301
|
Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D. Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:166-75. [PMID: 22001611 DOI: 10.1016/j.bbagrm.2011.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 01/15/2023]
Abstract
During the last decade, microarrays became a routine tool for the analysis of transcripts in the model plant Arabidopsis thaliana and the crop plant species rice, poplar or barley. The overwhelming amount of data generated by gene expression studies is a valuable resource for every scientist. Here, we summarize the most important findings about the abiotic stress responses in plants. Interestingly, conserved patterns of gene expression responses have been found that are common between different abiotic stresses or that are conserved between different plant species. However, the individual histories of each plant affect the inter-comparability between experiments already before the onset of the actual stress treatment. This review outlines multiple aspects of microarray technology and highlights some of the benefits, limitations and also pitfalls of the technique. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Joachim Kilian
- Center of Plant Molecular Biology, ZMBP-Plant Physiology, University of Tuebingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
302
|
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:74-87. [PMID: 21645148 DOI: 10.1111/j.1365-313x.2011.04669.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
303
|
Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5. Funct Integr Genomics 2011; 11:637-49. [PMID: 21947436 DOI: 10.1007/s10142-011-0253-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 01/28/2023]
Abstract
Non-after-ripened seeds of the herbaceous perennial weed leafy spurge do not germinate when imbibed at a constant temperature (C), but transfer to an alternating temperature (A) induced germination. Changes in the transcriptome of seeds during 1 and 3 days of alternating temperature and germinated seeds were compared with seeds incubated at constant temperature. Statistical analysis revealed that 597, 1,491, and 1,329 genes were differentially expressed (P < 0.05) for the comparisons of 21-day C vs. 21-day C + 1-day A, 21-day C vs. 21-day C + 3-day A, and 21-day C vs. 21-day C + Germ (germination), respectively. Functional classifications based on gene set and sub-network enrichment analysis were performed to identify pathways and gene sub-networks that underlie transcriptome changes in the seeds as they germinate. Sugars, plant hormones, photomorphogenesis, and reactive oxygen species were overrepresented at 21-day C + 1-day A. At 21-day C + 3-day A, an increase in cellular activities was observed as the number of overrepresented pathways greatly increased. Many of the metabolic pathways were involved in the biosynthesis of amino acids, macromolecules, and energy and carbon skeleton production for subsequent germination. The 21-day C + 3-day A and 21-day C + Germ pathways and sub-networks were similar and included an overrepresentation of the amino acid biosynthetic pathways; however, 21-day C + Germ seeds have an even wider array of cellular activities such as translation-related pathways, which are most likely for seedling growth. RT-qPCR analysis indicated that the up- and down-regulation of HISTONE H3, GASA2, DREBIII-1, CHS, AOS, PIF3, PLD α1, and LEA may be germination-related since their expression was dramatically changed only in the 21-day C + Germ seeds. Finally, both short-term alternating temperature and short-term light exposure up-regulated the expression targets of the central hub HY5 in leafy spurge and Arabidopsis, respectively, indicating that a signaling network involving HY5 is important for germination.
Collapse
|
304
|
Abstract
Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.
Collapse
|
305
|
Wang Z, Meng P, Zhang X, Ren D, Yang S. BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1029-41. [PMID: 21623975 DOI: 10.1111/j.1365-313x.2011.04655.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Arabidopsis copine gene BON1 encodes a calcium-dependent phospholipid-binding protein involved in plant growth homeostasis and disease resistance. However, the biochemical and molecular mechanisms by which BON1 modulates plant growth and defense responses are not well understood. Here, we show that BON1 interacts physically with the leucine-rich-repeat receptor-like kinases BIR1 (BAK1-interacting receptor-like kinase 1) and pathogen-associated molecular pattern (PAMP) receptor regulator BAK1 in vitro and in vivo. Additionally, bon1 and bir1 mutants exhibit synergistic interaction. While a bir1 null mutant has similar growth and cell-death defects compared with bon1, a bir1 bon1 double mutant displays more severe phenotypes than does the single mutants. The bon1-1 and bir1-1 phenotypes are partially suppressed by overexpression of BIR1 and BON1, respectively. Furthermore, the bir1 phenotype is attenuated by a loss-of-function mutation in the resistance (R) gene SNC1 (Suppressor of npr1-1, constitutive 1), which mediates defense responses in bon1. Intriguingly, BON1 and BIR1 can be phosphorylated by BAK1 in vitro. Our findings suggest that BIR1 functions as a negative regulator of plant resistance and that BON1 and BIR1 might modulate both PAMP- and R protein-triggered immune responses.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
306
|
Xiao S, Chye ML. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. PLANT PHYSIOLOGY 2011; 156:2069-81. [PMID: 21670223 PMCID: PMC3149925 DOI: 10.1104/pp.111.176933] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
ACBP3 is one of six Arabidopsis (Arabidopsis thaliana) genes, designated ACBP1 to ACBP6, that encode acyl-coenzyme A (CoA)-binding proteins (ACBPs). These ACBPs bind long-chain acyl-CoA esters and phospholipids and are involved in diverse cellular functions, including acyl-CoA homeostasis, development, and stress tolerance. Recombinant ACBP3 binds polyunsaturated acyl-CoA esters and phospholipids in vitro. Here, we show that ACBP3 plays a role in the plant defense response to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. ACBP3 mRNA was up-regulated upon pathogen infection and treatments using pathogen elicitors and defense-related phytohormones. Transgenic Arabidopsis ACBP3 overexpressors (ACBP3-OEs) showed constitutive expression of pathogenesis-related genes (PR1, PR2, and PR5), cell death, and hydrogen peroxide accumulation in leaves. Consequently, ACBP3-OEs displayed enhanced resistance to the bacterial pathogen P. syringae DC3000. In contrast, the acbp3 T-DNA insertional mutant was more susceptible and exhibited lower PR gene transcript levels upon infection. Using the ACBP3 OE-1 line in combination with nonexpressor of PR genes1 (npr1-5) or coronatine-insensitive1 (coi1-2), we concluded that the enhanced PR gene expression and P. syringae DC3000 resistance in the ACBP3-OEs are dependent on the NPR1-mediated, but not the COI1-mediated, signaling pathway. Given that ACBP3-OEs showed greater susceptibility to infection by the necrotrophic fungus Botrytis cinerea while the acbp3 mutant was less susceptible, we suggest that ACBP3 plays a role in the plant defense response against biotrophic pathogens that is distinct from necrotrophic pathogens. ACBP3 function in plant defense was supported further by bioinformatics data showing up-regulation of many biotic and abiotic stress-related genes in ACBP3 OE-1 in comparison with the wild type.
Collapse
Affiliation(s)
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
307
|
Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Corina Vlot A, Feys BJ, Niefind K, Parker JE. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. THE NEW PHYTOLOGIST 2011; 191:107-119. [PMID: 21434927 DOI: 10.1111/j.1469-8137.2011.03675.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.
Collapse
Affiliation(s)
- Steffen Rietz
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Anika Stamm
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stefan Malonek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stephan Wagner
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Dieter Becker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Nieves Medina-Escobar
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - A Corina Vlot
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Bart J Feys
- Imperial College London, Department of Biological Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Karsten Niefind
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| |
Collapse
|
308
|
Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3981-92. [PMID: 21511905 PMCID: PMC3134353 DOI: 10.1093/jxb/err094] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes.
Collapse
Affiliation(s)
- Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Angus S. Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Dongwon Baek
- Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Shin-Woo Lee
- Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science & Technology, Jinju 660-758, Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 program), and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA
- Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Meena L. Narasimhan
- Plant Stress Genomics Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
309
|
Briggs AG, Bent AF. Poly(ADP-ribosyl)ation in plants. TRENDS IN PLANT SCIENCE 2011; 16:372-80. [PMID: 21482174 DOI: 10.1016/j.tplants.2011.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/03/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) are the main enzymes responsible for the post-translational modification known as poly(ADP-ribosyl)ation. These enzymes play important roles in genotoxic stress tolerance and DNA repair, programmed cell death, transcription, and cell cycle control in animals. Similar impacts are being discovered in plants, as well as roles in plant-specific processes. In particular, we review recent work that has revealed significant roles for poly(ADP-ribosyl)ation in plant responses to biotic and abiotic stress, as well as roles for ADP-ribose pyrophosphatases (a subset of the nucleoside diphosphate linked to some moiety-X or NUDX hydrolases). Future challenges include identification of poly(ADP-ribosyl)ation targets and interacting proteins, improved use of inhibitors and plant mutants, and field-based studies with economically valuable plant species.
Collapse
Affiliation(s)
- Amy G Briggs
- Program in Cellular and Molecular Biology, University of Wisconsin - Madison, WI, USA
| | | |
Collapse
|
310
|
Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H. Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1508-19. [PMID: 21543726 PMCID: PMC3135961 DOI: 10.1104/pp.111.176776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/26/2011] [Indexed: 05/18/2023]
Abstract
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Lu
- Corresponding author; e-mail
| |
Collapse
|
311
|
Kim TH, Hauser F, Ha T, Xue S, Böhmer M, Nishimura N, Munemasa S, Hubbard K, Peine N, Lee BH, Lee S, Robert N, Parker JE, Schroeder JI. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr Biol 2011; 21:990-7. [PMID: 21620700 DOI: 10.1016/j.cub.2011.04.045] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/01/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022]
Abstract
Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.
Collapse
Affiliation(s)
- Tae-Houn Kim
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Tirumalaraju SV, Jain M, Gallo M. Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:481-92. [PMID: 20863592 DOI: 10.1016/j.jplph.2010.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 05/10/2023]
Abstract
The peanut root-knot nematode (RKN, Meloidogyne arenaria) can cause significant yield losses in cultivated peanut (Arachis hypogaea). However, molecular events underlying successful RKN infection and host responses in peanut are sparsely understood. Using suppression subtractive hybridization (SSH), cDNA libraries, enriched with differentially expressed ESTs, were constructed from RKN-challenged root tissues in the pre-penetration and early infection stages from near-isogenic nematode-resistant and -susceptible peanut cultivars NemaTAM and Florunner. Following an initial screen of 960 expressed sequence tags (ESTs) for at least three-fold differential expression between the two libraries, 70 ESTs (36 from the NemaTAM-specific library and 34 from the Florunner-specific library) were identified and annotated into seven functional categories (stress responses, metabolism, transcriptional regulation, protein synthesis and/or modification, transport functions, cellular architecture and proteins with unknown functions). Discreet gene tag clusters primarily including pathogenesis related (PR), patatin-like proteins and universal stress related proteins (USPs), as well as those implicated in alleviation of oxidative stress were primarily represented in RKN-infected NemaTAM roots, reflective of a basal level of resistance operative against invading nematodes. However, significant transcriptional reprogramming and upregulation of genes implicated in modification of cellular architecture, adhesion, and proliferation marked an early onset of compatible host-pathogen interactions discernible in Florunner roots.
Collapse
|
313
|
Wen Y, Wang W, Feng J, Luo MC, Tsuda K, Katagiri F, Bauchan G, Xiao S. Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2117-29. [PMID: 21193574 PMCID: PMC3060691 DOI: 10.1093/jxb/erq406] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 05/19/2023]
Abstract
To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the formation of a callosic encasement of the haustorial complex (EHC) and hypersensitive response (HR), which appears to be controlled by both salicylic acid (SA)-dependent and SA-independent defence pathways, as supported by the susceptibility of the pad4/sid2 double mutant to the pathogen. While the broad-spectrum resistance protein RPW8.2 enhances post-penetration resistance against G. cichoracearum UCSC1, a well-adapted powdery mildew pathogen, RPW8.2, is dispensable for post-penetration resistance against G. cichoracearum UMSG1, and its specific targeting to the extrahaustorial membrane is physically blocked by the EHC, resulting in HR cell death. Taken together, the present work suggests an evolutionary scenario for the Arabidopsis-powdery mildew interaction: EHC formation is a conserved subcellular defence evolved in plants against haustorial invasion; well-adapted powdery mildew has evolved the ability to suppress EHC formation for parasitic growth and reproduction; RPW8.2 has evolved to enhance EHC formation, thereby conferring haustorium-targeted, broad-spectrum resistance at the post-invasion stage.
Collapse
Affiliation(s)
- Yingqiang Wen
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Wenming Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Jiayue Feng
- College of Horticulture and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Kenichi Tsuda
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Gary Bauchan
- Electron and Confocal Microscopy Unit, USDA-ARS, Beltsville, Maryland, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Shady Grove, Maryland, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
314
|
Shen X, Liu H, Yuan B, Li X, Xu C, Wang S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. PLANT, CELL & ENVIRONMENT 2011; 34:179-91. [PMID: 20807375 DOI: 10.1111/j.1365-3040.2010.02219.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rice OsEDR1 is a sequence ortholog of Arabidopsis EDR1. However, its molecular function is unknown. We show here that OsEDR1-suppressing/knockout (KO) plants, which developed spontaneous lesions on the leaves, have enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) causing bacterial blight disease. This resistance was associated with increased accumulation of salicylic acid (SA) and jasmonic acid (JA), induced expression of SA- and JA-related genes and suppressed accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), the direct precursor of ethylene, and expression of ethylene-related genes. OsEDR1-KO plants also showed suppressed production of ethylene. Knockout of OsEDR1 suppressed the ACC synthase (ACS) gene family, which encodes the rate-limiting enzymes of ethylene biosynthesis by catalysing the formation of ACC. The lesion phenotype and enhanced bacterial resistance of the OsEDR1-KO plants was partly complemented by the treatment with ACC. ACC treatment was associated with decreased SA and JA biosynthesis in OsEDR1-KO plants. In contrast, aminoethoxyvinylglycine, the inhibitor of ethylene biosynthesis, promoted expression of SA and JA synthesis-related genes in OsEDR1-KO plants. These results suggest that ethylene is a negative signalling molecule in rice bacterial resistance. In the rice-Xoo interaction, OsEDR1 transcriptionally promotes the synthesis of ethylene that, in turn, suppresses SA- and JA-associated defence signalling.
Collapse
Affiliation(s)
- Xiangling Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
315
|
Basnayake BMVS, Li D, Zhang H, Li G, Virk N, Song F. Arabidopsis DAL1 and DAL2, two RING finger proteins homologous to Drosophila DIAP1, are involved in regulation of programmed cell death. PLANT CELL REPORTS 2011; 30:37-48. [PMID: 20972793 DOI: 10.1007/s00299-010-0941-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/03/2010] [Accepted: 10/12/2010] [Indexed: 05/12/2023]
Abstract
Programmed cell death (PCD) is a precise, genetically controlled cellular process with important roles in plant growth, development, and response to biotic and abiotic stress. However, the genetic mechanisms that control PCD in plants are unclear. Two Arabidopsis genes, DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), encoding RING finger proteins with homology to DIAP1 were identified, and a series of experiments were performed to elucidate their roles in the regulation of PCD and disease resistance. Expression of DAL1 and DAL2 genes was induced in Arabidopsis plants after inoculation with virulent and avirulent strains of Pseudomonas syrinage pv. tomato (Pst) DC3000 or after infiltration with fumonisin B1 (FB1). Plants with mutations in the DAL1 and DAL2 genes displayed more severe disease after inoculation with an avirulent strain of Pst DC3000, but they showed similar disease severity as the wild-type plant after inoculation with a virulent strain of Pst DC3000. Significant accumulations of reactive oxygen species (ROS) and increased cell death were observed in the dal1 and dal2 mutant plants after inoculation with the avirulent strain of Pst DC3000. The dal mutant plants underwent extensive PCD upon infiltration of FB1 and displayed higher levels of ROS accumulation, callose deposition, and autofluorescence than the wild-type plants. Our data suggest that DAL1 and DAL2 may act as negative regulators of PCD in Arabidopsis.
Collapse
Affiliation(s)
- B M Vindhya S Basnayake
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou 310029, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
316
|
Hou X, Liu S, Pierri F, Dai X, Qu LJ, Zhao Y. Allelic analyses of the Arabidopsis YUC1 locus reveal residues and domains essential for the functions of YUC family of flavin monooxygenases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:54-62. [PMID: 21205174 PMCID: PMC3060657 DOI: 10.1111/j.1744-7909.2010.01007.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flavin monooxygenases (FMOs) play critical roles in plant growth and development by synthesizing auxin and other signaling molecules. However, the structure and function relationship within plant FMOs is not understood. Here we defined the important residues and domains of the Arabidopsis YUC1 FMO, a key enzyme in auxin biosynthesis. We previously showed that simultaneous inactivation of YUC1 and its homologue YUC4 caused severe defects in vascular and floral development. We mutagenized the yuc4 mutant and screened for mutants with phenotypes similar to those of yuc1 yuc4 double mutants. Among the isolated mutants, five of them contained mutations in the YUC1 gene. Interestingly, the mutations identified in the new yuc1 alleles were concentrated in the two GXGXXG motifs that are highly conserved among the plant FMOs. One such motif presumably binds to flavin adenine dinucleotide (FAD) cofactor and the other binds to nicotinamide adenine dinucleotide phosphate (NADPH). We also identified the Ser(139) to Phe conversion in yuc1, a mutation that is located between the two nucleotide-binding sites. By analyzing a series of yuc1 mutants, we identified key residues and motifs essential for the functions of YUC1 FMO.
Collapse
Affiliation(s)
- Xianhui Hou
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Sainan Liu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Florencia Pierri
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
- Corresponding author Tel: +1 858 822 2670; Fax: 1 858 534 7108;
| |
Collapse
|
317
|
Macho AP, Beuzón CR. Insights into plant immunity signalling: the bacterial competitive index angle. PLANT SIGNALING & BEHAVIOR 2010; 5:1590-1593. [PMID: 21150288 PMCID: PMC3115109 DOI: 10.4161/psb.5.12.13843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
The interaction between a bacterial pathogen and its potential plant host develops from a complex combination of bacterial and plant elements, which determines either the establishment of resistance or the development of disease. The use of virulence assays based on competitive index in mixed infections constitutes a powerful tool for the analysis of bacterial virulence factors. In this work, we describe how the use of competitive index assays also constitutes an alternative approach for the analysis of plant immunity, to determine the contribution of different elements to bacterial recognition or immunity signaling.
Collapse
Affiliation(s)
- Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Depto. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga, Spain
| | | |
Collapse
|
318
|
Monaghan J, Xu F, Xu S, Zhang Y, Li X. Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. PLANT PHYSIOLOGY 2010; 154:1783-93. [PMID: 20943852 PMCID: PMC2996007 DOI: 10.1104/pp.110.158931] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 10/07/2010] [Indexed: 05/20/2023]
Abstract
The MOS4-associated complex (MAC) is a highly conserved nuclear protein complex associated with the spliceosome. We recently purified the MAC from Arabidopsis (Arabidopsis thaliana) nuclei, identified its potential components by mass spectrometry, and showed that at least five core proteins in the MAC are required for defense responses in plants. Here, we report the characterization of a putative RNA-binding protein identified in the MAC named MAC5A and its close homolog MAC5B. We confirmed that MAC5A is a component of the MAC through coimmunoprecipitation with the previously described MAC protein CELL DIVISION CYCLE5 from Arabidopsis. In addition, like all other characterized MAC proteins, MAC5A fused to the Green Fluorescent Protein localizes to the nucleus. Double mutant analysis revealed that MAC5A and MAC5B are unequally redundant and that a double mac5a mac5b mutant results in lethality. Probably due to this partial redundancy, mac5a and mac5b single mutants do not exhibit enhanced susceptibility to virulent or avirulent pathogen infection. However, like other MAC mutations, mac5a-1 partially suppresses the autoimmune phenotypes of suppressor of npr1-1, constitutive1 (snc1), a gain-of-function mutant that expresses a deregulated Resistance protein. Our results suggest that MAC5A is a component of the MAC that contributes to snc1- mediated autoimmunity.
Collapse
Affiliation(s)
| | | | | | | | - Xin Li
- Corresponding author; e-mail
| |
Collapse
|
319
|
Pandey SP, Roccaro M, Schön M, Logemann E, Somssich IE. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:912-23. [PMID: 21143673 DOI: 10.1111/j.1365-313x.2010.04387.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The two closely related Arabidopsis transcription factors, WRKY18 and WRKY40, play a major and partly redundant role in PAMP-triggered basal defense. We monitored the transcriptional reprogramming induced by the powdery mildew fungus, Golovinomyces orontii, during early stages of infection with respect to the role of WRKY18/40. Expression of >1300 Arabidopsis genes was differentially altered already 8 hours post infection (hpi), indicating rapid pre-penetration signaling between the pathogen and the host. We found that WRKY18/40 negatively affects pre-invasion host defenses and deduced a subset of genes that appear to be under WRKY18/40 control. A mutant lacking the WRKY18/40 repressors executes pathogen-dependent but exaggerated expression of some defense genes leading, for example, to strongly elevated levels of camalexin. This implies that WRKY18/40 act in a feedback repression system controlling basal defense. Moreover, using chromatin immunoprecipitation (ChIP), direct in vivo interactions of WRKY40 to promoter regions containing W box elements of the regulatory gene EDS1, the AP2-type transcription factor gene RRTF1 and to JAZ8, a member of the JA-signaling repressor gene family were demonstrated. Our data support a model in which WRKY18/40 negatively modulate the expression of positive regulators of defense such as CYP71A13, EDS1 and PAD4, but positively modulate the expression of some key JA-signaling genes by partly suppressing the expression of JAZ repressors.
Collapse
Affiliation(s)
- Shree P Pandey
- Department of Plant Microbe Interaction, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne 50829, Germany
| | | | | | | | | |
Collapse
|
320
|
Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proc Natl Acad Sci U S A 2010; 107:21205-10. [PMID: 21088219 DOI: 10.1073/pnas.1009975107] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terpene volatiles play important roles in plant-organism interactions as attractants of pollinators or as defense compounds against herbivores. Among the most common plant volatiles are homoterpenes, which are often emitted from night-scented flowers and from aerial tissues upon herbivore attack. Homoterpene volatiles released from herbivore-damaged tissue are thought to contribute to indirect plant defense by attracting natural enemies of pests. Moreover, homoterpenes have been demonstrated to induce defensive responses in plant-plant interaction. Although early steps in the biosynthesis of homoterpenes have been elucidated, the identity of the enzyme responsible for the direct formation of these volatiles has remained unknown. Here, we demonstrate that CYP82G1 (At3g25180), a cytochrome P450 monooxygenase of the Arabidopsis CYP82 family, is responsible for the breakdown of the C(20)-precursor (E,E)-geranyllinalool to the insect-induced C(16)-homoterpene (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). Recombinant CYP82G1 shows narrow substrate specificity for (E,E)-geranyllinalool and its C(15)-analog (E)-nerolidol, which is converted to the respective C(11)-homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Homology-based modeling and substrate docking support an oxidative bond cleavage of the alcohol substrate via syn-elimination of the polar head, together with an allylic C-5 hydrogen atom. CYP82G1 is constitutively expressed in Arabidopsis stems and inflorescences and shows highly coordinated herbivore-induced expression with geranyllinalool synthase in leaves depending on the F-box protein COI-1. CYP82G1 represents a unique characterized enzyme in the plant CYP82 family with a function as a DMNT/TMTT homoterpene synthase.
Collapse
|
321
|
DeFraia CT, Zhang X, Mou Z. Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:511-23. [PMID: 20807211 DOI: 10.1111/j.1365-313x.2010.04345.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Immune responses in eukaryotes involve rapid and profound transcriptional reprogramming. Although mechanisms regulating the amplitude of defense gene expression have been extensively characterized, those controlling the speed of defense gene induction are not well understood. Here, we show that the Arabidopsis Elongator subunit 2 (AtELP2) regulates the kinetics of defense gene induction. AtELP2 is required for rapid defense gene induction and the establishment of full basal and effector-triggered immunity (ETI). Surprisingly, biological or chemical induction of systemic acquired resistance (SAR), a long-lasting plant immunity against a broad spectrum of pathogens, restores pathogen resistance to Atelp2 mutant plants. Simultaneous removal of AtELP2 and NPR1, a transcription coactivator essential for full-scale expression of a subset of defense genes and the establishment of SAR, completely abolishes resistance to two different ETI-inducing pathogens. These results demonstrate that AtELP2 is an accelerator of defense gene induction, which functions largely independently of NPR1 in establishing plant immunity.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
322
|
Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. THE PLANT CELL 2010; 22:3845-63. [PMID: 21097712 PMCID: PMC3015111 DOI: 10.1105/tpc.110.079392] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/13/2010] [Accepted: 10/28/2010] [Indexed: 05/17/2023]
Abstract
The tight association between nitrogen status and pathogenesis has been broadly documented in plant-pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid-dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance.
Collapse
Affiliation(s)
- Guosheng Liu
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Yuanyuan Ji
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nazmul H. Bhuiyan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Guillaume Pilot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Jitao Zou
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
323
|
Shen X, Yuan B, Liu H, Li X, Xu C, Wang S. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:86-99. [PMID: 20663089 DOI: 10.1111/j.1365-313x.2010.04306.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The pathogen-induced plant defense signaling network consists of multiple components, although only some of them are characterized. Most of the known components function either as activators or repressors in host-pathogen interactions. Here we report that a mitogen-activated protein kinase, OsMPK6, functions both as an activator and a repressor in rice resistance against Xanthomonas oryzae pv. oryzae (Xoo), the causal organism of bacterial blight disease. Activation of OsMPK6 resulted in the formation of lesion mimics and local resistance to Xoo, accompanied by the accumulation of salicylic acid (SA) and jasmonic acid (JA), and the induced expression of SA- and JA-signaling genes. Nuclear localization of OsMPK6 was essential for local resistance, suggesting that modulating the expression of defense-responsive genes through transcription regulators may be the primary mechanism of OsMPK6-mediated local resistance. The knock-out of OsMPK6 resulted in enhanced Xoo resistance, increased accumulation of SA and enhanced resistance to X. oryzae pv. oryzicola, the causal organism of bacterial streak disease, in systemic tissues. Xoo infection induced the expression of PR1a, the marker gene of systemic acquired resistance (SAR), in systemic health tissues of OsMPK6-knock-out plants. These results suggest that OsMPK6 negatively regulates SAR. Thus OsMPK6 is a two-faced player in the rice-Xoo interaction.
Collapse
Affiliation(s)
- Xiangling Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
324
|
Huang X, Li J, Bao F, Zhang X, Yang S. A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. PLANT PHYSIOLOGY 2010; 154:796-809. [PMID: 20699401 PMCID: PMC2949010 DOI: 10.1104/pp.110.157610] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/04/2010] [Indexed: 05/18/2023]
Abstract
How plants adapt to low temperature is not well understood. To identify components involved in low-temperature signaling, we characterized the previously isolated chilling-sensitive2 mutant (chs2) of Arabidopsis (Arabidopsis thaliana). This mutant grew normally at 22°C but showed phenotypes similar to activation of defense responses when shifted to temperatures below 16°C. These phenotypes include yellowish and collapsed leaves, increased electrolyte leakage, up-regulation of PATHOGENESIS RELATED genes, and accumulation of excess hydrogen peroxide and salicylic acid (SA). Moreover, the chs2 mutant was seedling lethal when germinated at or shifted for more than 3 d to low temperatures of 4°C to 12°C. Map-based cloning revealed that a single amino acid substitution occurred in the TIR-NB-LRR (for Toll/Interleukin-1 receptor- nucleotide-binding Leucine-rich repeat)-type resistance (R) protein RPP4 (for Recognition of Peronospora parasitica4), which causes a deregulation of the R protein in a temperature-dependent manner. The chs2 mutation led to an increase in the mutated RPP4 mRNA transcript, activation of defense responses, and an induction of cell death at low temperatures. In addition, a chs2 intragenic suppressor, in which the mutation occurs in the conserved NB domain, abolished defense responses at lower temperatures. Genetic analyses of chs2 in combination with known SA pathway and immune signaling mutants indicate that the chs2-conferred temperature sensitivity requires ENHANCED DISEASE SUSCEPTIBILITY1, REQUIRED FOR Mla12 RESISTANCE, and SUPPRESSOR OF G2 ALLELE OF skp1 but does not require PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1, or SA. This study reveals that an activated TIR-NB-LRR protein has a large impact on temperature sensitivity in plant growth and survival.
Collapse
|
325
|
Lazarus1, a DUF300 protein, contributes to programmed cell death associated with Arabidopsis acd11 and the hypersensitive response. PLoS One 2010; 5:e12586. [PMID: 20830211 PMCID: PMC2935358 DOI: 10.1371/journal.pone.0012586] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/16/2010] [Indexed: 02/01/2023] Open
Abstract
Background Programmed cell death (PCD) is a necessary part of the life of multi-cellular organisms. A type of plant PCD is the defensive hypersensitive response (HR) elicited via recognition of a pathogen by host resistance (R) proteins. The lethal, recessive accelerated cell death 11 (acd11) mutant exhibits HR-like accelerated cell death, and cell death execution in acd11 shares genetic requirements for HR execution triggered by one subclass of R proteins. Methodology/Principal Findings To identify genes required for this PCD pathway, we conducted a genetic screen for suppressors of acd11, here called lazarus (laz) mutants. In addition to known suppressors of R protein-mediated HR, we isolated 13 novel complementation groups of dominant and recessive laz mutants. Here we describe laz1, which encodes a protein with a domain of unknown function (DUF300), and demonstrate that LAZ1 contributes to HR PCD conditioned by the Toll/interleukin-1 (TIR)-type R protein RPS4 and by the coiled-coil (CC)-type R protein RPM1. Using a yeast-based topology assay, we also provide evidence that LAZ1 is a six transmembrane protein with structural similarities to the human tumor suppressor TMEM34. Finally, we demonstrate by transient expression of reporter fusions in protoplasts that localization of LAZ1 is distributed between the cytosol, the plasma membrane and FM4–64 stained vesicles. Conclusions/Significance Our findings indicate that LAZ1 functions as a regulator or effector of plant PCD associated with the HR, in addition to its role in acd11-related death. Furthermore, the similar topology of a plant and human DUF300 proteins suggests similar functions in PCD across the eukaryotic kingdoms, although a direct role for TMEM34 in cell death control remains to be established. Finally, the subcellular localization pattern of LAZ1 suggests that it may have transport functions for yet unknown, death-related signaling molecules at the plasma membrane and/or endosomal compartments. In summary, our results validate the utility of the large-scale suppressor screen to identify novel components with functions in plant PCD, which may also have implications for deciphering cell death mechanisms in other organisms.
Collapse
|
326
|
Macho AP, Guevara CM, Tornero P, Ruiz-Albert J, Beuzón CR. The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity. THE NEW PHYTOLOGIST 2010; 187:1018-1033. [PMID: 20636323 DOI: 10.1111/j.1469-8137.2010.03381.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
*The Pseudomonas syringae pv syringae type III effector HopZ1a is a member of the HopZ effector family of cysteine-proteases that triggers immunity in Arabidopsis. This immunity is dependent on HopZ1a cysteine-protease activity, and independent of known resistance genes. We have previously shown that HopZ1a-triggered immunity is partially additive to that triggered by AvrRpt2. These partially additive effects could be caused by at least two mechanisms: their signalling pathways share a common element(s), or one effector interferes with the response triggered by the other. *Here, we investigate the molecular basis for the partially additive effect displayed by AvrRpt2- and HopZ1a-triggered immunities, by analysing competitive indices, hypersensitive response and symptom induction, PR-1 accumulation, expression of PR genes, and systemic acquired resistance (SAR) induction. *Partially additive effects between these defence responses require HopZ1a cysteine-protease activity, and also take place between HopZ1a and AvrRps4 or AvrRpm1-triggered responses. We establish that HopZ1a-triggered immunity is independent of salicylic acid (SA), EDS1, jasmonic acid (JA) and ethylene (ET)-dependent pathways, and show that HopZ1a suppresses the induction of PR-1 and PR-5 associated with P. syringae pv tomato (Pto)-triggered effector-triggered immunity (ETI)-like defences, AvrRpt2-triggered immunity, and Pto or Pto (avrRpt2) activation of SAR, and that suppression requires HopZ1a cysteine-protease activity. *Our results indicate that HopZ1a triggers an unusual resistance independent of known pathways and suppresses SA and EDS1-dependent resistance.
Collapse
Affiliation(s)
- Alberto P Macho
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Carlos M Guevara
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (Universidad Politécnica de Valencia - CSIC) Avda de los Naranjos s/n. Valencia E-46022, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| |
Collapse
|
327
|
Wanke D, Kolukisaoglu HU. An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:15-25. [PMID: 20712617 DOI: 10.1111/j.1438-8677.2010.00380.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ABCC subfamily of the ATP binding cassette (ABC) transporters, which were formerly known as multidrug resistance-related proteins (MRPs), consists of closely related members found in all eukaryotic organisms. Although more than a decade of intensive research has elapsed since the first MRP protein was functionally characterised in Arabidopsis thaliana, knowledge of this particular transporter family is still limited in plants. Although ABCC proteins were originally defined as vacuolar pumps of glutathione-S (GS) conjugates, evidence, as well as speculation, on their endogenous functions inside the cell ranges from detoxification and heavy metal sequestration, to chlorophyll catabolite transport and ion channel regulation. The characterisation of knockout mutants in Arabidopsis has been pivotal for elucidation of different roles of ABCC transporters. However, a functional annotation for the majority of these transport proteins is still lacking, even in this model plant. On the one hand, this problem seems to be caused by functional redundancy between family members, which might lead to physiological complementation by a highly homologous gene in the mutant lines. On the other hand, there is growing evidence that the functional diversity of ABCC genes in Arabidopsis and other plants is far greater than previously assumed. For example, analysis of microarray expression data supports involvement of ABCC transporters in the response to biotic stress: particular changes in ABCC transcript levels are found, which are pathogen-specific and evoke distinct signalling cascades. Current knowledge about plant ABCC transporters indicates that novel and unexpected functions and substrates of these proteins are still waiting to be elucidated.
Collapse
Affiliation(s)
- D Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
328
|
Jambunathan N, Penaganti A, Tang Y, Mahalingam R. Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC PLANT BIOLOGY 2010; 10:173. [PMID: 20704736 PMCID: PMC3095304 DOI: 10.1186/1471-2229-10-173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 08/12/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs. Several independent studies have demonstrated that Arabidopsis nudix hydrolase 7 (AtNUDT7) hydrolyzes NADH and ADP-ribose. Loss of function Atnudt7-1 mutant plants (SALK_046441) exhibit stunted growth, higher levels of reactive oxygen species, enhanced resistance to pathogens. However, using the same T-DNA line, two other groups reported that mutant plants do not exhibit any visible phenotypes. In this study we analyze plausible factors that account for differences in the observed phenotypes in Atnudt7. Secondly, we evaluate the biochemical and molecular consequences of increased NADH levels due to loss of function of AtNUDT7 in Arabidopsis. RESULTS We identified a novel conditional phenotype of Atnudt7-1 knockout plants that was contingent upon nutrient composition of potting mix. In nutrient-rich Metro-Mix, there were no phenotypic differences between mutant and wild-type (WT) plants. In the nutrient-poor mix (12 parts vermiculite: 3 parts Redi-earth and 1 part sand), mutant plants showed the characteristic stunted phenotype. Compared with WT plants, levels of glutathione, NAD+, NADH, and in turn NADH:NAD+ ratio were higher in Atnudt7-1 plants growing in 12:3:1 potting mix. Infiltrating NADH and ADP-ribose into WT leaves was sufficient to induce AtNUDT7 protein. Constitutive over-expression of AtNudt7 did not alter NADH levels or resistance to pathogens. Transcriptome analysis identified nearly 700 genes differentially expressed in the Atnudt7-1 mutant compared to WT plants grown in 12:3:1 potting mix. In the Atnudt7-1 mutant, genes associated with defense response, proteolytic activities, and systemic acquired resistance were upregulated, while gene ontologies for transcription and phytohormone signaling were downregulated. CONCLUSIONS Based on these observations, we conclude that the differences observed in growth phenotypes of the Atnudt7-1 knockout mutants can be due to differences in the nutrient composition of potting mix. Our data suggests AtNUDT7 plays an important role in maintaining redox homeostasis, particularly for maintaining NADH:NAD+ balance for normal growth and development. During stress conditions, rapid induction of AtNUDT7 is important for regulating the activation of stress/defense signaling and cell death pathways.
Collapse
Affiliation(s)
- Niranjani Jambunathan
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Anuradha Penaganti
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yuhong Tang
- The Samuel Roberts Noble Foundation Inc., Plant Biology Division, Ardmore, Oklahoma, USA
| | - Ramamurthy Mahalingam
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
329
|
Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 2010; 89:895-905. [PMID: 20701997 DOI: 10.1016/j.ejcb.2010.06.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the course of evolution plants have evolved a complex phytohormone-based network to regulate their growth and development. Herein auxins have a pivotal function, as they are involved in controlling virtually every aspect related to plant growth. Indole-3-acetic acid (IAA) is the major endogenous auxin of higher plants that is already known for more than 80 years. In spite of the long-standing interest in this topic, IAA biosynthesis is still only partially uncovered. Several pathways for the formation of IAA have been proposed over the past years, but none of these pathways are yet completely defined. The aim of this review is to summarize the current knowledge on the indole-3-acetamide (IAM)-dependent pathway of IAA production in plants and to discuss the properties of the involved proteins and genes, respectively. Their evolutionary relationship to known bacterial IAM hydrolases and other amidases from bacteria, algae, moss, and higher plants is discussed on the basis of phylogenetic analyses. Moreover, we report on the transcriptional regulation of the Arabidopsis AMI1 gene.
Collapse
|
330
|
Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci U S A 2010; 107:13960-5. [PMID: 20647385 DOI: 10.1073/pnas.1002828107] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In both plants and animals, nucleotide-binding (NB) domain and leucine-rich repeat (LRR)-containing proteins (NLR) function as sensors of pathogen-derived molecules and trigger immune responses. Although NLR resistance (R) proteins were first reported as plant immune receptors more than 15 years ago, how these proteins activate downstream defense responses is still unclear. Here we report that the Toll-like/interleukin-1 receptor (TIR)-NB-LRR R protein, suppressor of npr1-1, constitutive 1 (SNC1) functions through its associated protein, Topless-related 1 (TPR1). Knocking out TPR1 and its close homologs compromises immunity mediated by SNC1 and several other TIR-NB-LRR-type R proteins, whereas overexpression of TPR1 constitutively activates SNC1-mediated immune responses. TPR1 functions as a transcriptional corepressor and associates with histone deacetylase 19 in vivo. Among the target genes of TPR1 are Defense no Death 1 (DND1) and Defense no Death 2 (DND2), two known negative regulators of immunity that are repressed during pathogen infection, suggesting that TPR1 activates R protein-mediated immune responses through repression of negative regulators.
Collapse
|
331
|
Ishikawa K, Yoshimura K, Ogawa T, Shigeoka S. Distinct regulation of Arabidopsis ADP-ribose/NADH pyrophosphohydrolases, AtNUDX6 and 7, in biotic and abiotic stress responses. PLANT SIGNALING & BEHAVIOR 2010; 5:839-41. [PMID: 20448465 PMCID: PMC3014534 DOI: 10.4161/psb.5.7.11820] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 05/21/2023]
Abstract
Among Arabidopsis Nudix hydrolases (AtNUDX1~27), AtNUDX6 and AtNUDX7 having ADP-ribose/NADH pyrophosphohydrolase activities have been found to contribute to keeping the energy and redox homeostasis, and/or modulating defense responses against biotic and abiotic stress. Interestingly, AtNUDX6 had an opposite effect to AtNUDX7 on the regulation of immune responses. A comparison of the activities of ADP-ribose/NADH pyrophosphohydrolase among wild-type, knockout (KO)-AtNUDX6, and KO-AtNUDX7 plants revealed AtNUDX7 to contribute more than AtNUDX6 to the total pyrophosphohydrolase activity toward both ADP-ribose and NADH under normal conditions and oxidative stress, while AtNUDX6 accounted for the majority of total NADH pyrophosphohydrolase activity under salicylic acid treatment. These results support the idea that the metabolism of ADP-ribose and/or NADH needs to be finely tuned for accurate regulation of cellular responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Advanced Bioscience; Faculty of Agriculture; Kinki University; Nakamachi, Nara Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science; College of Bioscience and Biotechnology; Chubu University; Kasugai, Aichi Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience; Faculty of Agriculture; Kinki University; Nakamachi, Nara Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience; Faculty of Agriculture; Kinki University; Nakamachi, Nara Japan
| |
Collapse
|
332
|
Griebel T, Zeier J. A role for beta-sitosterol to stigmasterol conversion in plant-pathogen interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:254-268. [PMID: 20444228 DOI: 10.1111/j.1365-313x.2010.04235.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana-Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from beta-sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen-inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild-type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild-type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen-associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/beta-sitosterol ratio as whole-leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid-mediated defence signalling but attenuate pathogen-induced expression of the defence regulator flavin-dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to beta-sitosterol ratio in plant membranes.
Collapse
Affiliation(s)
- Thomas Griebel
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs Platz 3, D-97082 Würzburg, Germany
| | - Jürgen Zeier
- Department of Biology, Plant Biology Section, University of Fribourg, Route Albert Gockel 3, CH-1700 Fribourg, Switzerland
| |
Collapse
|
333
|
García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 2010; 6:e1000970. [PMID: 20617163 PMCID: PMC2895645 DOI: 10.1371/journal.ppat.1000970] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 05/27/2010] [Indexed: 12/25/2022] Open
Abstract
An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack. Plants have evolved a multilayered innate immune system to recognize and respond to potentially destructive microbes in the environment. Resistance to invasive biotrophic and hemi-biotrophic pathogens often involves transcriptional mobilization of defenses and programmed death of host cells at infection sites. However, these processes disturb normal metabolism and growth and therefore have to be tightly controlled. In this study, we examine resistance signaling events inside Arabidopsis cells after pathogen activation of intracellular immune receptors. We show that the nucleo-cytoplasmic protein EDS1 acts as an important regulator of transcriptional reprogramming in the immune response by allowing the induction and repression of particular defense-related genes. We provide evidence that EDS1 accomplishes its role as a defense signaling ‘hub’ through coordinated activities in the cytoplasm and nucleus. Maintaining a balance between these two EDS1 pools is probably important for resistance and cell death to a range of infectious microbes and to not ‘overshoot’ defense activation which would be detrimental for the plant.
Collapse
Affiliation(s)
- Ana V. García
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Servane Blanvillain-Baufumé
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin P. Huibers
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Marcel Wiermer
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Guangyong Li
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Enrico Gobbato
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Steffen Rietz
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
334
|
R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 2010; 16:1-24. [PMID: 20585889 PMCID: PMC6275759 DOI: 10.2478/s11658-010-0024-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/16/2010] [Indexed: 12/13/2022] Open
Abstract
Plants are attacked by a wide spectrum of pathogens, being the targets of viruses, bacteria, fungi, protozoa, nematodes and insects. Over the course of their evolution, plants have developed numerous defense mechanisms including the chemical and physical barriers that are constitutive elements of plant cell responses locally and/or systemically. However, the modern approach in plant sciences focuses on the evolution and role of plant protein receptors corresponding to specific pathogen effectors. The recognition of an invader's molecules could be in most cases a prerequisite sine qua non for plant survival. Although the predicted three-dimensional structure of plant resistance proteins (R) is based on research on their animal homologs, advanced technologies in molecular biology and bioinformatics tools enable the investigation or prediction of interaction mechanisms for specific receptors with pathogen effectors. Most of the identified R proteins belong to the NBS-LRR family. The presence of other domains (including the TIR domain) apart from NBS and LRR is fundamental for the classification of R proteins into subclasses. Recently discovered additional domains (e.g. WRKY) of R proteins allowed the examination of their localization in plant cells and the role they play in signal transduction during the plant resistance response to biotic stress factors. This review focuses on the current state of knowledge about the NBS-LRR family of plant R proteins: their structure, function and evolution, and the role they play in plant innate immunity.
Collapse
|
335
|
Bartsch M, Bednarek P, Vivancos PD, Schneider B, von Roepenack-Lahaye E, Foyer CH, Kombrink E, Scheel D, Parker JE. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves. J Biol Chem 2010; 285:25654-65. [PMID: 20538606 DOI: 10.1074/jbc.m109.092569] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An intricate network of hormone signals regulates plant development and responses to biotic and abiotic stress. Salicylic acid (SA), derived from the shikimate/isochorismate pathway, is a key hormone in resistance to biotrophic pathogens. Several SA derivatives and associated modifying enzymes have been identified and implicated in the storage and channeling of benzoic acid intermediates or as bioactive molecules. However, the range and modes of action of SA-related metabolites remain elusive. In Arabidopsis, Enhanced Disease Susceptibility 1 (EDS1) promotes SA-dependent and SA-independent responses in resistance against pathogens. Here, we used metabolite profiling of Arabidopsis wild type and eds1 mutant leaf extracts to identify molecules, other than SA, whose accumulation requires EDS1 signaling. Nuclear magnetic resonance and mass spectrometry of isolated and purified compounds revealed 2,3-dihydroxybenzoic acid (2,3-DHBA) as an isochorismate-derived secondary metabolite whose accumulation depends on EDS1 in resistance responses and during ageing of plants. 2,3-DHBA exists predominantly as a xylose-conjugated form (2-hydroxy-3-beta-O-D-xylopyranosyloxy benzoic acid) that is structurally distinct from known SA-glucose conjugates. Analysis of DHBA accumulation profiles in various Arabidopsis mutants suggests an enzymatic route to 2,3-DHBA synthesis that is under the control of EDS1. We propose that components of the EDS1 pathway direct the generation or stabilization of 2,3-DHBA, which as a potentially bioactive molecule is sequestered as a xylose conjugate.
Collapse
Affiliation(s)
- Michael Bartsch
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Straus MR, Rietz S, Ver Loren van Themaat E, Bartsch M, Parker JE. Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:628-40. [PMID: 20163553 DOI: 10.1111/j.1365-313x.2010.04178.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.
Collapse
Affiliation(s)
- Marco R Straus
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | | | | | | | | |
Collapse
|
337
|
Ishikawa K, Yoshimura K, Harada K, Fukusaki E, Ogawa T, Tamoi M, Shigeoka S. AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling. PLANT PHYSIOLOGY 2010; 152:2000-12. [PMID: 20181750 PMCID: PMC2850003 DOI: 10.1104/pp.110.153569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/21/2010] [Indexed: 05/19/2023]
Abstract
Here, we investigated the physiological role of Arabidopsis (Arabidopsis thaliana) AtNUDX6, the gene encoding ADP-ribose (Rib)/NADH pyrophosphohydrolase, using its overexpressor (Pro35S:AtNUDX6) or disruptant (KO-nudx6). The level of NADH in Pro35S:AtNUDX6 and KO-nudx6 plants was decreased and increased, respectively, compared with that of the control plants, while the level of ADP-Rib was not changed in either plant. The activity of pyrophosphohydrolase toward NADH was enhanced and reduced in the Pro35S:AtNUDX6 and KO-nudx6 plants, respectively. The decrease in the activity of NADH pyrophosphohydrolase and the increase in the level of NADH were observed in the rosette and cauline leaves, but not in the roots, of the KO-nudx6 plants. Notably, the expression level of AtNUDX6 and the activity of NADH pyrophosphohydrolase in the control plants, but not in the KO-nudx6 plants, were increased by the treatment with salicylic acid (SA). The expression of SA-induced genes (PR1, WRKY70, NIMIN1, and NIMIN2) depending on NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key component required for pathogen resistance, was significantly suppressed and enhanced in the KO-nudx6 and Pro35S:AtNUDX6 plants, respectively, under the treatment with SA. Induction of thioredoxin h5 (TRX-h5) expression, which catalyzes a SA-induced NPR1 activation, was suppressed and accelerated in the KO-nudx6 and Pro35S:AtNUDX6 plants, respectively. The expression of isochorismate synthase1, required for the regulation of SA synthesis through the NPR1-mediated feedback loop, was decreased and increased in the KO-nudx6 and Pro35S:AtNUDX6 plants, respectively. Judging from seed germination rates, the KO-nudx6 plants had enhanced sensitivity to the toxicity of high-level SA. These results indicated that AtNUDX6 is a modulator of NADH rather than ADP-Rib metabolism and that, through induction of TRX-h5 expression, AtNUDX6 significantly impacts the plant immune response as a positive regulator of NPR1-dependent SA signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara 631–8505, Japan (K.I., T.O., M.T., S.S.); Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, Aichi 487–8501, Japan (K.Y.); and Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565–0871, Japan (K.H., E.F.)
| |
Collapse
|
338
|
Monaghan J, Li X. The HEAT Repeat Protein ILITYHIA is Required for Plant Immunity. ACTA ACUST UNITED AC 2010; 51:742-53. [DOI: 10.1093/pcp/pcq038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
339
|
Truman WM, Bennett MH, Turnbull CG, Grant MR. Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. PLANT PHYSIOLOGY 2010; 152:1562-73. [PMID: 20081042 PMCID: PMC2832264 DOI: 10.1104/pp.109.152173] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance is a widespread phenomenon in the plant kingdom that confers heightened and often enduring immunity to a range of diverse pathogens. Systemic immunity develops through activation of plant disease resistance protein signaling networks following local infection with an incompatible pathogen. The accumulation of the phytohormone salicylic acid in systemically responding tissues occurs within days after a local immunizing infection and is essential for systemic resistance. However, our knowledge of the signaling components underpinning signal perception and the establishment of systemic immunity are rudimentary. Previously, we showed that an early and transient increase in jasmonic acid in distal responding tissues was central to effective establishment of systemic immunity. Based upon predicted transcriptional networks induced in naive Arabidopsis (Arabidopsis thaliana) leaves following avirulent Pseudomonas syringae challenge, we show that a variety of auxin mutants compromise the establishment of systemic immunity. Linking together transcriptional and targeted metabolite studies, our data provide compelling evidence for a role of indole-derived compounds, but not auxin itself, in the establishment and maintenance of systemic immunity.
Collapse
|
340
|
Adams-Phillips L, Briggs AG, Bent AF. Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. PLANT PHYSIOLOGY 2010; 152:267-80. [PMID: 19889874 PMCID: PMC2799362 DOI: 10.1104/pp.109.148049] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/30/2009] [Indexed: 05/03/2023]
Abstract
Poly(ADP-ribosyl)ation is a posttranslational protein modification in which ADP-ribose (ADP-Rib) units derived from NAD(+) are attached to proteins by poly(ADP-Rib) polymerase (PARP) enzymes. ADP-Rib groups are removed from these polymer chains by the enzyme poly(ADP-Rib) glycohydrolase (PARG). In animals, poly(ADP-ribosyl)ation is associated with DNA damage responses and programmed cell death. Previously, we hypothesized a role for poly(ADP-ribosyl)ation in plant defense responses when we detected defense-associated expression of the poly(ADP-ribosyl)ation-related genes PARG2 and NUDT7 and observed altered callose deposition in the presence of a chemical PARP inhibitor. The role of poly(ADP-ribosyl)ation in plant defenses was more extensively investigated in this study, using Arabidopsis (Arabidopsis thaliana). Pharmacological inhibition of PARP using 3-aminobenzamide perturbs certain innate immune responses to microbe-associated molecular patterns (flg22 and elf18), including callose deposition, lignin deposition, pigment accumulation, and phenylalanine ammonia lyase activity, but does not disrupt other responses, such as the initial oxidative burst and expression of some early defense-associated genes. Mutant parg1 seedlings exhibit exaggerated seedling growth inhibition and pigment accumulation in response to elf18 and are hypersensitive to the DNA-damaging agent mitomycin C. Both parg1 and parg2 knockout plants show accelerated onset of disease symptoms when infected with Botrytis cinerea. Cellular levels of ADP-Rib polymer increase after infection with avirulent Pseudomonas syringae pv tomato DC3000 avrRpt2(+), and pathogen-dependent changes in the poly(ADP-ribosyl)ation of discrete proteins were also observed. We conclude that poly(ADP-ribosyl)ation is a functional component in plant responses to biotic stress.
Collapse
Affiliation(s)
| | | | - Andrew F. Bent
- Department of Plant Pathology (L.A.-P., A.G.B., A.F.B.) and Program in Cellular and Molecular Biology (A.G.B.), University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
341
|
Lagaert S, Beliën T, Volckaert G. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 2009; 20:1064-73. [DOI: 10.1016/j.semcdb.2009.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
342
|
Gou M, Su N, Zheng J, Huai J, Wu G, Zhao J, He J, Tang D, Yang S, Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:757-70. [PMID: 19682297 DOI: 10.1111/j.1365-313x.2009.03995.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabidopsis gain-of-resistance mutants, which show HR-like lesion formation and SAR-like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense-response gene expression. The cpr30-conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30-conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30-conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30-GFP fusion protein in the cytoplasm and nucleus. As an F-box protein, CPR30 could interact with multiple Arabidopsis-SKP1-like (ASK) proteins in vivo. Co-localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA-dependent and SA-independent defense signaling, most likely through the ubiquitin-proteasome pathway in Arabidopsis.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Agrobiotechnology and National Center for Plant Gene Research (Beijing), China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O'Connell R. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:602-13. [PMID: 19686535 DOI: 10.1111/j.1365-313x.2009.03984.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic fungal pathogen that causes anthracnose disease on Arabidopsis and other crucifer hosts. By exploiting natural variation in Arabidopsis we identified a resistance locus that is shared by four geographically distinct accessions (Ws-0, Kondara, Gifu-2 and Can-0). A combination of quantitative trait loci (QTL) and Mendelian mapping positioned this locus within the major recognition gene complex MRC-J on chromosome 5 containing the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) genes RPS4 and RRS1 that confer dual resistance to C. higginsianum in Ws-0 (Narusaka et al., 2009). We find that the resistance shared by these diverse Arabidopsis accessions is expressed at an early stage of fungal invasion, at the level of appressorial penetration and establishment of intracellular biotrophic hyphae, and that this determines disease progression. Resistance is not associated with host hypersensitive cell death, an oxidative burst or callose deposition in epidermal cells but requires the defense regulator EDS1, highlighting new functions of TIR-NB-LRR genes and EDS1 in limiting early establishment of fungal biotrophy. While the Arabidopsis accession Ler-0 is fully susceptible to C. higginsianum infection, Col-0 displays intermediate resistance that also maps to MRC-J. By analysis of null mutants of RPS4 and RRS1 in Col-0 we show that these genes, individually, do not contribute strongly to C. higginsianum resistance but are both required for resistance to Pseudomonas syringae bacteria expressing the Type III effector, AvrRps4. We conclude that distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.
Collapse
Affiliation(s)
- Doris Birker
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Ishikawa K, Ogawa T, Hirosue E, Nakayama Y, Harada K, Fukusaki E, Yoshimura K, Shigeoka S. Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress. PLANT PHYSIOLOGY 2009; 151:741-54. [PMID: 19656905 PMCID: PMC2754630 DOI: 10.1104/pp.109.140442] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/03/2009] [Indexed: 05/18/2023]
Abstract
Here, we assessed modulation of the poly(ADP-ribosyl)ation (PAR) reaction by an Arabidopsis (Arabidopsis thaliana) ADP-ribose (Rib)/NADH pyrophosphohydrolase, AtNUDX7 (for Arabidopsis Nudix hydrolase 7), in AtNUDX7-overexpressed (Pro(35S):AtNUDX7) or AtNUDX7-disrupted (KO-nudx7) plants under normal conditions and oxidative stress caused by paraquat treatment. Levels of NADH and ADP-Rib were decreased in the Pro(35S):AtNUDX7 plants but increased in the KO-nudx7 plants under normal conditions and oxidative stress compared with the control plants, indicating that AtNUDX7 hydrolyzes both ADP-Rib and NADH as physiological substrates. The Pro(35S):AtNUDX7 and KO-nudx7 plants showed increased and decreased tolerance, respectively, to oxidative stress compared with the control plants. Levels of poly(ADP-Rib) in the Pro(35S):AtNUDX7 and KO-nudx7 plants were markedly higher and lower, respectively, than those in the control plants. Depletion of NAD(+) and ATP resulting from the activation of the PAR reaction under oxidative stress was completely suppressed in the Pro(35S):AtNUDX7 plants. Accumulation of NAD(+) and ATP was observed in the KO-nudx7- and 3-aminobenzamide-treated plants, in which the PAR reaction was suppressed. The expression levels of DNA repair factors, AtXRCC1 and AtXRCC2 (for x-ray repair cross-complementing factors 1 and 2), paralleled that of AtNUDX7 under both normal conditions and oxidative stress, although an inverse correlation was observed between the levels of AtXRCC3, AtRAD51 (for Escherichia coli RecA homolog), AtDMC1 (for disrupted meiotic cDNA), and AtMND1 (for meiotic nuclear divisions) and AtNUDX7. These findings suggest that AtNUDX7 controls the balance between NADH and NAD(+) by NADH turnover under normal conditions. Under oxidative stress, AtNUDX7 serves to maintain NAD(+) levels by supplying ATP via nucleotide recycling from free ADP-Rib molecules and thus regulates the defense mechanisms against oxidative DNA damage via modulation of the PAR reaction.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Lu H. Dissection of salicylic acid-mediated defense signaling networks. PLANT SIGNALING & BEHAVIOR 2009; 4:713-7. [PMID: 19820324 PMCID: PMC2801381 DOI: 10.4161/psb.4.8.9173] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 05/18/2023]
Abstract
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
346
|
Gunawardana D, Likic VA, Gayler KR. A comprehensive bioinformatics analysis of the Nudix superfamily in Arabidopsis thaliana. Comp Funct Genomics 2009; 2009:820381. [PMID: 19590748 PMCID: PMC2707057 DOI: 10.1155/2009/820381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4) was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.
Collapse
Affiliation(s)
- D. Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - V. A. Likic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. R. Gayler
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
347
|
Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, Hersh M, Stromberg AJ, Navarre D, Kachroo A, Kachroo P. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet 2009; 5:e1000545. [PMID: 19578402 PMCID: PMC2695777 DOI: 10.1371/journal.pgen.1000545] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/01/2009] [Indexed: 11/19/2022] Open
Abstract
Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.
Collapse
Affiliation(s)
- Srivathsa C. Venugopal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Rae-Dong Jeong
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mihir K. Mandal
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shifeng Zhu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - A. C. Chandra-Shekara
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ye Xia
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Matthew Hersh
- Department of Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arnold J. Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - DuRoy Navarre
- United States Department of Agriculture–Agricultural Research Service, Washington State University, Prosser, Washington, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
348
|
Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NHT, Mattsson O, Jørgensen LB, Jones JDG, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009; 137:773-83. [PMID: 19450522 DOI: 10.1016/j.cell.2009.02.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 01/07/2023]
Abstract
Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death contributes to HR PCD and can function in parallel with other prodeath pathways.
Collapse
Affiliation(s)
- Daniel Hofius
- Department of Biology, Copenhagen Biocenter, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Chang CCC, Slesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. PLANT PHYSIOLOGY 2009; 150:670-83. [PMID: 19363092 PMCID: PMC2689974 DOI: 10.1104/pp.109.135566] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/06/2009] [Indexed: 05/18/2023]
Abstract
Glutathione peroxidases (GPXs; EC 1.11.1.9) are key enzymes of the antioxidant network in plants and animals. In order to investigate the role of antioxidant systems in plant chloroplasts, we generated Arabidopsis (Arabidopsis thaliana) transgenic lines that are depleted specifically in chloroplastic (cp) forms of GPX1 and GPX7. We show that reduced cpGPX expression, either in transgenic lines with lower total cpGPX expression (GPX1 and GPX7) or in a gpx7 insertion mutant, leads to compromised photooxidative stress tolerance but increased basal resistance to virulent bacteria. Depletion of both GPX1 and GPX7 expression also caused alterations in leaf cell and chloroplast morphology. Leaf tissues were characterized by shorter and more rounded palisade cells, irregular spongy mesophyll cells, and larger intercellular air spaces compared with the wild type. Chloroplasts had larger and more abundant starch grains than in wild-type and gpx7 mutant plants. Constitutively reduced cpGPX expression also led to higher foliar ascorbic acid, glutathione, and salicylic acid levels in plants exposed to higher light intensities. Our results suggest partially overlapping functions of GPX1 and GPX7. The data further point to specific changes in the chloroplast ascorbate-glutathione cycle due to reduced cpGPX expression, initiating reactive oxygen species and salicylic acid pathways that affect leaf development, light acclimation, basal defense, and cell death programs. Thus, cpGPXs regulate cellular photooxidative tolerance and immune responses.
Collapse
Affiliation(s)
- Christine C C Chang
- Department of Botany, Stockholm University, Frescati 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
van den Burg HA, Takken FLW. Does chromatin remodeling mark systemic acquired resistance? TRENDS IN PLANT SCIENCE 2009; 14:286-94. [PMID: 19369112 DOI: 10.1016/j.tplants.2009.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 05/07/2023]
Abstract
The recognition of plant pathogens activates local defense responses and triggers a long-lasting systemic acquired resistance (SAR) response. Activation of SAR requires the hormone salicylic acid (SA), which induces SA-responsive gene expression. Recent data link changes in gene expression to chromatin remodeling, such as histone modifications and histone replacement. Here, we propose a model in which recruitment of chromatin-modifying complexes to SA-responsive loci controls their basal and SA-induced expression. Basal repression of these loci requires the post-translational modifier SUMO (SMALL UBIQUITIN-LIKE MODIFIER). This is of particular relevance because SUMO conjugation has been shown to control the activity, assembly and disassembly of chromatin-modifying complexes to transcription complexes. Chromatin remodeling could be instrumental for priming of SA-responsive loci to enable their enhanced reactivation upon subsequent pathogen attack.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | |
Collapse
|