301
|
Zhong R, Ye ZH. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. PLANT SIGNALING & BEHAVIOR 2015; 10:e989746. [PMID: 25751728 PMCID: PMC4622706 DOI: 10.4161/15592324.2014.989746] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transcriptional regulation of secondary wall biosynthesis in Arabidopsis thaliana has been shown to be mediated by a group of secondary wall NAC master switches, including NST1, NST2, SND1 and VND1 to VND7. It has been shown that VND1 to VND7 regulate secondary wall biosynthesis in vessels, NST1 and NST2 function redundantly in anther endothecium, and SND1 and NST1 are required for secondary wall thickening in fibers of stems. However, it is unknown whether NST2 is involved in regulating secondary wall biosynthesis in fibers of stems. In this report, we demonstrated that similar to SND1, NST2 together with NST1 were highly expressed in interfascicular fibers and xylary fibers but not in vessels of stems. Although simultaneous mutations of SND1 and NST1 have been shown to result in a significant impairment of secondary wall thickening in fibers, a small amount of secondary walls was deposited in fibers during the late stage of stem development. In contrast, simultaneous mutations of SND1, NST1 and NST2 led to a complete loss of secondary wall thickening in fibers. These results demonstrate that NST2 together with SND1 and NST1 regulate secondary wall biosynthesis in fibers of stems.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology; University of Georgia; Athens, GA USA
| | - Zheng-Hua Ye
- Department of Plant Biology; University of Georgia; Athens, GA USA
- Correspondence to: Zheng-Hua Ye;
| |
Collapse
|
302
|
Du Q, Wang H. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1078955. [PMID: 26340415 PMCID: PMC4883823 DOI: 10.1080/15592324.2015.1078955] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis vascular system is composed of xylem and phloem, which form a well-defined collateral pattern in vascular bundles. Xylary element and fibers develop secondary cell walls (SCWs) that provide mechanical strength to support plant growth and to transport water and minerals to all above ground organs. SCWs also constitute the majority of terrestrial biomass for biofuel production. The biosynthesis of secondary cell walls are known to be under transcriptional regulation. Transcription factors, such as NAC (NAM, ATAF1/2 and CUC2) and MYB domain proteins, serve as master regulators in SCW development. Recent studies indicated that Class III homeodomain leucine zipper transcription factors (HD-ZIP III TFs) and microRNA 165/166 (miR165/166) may play important roles in SCW formation. Here we discuss the diverse functions of miR165/166 and HD-ZIPIII in vascular development and their interaction with the regulatory pathways of SCW biosynthesis.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture; University of Connecticut; Storrs, CT USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture; University of Connecticut; Storrs, CT USA
- Correspondence to: Huanzhong Wang;
| |
Collapse
|
303
|
Takata N, Taniguchi T. Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus. PLANTA 2015; 241:29-42. [PMID: 25486888 DOI: 10.1007/s00425-014-2217-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.
Collapse
Affiliation(s)
- Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan,
| | | |
Collapse
|
304
|
Wang H, Tang R, Wang C, Qi Q, Gai Y, Jiang X, Zhang H. Functional repression of PtSND2 represses growth and development by disturbing auxin biosynthesis, transport and signaling in transgenic poplar. TREE PHYSIOLOGY 2015; 35:95-105. [PMID: 25516528 DOI: 10.1093/treephys/tpu100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using chimeric repressor silencing technology, we previously reported that functional repression of PtSND2 severely arrested wood formation in transgenic poplar (Populus). Here, we provide further evidence that auxin biosynthesis, transport and signaling were disturbed in these transgenic plants, leading to pleiotropic defects in their growth patterns, including inhibited leaf enlargement and vascular tissue development in the leaf central vein, suppressed cambial growth and fiber elongation in the stem, and arrested growth in the root system. Two transgenic lines, which displayed the most remarkable phenotypic deviation from the wild-type, were selected for detailed studies. In both transgenic lines, expression of genes for auxin biosynthesis, transport and signaling was down-regulated, and indole-3-acetic acid distribution was severely disturbed in the apical buds, leaves, stems and roots of field-grown transgenic plants. Transient transcription dual-luciferase assays of ProPtTYDC2::LUC, ProPttLAX2::LUC and ProPoptrIAA20.2::LUC in poplar protoplasts revealed that expression of auxin-related genes might be regulated by PtSND2 at the transcriptional level. All these results indicate that functional repression of PtSND2 altered auxin biosynthesis, transport and signaling, and thereby disturbed the normal growth and development of transgenic plants.
Collapse
Affiliation(s)
- Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Renjie Tang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China Present address: Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Cuiting Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Qi Qi
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ying Gai
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xiangning Jiang
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, National Engineering Laboratory for Tree Breeding, Beijing 100083, P. R. China
| | - Hongxia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
305
|
Scullin C, Cruz AG, Chuang YD, Simmons BA, Loque D, Singh S. Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:95. [PMID: 26161139 PMCID: PMC4496950 DOI: 10.1186/s13068-015-0275-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 06/15/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignocellulosic biomass has the potential to be a major source of renewable sugar for biofuel production. Before enzymatic hydrolysis, biomass must first undergo a pretreatment step in order to be more susceptible to saccharification and generate high yields of fermentable sugars. Lignin, a complex, interlinked, phenolic polymer, associates with secondary cell wall polysaccharides, rendering them less accessible to enzymatic hydrolysis. Herein, we describe the analysis of engineered Arabidopsis lines where lignin biosynthesis was repressed in fiber tissues but retained in the vessels, and polysaccharide deposition was enhanced in fiber cells with little to no apparent negative impact on growth phenotype. RESULTS Engineered Arabidopsis plants were treated with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate 1-ethyl-3-methylimidazolium acetate ([C2C1im][OAc]) at 10 % wt biomass loading at either 70 °C for 5 h or 140 °C for 3 h. After pretreatment at 140 °C and subsequent saccharification, the relative peak sugar recovery of ~26.7 g sugar per 100 g biomass was not statistically different for the wild type than the peak recovery of ~25.8 g sugar per 100 g biomass for the engineered plants (84 versus 86 % glucose from the starting biomass). Reducing the pretreatment temperature to 70 °C for 5 h resulted in a significant reduction in the peak sugar recovery obtained from the wild type to 16.2 g sugar per 100 g biomass, whereas the engineered lines with reduced lignin content exhibit a higher peak sugar recovery of 27.3 g sugar per 100 g biomass and 79 % glucose recoveries. CONCLUSIONS The engineered Arabidopsis lines generate high sugar yields after pretreatment at 70 °C for 5 h and subsequent saccharification, while the wild type exhibits a reduced sugar yield relative to those obtained after pretreatment at 140 °C. Our results demonstrate that employing cell wall engineering efforts to decrease the recalcitrance of lignocellulosic biomass has the potential to drastically reduce the energy required for effective pretreatment.
Collapse
Affiliation(s)
- Chessa Scullin
- />Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- />Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA USA
| | - Alejandro G. Cruz
- />Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- />Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA USA
| | - Yi-De Chuang
- />Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA USA
| | - Blake A. Simmons
- />Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- />Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA USA
| | - Dominique Loque
- />Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Seema Singh
- />Deconstruction Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- />Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA USA
- />Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608 USA
| |
Collapse
|
306
|
Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 2014; 517:571-5. [PMID: 25533953 PMCID: PMC4333722 DOI: 10.1038/nature14099] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.
Collapse
Affiliation(s)
- M Taylor-Teeples
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - L Lin
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - M de Lucas
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - G Turco
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - T W Toal
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - A Gaudinier
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - N F Young
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - G M Trabucco
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - M T Veling
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - R Lamothe
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - P P Handakumbura
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - G Xiong
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - C Wang
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - J Corwin
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - A Tsoukalas
- 1] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Department of Computer Science, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - L Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - D Ware
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA [2] US Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853, USA
| | - M Pauly
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - D J Kliebenstein
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - K Dehesh
- Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - I Tagkopoulos
- 1] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Department of Computer Science, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - G Breton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - J L Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - S E Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - S A Kay
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - S P Hazen
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - S M Brady
- 1] Department of Plant Biology, University of California Davis, One Shields Avenue, Davis, California 95616, USA [2] Genome Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
307
|
Negi S, Tak H, Ganapathi TR. Cloning and functional characterization of MusaVND1 using transgenic banana plants. Transgenic Res 2014; 24:571-85. [PMID: 25523085 DOI: 10.1007/s11248-014-9860-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Vascular related NAC (NAM, ATAF and CUC) domain-containing genes regulate secondary wall deposition and differentiation of xylem vessel elements. MusaVND1 is an ortholog of Arabidopsis VND1 and contains the highly conserved NAC domain. The expression of MusaVND1 is highest in developing corm and during lignification conditions, the increase in expression of MusaVND1 coincides with the expression of PAL, COMT and C4H genes. MusaVND1 encodes a nuclear localized protein as MusaVND1-GFP fusion protein gets localized to nucleus. Transient overexpression of MusaVND1 converts banana embryogenic cells to xylem vessel elements, with a final differentiation frequency of 33.54% at the end of tenth day. Transgenic banana plants overexpressing MusaVND1 showed stunted growth and were characterized by PCR and Southern blot analysis. Transgenic banana plants showed transdifferentiation of various types of cells into xylem vessel elements and ectopic deposition of lignin in cells of various plant organs such as leaf and corm. Tracheary element formation was seen in the cortical region of transgenic corm as well as in epidermal cells of leaves. Biochemical analysis indicates significantly higher levels of lignin and cellulose content in transgenic banana lines than control plants. MusaVND1 overexpressing transgenic banana plants showed elevated expression levels of genes involved in lignin and cellulose biosynthesis pathway. Further expression of different MYB transcription factors positively regulating secondary wall deposition was also up regulated in MusaVND1 transgenic lines.
Collapse
Affiliation(s)
- Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
308
|
Zhong R, Ye ZH. Complexity of the transcriptional network controlling secondary wall biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:193-207. [PMID: 25443846 DOI: 10.1016/j.plantsci.2014.09.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 05/02/2023]
Abstract
Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
309
|
Liu Y, You S, Taylor-Teeples M, Li WL, Schuetz M, Brady SM, Douglas CJ. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. THE PLANT CELL 2014; 26:4843-61. [PMID: 25490916 PMCID: PMC4311193 DOI: 10.1105/tpc.114.128322] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 05/17/2023]
Abstract
The TALE homeodomain transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is part of a regulatory network governing the commitment to secondary cell wall biosynthesis of Arabidopsis thaliana, where it contributes to negative regulation of this process. Here, we report that BLH6, a BELL1-LIKE HOMEODOMAIN protein, specifically interacts with KNAT7, and this interaction influences secondary cell wall development. BLH6 is a transcriptional repressor, and BLH6-KNAT7 physical interaction enhances KNAT7 and BLH6 repression activities. The overlapping expression patterns of BLH6 and KNAT7 and phenotypes of blh6, knat7, and blh6 knat7 loss-of-function mutants are consistent with the existence of a BLH6-KNAT7 heterodimer that represses commitment to secondary cell wall biosynthesis in interfascicular fibers. BLH6 and KNAT7 overexpression results in thinner interfascicular fiber secondary cell walls, phenotypes that are dependent on the interacting partner. A major impact of the loss of BLH6 and KNAT7 function is enhanced expression of the homeodomain-leucine zipper transcription factor REVOLUTA/INTERFASCICULAR FIBERLESS1 (REV/IFL1). BLH6 and KNAT7 bind to the REV promoter and repress REV expression, while blh6 and knat7 interfascicular fiber secondary cell wall phenotypes are suppressed in blh6 rev and knat7 rev double mutants, suggesting that BLH6/KNAT7 signaling acts through REV as a direct target.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Shijun You
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Mallorie Taylor-Teeples
- Department of Plant Biology, UC Davis, Davis, California 95616 Genome Center, UC Davis, Davis, California 95616
| | - Wenhua L Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Siobhan M Brady
- Department of Plant Biology, UC Davis, Davis, California 95616 Genome Center, UC Davis, Davis, California 95616
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
310
|
Kalluri UC, Yin H, Yang X, Davison BH. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1207-16. [PMID: 25363806 PMCID: PMC4265275 DOI: 10.1111/pbi.12283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 05/19/2023]
Abstract
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.
Collapse
Affiliation(s)
- Udaya C Kalluri
- BioEnergy Science Center and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
- * Correspondence (Tel 1 865 576 9495, fax 1 865 576 9939; email )
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Brian H Davison
- BioEnergy Science Center and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| |
Collapse
|
311
|
Ji L, Hu R, Jiang J, Qi G, Yang X, Zhu M, Fu C, Zhou G, Yi Z. Molecular cloning and expression analysis of 13 NAC transcription factors in Miscanthus lutarioriparius. PLANT CELL REPORTS 2014; 33:2077-2092. [PMID: 25224554 DOI: 10.1007/s00299-014-1682-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/30/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
The 13 MlNAC genes could respond to various abiotic stresses, suggesting their crucial roles in stress response. Overexpression of MlNAC2 in Arabidopsis led to improved drought tolerance. NAC (NAM, ATAF1/2 and CUC2) proteins are plant-specific transcription factors that play crucial roles in plant development, growth and stress responses. In this study, 13 stress-responsive NAC genes were identified from Miscanthus lutarioriparius. Full-length cDNA sequences were obtained for 11 MlNAC genes, which were phylogenetically classified into six subfamilies. Sequence alignment revealed the highly conserved NAC domain in the N-terminus of these MlNACs, while the C-terminus was highly divergent. We performed quantitative real-time RT-PCR to examine the expression profiles of MlNAC genes in different tissues including root, rhizome, mature stem, young stem, leaf and sheath. The 13 MlNAC genes displayed distinct tissue-specific patterns in six tissues examined. To gain further insight into their roles in response to abiotic stresses, expressions of MlNAC genes were analyzed under different stresses and hormone treatments including salt, drought, cold, wounding, abscisic acid, Methyl jasmonate and salicylic acid. The 13 MlNAC genes could respond to at least five stress treatments, and over 100-fold variations in transcript levels of MlNAC1, MlNAC2, MlNAC4, and MlNAC12 were observed in salt, drought and MeJA treatments, which indicated that MlNACs play crucial roles in stress response. Crosstalk among various abiotic stress and hormone responses was also discussed based on the expression of MlNAC genes. Overexpression of MlNAC2 in Arabidopsis (Col-0) led to improved drought tolerance. The water loss rate was significantly lower, and the recovery rate after a 60-min dehydration stress treatment was significantly higher in the MlNAC2 overexpression lines than the control.
Collapse
Affiliation(s)
- Lu Ji
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One 2014; 9:e111837. [PMID: 25369196 PMCID: PMC4219692 DOI: 10.1371/journal.pone.0111837] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Mi Ni
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
- * E-mail:
| |
Collapse
|
313
|
Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:604-14. [PMID: 25182467 DOI: 10.1111/tpj.12654] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process.
Collapse
Affiliation(s)
- Weerasak Pitaksaringkarn
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Zhong R, Ye ZH. Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. ACTA ACUST UNITED AC 2014; 56:195-214. [DOI: 10.1093/pcp/pcu140] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
315
|
Quilichini TD, Douglas CJ, Samuels AL. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. ANNALS OF BOTANY 2014; 114:1189-201. [PMID: 24723448 PMCID: PMC4195548 DOI: 10.1093/aob/mcu042] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND AIMS The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy. METHODS In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat. KEY RESULTS Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively. CONCLUSIONS This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.
Collapse
Affiliation(s)
- Teagen D Quilichini
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
316
|
Ko JH, Jeon HW, Kim WC, Kim JY, Han KH. The MYB46/MYB83-mediated transcriptional regulatory programme is a gatekeeper of secondary wall biosynthesis. ANNALS OF BOTANY 2014; 114:1099-107. [PMID: 24984711 PMCID: PMC4195559 DOI: 10.1093/aob/mcu126] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/06/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary walls also constitute the majority of plant biomass. Formation of secondary walls requires co-ordinated transcriptional regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated control appears to involve a multifaceted and multilayered transcriptional regulatory programme. SCOPE Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46. CONCLUSIONS AND OUTLOOK MYB46 is a unique transcription factor in that it directly regulates the biosynthesis genes for all of the three major components of the secondary wall as well as the transcription factors in the biosynthesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall biosynthesis. However, realization of this potential requires additional information on the 'MYB46-mediated transcriptional regulatory programme', such as downstream direct targets, upstream regulators and interacting partners of MYB46.
Collapse
Affiliation(s)
- J-H Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin-si, Korea
| | - H-W Jeon
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin-si, Korea
| | - W-C Kim
- Department of Horticulture DOE-Great Lakes Bioenergy Research Center
| | | | - K-H Han
- Department of Horticulture DOE-Great Lakes Bioenergy Research Center Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
317
|
Xiao Y, Chen Y, Charnikhova T, Mulder PPJ, Heijmans J, Hoogenboom A, Agalou A, Michel C, Morel JB, Dreni L, Kater MM, Bouwmeester H, Wang M, Zhu Z, Ouwerkerk PBF. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. PLANT MOLECULAR BIOLOGY 2014; 86:19-33. [PMID: 24947835 DOI: 10.1007/s11103-014-0212-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Jasmonates are important phytohormones regulating reproductive development. We used two recessive rice Tos17 alleles of OsJAR1, osjar1-2 and osjar1-3, to study the biological function of jasmonates in rice anthesis. The florets of both osjar1 alleles stayed open during anthesis because the lodicules, which control flower opening in rice, were not withering on time. Furthermore, dehiscence of the anthers filled with viable pollen, was impaired, resulting in lower fertility. In situ hybridization and promoter GUS transgenic analysis confirmed OsJAR1 expression in these floral tissues. Flower opening induced by exogenous applied methyl jasmonate was impaired in osjar1 plants and was restored in a complementation experiment with transgenics expressing a wild type copy of OsJAR1 controlled by a rice actin promoter. Biochemical analysis showed that OsJAR1 encoded an enzyme conjugating jasmonic acid (JA) to at least Ile, Leu, Met, Phe, Trp and Val and both osjar1 alleles had substantial reduction in content of JA-Ile, JA-Leu and JA-Val in florets. We conclude that OsJAR1 is a JA-amino acid synthetase that is required for optimal flower opening and closing and anther dehiscence in rice.
Collapse
Affiliation(s)
- Yuguo Xiao
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Zhou J, Zhong R, Ye ZH. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS One 2014; 9:e105726. [PMID: 25148240 PMCID: PMC4141820 DOI: 10.1371/journal.pone.0105726] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/23/2014] [Indexed: 12/28/2022] Open
Abstract
One of the most prominent features of xylem conducting cells is the deposition of secondary walls. In Arabidopsis, secondary wall biosynthesis in the xylem conducting cells, vessels, has been shown to be regulated by two VASCULAR-RELATED NAC-DOMAIN (VND) genes, VND6 and VND7. In this report, we have investigated the roles of five additional Arabidopsis VND genes, VND1 to VND5, in regulating secondary wall biosynthesis in vessels. The VND1 to VND5 genes were shown to be specifically expressed in vessels but not in interfascicular fibers in stems. The expression of VND4 and VND5 was also seen specifically in vessels in the secondary xylem of the root-hypocotyl region. When overexpressed, VND1 to VND5 were able to activate the expression of secondary wall-associated transcription factors and genes involved in secondary wall biosynthesis and programmed cell death. As a result, many normally parenchymatous cells in leaves and stems acquired thickened secondary walls in the VND1 to VND5 overexpressors. In contrast, dominant repression of VND3 function resulted in reduced secondary wall thickening in vessels and a collapsed vessel phenotype. In addition, VND1 to VND5 were shown to be capable of rescuing the secondary wall defects in the fibers of the snd1 nst1 double mutant when expressed under the SND1 promoter. Furthermore, transactivation analysis revealed that VND1 to VND5 could activate expression of the GUS reporter gene driven by the secondary wall NAC binding element (SNBE). Together, these results demonstrate that VND1 to VND5 possess functions similar to that of the SND1 secondary wall NAC and are transcriptional regulators of secondary wall biosynthesis in vessels.
Collapse
Affiliation(s)
- Jianli Zhou
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
319
|
Kim WC, Kim JY, Ko JH, Kang H, Han KH. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. PLANT MOLECULAR BIOLOGY 2014; 85:589-99. [PMID: 24879533 DOI: 10.1007/s11103-014-0205-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/19/2014] [Indexed: 05/17/2023]
Abstract
Secondary wall formation requires coordinated transcriptional regulation of the genes involved in the biosynthesis of the components of secondary wall. Transcription factor (TF) MYB46 (At5g12870) has been shown to function as a central regulator for secondary wall formation in Arabidopsis thaliana, activating biosynthetic genes as well as the TFs involved in the pathways. Recently, we reported that MYB46 directly regulates secondary wall-associated cellulose synthase (CESA4, CESA7, and CESA8) and a mannan synthase (CSLA9) genes. However, it is not known whether MYB46 directly activates the biosynthetic genes for hemicellulose and lignin, which are the other two major components of secondary wall. Based on the observations that the promoter regions of many of the secondary wall biosynthetic genes contain MYB46-binding cis-regulatory motif(s), we hypothesized that MYB46 directly regulates the genes involved in the biosynthesis of the secondary wall components. In this report, we describe several lines of experimental evidence in support of the hypothesis. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis showed that MYB46 directly binds to the promoters of 13 genes involved in lignin and xylan biosynthesis. We then used steroid receptor-based inducible activation system to confirm that MYB46 directly activates the transcription of the xylan and lignin biosynthetic genes. Furthermore, ectopic up-regulation of MYB46 resulted in a significant increase in xylose and a small increase in lignin content based on acetyl bromide soluble lignin measurements in Arabidopsis. Taken together, we conclude that MYB46 function as a central and direct regulator of the genes involved in the biosynthesis of all three major secondary wall components.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture and Department of Forestry, Michigan State University, 126 Natural Resources, East Lansing, MI, 48824-1222, USA
| | | | | | | | | |
Collapse
|
320
|
Herrero J, Esteban Carrasco A, Zapata JM. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:192-202. [PMID: 24792389 DOI: 10.1016/j.plaphy.2014.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/26/2014] [Indexed: 05/08/2023]
Abstract
Phytohormones such as auxins, cytokinins, and brassinosteroids, act by means of a signaling cascade of transcription factors of the families NAC, MYB, AP2 (APETALA2), MADS and class III HD (homeodomain) Zip, regulating secondary growth. When the hormonal regulation of Zinnia elegans peroxidase (ZePrx), an enzyme involved in lignin biosynthesis, was studied, it was found that this peroxidase is sensitive to a plethora of hormones which control xylem lignification. In a previous study we sought Arabidopsis thaliana homologues to ZePrx. Peroxidases 4, 52, 49 and 72 are the four peroxidases that fulfill the restrictive conditions that a peroxidase involved in lignification must have. In the present study, we focus our attention on hormonal regulation in order to establish the minimal structural and regulatory elements contained in the promoter region which an AtPrx involved in lignification must have. The results indicate that of the four peroxidases selected in our previous study, the one most likely to be homologous to ZePrx is AtPrx52. The results suggest that hormones such as auxins, cytokinins and BRs directly regulate AtPrx52, and that the AtPrx52 promoter may be the target of the set of transcription factors (NAC, MYB, AP2 and class I and III HD Zip) which are up-regulated by these hormones during secondary growth. In addition, the AtPrx52 promoter contains multiple copies of all the putative cis-elements (the ACGT box, the OCS box, the OPAQ box, the L1BX, the MYCL box and the W box) known to confer regulation by NO and H2O2.
Collapse
Affiliation(s)
- Joaquín Herrero
- Department of Life Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | - José Miguel Zapata
- Department of Life Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
321
|
Chai G, Qi G, Cao Y, Wang Z, Yu L, Tang X, Yu Y, Wang D, Kong Y, Zhou G. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. THE NEW PHYTOLOGIST 2014; 203:520-534. [PMID: 24786865 DOI: 10.1111/nph.12825] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/26/2014] [Indexed: 05/21/2023]
Abstract
Wood biomass is mainly made of secondary cell walls, whose formation is controlled by a multilevel network. The tandem CCCH zinc finger (TZF) proteins involved in plant secondary wall formation are poorly understood. Two TZF genes, PdC3H17 and PdC3H18, were isolated from Populus deltoides and functionally characterized in Escherichia coli, tobacco, Arabidopsis and poplar. PdC3H17 and PdC3H18 are predominantly expressed in cells of developing wood, and the proteins they encode are targeted to cytoplasmic foci. Transcriptional activation assays showed that PdMYB2/3/20/21 individually activated the PdC3H17 and PdC3H18 promoters, but PdMYB3/21 were most significant. Electrophoretic mobility shift assays revealed that PdMYB3/21 bound directly to the PdC3H17/18 promoters. Overexpression of PdC3H17/18 in poplar increased secondary xylem width and secondary wall thickening in stems, whereas dominant repressors of them had the opposite effects on these traits. Similar alteration in secondary wall thickening was observed in their transgenic Arabidopsis plants. qRT-PCR results showed that PdC3H17/18 regulated the expression of cellulose, xylan and lignin biosynthetic genes, and several wood-associated MYB genes. These results demonstrate that PdC3H17 and PdC3H18 are the targets of PdMYB3 and PdMYB21 and are an additional two components in the regulatory network of secondary xylem formation in poplar.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guang Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingping Cao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zengguang Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Li Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xianfeng Tang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanchong Yu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resource, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
322
|
Dardick C, Callahan AM. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. FRONTIERS IN PLANT SCIENCE 2014; 5:284. [PMID: 25009543 PMCID: PMC4070412 DOI: 10.3389/fpls.2014.00284] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 05/20/2023]
Abstract
Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages.
Collapse
Affiliation(s)
- Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research ServiceKearneysville, WV, USA
| | | |
Collapse
|
323
|
Lindemose S, Jensen MK, Van de Velde J, O'Shea C, Heyndrickx KS, Workman CT, Vandepoele K, Skriver K, De Masi F. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Nucleic Acids Res 2014; 42:7681-93. [PMID: 24914054 PMCID: PMC4081100 DOI: 10.1093/nar/gku502] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application of complementary functional genomics filters, makes it possible to translate, for each TF, protein binding microarray data into a set of high-quality target genes. With this approach, we confirm NAC target genes reported from independent in vivo analyses. We emphasize that candidate target gene sets together with the workflow associated with functional modules offer a strong resource to unravel the regulatory potential of NAC genes and that this workflow could be used to study other families of transcription factors.
Collapse
Affiliation(s)
- Søren Lindemose
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
| | - Jan Van de Velde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Charlotte O'Shea
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Institute for Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Karen Skriver
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Federico De Masi
- Center for Biological Sequence Analysis, Institute for Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
324
|
Duval I, Lachance D, Giguère I, Bomal C, Morency MJ, Pelletier G, Boyle B, MacKay JJ, Séguin A. Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2319-33. [PMID: 24713992 PMCID: PMC4036505 DOI: 10.1093/jxb/eru116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.
Collapse
Affiliation(s)
- Isabelle Duval
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Isabelle Giguère
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - Claude Bomal
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| | - Brian Boyle
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada
| | - John J MacKay
- Centre d'Étude de la Forêt, Université Laval, Québec, QC, G1V A06, Canada Department of Plant Sciences, University of Oxford, Oxford, OX1 2RB, UK
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, G1V 4C7, Canada
| |
Collapse
|
325
|
Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. PLANT MOLECULAR BIOLOGY 2014; 85:63-80. [PMID: 24570169 PMCID: PMC4151281 DOI: 10.1007/s11103-013-0169-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/24/2013] [Indexed: 05/02/2023]
Abstract
Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.
Collapse
Affiliation(s)
- Albero Cenci
- Bioversity International, Commodity Systems and Genetic Resources Programme, Parc Scientifique Agropolis II, 1990 Boulevard de la Lironde, 34397, Montpellier Cedex 5, France,
| | | | | | | |
Collapse
|
326
|
Liu T, Zhu S, Tang Q, Tang S. Identification of 32 full-length NAC transcription factors in ramie (Boehmeria nivea L. Gaud) and characterization of the expression pattern of these genes. Mol Genet Genomics 2014; 289:675-84. [PMID: 24691727 DOI: 10.1007/s00438-014-0842-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
Abstract
NAM, ATAF, and CUC (NAC) genes are plant-specific transcription factors (TFs) that play key roles in plant growth, development, and stress tolerance. To date, none of the ramie NAC (BnNAC) genes had been identified, even though ramie is one of the most important natural fiber crops. In order to mine the BnNAC TFs and identify their potential function, the search for BnNAC genes against two pools of unigenes de novo assembled from the RNA-seq in our two previous studies was performed, and a total of 32 full-length BnNAC genes were identified in this study. Forty-seven function-known NAC proteins published in other species, in concert with these 32 BnNAC proteins were subjected to phylogenetic analysis, and the result showed that all the 79 NAC proteins can be divided into eight groups (NAC-I-VIII). Among the 32 BnNAC genes, 24, 2, and 1 gene showed higher expression in stem xylem, leaf, and flower, respectively. Furthermore, the expression of 14, 11 and 4 BnNAC genes was regulated by drought, cadmium stress, and infection by root lesion nematode, respectively. Interestingly, there were five BnNAC TFs which showed high homology with the NAC TFs of other species involved in regulating the secondary wall synthesis, and their expressions were not regulated by drought and cadmium stress. These results suggested that the BnNAC family might have a functional diversity. The identification of these 32 full-length BnNAC genes and the characterization of their expression pattern provide a basis for future clarification of their functions in ramie growth and development.
Collapse
Affiliation(s)
- Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China,
| | | | | | | |
Collapse
|
327
|
Fan X, Yang C, Klisch D, Ferguson A, Bhaellero RP, Niu X, Wilson ZA. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development. PLANT PHYSIOLOGY 2014; 164:1338-49. [PMID: 24424320 PMCID: PMC3938624 DOI: 10.1104/pp.113.227769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/14/2014] [Indexed: 05/18/2023]
Abstract
The trans-Golgi network (TGN) plays a central role in cellular secretion and has been implicated in sorting cargo destined for the plasma membrane. Previously, the Arabidopsis (Arabidopsis thaliana) echidna (ech) mutant was shown to exhibit a dwarf phenotype due to impaired cell expansion. However, ech also has a previously uncharacterized phenotype of reduced male fertility. This semisterility is due to decreased anther size and reduced amounts of pollen but also to decreased pollen viability, impaired anther opening, and pollen tube growth. An ECH translational fusion (ECHPro:ECH-yellow fluorescent protein) revealed developmentally regulated tissue-specific expression, with expression in the tapetum during early anther development and microspore release and subsequent expression in the pollen, pollen tube, and stylar tissues. Pollen viability and production, along with germination and pollen tube growth, were all impaired. The ech anther endothecium secondary wall thickening also appeared reduced and disorganized, resulting in incomplete anther opening. This did not appear to be due to anther secondary thickening regulatory genes but perhaps to altered secretion of wall materials through the TGN as a consequence of the absence of the ECH protein. ECH expression is critical for a variety of aspects of male reproduction, including the production of functional pollen grains, their effective release, germination, and tube formation. These stages of pollen development are fundamentally influenced by TGN trafficking of hormones and wall components. Overall, this suggests that the fertility defect is multifaceted, with the TGN trafficking playing a significant role in the process of both pollen formation and subsequent fertilization.
Collapse
|
328
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
329
|
Shih CF, Hsu WH, Peng YJ, Yang CH. The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:621-39. [PMID: 24323506 PMCID: PMC3904717 DOI: 10.1093/jxb/ert412] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ANTHER INDEHISCENCE FACTOR (AIF), a NAC-like gene, was identified in Arabidopsis. In AIF:GUS flowers, β-glucuronidase (GUS) activity was detected in the anther, the upper parts of the filaments, and in the pollen of stage 7-9 young flower buds; GUS activity was reduced in mature flowers. Yellow fluorescent protein (YFP)+AIF-C fusion proteins, which lacked a transmembrane domain, accumulated in the nuclei of the Arabidopsis cells, whereas the YFP+AIF fusion proteins accumulated in the membrane and were absent in the nuclei. Further detection of a cleaved AIF protein in flowers revealed that AIF needs to be processed and released from the endoplasmic reticulum in order to function. The ectopic expression of AIF-C caused a male-sterile phenotype with indehiscent anthers throughout flower development in Arabidopsis. The presence of a repressor domain in AIF and the similar phenotype of indehiscent anthers in AIF-C+SRDX plants suggest that AIF acts as a repressor. The defect in anther dehiscence was due to the down-regulation of genes that participate in jasmonic acid (JA) biosynthesis, such as DAD1/AOS/AOC3/OPR3/OPCL1. The external application of JA rescued the anther indehiscence in AIF-C and AIF-C+SRDX flowers. In AIF-C+VP16 plants, which are transgenic dominant-negative mutants in which AIF is converted to a potent activator via fusion to a VP16-AD motif, the anther dehiscence was promoted, and the expression of DAD1/AOS/AOC3/OPR3/OPCL1 was up-regulated. Furthermore, the suppression of AIF through an antisense strategy resulted in a mutant phenotype similar to that observed in the AIF-C+VP16 flowers. The present data suggest a role for AIF in controlling anther dehiscence by suppressing the expression of JA biosynthesis genes in Arabidopsis.
Collapse
Affiliation(s)
- Ching-Fang Shih
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Yan-Jhu Peng
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227 ROC
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
330
|
Zhao Y, Sun J, Xu P, Zhang R, Li L. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. PLANT PHYSIOLOGY 2014; 164:765-76. [PMID: 24394777 PMCID: PMC3912104 DOI: 10.1104/pp.113.231134] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/03/2014] [Indexed: 05/18/2023]
Abstract
Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.
Collapse
|
331
|
Oda Y, Fukuda H. Emerging roles of small GTPases in secondary cell wall development. FRONTIERS IN PLANT SCIENCE 2014; 5:428. [PMID: 25206358 PMCID: PMC4143617 DOI: 10.3389/fpls.2014.00428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/12/2014] [Indexed: 05/08/2023]
Abstract
Regulation of plant cell wall deposition and patterning is essential for the normal growth and development of plants. Small GTPases play pivotal roles in the modulation of primary cell wall formation by controlling cytoskeletal organization and membrane trafficking. However, the functions of small GTPases in secondary cell wall development are poorly understood. Recent studies on xylem cells revealed that the Rho of plants (ROP) group of small GTPases critically participates in the spatial patterning of secondary cell walls. In differentiating xylem cells, a specific GTPase-activating protein (GAP)/guanine nucleotide exchange factor (GEF) pair facilitates local activation of ROP11 to establish de novo plasma membrane domains. The activated ROP11 then recruits a microtubule-associated protein, MIDD1, to mediate the mutual inhibition between cortical microtubules and active ROP. Furthermore, recent works suggest that certain small GTPases, including ROP and Rab GTPases, regulate membrane trafficking to establish secondary cell wall deposition and patterning. Accordingly, this mini-review assesses and summarizes the current literature regarding the emerging functions of small GTPases in the development of secondary cell walls.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- The Graduate University For Advanced StudiesMishima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Yoshihisa Oda, Center for Frontier Research, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|
332
|
Hao Z, Avci U, Tan L, Zhu X, Glushka J, Pattathil S, Eberhard S, Sholes T, Rothstein GE, Lukowitz W, Orlando R, Hahn MG, Mohnen D. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. FRONTIERS IN PLANT SCIENCE 2014; 5:357. [PMID: 25120548 PMCID: PMC4112939 DOI: 10.3389/fpls.2014.00357] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/03/2014] [Indexed: 05/02/2023]
Abstract
GAlactUronosylTransferase12 (GAUT12)/IRregular Xylem8 (IRX8) is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8) mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG). We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS) and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D (13)C-(1)H Heteronuclear Single-Quantum Correlation (HSQC) NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation.
Collapse
Affiliation(s)
- Zhangying Hao
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Li Tan
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Xiang Zhu
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- Department of Chemistry, University of GeorgiaAthens, GA, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Stefan Eberhard
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Tipton Sholes
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Grace E. Rothstein
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- Department of Biology, Lawrence UniversityAppleton, WI, USA
| | | | - Ron Orlando
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- Department of Chemistry, University of GeorgiaAthens, GA, USA
| | - Michael G. Hahn
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
- BioEnergy Science Center (BESC), Oak Ridge National LaboratoryOak Ridge, TN, USA
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthens, GA, USA
- *Correspondence: Debra Mohnen, Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA e-mail:
| |
Collapse
|
333
|
|
334
|
Sun F, Yuan X, Xu Q, Zhou T, Fan Y, Zhou Y. Overexpression of rice black-streaked dwarf virus p7-1 in Arabidopsis results in male sterility due to non-dehiscent anthers. PLoS One 2013; 8:e79514. [PMID: 24260239 PMCID: PMC3829848 DOI: 10.1371/journal.pone.0079514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/21/2013] [Indexed: 12/28/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Xia Yuan
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Qiufang Xu
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Tong Zhou
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yongjian Fan
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| | - Yijun Zhou
- Key Laboratory of Monitoring and Management of Plant Virus Diseases, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China
| |
Collapse
|
335
|
Toda Y, Yoshida M, Hattori T, Takeda S. RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex. PLANT SIGNALING & BEHAVIOR 2013; 8:e26256. [PMID: 23989667 PMCID: PMC4091359 DOI: 10.4161/psb.26256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of plants, in accordance with their sessile lifestyle. This is linked to the balance between plasticity and rigidity of cells in the root apex, and thus is coordinated with the control of cell wall properties. However, mechanisms underlying such harmonization are not well understood, in particular under stressful conditions. We have recently demonstrated that RICE SALT SENSITIVE3 (RSS3), a nuclear factor that mediates restrictive expression of jasmonate-induced genes, plays an important role in root elongation under saline conditions. In this study, we report that loss-of-function of RSS3 results in changes in cell wall properties such as lignin deposition and sensitivity to a cellulose synthase inhibitor, concomitant with altered expression of genes involved in cell wall metabolism. Based on these and previous phenotypic observations of the rss3 mutant, we propose that RSS3 plays a role in the coordinated control of root elongation and cell wall plasticity in the root apex.
Collapse
Affiliation(s)
- Yosuke Toda
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa, Nagoya, Japan
| | - Tsukaho Hattori
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center; Nagoya University; Chikusa, Nagoya, Japan
- Correspondence to: Shin Takeda,
| |
Collapse
|
336
|
Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Identification of Transcription Factors Involved in Rice Secondary Cell Wall Formation. ACTA ACUST UNITED AC 2013; 54:1791-802. [DOI: 10.1093/pcp/pct122] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
337
|
Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of Genes Involved in Rice Secondary Cell Wall Formation Through a Co-Expression Network. ACTA ACUST UNITED AC 2013; 54:1803-21. [DOI: 10.1093/pcp/pct121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
338
|
Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takagi M, Mitsuda N. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. FRONTIERS IN PLANT SCIENCE 2013; 4:383. [PMID: 24098302 PMCID: PMC3787547 DOI: 10.3389/fpls.2013.00383] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/10/2013] [Indexed: 05/04/2023]
Abstract
Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei CorporationYokohama, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | - Tetsushi Kawai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | | | | | | | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| | | | - Hiroko Sato
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research OrganizationNasushiobara, Japan
| | - Tadashi Takamizo
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research OrganizationNasushiobara, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
- Institute for Environmental Science and Technology, Saitama UniversitySaitama, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| |
Collapse
|
339
|
Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. PLANT PHYSIOLOGY 2013; 163:775-91. [PMID: 23933991 PMCID: PMC3793057 DOI: 10.1104/pp.113.223388] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/08/2013] [Indexed: 05/18/2023]
Abstract
Cell expansion is crucial for plant growth. It is well known that the phytohormone ethylene functions in plant development as a key modulator of cell expansion. However, the role of ethylene in the regulation of this process remains unclear. In this study, 2,189 ethylene-responsive transcripts were identified in rose (Rosa hybrida) petals using transcriptome sequencing and microarray analysis. Among these transcripts, an NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor gene, RhNAC100, was rapidly and dramatically induced by ethylene in the petals. Interestingly, accumulation of the RhNAC100 transcript was modulated by ethylene via microRNA164-dependent posttranscriptional regulation. Overexpression of RhNAC100 in Arabidopsis (Arabidopsis thaliana) substantially reduced the petal size by repressing petal cell expansion. By contrast, silencing of RhNAC100 in rose petals using virus-induced gene silencing significantly increased petal size and promoted cell expansion in the petal abaxial subepidermis (P < 0.05). Expression analysis showed that 22 out of the 29 cell expansion-related genes tested exhibited changes in expression in RhNAC100-silenced rose petals. Moreover, of those genes, one cellulose synthase and two aquaporin genes (Rosa hybrida Cellulose Synthase2 and R. hybrida Plasma Membrane Intrinsic Protein1;1/2;1) were identified as targets of RhNAC100. Our results suggest that ethylene regulates cell expansion by fine-tuning the microRNA164/RhNAC100 module and also provide new insights into the function of NAC transcription factors.
Collapse
|
340
|
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. THE PLANT CELL 2013; 25:3976-87. [PMID: 24143805 PMCID: PMC3877815 DOI: 10.1105/tpc.113.117770] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 09/30/2013] [Indexed: 05/18/2023]
Abstract
The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants.
Collapse
Affiliation(s)
- Qiao Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jin Nakashima
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Fang Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115
| | - Chunxiang Fu
- Forage Improvement Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Jianfei Yun
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Hui Shao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Xiaoqiang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Zeng-Yu Wang
- Forage Improvement Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Richard A. Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Address correspondence to
| |
Collapse
|
341
|
Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y, Li L. Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:354-9. [PMID: 23816928 DOI: 10.1016/j.plaphy.2013.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 05/23/2023]
Abstract
Drought stress can severely affect plant growth and substantially diminish crop yields. We previously isolated Arachis hypogaea NAC3 (AhNAC3), a dehydration-induced NAM/ATAF/CUC (NAC) gene from peanut. In this study, to examine the role of AhNAC3 in stress tolerance, we constructed transgenic tobacco lines overexpressing AhNAC3. The transgenic plants showed hyper-resistance to dehydration and drought stresses and accumulated more proline and less superoxide anion (O2(-)) than wild type under dehydration and drought conditions. Moreover, the transgenic plants showed upregulation of four functional genes, superoxide dismutase (SOD), pyrroline-5-carboxylate synthetase (P5SC), late embryogenic abundant proteins (LEA), and early response to drought 10 (ERD10C). Protein localization and transactivation analysis suggested that AhNAC3 activates its specific targets in the nucleus. These results suggest that AhNAC3 is a dehydration-induced transcription factor that improves water stress tolerance by increasing superoxide scavenging and promoting the accumulation of various protective molecules.
Collapse
Affiliation(s)
- Xu Liu
- Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
| | | | | | | | | | | | | |
Collapse
|
342
|
Hussey SG, Mizrachi E, Creux NM, Myburg AA. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. FRONTIERS IN PLANT SCIENCE 2013; 4:325. [PMID: 24009617 PMCID: PMC3756741 DOI: 10.3389/fpls.2013.00325] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 05/17/2023]
Abstract
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
343
|
Wang HH, Tang RJ, Liu H, Chen HY, Liu JY, Jiang XN, Zhang HX. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus. TREE PHYSIOLOGY 2013; 33:878-86. [PMID: 23939552 DOI: 10.1093/treephys/tpt058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional activation analyses indicated that PtSND2 is a wood-associated transcriptional factor with the predicted transcriptional activation activity, which could be inhibited by the repression domain SUPERMAN REPRESSION DOMAIN X (SRDX) in yeast. Wood formation was severely repressed in transgenic poplar plants overexpressing PtSND2-SRDX. Meanwhile, the secondary cell wall thickness of xylem fibers was restrained, and the contents of cellulose and lignin were obviously decreased in the stems of transgenic plants. Further studies indicated that expressions of a number of wood-associated genes were down-regulated in the stems of transgenic plants. Our results suggest that PtSND2 may play important roles during the secondary growth of stems in poplar.
Collapse
Affiliation(s)
- H H Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
344
|
Shang H, Li W, Zou C, Yuan Y. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:663-76. [PMID: 23756542 DOI: 10.1111/jipb.12085] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/02/2012] [Indexed: 05/18/2023]
Abstract
NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii.
Collapse
Affiliation(s)
- Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Sciences, Anyang, 455004, China
| | | | | | | |
Collapse
|
345
|
Cecchetti V, Altamura MM, Brunetti P, Petrocelli V, Falasca G, Ljung K, Costantino P, Cardarelli M. Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:411-22. [PMID: 23410518 DOI: 10.1111/tpj.12130] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 05/26/2023]
Abstract
It has been suggested that, in Arabidopsis, auxin controls the timing of anther dehiscence, possibly by preventing premature endothecium lignification. We show here that auxin content in anthers peaks before the beginning of dehiscence and decreases when endothecium lignification occurs. We show that, in the auxin-perception mutants afb1-3 and tir1 afb2 afb3, endothecium lignification and anther dehiscence occur earlier than wild-type, and the gene encoding the transcription factor MYB26, which is required for endothecium lignification, is over-expressed specifically at early stages; in agreement, MYB26 expression is reduced in naphthalene acetic acid-treated anthers, and afb1 myb26 double mutants show no endothecial lignification, suggesting that auxin acts through MYB26. As jasmonic acid (JA) controls anther dehiscence, we analysed how auxin and JA interact. In the JA-defective opr3 mutant, indehiscent anthers show normal timing of endothecium lignification, suggesting that JA does not control this event. We show that expression of the OPR3 and DAD1 JA biosynthetic genes is enhanced in afb1-3 and tir1 afb2 afb3 flower buds, but is reduced in naphthalene acetic acid-treated flower buds, suggesting that auxin negatively regulates JA biosynthesis. The double mutant afb1 opr3 shows premature endothecium lignification, as in afb1-3, and indehiscent anthers due to lack of JA, which is required for stomium opening. By treating afb1 opr3 and opr3 inflorescences with JA, we show that a high JA content and precocious endothecium lignification both contribute to induction of early anther dehiscence. We propose that auxin controls anther dehiscence timing by negatively regulating two key events: endothecium lignification via MYB26, and stomium opening via the control of JA biosynthesis.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in arabidopsis. THE PLANT CELL 2013; 25:1641-56. [PMID: 23673982 PMCID: PMC3694697 DOI: 10.1105/tpc.113.111112] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 05/20/2023]
Abstract
Jasmonates (JAs) are plant hormones that regulate the balance between plant growth and responses to biotic and abiotic stresses. Although recent studies have uncovered the mechanisms for JA-induced responses in Arabidopsis thaliana, the mechanisms by which plants attenuate the JA-induced responses remain elusive. Here, we report that a basic helix-loop-helix-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1 (JAM1), acts as a transcriptional repressor and negatively regulates JA signaling. Gain-of-function transgenic plants expressing the chimeric repressor for JAM1 exhibited substantial reduction of JA responses, including JA-induced inhibition of root growth, accumulation of anthocyanin, and male fertility. These plants were also compromised in resistance to attack by the insect herbivore Spodoptera exigua. Conversely, jam1 loss-of-function mutants showed enhanced JA responsiveness, including increased resistance to insect attack. JAM1 and MYC2 competitively bind to the target sequence of MYC2, which likely provides the mechanism for negative regulation of JA signaling and suppression of MYC2 functions by JAM1. These results indicate that JAM1 negatively regulates JA signaling, thereby playing a pivotal role in fine-tuning of JA-mediated stress responses and plant growth.
Collapse
Affiliation(s)
- Masaru Nakata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Marco Herde
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Abraham J.K. Koo
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Javier E. Moreno
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Gregg A. Howe
- Department of Energy–Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama 338-8770, Japan
- Address correspondence to
| |
Collapse
|
347
|
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. THE PLANT CELL 2013; 25:1609-24. [PMID: 23709630 PMCID: PMC3694695 DOI: 10.1105/tpc.113.110783] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/23/2013] [Accepted: 05/06/2013] [Indexed: 05/18/2023]
Abstract
The waxy plant cuticle protects cells from dehydration, repels pathogen attack, and prevents organ fusion during development. The transcription factor WAX INDUCER1/SHINE1 (WIN1/SHN1) regulates the biosynthesis of waxy substances in Arabidopsis thaliana. Here, we show that the MIXTA-like MYB transcription factors MYB106 and MYB16, which regulate epidermal cell morphology, also regulate cuticle development coordinately with WIN1/SHN1 in Arabidopsis and Torenia fournieri. Expression of a MYB106 chimeric repressor fusion (35S:MYB106-SRDX) and knockout/down of MYB106 and MYB16 induced cuticle deficiencies characterized by organ adhesion and reduction of epicuticular wax crystals and cutin nanoridges. A similar organ fusion phenotype was produced by expression of a WIN1/SHN1 chimeric repressor. Conversely, the dominant active form of MYB106 (35S:MYB106-VP16) induced ectopic production of cutin nanoridges and increased expression of WIN1/SHN1 and wax biosynthetic genes. Microarray experiments revealed that MYB106 and WIN1/SHN1 regulate similar sets of genes, predominantly those involved in wax and cutin biosynthesis. Furthermore, WIN1/SHN1 expression was induced by MYB106-VP16 and repressed by MYB106-SRDX. These results indicate that the regulatory cascade of MIXTA-like proteins and WIN1/SHN1 coordinately regulate cutin biosynthesis and wax accumulation. This study reveals an additional key aspect of MIXTA-like protein function and suggests a unique relationship between cuticle development and epidermal cell differentiation.
Collapse
Affiliation(s)
- Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8562, Japan
| | - Masahito Shikata
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan
| | - Tomotsugu Koyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8562, Japan
| | - Norihiro Ohtsubo
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8519, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8562, Japan
| |
Collapse
|
348
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim JS, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqué D. Engineering secondary cell wall deposition in plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:325-35. [PMID: 23140549 PMCID: PMC3644865 DOI: 10.1111/pbi.12016] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 05/17/2023]
Abstract
Lignocellulosic biomass was used for thousands of years as animal feed and is now considered a great sugar source for biofuels production. It is composed mostly of secondary cell walls built with polysaccharide polymers that are embedded in lignin to reinforce the cell wall structure and maintain its integrity. Lignin is the primary material responsible for biomass recalcitrance to enzymatic hydrolysis. During plant development, deep reductions of lignin cause growth defects and often correlate with the loss of vessel integrity that adversely affects water and nutrient transport in plants. The work presented here describes a new approach to decrease lignin content while preventing vessel collapse and introduces a new strategy to boost transcription factor expression in native tissues. We used synthetic biology tools in Arabidopsis to rewire the secondary cell network by changing promoter-coding sequence associations. The result was a reduction in lignin and an increase in polysaccharide depositions in fibre cells. The promoter of a key lignin gene, C4H, was replaced by the vessel-specific promoter of transcription factor VND6. This rewired lignin biosynthesis specifically for vessel formation while disconnecting C4H expression from the fibre regulatory network. Secondly, the promoter of the IRX8 gene, secondary cell wall glycosyltransferase, was used to express a new copy of the fibre transcription factor NST1, and as the IRX8 promoter is induced by NST1, this also created an artificial positive feedback loop (APFL). The combination of strategies-lignin rewiring with APFL insertion-enhances polysaccharide deposition in stems without over-lignifying them, resulting in higher sugar yields after enzymatic hydrolysis.
Collapse
Affiliation(s)
- Fan Yang
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Prajakta Mitra
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Ling Zhang
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
- FSN Plant Biotechnology R&D Centre, Shanghai Jiaotong UniversityShanghai, China
| | - Lina Prak
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Yves Verhertbruggen
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Jin-Sun Kim
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Lan Sun
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Kejian Zheng
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Kexuan Tang
- FSN Plant Biotechnology R&D Centre, Shanghai Jiaotong UniversityShanghai, China
| | - Manfred Auer
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryOne Cyclotron Road, Berkeley, CA, USA
- *Correspondence (fax 510 486 4252; email )
| |
Collapse
|
350
|
Matschi S, Werner S, Schulze WX, Legen J, Hilger HH, Romeis T. Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:883-96. [PMID: 23252373 DOI: 10.1111/tpj.12090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 05/08/2023]
Abstract
After a period of vegetative growth, plants undergo a developmental switch to the reproductive phase, inducing the transition to bolting, elongation of the inflorescence and flowering. We have identified calcium-dependent protein kinase CPK28 from Arabidopsis thaliana as a regulatory component that controls stem elongation and vascular development. In two independent mutant alleles of cpk28, a reduction of stem elongation, accompanied by shorter leaf petioles and enhanced anthocyanin levels, is observed upon the transition to the generative phase. Anatomical analysis revealed an altered vascular pattern characterised by fewer xylem tracheary elements but at the same time increased lignification and secondary growth. Coincident with these morphological changes, cpk28 mutants showed altered expression of NAC transcriptional regulators NST1 and NST3 as well as of GA3ox1, a key regulator of gibberellic acid homeostasis. In vitro protein kinase activity of CPK28 is strictly calcium-dependent. Furthermore, CPK28 is phosphorylated in vivo at several sites. Site-specific amino acid substitutions at these phosphorylation sites resulted in reduced in vitro activity. However, when introduced into a cpk28 mutant background, wild-type and phosphorylation site variants, but not kinase-inactive variants of CPK28 complemented the morphological and developmental defects. Our data identify CPK28 as a developmentally controlled regulator for coordinated stem elongation and secondary growth.
Collapse
Affiliation(s)
- Susanne Matschi
- Dahlem Centre of Plant Sciences, Plant Biochemistry, Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | | | | | | | | | | |
Collapse
|