was similarly regulated in response to copper. For some of these laccases, the regulation was disrupted in a microRNA maturation mutant (hen1-1), suggesting the presence of other copper-regulated microRNAs. Thus, in Arabidopsis, microRNA-mediated down-regulation is a general mechanism to regulate nonessential copper proteins. We propose that this mechanism allows plants to save copper for the most essential functions during limited copper supply.
Collapse
Affiliation(s)
- Salah E. Abdel-Ghany
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| | - Marinus Pilon
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
330
|
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. Genome structure of the legume, Lotus japonicus. DNA Res 2008; 15:227-39. [PMID: 18511435 PMCID: PMC2575887 DOI: 10.1093/dnares/dsn008] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The legume Lotus japonicus has been widely used as a model system to investigate the genetic background of legume-specific phenomena such as symbiotic nitrogen fixation. Here, we report structural features of the L. japonicus genome. The 315.1-Mb sequences determined in this and previous studies correspond to 67% of the genome (472 Mb), and are likely to cover 91.3% of the gene space. Linkage mapping anchored 130-Mb sequences onto the six linkage groups. A total of 10 951 complete and 19 848 partial structures of protein-encoding genes were assigned to the genome. Comparative analysis of these genes revealed the expansion of several functional domains and gene families that are characteristic of L. japonicus. Synteny analysis detected traces of whole-genome duplication and the presence of synteny blocks with other plant genomes to various degrees. This study provides the first opportunity to look into the complex and unique genetic system of legumes.
Collapse
Affiliation(s)
- Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 2008; 18:758-762. [PMID: 18472421 DOI: 10.1016/j.cub.2008.04.042] [Citation(s) in RCA: 573] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNAs) regulate the expression of target mRNAs in plants and animals [1]. Plant miRNA targets have been predicted on the basis of their extensive and often conserved complementarity to the miRNAs [2-4], as well as on miRNA overexpression experiments [5]; many of these target predictions have been confirmed by isolation of the products of miRNA-directed cleavage. Here, we present a transcriptome-wide experimental method, called "degradome sequencing," to directly detect cleaved miRNA targets without relying on predictions or overexpression. The 5' ends of polyadenylated, uncapped mRNAs from Arabidopsis were directly sampled, resulting in an empirical snapshot of the degradome. miRNA-mediated-cleavage products were easily discerned from an extensive background of degraded mRNAs, which collectively covered the majority of the annotated transcriptome. Many previously known Arabidopsis miRNA targets were confirmed, and several novel targets were also discovered. Quantification of cleavage fragments revealed that those derived from TAS transcripts, which are unusual in their production of abundant secondary small interfering RNAs (siRNAs), accumulated to very high levels. A subset of secondary siRNAs are also known to direct cleavage of targets in trans[6]; degradome sequencing revealed many cleaved targets of these trans-acting siRNAs (ta-siRNAs). This empirical method is broadly applicable to the discovery and quantification of cleaved targets of small RNAs without a priori predictions.
Collapse
Affiliation(s)
- Charles Addo-Quaye
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Tifani W Eshoo
- Cell and Developmental Biology Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David P Bartel
- Whitehead Institute, Cambridge, Massachusetts 02142; Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Michael J Axtell
- Cell and Developmental Biology Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802; Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802.
| |
Collapse
|
332
|
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, Tavaré S, Caldas C, Miska EA. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2008; 8:R214. [PMID: 17922911 PMCID: PMC2246288 DOI: 10.1186/gb-2007-8-10-r214] [Citation(s) in RCA: 726] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/22/2007] [Accepted: 10/08/2007] [Indexed: 12/19/2022] Open
Abstract
Integrated analysis of miRNA expression and genomic changes in human breast tumors allows the classification of tumor subtypes. Background MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. Results Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. Conclusion This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.
Collapse
Affiliation(s)
- Cherie Blenkiron
- Cancer Research UK, Cambridge Research Institute, Li Ka-Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:183-95. [PMID: 18278578 PMCID: PMC2295252 DOI: 10.1007/s11103-008-9310-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 02/05/2008] [Indexed: 05/18/2023]
Abstract
Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral transition in dependence of miR156 and, accordingly, transgenics constitutively over-expressing this microRNA are delayed in flowering. To elaborate their roles in Arabidopsis shoot development, we analysed two of the 11 miR156 regulated Arabidopsis SBP-box genes, i.e. the likely paralogous genes SPL9 and SPL15. Single and double mutant phenotype analysis showed these genes to act redundantly in controlling the juvenile-to-adult phase transition. In addition, their loss-of-function results in a shortened plastochron during vegetative growth, altered inflorescence architecture and enhanced branching. In these aspects, the double mutant partly phenocopies constitutive MIR156b over-expressing transgenic plants and thus a major contribution to the phenotype of these transgenics as a result of the repression of SPL9 and SPL15 is strongly suggested.
Collapse
Affiliation(s)
- Stefan Schwarz
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Arne V. Grande
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Nora Bujdoso
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Heinz Saedler
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Peter Huijser
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
334
|
Teotia PS, Mukherjee SK, Mishra NS. Fine tuning of auxin signaling by miRNAs. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:81-90. [PMID: 23572875 PMCID: PMC3550664 DOI: 10.1007/s12298-008-0007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) constitute a major class of endogenous non-coding regulatory small RNAs. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The miRNAs are involved in various biological processes, including differentiation, organ development, phase change, signaling, disease resistance and response to environmental stresses. This review provides a general background on the discovery, history, biogenesis and function of miRNAs. However, the focus is on the role for miRNA in controlling auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Preeti Singh Teotia
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sunil Kumar Mukherjee
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
335
|
Johri MM. Hormonal regulation in green plant lineage families. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:23-38. [PMID: 23572871 PMCID: PMC3550668 DOI: 10.1007/s12298-008-0003-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The patterns of phytohormones distribution, their native function and possible origin of hormonal regulation across the green plant lineages (chlorophytes, charophytes, bryophytes and tracheophytes) are discussed. The five classical phytohormones - auxins, cytokinins, gibberellins (GA), abscisic acid (ABA) and ethylene occur ubiquitously in green plants. They are produced as secondary metabolites by microorganisms. Some of the bacterial species use phytohormones to interact with the plant as a part of their colonization strategy. Phytohormone biosynthetic pathways in plants seem to be of microbial origin and furthermore, the origin of high affinity perception mechanism could have preceded the recruitment of a metabolite as a hormone. The bryophytes represent the earliest land plants which respond to the phytohormones with the exception of gibberellins. The regulation by auxin and ABA may have evolved before the separation of green algal lineage. Auxin enhances rhizoid and caulonemal differentiation while cytokinins enhance shoot bud formation in mosses. Ethylene retards cell division but seems to promote cell elongation. The presence of responses specific to cytokinins and ethylene strongly suggest the origin of their regulation in bryophytes. The hormonal role of GAs could have evolved in some of the ferns where antheridiogens (compounds related to GAs) and GAs themselves regulate the formation of antheridia. During migration of life forms to land, the tolerance to desiccation may have evolved and is now observed in some of the microorganisms, animals and plants. Besides plants, sequences coding for late embryogenesis abundant-like proteins occur in the genomes of other anhydrobiotic species of microorganisms and nematodes. ABA acts as a stress signal and increases rapidly upon desiccation or in response to some of the abiotic stresses in green plants. As the salt stress also increases ABA release in the culture medium of cyanobacterium Trichormus variabilis, the recruitment of ABA in the regulation of stress responses could have been derived from prokaryotes and present at the level of common ancestor of green plants. The overall hormonal action mechanisms in mosses are remarkably similar to that of the higher plants. As plants are thought to be monophyletic in origin, the existence of remarkably similar hormonal mechanisms in the mosses and higher plants, suggests that some of the basic elements of regulation cascade could have also evolved at the level of common ancestor of plants. The networking of various steps in a cascade or the crosstalk between different cascades is variable and reflects the dynamic interaction between a species and its specific environment.
Collapse
Affiliation(s)
- M. M. Johri
- />Formerly from Department of Biological Sciences, TIFR, Mumbai, India
| |
Collapse
|
336
|
Ehrenreich IM, Purugganan MD. Sequence variation of MicroRNAs and their binding sites in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:1974-82. [PMID: 18305205 PMCID: PMC2287364 DOI: 10.1104/pp.108.116582] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 02/19/2008] [Indexed: 05/18/2023]
Abstract
Major differences exist between plants and animals both in the extent of microRNA (miRNA)-based gene regulation and the sequence complementarity requirements for miRNA-messenger RNA pairing. Whether these differences affect how these sites evolve at the molecular level is unknown. To determine the extent of sequence variation at miRNAs and their targets in a plant species, we resequenced 16 miRNA families (66 miRNAs in total) and all 52 of the characterized binding sites for these miRNAs in the plant model Arabidopsis (Arabidopsis thaliana), accounting for around 50% of the known miRNAs and binding sites in this species. As has been shown previously in humans, we find that both miRNAs and their target binding sites have very low nucleotide variation and divergence compared to their flanking sequences in Arabidopsis, indicating strong purifying selection on these sites in this species. Sequence data flanking the mature miRNAs, however, exhibit normal levels of polymorphism for the accessions in this study and, in some cases, nonneutral evolution or subtle effects on predicted pre-miRNA secondary structure, suggesting that there is raw material for the differential function of miRNA alleles. Overall, our results show that despite differences in the architecture of miRNA-based regulation, miRNAs and their targets are similarly constrained in both plants and animals.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
337
|
Interspecies regulation of microRNAs and their targets. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:735-42. [PMID: 18407843 DOI: 10.1016/j.bbagrm.2008.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/16/2008] [Accepted: 03/17/2008] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are 20-24 nucleotide RNA molecules that play essential roles in posttranscriptional regulation of target genes. In animals, miRNAs bind to target mRNA through imperfect complementary sequences that are usually located at the 3' untranslated regions (UTRs), leading to translational repression or transcript degradation. In plants, miRNAs predominately mediate degradation of target mRNAs via perfect or near-perfect complementary sequences. MicroRNA targets include a large number of transcription factors, suggesting a role of miRNAs in the control of regulatory networks and cellular growth and development. Many miRNAs and their targets are conserved among plants or animals, whereas some are specific to a few plant or animal lineages. Conserved miRNAs do not necessarily exhibit the same expression levels or patterns in different species or at different stages within a species. Therefore, sequence and expression divergence in miRNAs between species may affect miRNA accumulation and target regulation in interspecific hybrids and allopolyploids that contain two or more divergent genomes, leading to developmental changes and phenotypic variation in the new species.
Collapse
|
338
|
Lehrbach NJ, Miska EA. Functional genomic, computational and proteomic analysis of C. elegans microRNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:228-35. [DOI: 10.1093/bfgp/eln024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
339
|
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC PLANT BIOLOGY 2008; 8:25. [PMID: 18312648 PMCID: PMC2292181 DOI: 10.1186/1471-2229-8-25] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Small RNA-guided gene silencing at the transcriptional and post-transcriptional levels has emerged as an important mode of gene regulation in plants and animals. Thus far, conventional sequencing of small RNA libraries from rice led to the identification of most of the conserved miRNAs. Deep sequencing of small RNA libraries is an effective approach to uncover rare and lineage- and/or species-specific microRNAs (miRNAs) in any organism. RESULTS In order to identify new miRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. A total of 58,781, 43,003 and 80,990 unique genome-matching small RNAs were obtained from the control, drought and salt stress libraries, respectively. Sequence analysis confirmed the expression of most of the conserved miRNAs in rice. Importantly, 23 new miRNAs mostly each derived from a unique locus in rice genome were identified. Six of the new miRNAs are conserved in other monocots. Additionally, we identified 40 candidate miRNAs. Allowing not more than 3 mis-matches between a miRNA and its target mRNA, we predicted 20 targets for 9 of the new miRNAs. CONCLUSION Deep sequencing proved to be an effective strategy that allowed the discovery of 23 low-abundance new miRNAs and 40 candidate miRNAs in rice.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Yun Zheng
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis MO 63130, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
340
|
Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 2008; 8:R96. [PMID: 17543110 PMCID: PMC2394755 DOI: 10.1186/gb-2007-8-6-r96] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/27/2007] [Accepted: 06/01/2007] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of small, non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. So far, identification of miRNAs has been limited to a few model plant species, such as Arabidopsis, rice and Populus, whose genomes have been sequenced. Wheat is one of the most important cereal crops worldwide. To date, only a few conserved miRNAs have been predicted in wheat and the computational identification of wheat miRNAs requires the genome sequence, which is unknown. RESULTS To identify novel as well as conserved miRNAs in wheat (Triticum aestivum L.), we constructed a small RNA library. High throughput sequencing of the library and subsequent analysis revealed the identification of 58 miRNAs, comprising 43 miRNA families. Of these, 35 miRNAs belong to 20 conserved miRNA families. The remaining 23 miRNAs are novel and form 23 miRNA families in wheat; more importantly, 4 of these new miRNAs (miR506, miR510, miR514 and miR516) appear to be monocot-specific. Northern blot analysis indicated that some of the new miRNAs are preferentially expressed in certain tissues. Based on sequence homology, we predicted 46 potential targets. Thus, we have identified a large number of monocot-specific and wheat-specific miRNAs. These results indicate that both conserved and wheat-specific miRNAs play important roles in wheat growth and development, stress responses and other physiological processes. CONCLUSION This study led to the discovery of 58 wheat miRNAs comprising 43 miRNA families; 20 of these families are conserved and 23 are novel in wheat. It provides a first large scale cloning and characterization of wheat miRNAs and their predicted targets.
Collapse
Affiliation(s)
- Yingyin Yao
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Ganggang Guo
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK74078, USA
| | - Jinkun Du
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| | - Jian-Kang Zhu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
- National Plant Gene Research Centre (Beijing), Beijing 100094, China
| |
Collapse
|
341
|
Yin Z, Li C, Han X, Shen F. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 2008; 414:60-6. [PMID: 18387754 DOI: 10.1016/j.gene.2008.02.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.
Collapse
Affiliation(s)
- Zujun Yin
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, PR China
| | | | | | | |
Collapse
|
342
|
Takuno S, Innan H. Evolution of complexity in miRNA-mediated gene regulation systems. Trends Genet 2008; 24:56-9. [DOI: 10.1016/j.tig.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 12/22/2022]
|
343
|
Oh TJ, Wartell RM, Cairney J, Pullman GS. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). THE NEW PHYTOLOGIST 2008; 179:67-80. [PMID: 18433430 DOI: 10.1111/j.1469-8137.2008.02448.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are known to regulate plant development, but have not been studied in gymnosperm seed tissues. The presence and characteristics of several miRNAs were examined in zygotic embryos (ZEs) and female gametophytes (FGs) of Pinus taeda (loblolly pine). Evidence for miRNAs was obtained using northern analyses and quantitative reverse transcription polymerase chain reaction (qRT-PCR) mediated with poly(A) polymerase. Partial sequences of two miRNAs were verified. Three regions of putative mRNA targets were analyzed by qRT-PCR to monitor the occurrence of stage-dependent miRNA-mediated cleavage. Five miRNAs were identified in ZEs and FGs along with partial sequences of Pta-miR166 and Pta-miR167. Both miRNAs showed differing degrees of tissue-specific and stage-specific modulation. Analysis of HB15L mRNA (a potential Pta-miR166 target) suggested miRNA-guided cleavage in ZEs and FGs. Analysis of ARF8L mRNA (a potential Pta-miR167 target) implied cleavage in ZEs but not in FGs. Argonaute9-like mRNA (ptAGO9L) showed stage-specific modulation of expression in ZEs that appeared to be inverted in the corresponding FGs. MicroRNAs and argonaute genes varied spatiotemporally during seed development. The peak levels of Pta-miR166 in FGs and ptAGO9L in embryos occurred at stage 9.1, a critical transition point during embryo development and a point where somatic embryo maturation often stops. MicroRNAs identified in FG tissue may play a role in embryogenesis.
Collapse
Affiliation(s)
- Thomas J Oh
- Forest Biology, Institute of Paper Science and Technology (IPST)
| | - Roger M Wartell
- School of Biology and
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0620, USA
| | - John Cairney
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| | - Gerald S Pullman
- Forest Biology, Institute of Paper Science and Technology (IPST)
- School of Biology and
| |
Collapse
|
344
|
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide (nt) RNAs that are the final products of nonprotein-coding genes. miRNAs are processed from single-stranded precursors that form hairpin structures, with the miRNAs residing in one arm of the stems. miRNAs were first isolated and recognized as regulators of protein-coding genes through forward genetic screens in Caenorhabditis elegans, but were not recognized as universal regulators of gene expression in animals until three landmark studies in year 2001 demonstrated the widespread existence of miRNAs in animals. Soon after, studies from a few groups identified a number of miRNAs from Arabidopsis, providing the first evidence for the existence of these regulatory molecules in plants. Since then, numerous miRNAs from a number of land plants ranging from mosses to flowering plants were identified, and functional studies in Arabidopsis established a framework of understanding of miRNA biogenesis and function. This chapter summarizes the current knowledge as well as gaps in our understanding of plant miRNA biogenesis and function.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
345
|
Shobbar ZS, Oane R, Gamuyao R, De Palma J, Malboobi MA, Karimzadeh G, Javaran MJ, Bennett J. Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots. THE NEW PHYTOLOGIST 2008; 178:68-79. [PMID: 18315698 DOI: 10.1111/j.1469-8137.2007.02365.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drought-induced growth arrest is a major cause of yield loss in crops and is mediated in part by abscisic acid (ABA). The aim of this study was to identify the cell types targeted by ABA during arrest. As transcription factors ABI3 and ABI5 are essential for ABA-induced growth arrest in Arabidopsis, blast was used to identify OsVP1 and OsABF1 as their structural orthologues in rice (Oryza sativa), and employed RNA in situ hybridization to reveal the cell types accumulating the corresponding transcripts in response to ABA. Exogenous ABA arrested the growth of leaves 1, 2 and 3 in young rice shoots and inhibited secondary cell-wall formation in sclerenchyma, including expression of the cellulose synthase gene OsCesA9. Transcripts for OsVP1, OsABF1 and of the putative target genes OsEm, OsLEA3 and WSI18, increased under ABA, accumulating principally in the cytosol of the major support cells (sclerenchymatous cortical fiber cells and epidermal silica cells) of slowly growing leaf 1. Rapidly growing immature tissues in leaves 2 and 3 accumulated OsABF1, OsEm and WSI18 transcripts in the nuclei of all cells, irrespective of ABA treatment. It is concluded that during arrest of leaf growth, ABA targets support cells in maturing tissues. Target cells in immature tissues remain to be identified.
Collapse
Affiliation(s)
- Zahra-Sadat Shobbar
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Plant Breeding, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Rowena Oane
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Rico Gamuyao
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Justina De Palma
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Mohammad Ali Malboobi
- Department of Plant Breeding, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
- National Research Center for Genetic Engineering and Biotechnology, PO Box 14155-6343, Tehran, Iran
| | - Ghasem Karimzadeh
- Department of Plant Breeding, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Mokhtar Jalali Javaran
- Department of Plant Breeding, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - John Bennett
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
346
|
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide (nt) RNAs that are the final products of nonprotein-coding genes. miRNAs are processed from single-stranded precursors that form hairpin structures, with the miRNAs residing in one arm of the stems. miRNAs were first isolated and recognized as regulators of protein-coding genes through forward genetic screens in Caenorhabditis elegans, but were not recognized as universal regulators of gene expression in animals until three landmark studies in year 2001 demonstrated the widespread existence of miRNAs in animals. Soon after, studies from a few groups identified a number of miRNAs from Arabidopsis, providing the first evidence for the existence of these regulatory molecules in plants. Since then, numerous miRNAs from a number of land plants ranging from mosses to flowering plants were identified, and functional studies in Arabidopsis established a framework of understanding of miRNA biogenesis and function. This chapter summarizes the current knowledge as well as gaps in our understanding of plant miRNA biogenesis and function.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
347
|
Abstract
Leaves and stems are ultimately derived from the shoot apical meristem (SAM); leaves arise from the peripheral zone of the SAM and stem tissue is derived from both the peripheral and central zones of the SAM. Both the peripheral and central regions of the SAM are formed during embryogenesis when the basic body plan of the plant is established. Interplay between points of maximal concentration of auxin and specific patterns of transcription of both auxin-responsive transcription factors and other patterning genes subdivide the embryo along both the apical-basal and central-peripheral axes. Differential gene expression along these axes leads to the differentiation of tissues, lateral organs, meristems, and boundary regions, each with varying responsiveness to auxin. Subsequent shoot growth and development is a reiteration of basic patterning processes established during embryogenesis.
Collapse
Affiliation(s)
- John L Bowman
- 1School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.
| | | |
Collapse
|
348
|
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 2007; 3:e215. [PMID: 18085825 PMCID: PMC2134938 DOI: 10.1371/journal.pgen.0030215] [Citation(s) in RCA: 388] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/12/2007] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs. We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the hypothesis that there is significant functional redundancy among miRNAs or among gene pathways regulated by miRNAs. This study represents the first comprehensive genetic analysis of miRNA function in any organism and provides a unique, permanent resource for the systematic study of miRNAs.
Collapse
Affiliation(s)
- Eric A Miska
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ezequiel Alvarez-Saavedra
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Allison L Abbott
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Nelson C Lau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Andrew B Hellman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shannon M McGonagle
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Victor R Ambros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - H. Robert Horvitz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
349
|
Kalluri UC, DiFazio SP, Brunner AM, Tuskan GA. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC PLANT BIOLOGY 2007; 7:59. [PMID: 17986329 PMCID: PMC2174922 DOI: 10.1186/1471-2229-7-59] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 11/06/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. We identified the suites of genes in the two gene families in Populus and performed comparative genomic analysis with Arabidopsis and rice. RESULTS A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that several Aux/IAA and ARF subgroups have differentially expanded or contracted between the two dicotyledonous plants. Activator ARF genes were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. CONCLUSION The present study examines the extent of conservation and divergence in the structure and evolution of Populus Aux/IAA and ARF gene families with respect to Arabidopsis and rice. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.
Collapse
Affiliation(s)
- Udaya C Kalluri
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, WV 26506, USA
| | - Amy M Brunner
- Department of Forestry, Virginia Polytechnic Institute and State University, 448 Latham Hall, Blacksburg, VA 24061, USA
| | - Gerald A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
350
|
Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A 2007; 104:16371-6. [PMID: 17916625 DOI: 10.1073/pnas.0707653104] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, there are very few loss-of-function mutations in micro-RNA genes. Here, we characterize two members of the Arabidopsis MIR159 family, miR159a and miR159b, that are predicted to regulate the expression of a family of seven transcription factors that includes the two redundant GAMYB-like genes, MYB33 and MYB65. Using transfer DNA (T-DNA) insertional mutants, we show that a mir159ab double mutant has pleiotropic morphological defects, including altered growth habit, curled leaves, small siliques, and small seeds. Neither mir159a nor mir159b single mutants displayed any of these traits, indicating functional redundancy. By using reporter-gene constructs, it appears that MIR159a and MIR159b are transcribed almost exclusively in the cells in which MYB33 is repressed, as had been previously determined by comparison of MYB33 and mMYB33 (an miR159-resistant allele of MYB33) expression patterns. Consistent with these overlapping transcriptional domains, MYB33 and MYB65 expression levels were elevated throughout mir159ab plants. By contrast, the other five GAMYB-like family members are transcribed predominantly in tissues where miR159a and miR159b are absent, and consequently their expression levels are not markedly elevated in mir159ab. Additionally, mMYB33 transgenic plants can phenocopy the mir159ab phenotype, suggesting that its phenotype is explained by deregulated expression of the redundant gene pair MYB33 and MYB65. This prediction was confirmed; the pleiotropic developmental defects of mir159ab are suppressed through the combined mutations of MYB33 and MYB65, demonstrating the narrow and specific target range of miR159a and miR159b.
Collapse
|