301
|
Webster KM, Sun M, Crack P, O'Brien TJ, Shultz SR, Semple BD. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation 2017; 14:10. [PMID: 28086980 PMCID: PMC5237206 DOI: 10.1186/s12974-016-0786-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023] Open
Abstract
Background Epilepsy is a common and debilitating consequence of traumatic brain injury (TBI). Seizures contribute to progressive neurodegeneration and poor functional and psychosocial outcomes for TBI survivors, and epilepsy after TBI is often resistant to existing anti-epileptic drugs. The development of post-traumatic epilepsy (PTE) occurs in a complex neurobiological environment characterized by ongoing TBI-induced secondary injury processes. Neuroinflammation is an important secondary injury process, though how it contributes to epileptogenesis, and the development of chronic, spontaneous seizure activity, remains poorly understood. A mechanistic understanding of how inflammation contributes to the development of epilepsy (epileptogenesis) after TBI is important to facilitate the identification of novel therapeutic strategies to reduce or prevent seizures. Body We reviewed previous clinical and pre-clinical data to evaluate the hypothesis that inflammation contributes to seizures and epilepsy after TBI. Increasing evidence indicates that neuroinflammation is a common consequence of epileptic seizure activity, and also contributes to epileptogenesis as well as seizure initiation (ictogenesis) and perpetuation. Three key signaling factors implicated in both seizure activity and TBI-induced secondary pathogenesis are highlighted in this review: high-mobility group box protein-1 interacting with toll-like receptors, interleukin-1β interacting with its receptors, and transforming growth factor-β signaling from extravascular albumin. Lastly, we consider age-dependent differences in seizure susceptibility and neuroinflammation as mechanisms which may contribute to a heightened vulnerability to epileptogenesis in young brain-injured patients. Conclusion Several inflammatory mediators exhibit epileptogenic and ictogenic properties, acting on glia and neurons both directly and indirectly influence neuronal excitability. Further research is required to establish causality between inflammatory signaling cascades and the development of epilepsy post-TBI, and to evaluate the therapeutic potential of pharmaceuticals targeting inflammatory pathways to prevent or mitigate the development of PTE.
Collapse
Affiliation(s)
- Kyria M Webster
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Mujun Sun
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Peter Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Sandy R Shultz
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia
| | - Bridgette D Semple
- Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, Kenneth Myer Building, Melbourne Brain Centre, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
302
|
Disease-modifying effect of intravenous immunoglobulin in an experimental model of epilepsy. Sci Rep 2017; 7:40528. [PMID: 28074934 PMCID: PMC5225452 DOI: 10.1038/srep40528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Novel therapies that prevent or modify the development of epilepsy following an initiating brain insult could significantly reduce the burden of this disease. In light of evidence that immune mechanisms play an important role in generating and maintaining the epileptic condition, we evaluated the effect of a well-established immunomodulatory treatment, intravenous immunoglobulin (IVIg), on the development of epilepsy in an experimental model of epileptogenesis. In separate experiments, IVIg was administered either before (pre-treatment) or after (post-treatment) the onset of pilocarpine status epilepticus (SE). Our results show that both pre- and post-treatment with IVIg attenuated acute inflammation in the SE model. Specifically, IVIg reduced local activation of glial cells, complement system activation, and blood-brain barrier damage (BBB), which are all thought to play important roles in the development of epilepsy. Importantly, post-treatment with IVIg was also found to reduce the frequency and duration of subsequent spontaneous recurrent seizures as detected by chronic video-electroencephalographic (video-EEG) recordings. This finding supports a novel application for IVIg, specifically its repurposing as a disease-modifying therapy in epilepsy.
Collapse
|
303
|
Cudna A, Jopowicz A, Mierzejewski P, Kurkowska-Jastrzębska I. Serum metalloproteinase 9 levels increase after generalized tonic-clonic seizures. Epilepsy Res 2017; 129:33-36. [DOI: 10.1016/j.eplepsyres.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
304
|
Falsaperla R, Romano C, Pavone P, Vitaliti G, Yuan Q, Motamed-Gorji N, Lubrano R. The Gut-brain Axis: A New Pathogenic View of Neurologic Symptoms - Description of a Pediatric Case. J Pediatr Neurosci 2017; 12:105-108. [PMID: 28553399 PMCID: PMC5437772 DOI: 10.4103/jpn.jpn_190_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent literature data have given emphasis to the relationship between gastrointestinal (GI) disorders and neurologic diseases, underlying a new pathogenic pathway: The so-called "gut-brain axis." Herein, authors report a case of a 10-month-old male infant, admitted for drug-resistant epilepsy, associated with irritable behavior and GI discomfort, secondary to cow's milk protein allergy. Seizures were described by parents as upward eye movements that were mostly deviated to the right and were associated with slight extension of his neck. They were infrequent at first, but had increased gradually during the course of 3 days (up to 15-20 times/day). No anticonvulsant therapy was effective. Only a cow's milk protein-free diet, accidentally started during a gastroenteritis episode, was effective in stopping seizures. Our case underlines the peculiar vulnerability of the blood-brain barrier under 1 year of age, for which children of this age group experience neurologic manifestations during episodes of systemic inflammation.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- General Paediatrics Complex Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Catia Romano
- General Paediatrics Complex Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Piero Pavone
- General Paediatrics Complex Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Giovanna Vitaliti
- General Paediatrics Complex Operative Unit, Policlinico-Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Qian Yuan
- Clinical Director, Food Allergy Center, Pediatrician, Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | | | - Riccardo Lubrano
- Pediatric Nephrology Operative Unit, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
305
|
Ambrogini P, Betti M, Galati C, Di Palma M, Lattanzi D, Savelli D, Galli F, Cuppini R, Minelli A. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions. Int J Mol Sci 2016; 17:E2107. [PMID: 27983697 PMCID: PMC5187907 DOI: 10.3390/ijms17122107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity is an "umbrella term" referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Claudia Galati
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| |
Collapse
|
306
|
He F, Liu B, Meng Q, Sun Y, Wang W, Wang C. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Biosci Rep 2016; 36:e00433. [PMID: 27852797 PMCID: PMC5180253 DOI: 10.1042/bsr20160290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the involvement of inflammatory and immune processes in temporal lobe epilepsy (TLE). miRNAs represent small regulatory RNA molecules that have been shown to act as negative regulators of gene expression controlling different biological processes, including immune system homoeostasis and function. We investigated the expression and cellular distribution of miRNA-146a (miR-146a) in a rat model of TLE. Prominent up-regulation of miR-146a activation was evident in 1 week after status epilepticus (SE) and persisted in the chronic phase. The predicted miR-146a's target complement factor H (CFH) mRNA and protein expression was also down-regulated in TLE rat model. Furthermore, transfection of miR-146a mimics in neuronal and glial cells down-regulated CFH mRNA and protein levels respectively. Luciferase reporter assays demonstrated that miR-146a down-regulated CFH mRNA expression via 3'-UTR pairing. Down-regulating miR-146a by intracerebroventricular injection of antagomir-146a enhanced the hippocampal expression of CFH in TLE model and decreased seizure susceptibility. These findings suggest that immunopathological deficits associated with TLE can in part be explained by a generalized miR-146a-mediated down-regulation of CFH that may contribute to epileptogenesis in a rat model of TLE.
Collapse
Affiliation(s)
- Fang He
- Outpatient Department, The 316 Military Hospital, Beijing 100093, China
| | - Bei Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qiang Meng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yang Sun
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Weiwen Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
307
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
308
|
Li X, Han X, Yang J, Bao J, Di X, Zhang G, Liu H. Magnesium Sulfate Provides Neuroprotection in Eclampsia-Like Seizure Model by Ameliorating Neuroinflammation and Brain Edema. Mol Neurobiol 2016; 54:7938-7948. [PMID: 27878553 DOI: 10.1007/s12035-016-0278-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
Abstract
Eclampsia is a hypertensive disorder of pregnancy that is defined by the new onset of grand mal seizures on the basis of preeclampsia and a leading cause of maternal and fetal mortality worldwide. Presently, magnesium sulfate (MgSO4) is the most effective treatment, but the mechanism by which MgSO4 prevents eclampsia has yet to be fully elucidated. We previously showed that systemic inflammation decreases the seizure threshold in a rat eclampsia-like model, and MgSO4 treatment can decrease systemic inflammation. Here, we hypothesized that MgSO4 plays a neuroprotective role in eclampsia by reducing neuroinflammation and brain edema. Pregnant Sprague-Dawley rats were given an intraperitoneal injection of pentylenetetrazol following a tail vein injection of lipopolysaccharide to establish the eclampsia-like seizure model. Seizure activity was assessed by behavioral testing. Neuronal loss in the hippocampal CA1 region (CA1) was detected by Nissl staining. Cerebrospinal fluid levels of S100-B and ferritin, indicators of neuroinflammation, were detected by enzyme-linked immunosorbent assay, and ionized calcium binder adapter molecule 1 (Iba-1, a marker for microglia) and glial fibrillary acid protein (GFAP, a marker for astrocytes) expression in the CA1 area was determined by immunofluorescence staining. Brain edema was measured. Our results revealed that MgSO4 effectively attenuated seizure severity and CA1 neuronal loss. In addition, MgSO4 significantly reduced cerebrospinal fluid levels of S100-B and ferritin, Iba-1 and GFAP activation in the CA1 area, and brain edema. Our results indicate that MgSO4 plays a neuroprotective role against eclampsia-like seizure by reducing neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Jinying Yang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Junjie Bao
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaodan Di
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Guozheng Zhang
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
309
|
Zhou XW, Wang X, Yang Y, Luo JW, Dong H, Liu YH, Mao Q. Biomarkers related with seizure risk in glioma patients: A systematic review. Clin Neurol Neurosurg 2016; 151:113-119. [PMID: 27821299 DOI: 10.1016/j.clineuro.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that genetic biomarkers play important roles in the development of glioma-associated seizures. Thus, we performed a systematic review to summarise biomarkers that are associated with seizures in glioma patients. An electronic literature search of public databases (PubMed, Embase and Medline) was performed using the keywords glioma, seizure and epilepsy. A totall of 26 eligible studies with 2224 cases were included in this systematic review of publications to 20 June, 2016. Genetic biomarkers such as isocitrate dehydrogenase 1 (IDH1) mutations, low expression of excitatory amino acid transporter 2 (EAAT2), high xCT expression, overexpression of adenosine kinase (ADK) and low expression of very large G-protein-coupled receptor-1 (VLGR1) are primarily involved in synaptic transmission, whereas BRAF mutations, epidermal growth factor receptor (EGFR) amplification, miR-196b expression and low ki-67 expression are associated with regulation of cell proliferation. However, there is limited evidence regarding the roles of RAD50 interactor 1 (RINT1) and olig2 in epileptogenesis among glioma patients. Glioma-related seizure was related to the dysfunction of tumor microenvironment. Our findings may provide new mechanistic insights into targeted therapy for glioma-related seizures and may result in the development of multi-target therapies.
Collapse
Affiliation(s)
- Xing-Wang Zhou
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Jie-Wen Luo
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Hui Dong
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Si Chuan University, Chengdu 610041, China.
| |
Collapse
|
310
|
Smith MR, Burman P, Sadahiro M, Kidd BA, Dudley JT, Morishita H. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity. eNeuro 2016; 3:ENEURO.0240-16.2016. [PMID: 28101530 PMCID: PMC5241709 DOI: 10.1523/eneuro.0240-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/01/2016] [Accepted: 11/12/2016] [Indexed: 01/04/2023] Open
Abstract
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Milo R. Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Brian A. Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Joel T. Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
311
|
Intestinal Microbiota as an Alternative Therapeutic Target for Epilepsy. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:9032809. [PMID: 27882059 PMCID: PMC5108868 DOI: 10.1155/2016/9032809] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/02/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is one of the most widespread serious neurological disorders, and an aetiological explanation has not been fully identified. In recent decades, a growing body of evidence has highlighted the influential role of autoimmune mechanisms in the progression of epilepsy. The hygiene hypothesis draws people's attention to the association between gut microbes and the onset of multiple immune disorders. It is also believed that, in addition to influencing digestive system function, symbiotic microbiota can bidirectionally and reversibly impact the programming of extraintestinal pathogenic immune responses during autoimmunity. Herein, we investigate the concept that the diversity of parasitifer sensitivity to commensal microbes and the specific constitution of the intestinal microbiota might impact host susceptibility to epilepsy through promotion of Th17 cell populations in the central nervous system (CNS).
Collapse
|
312
|
Shao Y, Feng Y, Xie Y, Luo Q, Chen L, Li B, Chen Y. Protective Effects of Thymoquinone Against Convulsant Activity Induced by Lithium-Pilocarpine in a model of Status Epilepticus. Neurochem Res 2016; 41:3399-3406. [PMID: 27752802 DOI: 10.1007/s11064-016-2074-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 02/01/2023]
Abstract
Inflammation plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black seed (Nigella sativa) oil, which has anti-inflammatory properties in the context of various diseases. This study explored the protective effects of TQ in SE and used a lithium-pilocarpine model of SE to investigate the underlying mechanism, which was related to inflammation mediated by the NF-κB signaling pathway. In the present study, latency to SE increased in the TQ-pretreated group compared with the SE group, and the incidence of SE was significantly reduced. The seizure severity score measured on the Racine scale was significantly decreased in the TQ group compared with the SE group. Moreover, the results of the behavioral tests suggested that TQ may also have a protective effect on learning and memory functions. Finally, we further investigated the protective mechanism of TQ. The results showed that TQ-pretreatment significantly downregulated the protein levels of COX-2 and TNF-α in the brain, in a manner mediated by the NF-κB signaling pathway. These findings demonstrate that TQ attenuates convulsant activity via an anti- inflammation signaling pathway in a model of SE.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Yonghao Feng
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Qiong Luo
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Long Chen
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Bing Li
- Center Laboratory, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 200040, China.
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
| |
Collapse
|
313
|
Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation 2016; 13:270. [PMID: 27737716 PMCID: PMC5064886 DOI: 10.1186/s12974-016-0727-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Methods Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Results Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of different mediators in different brain regions suggested more distributed control mechanisms, particularly in the hippocampus. Interestingly, only four mediators showed robust correlations between the brain regions, yet levels in three of these were significantly different between regions, indicating both global and local controls for these mediators. Conclusions Both brain region-specific and epilepsy-associated changes in inflammation-related mediators were detected. Correlations in mediator levels within and between brain regions indicated local and global regulation, respectively. The hippocampus showed the majority of interregional associations, suggesting a focus of inflammatory control between these regions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0727-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenneth I Strauss
- College of Human Medicine, Michigan State University, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| | - Kost V Elisevich
- Department of Clinical Neurosciences, Spectrum Health System, Grand Rapids, MI, USA.,Division of Neurosurgery, Michigan State University, East Lansing, USA
| |
Collapse
|
314
|
Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Sci Signal 2016; 9:ra98. [DOI: 10.1126/scisignal.aaf5132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
315
|
The effect of some immunomodulatory and anti-inflammatory drugs on Li-pilocarpine-induced epileptic disorders in Wistar rats. Brain Res 2016; 1648:418-424. [DOI: 10.1016/j.brainres.2016.07.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 11/17/2022]
|
316
|
Octreotide ameliorates inflammation and apoptosis in acute and kindled murine PTZ paradigms. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:61-68. [PMID: 27695956 DOI: 10.1007/s00210-016-1303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
In the present study, the role of octreotide (OCT) in pentylenetetrazole (PTZ) kindling as well as in acute convulsion models was evaluated. Mice were allocated in groups as (1) control saline; (2) acute PTZ (PTZ-a; 60 mg/kg, i.p.), as a single convulsive dose; and (3) kindled (PTZ-k) receiving nine subconvulsive doses of PTZ (40 mg/kg, i.p.) for 17 days. Groups 4-7 received either valproic acid (VPA) 50 mg/kg or OCT (50 μg/kg, Sandostatin®) 30 min by oral gavage before PTZ-a or PTZ-k. The median seizure stage, latency onset of first stage 4/5 seizures, and incidence of convulsing animals were recorded. Cortical dopamine (DA), tumor necrosis factor (TNF)-α, interleukin (IL)-10, caspase (Casp)-3, myeloperoxidase (MPO), and nitric oxide (NO) were assessed in addition to inducible nitric oxide synthase (iNOS) that was evaluated immunohistochemically in a different set of groups. OCT halted PTZ-induced epilepsy delaying convulsion latency via modulating MPO and TNF-α and normalizing IL-10 with both treatment regimens. In PTZ-k, it decreased Casp-3 activity, NO level, and iNOS immunoreactivity. OCT in both paradigms decreased DA concentration. The current investigation implicates a crucial role for OCT in modulating PTZ-induced kindling by regulating inflammatory and apoptotic effects.
Collapse
|
317
|
Itoh K, Ishihara Y, Komori R, Nochi H, Taniguchi R, Chiba Y, Ueno M, Takata-Tsuji F, Dohgu S, Kataoka Y. Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res 2016; 1652:1-13. [PMID: 27693413 DOI: 10.1016/j.brainres.2016.09.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
Our previous study showed that treatment with levetiracetam (LEV) after status epilepticus (SE) termination by diazepam might prevent the development of spontaneous recurrent seizures via the inhibition of neurotoxicity induced by brain edema events. In the present study, we determined the possible molecular and cellular mechanisms of LEV treatment after termination of SE. To assess the effect of LEV against the brain alterations after SE, we focused on blood-brain barrier (BBB) dysfunction associated with angiogenesis and brain inflammation. The consecutive treatment of LEV inhibited the temporarily increased BBB leakage in the hippocampus two days after SE. At the same time point, the LEV treatment significantly inhibited the increase in the number of CD31-positive endothelial immature cells and in the expression of angiogenic factors. These findings suggested that the increase in neovascularization led to an increase in BBB permeability by SE-induced BBB failure, and these brain alterations were prevented by LEV treatment. Furthermore, in the acute phase of the latent period, pro-inflammatory responses for epileptogenic targets in microglia and astrocytes of the hippocampus activated, and these upregulations of pro-inflammatory-related molecules were inhibited by LEV treatment. These findings suggest that LEV is likely involved in neuroprotection via anti-angiogenesis and anti-inflammatory activities against BBB dysfunction in the acute phase of epileptogenesis after SE.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan.
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Rie Komori
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Laboratory for Pharmaceutical Health Sciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Ruri Taniguchi
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fuyuko Takata-Tsuji
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
318
|
Differential expression of miR-184 in temporal lobe epilepsy patients with and without hippocampal sclerosis - Influence on microglial function. Sci Rep 2016; 6:33943. [PMID: 27666871 PMCID: PMC5036198 DOI: 10.1038/srep33943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures due to neuronal hyperexcitability. Here we compared miRNA expression patterns in mesial temporal lobe epilepsy with and without hippocampal sclerosis (mTLE + HS and mTLE −HS) to investigate the regulatory mechanisms differentiating both patient groups. Whole genome miRNA sequencing in surgically resected hippocampi did not reveal obvious differences in expression profiles between the two groups of patients. However, one microRNA (miR-184) was significantly dysregulated, which was confirmed by qPCR. We observed that overexpression of miR-184 inhibited cytokine release after LPS stimulation in primary microglial cells, while it did not affect the viability of murine primary neurons and primary astrocytes. Pathway analysis revealed that miR-184 is potentially involved in the regulation of inflammatory signal transduction and apoptosis. Dysregulation of some the potential miR-184 target genes was confirmed by qPCR and 3′UTR luciferase reporter assay. The reduced expression of miR-184 observed in patients with mTLE + HS together with its anti-inflammatory effects indicate that miR-184 might be involved in the modulation of inflammatory processes associated with hippocampal sclerosis which warrants further studies elucidating the role of miR-184 in the pathophysiology of mTLE.
Collapse
|
319
|
Kelley SA, Kossoff EH. How effective is the ketogenic diet for electrical status epilepticus of sleep? Epilepsy Res 2016; 127:339-343. [PMID: 27710878 DOI: 10.1016/j.eplepsyres.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Electrical status epilepticus of sleep (ESES), with the activation of profuse amounts of epileptiform discharges in sleep, may lead to intractable epilepsy and neurocognitive decline in children. Numerous varied treatments including antiseizure medications, steroids, and surgery have been investigated as possible treatment options. The ketogenic diet (KD) is an additional treatment option which may add to our treatment armamentarium for ESES. The KD may theoretically improve ESES by affecting GABA systems and reducing inflammation. Clinical reports of the KD for ESES have been heterogeneous, but to date 38 children have been described in six publications. Overall, 53% had EEG improvement, 41% had>50% seizure reduction, 45% had cognitive improvement, but only 9% had EEG normalization. This review will assess the efficacy of the KD in the treatment of ESES based on known data as well as possible mechanisms of action and the need for future study.
Collapse
Affiliation(s)
- Sarah Aminoff Kelley
- Johns Hopkins Hospital, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, United States.
| | - Eric Heath Kossoff
- Johns Hopkins Hospital, 200 North Wolfe Street, Baltimore, MD 21287, United States.
| |
Collapse
|
320
|
Role of the purinergic signaling in epilepsy. Pharmacol Rep 2016; 69:130-138. [PMID: 27915186 DOI: 10.1016/j.pharep.2016.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
Adenine nucleotides and adenosine are signaling molecules that activate purinergic receptors P1 and P2. Activation of A1 adenosine receptors has an anticonvulsant action, whereas activation of A2A receptors might initiate seizures. Therefore, a significant limitation to the use of A1 receptor agonists as drugs in the CNS might be their peripheral side effects. The anti-epileptic activity of adenosine is related to its increased concentration outside the cell. This increase might result from the inhibition of the equilibrative nucleoside transporters (ENTs). Moreover, the implantation of implants or stem cells into the brain might cause slow and persistent increases in adenosine concentrations in the extracellular spaces of the brain. The role of adenosine in seizure inhibition has been confirmed by results demonstrating that in patients with epilepsy, the adenosine kinase (ADK) present in astrocytes is the only purine-metabolizing enzyme that exhibits increased expression. Increased ADK activity causes intensified phosphorylation of adenosine to 5'-AMP, which therefore lowers the adenosine level in the extracellular spaces. These changes might initiate astrogliosis and epileptogenesis, which are the manifestations of epilepsy. Seizures might induce inflammatory processes and vice versa. Activation of P2X7 receptors causes intensified release of pro-inflammatory cytokines (IL-1β and TNF-α) and activates metabolic pathways that induce inflammatory processes in the CNS. Therefore, antagonists of P2X7 and the interleukin 1β receptor might be efficient drugs for recurring seizures and prolonged status epilepticus. Inhibitors of ADK would simultaneously inhibit the seizures, prevent the astrogliosis and epileptogenesis processes and prevent the formation of new epileptogenic foci. Therefore, these drugs might become beneficial seizure-suppressing drugs.
Collapse
|
321
|
Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.36412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
322
|
Darvishi H, Rezaei M, Khodayar MJ, Reza Zargar H, Dehghani MA, Rajabi Vardanjani H, Ghanbari S. Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-36412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
323
|
Pera MC, Randazzo G, Masnada S, Dontin SD, De Giorgis V, Balottin U, Veggiotti P. Intravenous methylprednisolone pulse therapy for children with epileptic encephalopathy. FUNCTIONAL NEUROLOGY 2016; 30:173-9. [PMID: 26910177 DOI: 10.11138/fneur/2015.30.3.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this retrospective study of children affected by epileptic encephalopathy was to evaluate seizure frequency, electroencephalographic pattern and neuropsychological status, before and after intravenous methylprednisolone therapy. Eleven children with epileptic encephalopathy were administered one cycle of intravenous methylprednisolone (15-30 mg/kg/day for three consecutive days, once a month for four months) in addition to constant dosages of their regular antiepileptic drugs. The treatment resulted in statistically significant reductions of generalized slow spike-and-wave discharges (p<0.0028) and seizure frequency (p<0.013), which persisted even after methylprednisolone pulse therapy was stopped. A globally positive outcome was noted in 9/11 patients (81.8%). This methylprednisolone treatment regimen did not cause significant or persistent adverse effects. We suggest that children with epileptic encephalopathy without an underlying structural lesion could be the best candidates for intravenous methylprednisolone pulse therapy.
Collapse
|
324
|
Tomaciello F, Leclercq K, Kaminski RM. Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 2016; 632:199-203. [PMID: 27600732 DOI: 10.1016/j.neulet.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
Resveratrol (3,4',5-stilbenetriol) is a natural product having diverse anti-inflammatory and antioxidant properties. The compound has a wide spectrum of pharmacological and metabolic activity, including cardioprotective, neuroprotective, anticarcinogenic and anti-aging effects reported in numerous studies. Some reports also suggest potential anticonvulsant properties of resveratrol. In the present study, we used in mice three different seizure models which are routinely applied in preclinical drug discovery. The protective effects of resveratrol were evaluated in the pentylenetetrazole (PTZ), maximal electroshock (MES) and 6-Hz electrical seizure models. Resveratrol (up to 300mg/kg) administered ip (5-60min pre-treatment time) remained without any protective activity against seizures induced in these models. There was only a trend towards a delay in seizure latency, which reached statistical significance after treatment with resveratrol (100mg/kg; 15min) in case of tonic convulsions induced by PTZ. Phenobarbital (PHB, ip, 45min), used as a reference compound, displayed a clear-cut and dose-dependent protection against seizures in all the models. The ED50 values obtained with PHB were as follows: 7.3mg/kg (PTZ model), 13.3mg/kg (MES model) and 29.7mg/kg (6-Hz model). The present data demonstrate that an acute treatment with resveratrol does not provide any significant protection in three seizure models which collectively are able to detect anticonvulsants with diverse mechanisms of action. However, it cannot be excluded that chronic treatment with resveratrol may offer some protection in these or other seizure models.
Collapse
Affiliation(s)
- Francesca Tomaciello
- UCB Pharma, Neurosciences TA, B-1420 Braine-l'Alleud, Belgium; Faculty of Science, University of Sannio, Benevento, Italy
| | - Karine Leclercq
- UCB Pharma, Neurosciences TA, B-1420 Braine-l'Alleud, Belgium.
| | | |
Collapse
|
325
|
Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S. Amyloidosis in Retinal Neurodegenerative Diseases. Front Neurol 2016; 7:127. [PMID: 27551275 PMCID: PMC4976396 DOI: 10.3389/fneur.2016.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain.
Collapse
Affiliation(s)
- Ambra Masuzzo
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Chelsea Cavanagh
- Department of Neuroscience, Douglas Hospital Research Center , Montreal, QC , Canada
| | - Frederic Mascarelli
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Slavica Krantic
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| |
Collapse
|
326
|
Shorvon S, Diehl B, Duncan J, Koepp M, Rugg-Gunn F, Sander J, Walker M, Wehner T. Epilepsy and Related Disorders. Neurology 2016. [DOI: 10.1002/9781118486160.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Tim Wehner
- National Hospital for Neurology & Neurosurgery
| |
Collapse
|
327
|
Türe E, Kamaşak T, Cora M, Şahin S, Arslan EA, Kaklıkaya N, Cansu A. Comparison of the serum cytokine levels before and after adrenocorticotropic hormone (ACTH) therapy in patients with infantile spasm. Seizure 2016; 41:112-5. [PMID: 27525580 DOI: 10.1016/j.seizure.2016.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/31/2016] [Accepted: 06/25/2016] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Infantile spasm is an age-dependent epileptic syndrome seen in infancy or early childhood. Although studies have investigated the epilepsy-cytokine relationship, there has been insufficient research into the relation between cytokines and infantile spasm. The purpose of this study was to examine the role of cytokines in the pathogenesis of infantile spasm by investigating cytokine levels before and 1month after adrenocorticotropic hormone (ACTH) therapy in patients diagnosed with the condition. METHOD Twenty patients aged between 1month and 2years and diagnosed with infantile spasm at the Karadeniz Technical University Medical Faculty Department of Child Health and Diseases Pediatric Neurology Clinic, Turkey, and 20 healthy children were included in the study. Patients received 11 doses of ACTH on 2days a week. Levels of TNF-alpha and IL-2, the main cytokines involved in inflammation and recently associated with infantile spasm, and of IL-1beta, IL-6 and IL-17A, associated with epileptic seizures, and serum levels of the IL-17A activator IL-23 were investigated in all patients at the start of treatment and 1month after completion of treatment. RESULTS No statistically significant difference was observed between pre- and post-treatment patient group and control group IL-1beta, IL-2, IL-23 or TNF-alpha levels. Pre-treatment IL-6 and IL-17A levels were significantly higher in the untreated patient group compared to the healthy control group (p<0.001 and p=0.002). CONCLUSION Our study supports the recent idea that IL-6 and IL-17A are cytokines involved in the pathogenesis of infantile spasm.
Collapse
Affiliation(s)
- Esra Türe
- Karadeniz Teknik University, Department of Pediatrics, Turkey.
| | - Tülay Kamaşak
- Karadeniz Teknik University, Department of Pediatric Neurology, Turkey.
| | - Merve Cora
- Karadeniz Teknik University, Department of Microbiology, Turkey.
| | - Sevim Şahin
- Karadeniz Teknik University, Department of Pediatric Neurology, Turkey.
| | - Elif Acar Arslan
- Karadeniz Teknik University, Department of Pediatric Neurology, Turkey.
| | - Neşe Kaklıkaya
- Karadeniz Teknik University, Department of Microbiology, Turkey.
| | - Ali Cansu
- Karadeniz Teknik University, Department of Pediatric Neurology, Turkey.
| |
Collapse
|
328
|
Vitaliti G, Tabatabaie O, Matin N, Giugno GR, Pavone P, Lubrano R, Falsaperla R. Nervous system involvement in clinical peripheral inflammation: A description of three pediatric cases. J Pediatr Neurosci 2016; 11:277-281. [PMID: 27857808 PMCID: PMC5108142 DOI: 10.4103/1817-1745.193359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Latest research data have emphasized the interaction between the nervous and the immune systems. In this regard, it has been demonstrated that the disruption of the blood-brain barrier (BBB) secondary to peripheral inflammation may play a key role in this relationship. This assumption is linked to recent findings according to which units that constitute the BBB are not only simply neurologic but have also been reconsidered as "neurovascular" elements, through which immune system molecules are vehiculated within the central nervous system (CNS). Herein, we report two cases of food allergy (FA) and one case of infective gastroenteritis, associated with a spectrum of neurologic disorders involving both the CNS and the peripheral nervous system (PNS), postulating some etiopathogenic hypotheses to explain the link between peripheral inflammation and diseases of the nervous system (NS). Three pediatric cases of secondary NS involvement after gastrointestinal (GI) inflammation of different nature have been reported. The first case highlights the link between FA and CNS; the second one is based on a description of a link between GI infection and CNS involvement while the third one describes the relationship between FA and PNS. The importance of these reports relies on the clinical demonstration of a link between the immune system and the NS. The relationship between immune system and NS seems to have pleiotropic aspects, involving different areas of the NS, such as CNS and PNS, which also seem to be in some way interconnected.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Department of General Paediatrics and Neonates, Paediatric Operative Unit and Acute and Emergency, Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Omidreza Tabatabaie
- Department of General Paediatrics and Neonates, Tehran University of Medical Sciences, Tehran, Iran
| | - Nassim Matin
- Department of General Paediatrics and Neonates, Tehran University of Medical Sciences, Tehran, Iran
| | - Giovanni Roberto Giugno
- Department of General Paediatrics and Neonates, Paediatric and Neonatal Operative Unit, Gravina Hospital, Caltagirone, Italy
| | - Piero Pavone
- Department of General Paediatrics and Neonates, Paediatric Operative Unit and Acute and Emergency, Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| | - Riccardo Lubrano
- Pediatric Department, Pediatric Nephrology Operative Unit, La Sapienza University of Rome, Rome, Italy
| | - Raffaele Falsaperla
- Department of General Paediatrics and Neonates, Paediatric Operative Unit and Acute and Emergency, Vittorio Emanuele University Hospital, University of Catania, Catania, Italy
| |
Collapse
|
329
|
Hunsberger HC, Wang D, Petrisko TJ, Alhowail A, Setti SE, Suppiramaniam V, Konat GW, Reed MN. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus. J Neurochem 2016; 138:307-16. [PMID: 27168075 PMCID: PMC4936939 DOI: 10.1111/jnc.13665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of neuronal networks. These mechanisms are likely to underlie the enhanced seizure propensity.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, 26506 WV, USA
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Desheng Wang
- Blanchette Rockefeller Neurosciences Institute, Morgantown, 26506 WV, USA
| | - Tiffany J. Petrisko
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Ahmad Alhowail
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| | - Gregory W. Konat
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, 26506 WV, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, 36849 AL, USA
| |
Collapse
|
330
|
Vinet J, Vainchtein ID, Spano C, Giordano C, Bordini D, Curia G, Dominici M, Boddeke HWGM, Eggen BJL, Biagini G. Microglia are less pro-inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus. Glia 2016; 64:1350-62. [DOI: 10.1002/glia.23008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Jonathan Vinet
- Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; via G. Campi, 287 Modena Italy
| | - Ilia D. Vainchtein
- Department of Neuroscience; Section Medical Physiology, University Medical Center Groningen, University of Groningen; Antonius Deusinglaan, 1 Groningen The Netherlands
| | - Carlotta Spano
- Laboratory of Cell Therapies, Department of Medical and Surgical Sciences for Children & Adults; University Hospital of Modena and Reggio Emilia; via Del Pozzo, 71 Modena Italy
| | - Carmela Giordano
- Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; via G. Campi, 287 Modena Italy
| | - Domenico Bordini
- Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; via G. Campi, 287 Modena Italy
| | - Giulia Curia
- Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; via G. Campi, 287 Modena Italy
| | - Massimo Dominici
- Laboratory of Cell Therapies, Department of Medical and Surgical Sciences for Children & Adults; University Hospital of Modena and Reggio Emilia; via Del Pozzo, 71 Modena Italy
| | - Hendrikus W. G. M. Boddeke
- Department of Neuroscience; Section Medical Physiology, University Medical Center Groningen, University of Groningen; Antonius Deusinglaan, 1 Groningen The Netherlands
| | - Bart J. L. Eggen
- Department of Neuroscience; Section Medical Physiology, University Medical Center Groningen, University of Groningen; Antonius Deusinglaan, 1 Groningen The Netherlands
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences; University of Modena and Reggio Emilia; via G. Campi, 287 Modena Italy
| |
Collapse
|
331
|
Özdemir HH, Akil E, Acar A, Tamam Y, Varol S, Cevik MU, Arikanoglu A. Changes in serum albumin levels and neutrophil-lymphocyte ratio in patients with convulsive status epilepticus. Int J Neurosci 2016; 127:417-420. [PMID: 27161531 DOI: 10.1080/00207454.2016.1187606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Inflammation may be involved in the ictogenesis and development of some partial epilepsies. Serum albumin levels and the neutrophil-lymphocyte ratio (NLR) are markers of inflammation. The aim of this study was to investigate the ability of serum albumin levels and NLR to predict inflammation in patients with convulsive status epilepticus (CSE). METHODS This retrospective study was conducted on 58 patients who were diagnosed with CSE and control group comprised of 58 healthy individuals. Albumin levels and NLR were evaluated during both the acute and subacute periods of CSE. RESULTS The average serum albumin levels were 3.27 ± 0.62 g/dL during the acute period and 3.4 ± 0.67 g/dL in the subacute period in the patient group and 3.92 ± 0.52 g/dL in the control group. Neutrophil counts were higher in patients in the acute phase of CSE, but lymphocyte counts were lower compared to the control group and the subacute phase. The average NLR values were 4.83 ± 5.1 in the acute period, 3.07 ± 3.02 during the subacute period and 1.98 ± 0.42 in the control group. Serum albumin and NLR levels were significantly different between the patients in the subacute and acute periods of CSE and the control group (p < 0.05). There were significant negative correlational relationships between serum albumin and NLR levels (p < 0.05). CONCLUSION We found serum albumin levels were significantly lower and the NLR was significantly higher in the acute period of CSE. Neutrophil-mediated inflammation may be important in the aetiopathogenesis of CSE.
Collapse
Affiliation(s)
- Hasan H Özdemir
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Esref Akil
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Abdullah Acar
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Yusuf Tamam
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Sefer Varol
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | | | - Adalet Arikanoglu
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| |
Collapse
|
332
|
Puttachary S, Sharma S, Verma S, Yang Y, Putra M, Thippeswamy A, Luo D, Thippeswamy T. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis 2016; 93:184-200. [PMID: 27208748 DOI: 10.1016/j.nbd.2016.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022] Open
Abstract
Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression. We tested the hypothesis in the rat kainate model of chronic epilepsy using a novel disease modifying drug, 1400W, a highly selective inhibitor of inducible nitric oxide synthase (iNOS/NOS-II). In an in vitro mouse brain slice model, using a multi-electrode array system, co-application of 1400W with kainate significantly suppressed kainate-induced epileptiform spiking. In the rats, in vivo, 4h after the induction of SE with kainate, 1400W (20mg/kg, i.p.) was administered twice daily for three days to target early events of epileptogenesis. The rats were subjected to continuous (24/7) video-EEG monitoring, remotely, for six months from epidurally implanted cortical electrodes. The 1400W treatment significantly reduced the epileptiform spike rate during the first 12-74h post-SE, which resulted in >90% reduction in SRS in long-term during the six month period when compared to the vehicle-treated control group (257±113 versus 19±10 episodes). Immunohistochemistry (IHC) of brain sections at seven days and six months revealed a significant reduction in; reactive astrogliosis and microgliosis (M1 type), extravascular serum albumin (a marker for BBB leakage) and neurodegeneration in the hippocampus, amygdala and entorhinal cortex in the 1400W-treated rats when compared to the vehicle control. In the seven day group, hippocampal Western blots revealed downregulation of inwardly-rectifying potassium (Kir 4.1) channels and glutamate transporter-1 (GLT-1) levels in the vehicle group, and 1400W treatment partially reversed Kir 4.1 levels, however, GLT-1 levels were unaffected. In the six month group, a significant reduction in mossy fiber staining intensity in the inner molecular layer of the dentate gyrus was observed in the 1400W-treated group. Overall these findings demonstrate that 1400W, by reducing the epileptiform spike rate during the first three days of post-insult, potentially modifies epileptogenesis and the severity of chronic epilepsy in the rat kainate model of TLE.
Collapse
Affiliation(s)
- Sreekanth Puttachary
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Shaunik Sharma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Saurabh Verma
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Yang Yang
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Marson Putra
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Achala Thippeswamy
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | - Diou Luo
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA
| | | |
Collapse
|
333
|
Hu QP, Mao DA. Histone deacetylase inhibitor SAHA attenuates post-seizure hippocampal microglia TLR4/MYD88 signaling and inhibits TLR4 gene expression via histone acetylation. BMC Neurosci 2016; 17:22. [PMID: 27193049 PMCID: PMC4872358 DOI: 10.1186/s12868-016-0264-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. Seizure-induced TLR4/MYD88 signaling plays a critical role in activating microglia and triggering neuron apoptosis. SAHA is a histone deacetylase inhibitor that regulates gene expression by increasing chromatin histone acetylation. In this study, we investigated the role of SAHA in TLR4/MYD88 signaling in a rat seizure model. RESULTS Sprague-Dawley rats with kainic acid (KA)-induced seizures were treated with SAHA. The expression of TLR4, MYD88, NF-κB P65 and IL-1β in hippocampus was detected at hour 2 and 6 and day 1, 2, and 3 post seizure. SAHA pretreatment increased seizure latency and decreased seizure scores. The expression levels of TLR4, MYD88, NF-κB and IL-1β increased significantly in both activated microglia and apoptotic neurons after KA treatment. The effects were attenuated by SAHA. Chromatin immunoprecipitation assays indicated that the H3 histone acetylation levels significantly decreased while H3K9 levels significantly increased in the KA treatment group. The H3 and H3K9 acetylation levels returned to control levels after SAHA (50 mg/kg) pretreatment. There was a positive correlation between the expression of TLR4 and the acetylation levels of H3K9. CONCLUSIONS Histone deacetylase inhibitor SAHA can suppress seizure-induced TLR4/MYD88 signaling and inhibit TLR4 gene expression through histone acetylation regulation. This suggests that SAHA may protect against seizure-induced brain damage.
Collapse
Affiliation(s)
- Qing-Peng Hu
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Ding-An Mao
- Department of Pediatrics, The Second Xiang-Ya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
334
|
Oh H, Madison C, Baker S, Rabinovici G, Jagust W. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer's disease. Brain 2016; 139:2275-89. [PMID: 27190008 DOI: 10.1093/brain/aww108] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
SEE HANSSON AND GOURAS DOI101093/AWW146 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Although some brain regions such as precuneus and lateral temporo-parietal cortex have been shown to be more vulnerable to Alzheimer's disease than other areas, a mechanism underlying the differential regional vulnerability to Alzheimer's disease remains to be elucidated. Using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography imaging glucose metabolism and amyloid-β deposition, we tested whether and how life-long changes in glucose metabolism relate to amyloid-β deposition and Alzheimer's disease-related hypometabolism. Nine healthy young adults (age range: 20-30), 96 cognitively normal older adults (age range: 61-96), and 20 patients with Alzheimer's disease (age range: 50-90) were scanned using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography. Among cognitively normal older subjects, 32 were further classified as amyloid-positive, with 64 as amyloid-negative. To assess the contribution of glucose metabolism to the regional vulnerability to amyloid-β deposition, we defined the highest and lowest metabolic regions in young adults and examined differences in amyloid deposition between these regions across groups. Two-way analyses of variance were conducted to assess regional differences in age and amyloid-β-related changes in glucose metabolism. Multiple regressions were applied to examine the association between amyloid-β deposition and regional glucose metabolism. Both region of interest and whole-brain voxelwise analyses were conducted to complement and confirm the results derived from the other approach. Regional differences in glucose metabolism between the highest and lowest metabolism regions defined in young adults (T = 12.85, P < 0.001) were maintained both in Pittsburgh compound B-negative cognitively normal older subjects (T = 6.66, P < 0.001) and Pittsburgh compound B-positive cognitively normal older subjects (T = 10.62, P < 0.001), but, only the Pittsburgh compound B-positive cognitively normal older subjects group showed significantly higher Pittsburgh compound B retention in the highest compared to the lowest glucose metabolism regions defined in young adults (T = 2.05, P < 0.05). Regional differences in age and amyloid-β-dependent changes in glucose metabolism were found such that frontal glucose metabolism was reduced with age, while glucose metabolism in the precuneus was maintained across the lifespan (right hemisphere: F = 7.69, P < 0.001; left hemisphere: F = 8.69, P < 0.001). Greater Alzheimer's disease-related hypometabolism was observed in brain regions that showed both age-invariance and amyloid-β-related increases in glucose metabolism. Our results indicate that although early and life-long regional variation in glucose metabolism relates to the regional vulnerability to amyloid-β accumulation, Alzheimer's disease-related hypometabolism is more specific to brain regions showing age-invariant glucose metabolism and amyloid-β-related hypermetabolism.
Collapse
Affiliation(s)
- Hwamee Oh
- 1 Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Cindee Madison
- 1 Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Baker
- 2 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gil Rabinovici
- 1 Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA 2 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 3 Memory and Aging Center and Department of Neurology, University of California-San Francisco, San Francisco, CA 94117, USA
| | - William Jagust
- 1 Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA 94720, USA 2 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
335
|
Schartz ND, Herr SA, Madsen L, Butts SJ, Torres C, Mendez LB, Brewster AL. Spatiotemporal profile of Map2 and microglial changes in the hippocampal CA1 region following pilocarpine-induced status epilepticus. Sci Rep 2016; 6:24988. [PMID: 27143585 PMCID: PMC4855223 DOI: 10.1038/srep24988] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
Status epilepticus (SE) triggers pathological changes to hippocampal dendrites that may promote epileptogenesis. The microtubule associated protein 2 (Map2) helps stabilize microtubules of the dendritic cytoskeleton. Recently, we reported a substantial decline in Map2 that coincided with robust microglia accumulation in the CA1 hippocampal region after an episode of SE. A spatial correlation between Map2 loss and reactive microglia was also reported in human cortex from refractory epilepsy. New evidence supports that microglia modulate dendritic structures. Thus, to identify a potential association between SE-induced Map2 and microglial changes, a spatiotemporal profile of these events is necessary. We used immunohistochemistry to determine the distribution of Map2 and the microglia marker IBA1 in the hippocampus after pilocarpine-induced SE from 4 hrs to 35 days. We found a decline in Map2 immunoreactivity in the CA1 area that reached minimal levels at 14 days post-SE and partially increased thereafter. In contrast, maximal microglia accumulation occurred in the CA1 area at 14 days post-SE. Our data indicate that SE-induced Map2 and microglial changes parallel each other’s spatiotemporal profiles. These findings may lay the foundation for future mechanistic studies to help identify potential roles for microglia in the dendritic pathology associated with SE and epilepsy.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Seth A Herr
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Lauren Madsen
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Sarah J Butts
- Department of Psychological Sciences, West Lafayette, IN 47907, USA
| | - Ceidy Torres
- School of Science and Technology, Universidad del Este, Carolina, PR 00984, Puerto Rico
| | - Loyda B Mendez
- School of Science and Technology, Universidad del Este, Carolina, PR 00984, Puerto Rico
| | - Amy L Brewster
- Department of Psychological Sciences, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| |
Collapse
|
336
|
Dixit AB, Banerjee J, Srivastava A, Tripathi M, Sarkar C, Kakkar A, Jain M, Chandra PS. RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics 2016; 107:178-88. [DOI: 10.1016/j.ygeno.2016.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
|
337
|
Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8:136-157. [PMID: 27114746 PMCID: PMC4835673 DOI: 10.4252/wjsc.v8.i4.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40 vectors migrating to the hippocampus, and these cells were seen at earlier time points in the DG. We show that the cell membrane chemokine receptor, CCR5, and its ligands, enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity. SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells, suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS, both in the basal state and in response to injury. Furthermore, reduction in CCR5 expression in circulating cells provides profound neuroprotection from excitotoxic neuronal injury, reduces neuroinflammation, and increases neuronal regeneration following this type of insult. These results suggest that BM-derived, transgene-expressing, cells can migrate to the brain and that they become neurons, at least in part, by differentiating into neuron precursors and subsequently developing into mature neurons.
Collapse
|
338
|
Balzekas I, Hernandez J, White J, Koh S. Confounding effect of EEG implantation surgery: Inadequacy of surgical control in a two hit model of temporal lobe epilepsy. Neurosci Lett 2016; 622:30-6. [PMID: 27095588 DOI: 10.1016/j.neulet.2016.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
In rodent models of epilepsy, EEG implantation surgery is an essential modality to evaluate electrographic seizures. The inflammatory consequences of EEG electrode-implantation and their resultant effects on seizure susceptibility are unclear. We evaluated electrode-implantation in a two-hit model of epileptogenesis in C57BL/6 mice that included brief, recurrent febrile seizures (FS) at P14 and kainic acid induced seizures (KA-SZ) at P28. During KA-SZ, latencies to first electrographic and behavioral seizures, seizure severity, and KA dose sensitivity were measured. Mice that received subdural screw electrode implants at P25 for EEG monitoring at P28 had significantly shorter latencies to seizures than sham mice, regardless of early life seizure experience. Electrode-implanted mice were sensitive to low dose KA as shown by high mortality rate at KA doses above 10mg/kg. We then directly compared electrode-implantation and KA-SZ in seizure naive CX3CR1(GFP/+) transgenic C57BL/6 mice, wherein microglia express green fluorescent protein (GFP), to determine if microglia activation related to surgery was associated with the increased seizure susceptibility in electrode-implanted mice from the two-hit model. Hippocampal microglia activation, as demonstrated by percent area GFP signal and GFP positive cell counts, prior to seizures was indistinguishable between electrode-implanted mice and controls, but was significantly greater in electrode-implanted mice following seizures. Electrode-implantation had a confounding priming effect on the inflammatory response to subsequent seizures.
Collapse
Affiliation(s)
- Irena Balzekas
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jose Hernandez
- Stanley Manne Children's Research Institute, Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Jacob White
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sookyong Koh
- Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
339
|
Polymorphisms in the receptor for advanced glycation end products gene are associated with susceptibility to drug-resistant epilepsy. Neurosci Lett 2016; 619:137-41. [PMID: 26828298 DOI: 10.1016/j.neulet.2016.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 01/14/2023]
|
340
|
Klapal L, Igelhorst BA, Dietzel-Meyer ID. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18. Front Neurol 2016; 7:44. [PMID: 27065940 PMCID: PMC4812774 DOI: 10.3389/fneur.2016.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na+ current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5–10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose–response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na+ current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of INavD in response to TNF-α as well as respond to smaller concentrations of IL-18, our results offer an explanation for the finding, that in certain conditions of brain inflammations periods of dizziness are followed by epileptic seizures.
Collapse
Affiliation(s)
- Lars Klapal
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | - Birte A Igelhorst
- Department of Biochemistry II, Ruhr-University Bochum , Bochum , Germany
| | | |
Collapse
|
341
|
Sabilallah M, Fontanaud P, Linck N, Boussadia B, Peyroutou R, Lasgouzes T, Rassendren FA, Marchi N, Hirbec HE. Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice. PLoS One 2016; 11:e0150793. [PMID: 26963100 PMCID: PMC4786335 DOI: 10.1371/journal.pone.0150793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 12/04/2022] Open
Abstract
Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered.
Collapse
Affiliation(s)
- Mounira Sabilallah
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| | - Pierre Fontanaud
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Plateforme Imagerie du Petit Animal Montpellier, Biocampus, Montpellier, France
| | - Nathalie Linck
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| | - Badreddine Boussadia
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
| | - Ronan Peyroutou
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| | - Thibault Lasgouzes
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| | - François A. Rassendren
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| | - Nicola Marchi
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
| | - Helene E. Hirbec
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR5203, Montpellier, France
- Labex ICST, Montpellier, France
| |
Collapse
|
342
|
Takahashi DK, Gu F, Parada I, Vyas S, Prince DA. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma. Neurobiol Dis 2016; 91:166-81. [PMID: 26956396 DOI: 10.1016/j.nbd.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments.
Collapse
Affiliation(s)
- D Koji Takahashi
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Feng Gu
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Isabel Parada
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Shri Vyas
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - David A Prince
- Epilepsy Research Laboratories, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
343
|
Vieira ÉLM, de Oliveira GNM, Lessa JMK, Gonçalves AP, Oliveira ACP, Bauer ME, Sander JW, Cendes F, Teixeira AL. Peripheral leukocyte profile in people with temporal lobe epilepsy reflects the associated proinflammatory state. Brain Behav Immun 2016; 53:123-130. [PMID: 26640228 DOI: 10.1016/j.bbi.2015.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Markers of low-grade peripheral inflammation have been reported amongst people with epilepsy. The mechanisms underlying this phenomenon are unknown. We attempted to characterize peripheral immune cells and their activation status in people with temporal lobe epilepsy (TLE) and healthy controls. METHODS AND RESULTS Twenty people with TLE and 19 controls were recruited, and peripheral blood lymphocyte and monocyte subsets evaluated ex vivo by multi-color flow cytometry. People with TLE had higher expression of HLA-DR, CD69, CTLA-4, CD25, IL-23R, IFN-γ, TNF and IL-17 in CD4(+) lymphocytes than controls. Granzyme A, CTLA-4, IL-23R and IL-17 expression was also elevated in CD8(+) T cells from people with TLE. Frequency of HLA-DR in CD19(+) B cells and regulatory T cells CD4(+)CD25(+)Foxp3(+) producing IL-10 was higher in TLE when compared with controls. A negative correlation between CD4(+) expressing co-stimulatory molecules (CD69, CD25 and CTLA-4) with age at onset of seizures was found. The frequency of CD4(+)CD25(+)Foxp3(+) cells was also positively correlated with age at onset of seizures. CONCLUSION Immune cells of people with TLE show an activation profile, mainly in effector T cells, in line with the low-grade peripheral inflammation.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Guilherme Nogueira M de Oliveira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil; Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - João Marcelo K Lessa
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Antônio Carlos P Oliveira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Moises E Bauer
- Laboratório de Imunologia do Envelhecimento, Instituto de Pesquisas Biomédicas, PUCRS, Porto Alegre, RS, Brazil
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, Epilepsy Society, Chalfont St Peter, SL9 0RJ, UK
| | | | - Antônio Lúcio Teixeira
- Neuroscience Division, Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
344
|
Lee JY, Kim JH, Cho HR, Lee JS, Ryu JM, Yum MS, Ko TS. Children Experiencing First-Time or Prolonged Febrile Seizure Are Prone to Stress Hyperglycemia. J Child Neurol 2016; 31:439-43. [PMID: 26239487 DOI: 10.1177/0883073815597757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022]
Abstract
The risk factors and clinical implications of stress hyperglycemia in children with febrile seizure remain uncertain. Among 479 children with febrile seizure, the prevalence of the stress hyperglycemia (blood glucose concentration ≥ 150 mg/dL) was 10.0%. Stress hyperglycemia group included larger proportion of first-time febrile seizure, prolonged febrile seizure, and smaller proportion of short febrile seizure in comparison with the non-stress hyperglycemia group. Stress hyperglycemia group demonstrated a lower pH and higher lactate levels than the non-stress hyperglycemia group. Multivariate analysis revealed that first-time febrile seizure (aOR = 3.741, P = .004) and prolonged febrile seizure (aOR = 12.855, P < .001) were significant risk factors for stress hyperglycemia. The rate of early febrile seizure recurrence in the emergency department was not different between the groups. These findings suggest that children experiencing first-time or prolonged febrile seizure are prone to stress hyperglycemia, and this can be related to febrile seizure severity. However, stress hyperglycemia is not predictive of early febrile seizure recurrence in the emergency department.
Collapse
Affiliation(s)
- Jeong-Yong Lee
- Department of Pediatrics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jung-Heon Kim
- Department of Pediatrics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Hyung-Rae Cho
- Department of Pediatrics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jong-Seung Lee
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jeong-Min Ryu
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
345
|
Fleck J, Temp FR, Marafiga JR, Jesse AC, Milanesi LH, Rambo LM, Mello CF. Montelukast reduces seizures in pentylenetetrazol-kindled mice. Braz J Med Biol Res 2016; 49:e5031. [PMID: 26909785 PMCID: PMC4792507 DOI: 10.1590/1414-431x20155031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) have been implicated in seizures and kindling; however, the effect of CysLT receptor antagonists on seizure frequency in kindled animals and changes in CysLT receptor expression after pentylenetetrazol (PTZ)-induced kindling have not been investigated. In this study, we evaluated whether the CysLT1 inverse agonist montelukast, and a classical anticonvulsant, phenobarbital, were able to reduce seizures in PTZ-kindled mice and alter CysLT receptor expression. Montelukast (10 mg/kg, sc) and phenobarbital (20 mg/kg, sc) increased the latency to generalized seizures in kindled mice. Montelukast increased CysLT1 immunoreactivity only in non-kindled, PTZ-challenged mice. Interestingly, PTZ challenge decreased CysLT2 immunoreactivity only in kindled mice. CysLT1 antagonists appear to emerge as a promising adjunctive treatment for refractory seizures. Nevertheless, additional studies are necessary to evaluate the clinical implications of this research.
Collapse
Affiliation(s)
- J Fleck
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - F R Temp
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - J R Marafiga
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - A C Jesse
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L H Milanesi
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L M Rambo
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - C F Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
346
|
Simão F, Habekost Oliveira V, Nunes ML. Enhanced susceptibility to seizures modulated by high interleukin‐1β levels during early life malnutrition. Dev Neurobiol 2016; 76:1150-9. [DOI: 10.1002/dneu.22381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/13/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Fabrício Simão
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Victória Habekost Oliveira
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Magda Lahourgue Nunes
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
- School of Medicine and Brain Institute (InsCer)Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| |
Collapse
|
347
|
Jakobsen LA, Karshenas A, Bach FW, Gazerani P. Alterations in pain responsiveness and serum biomarkers in juvenile myoclonic epilepsy: an age- and gender-matched controlled pilot study. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Serum levels of several biomarkers along with sensory responsiveness were investigated in juvenile myoclonic epilepsy patients in comparison with healthy controls. Methods: Ten epileptic patients (36.1 ± 3.4 years) and ten gender- and age-matched healthy controls were recruited. Mechanical sensitivity, cold pressor tolerance and serum levels of BDNF, CGRP, PGE2, S100B and TNF-α were investigated. Results: Mechanical sensitivity to pinprick was lower in patients (p < 0.05) while cold pain tolerance threshold was higher. Serum level of BDNF was higher in patients compared with controls (p < 0.01). The same pattern was evident for CGRP (p < 0.05). Serum level of PGE2 was lower in patients (p < 0.01). Conclusion: Juvenile myoclonic epilepsy patients had an altered serum biomarker pattern and sensory perception in comparison with controls.
Collapse
Affiliation(s)
- Lydia Anja Jakobsen
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Ali Karshenas
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Parisa Gazerani
- SMI® & Laboratory for Cancer Biology, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
348
|
Wang C, Yang L, Zhang J, Lin Z, Qi J, Duan S. Higher expression of monocyte chemoattractant protein 1 and its receptor in brain tissue of intractable epilepsy patients. J Clin Neurosci 2016; 28:134-40. [PMID: 26810469 DOI: 10.1016/j.jocn.2015.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022]
Abstract
We aimed to explore the pathogenesis of monocyte chemoattractant protein-1 (MCP1) and CC chemokine receptor 2 (CCR2) in brain tissue of patients with intractable epilepsy (IE). Hippocampi or temporal lobe tissues were obtained from 40 patients with IE and five patients without IE who had undergone surgical decompression and debridement. The levels of MCP1 and CCR2 were evaluated using immunohistochemistry. Pearson correlation analysis was employed to evaluate the correlation between levels of MCP1 and CCR2 in IE with or without hippocampal sclerosis (HS) and the disease duration, along with age. Higher levels of MCP1 (11.68±4.68% versus 1.72±1.54%) and CCR2 (11.54±4.65% versus 1.52±1.29%; P<0.05) were observed in IE patients compared to controls. Expression levels of MCP1 (R=0.867) and CCR2 (R=0.835) in IE patients with HS were correlated with the disease duration. However, no correlation was found in IE patients without HS. There was also no correlation between levels of MCP1 and CCR2 in IE patients with age, either with HS or without HS. These results suggest that MCP1 and its receptor may play a role in the pathogenesis and progression of IE.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Lihua Yang
- Department of Neurology, The People's Hospital of Cangzhou, Cangzhou, China
| | - Jiadong Zhang
- Department of Neurology, The First Hospital of Harbin, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiping Qi
- Department of Pathology, The First Hospital Affiliated of Harbin Medical University, Harbin, China
| | - Shurong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
349
|
Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J. A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 2016; 76:173-86. [DOI: 10.1016/j.biomaterials.2015.10.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/21/2022]
|
350
|
Wei YJ, Guo W, Sun FJ, Fu WL, Zheng DH, Chen X, Li S, Zang ZL, Zhang CQ, Liu SY, Yang H. Increased Expression and Cellular Localization of P2X7R in Cortical Lesions of Patients With Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2015; 75:61-8. [DOI: 10.1093/jnen/nlv003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|