301
|
Carvalho S, Aylagas E, Villalobos R, Kattan Y, Berumen M, Pearman JK. Beyond the visual: using metabarcoding to characterize the hidden reef cryptobiome. Proc Biol Sci 2020; 286:20182697. [PMID: 30963940 PMCID: PMC6408595 DOI: 10.1098/rspb.2018.2697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an era of coral reef degradation, our knowledge of ecological patterns in reefs is biased towards large conspicuous organisms. The majority of biodiversity, however, inhabits small cryptic spaces within the framework of the reef. To assess this biodiverse community, which we term the ‘reef cryptobiome’, we deployed 87 autonomous reef monitoring structures (ARMS), on 22 reefs across 16 degrees latitude of the Red Sea. Combining ARMS with metabarcoding of the mitochondrial cytochrome oxidase I gene, we reveal a rich community, including the identification of 14 metazoan phyla within 10 416 operational taxonomic units (OTUs). While mobile and sessile subsets were similarly structured along the basin, the main environmental driver was different (particulate organic matter and sea surface temperature, respectively). Distribution patterns of OTUs showed that only 1.5% were present in all reefs, while over half were present in a single reef. On both local and regional scales, the majority of OTUs were rare. The high heterogeneity in community patterns of the reef cryptobiome has implications for reef conservation. Understanding the biodiversity patterns of this critical component of reef functioning will enable a sound knowledge of how coral reefs will respond to future anthropogenic impacts.
Collapse
Affiliation(s)
- Susana Carvalho
- 1 Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Eva Aylagas
- 1 Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Rodrigo Villalobos
- 1 Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Yasser Kattan
- 2 Environmental Protection Department , Saudi Aramco, Dhahran 31311 , Saudi Arabia
| | - Michael Berumen
- 1 Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - John K Pearman
- 1 Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
302
|
Lee MM, Jaspers VLB, Gabrielsen GW, Jenssen BM, Ciesielski TM, Mortensen ÅK, Lundgren SS, Waugh CA. Evidence of avian influenza virus in seabirds breeding on a Norwegian high-Arctic archipelago. BMC Vet Res 2020; 16:48. [PMID: 32028933 PMCID: PMC7006154 DOI: 10.1186/s12917-020-2265-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
Background Wild aquatic birds serve as the natural reservoir for avian influenza virus (AIV), a disease with significant implications for avian and mammalian health. Climate change is predicted to impact the dynamics of AIV, particularly in areas such as the Arctic, but the baseline data needed to detect these shifts is often unavailable. In this study, plasma from two species of gulls breeding on the high-Arctic Svalbard archipelago were screened for antibodies to AIV. Results AIV antibodies were found in black-legged kittiwake (Rissa tridactyla) samples from multiple years, as well as in glaucous gulls (Larus hyperboreous) samples. Conclusions Despite small sample sizes, evidence of exposure to AIV was found among Svalbard gulls. A wider survey of Svalbard avian species is warranted to establish knowledge on the extent of AIV exposure on Svalbard and to determine whether active infections are present.
Collapse
Affiliation(s)
- Megan Marie Lee
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway.,Biological Sciences Program, Goucher College, 1021 Dulaney Valley Road, Baltimore, MD, 21204, USA
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Geir Wing Gabrielsen
- Norwegian Polar Institute, Fram Centre, Postbox 6606 Langnes, NO-9296, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Silje Strand Lundgren
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Courtney A Waugh
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway. .,Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Trøndelag, Norway.
| |
Collapse
|
303
|
Hernández-Urbina CF, Vital-García C, Escárcega Ávila AM, Colima AG, Sánchez-Olivas MP, Clemente-Sánchez F. First report of Siphonaptera parasites in Canis latrans in the Flora and Fauna Protection Area, Médanos de Samalayuca Chihuahua, Mexico. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100379. [PMID: 32448515 DOI: 10.1016/j.vprsr.2020.100379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022]
Abstract
Siphonaptera are hematophage parasite vectors of both human and animal diseases. We aimed to identify ectoparasites parasitizing a coyote population (Canis latrans) in the northwest region of the Flora and Fauna Protection Area Médanos de Samalayuca, Chihuahua, Mexico. We captured 21 coyotes (15 males and 6 females) during the summer and winter of 2018. The individuals were anesthetized and thoroughly examined for ectoparasites. We found that 43% of the coyotes were infested. Based on characteristics such as the absence of pronotal and genal combs in the head, we identified 15 specimens as Pulex irritans. This is the first report of P. irritans in coyotes in Médanos de Samalayuca Chihuahua, Mexico.
Collapse
Affiliation(s)
- Cesar Francisco Hernández-Urbina
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Medicina Veterinaria y Zootecnia, Anillo Envolvente del PRONAF y Estocolmo s/n. Ciudad Juárez, Chihuahua CP 32310, Mexico
| | - Cuauhcihuatl Vital-García
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Medicina Veterinaria y Zootecnia, Anillo Envolvente del PRONAF y Estocolmo s/n. Ciudad Juárez, Chihuahua CP 32310, Mexico.
| | - Angélica M Escárcega Ávila
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Medicina Veterinaria y Zootecnia, Anillo Envolvente del PRONAF y Estocolmo s/n. Ciudad Juárez, Chihuahua CP 32310, Mexico
| | - Ana Gatica Colima
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico Biológicas, Laboratorio de Ecología y Biodiversidad Animal, Anillo Envolvente del PRONAF y Estocolmo s/n. Ciudad Juárez, Chihuahua CP 32310, Mexico
| | - Martha P Sánchez-Olivas
- Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico Biológicas, Anillo Envolvente del PRONAF y Estocolmo s/n. Ciudad Juárez, Chihuahua CP 32310, Mexico
| | - Fernando Clemente-Sánchez
- Colegio de Postgraduados, Campus San Luis Potosí, Ciudad de Salinas Hidalgo, Municipio de Salinas, Iturbide 73, Salinas de Hidalgo, San Luis Potosí CP 78600, Mexico
| |
Collapse
|
304
|
Sundaram AYM, Garseth ÅH, Maccari G, Grimholt U. An Illumina approach to MHC typing of Atlantic salmon. Immunogenetics 2020; 72:89-100. [PMID: 31713647 PMCID: PMC6970960 DOI: 10.1007/s00251-019-01143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023]
Abstract
The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.
Collapse
Affiliation(s)
- Arvind Y M Sundaram
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Åse Helen Garseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Giuseppe Maccari
- The Pirbright Institute, Woking, UK
- Anthony Nolan Research Institute, London, UK
| | - Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| |
Collapse
|
305
|
Saha M, Barboza FR, Somerfield PJ, Al-Janabi B, Beck M, Brakel J, Ito M, Pansch C, Nascimento-Schulze JC, Jakobsson Thor S, Weinberger F, Sawall Y. Response of foundation macrophytes to near-natural simulated marine heatwaves. GLOBAL CHANGE BIOLOGY 2020; 26:417-430. [PMID: 31670451 DOI: 10.1111/gcb.14801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 05/24/2023]
Abstract
Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near-natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late-spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short-term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.
Collapse
Affiliation(s)
- Mahasweta Saha
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- School of Biological Sciences, University of Essex, Colchester, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | | | | | | | - Miriam Beck
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Janina Brakel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- The Scottish Association for Marine Science, Oban, UK
| | - Maysa Ito
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Jennifer C Nascimento-Schulze
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Bioscience, College of Life and Environmental Science, University of Exeter, Exeter, UK
| | | | | | - Yvonne Sawall
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
306
|
Montánchez I, Kaberdin VR. Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104850. [PMID: 32056705 DOI: 10.1016/j.marenvres.2019.104850] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Here we briefly review the major characteristics of the emerging pathogen Vibrio harveyi and discuss survival strategies and adaptation mechanisms underlying the capacity of this marine bacterium to thrive in natural and artificial aquatic settings. Recent studies suggest that some adaptation mechanisms can easily be acquired by V. harveyi and other members of the Vibrionaceae family owing to efficient horizontal gene transfer and elevated mutation rate. While discussing the main factors in charge of the expansion of Vibrio spp. habitats and concomitant spread of Vibrio-associated diseases under climate change, this review highlights the need for future studies able to address the joint impact of environmental and anthropogenic factors on the long-term dynamics and virulence of V. harveyi populations at the global scale.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain.
| |
Collapse
|
307
|
O'Connor EA, Hasselquist D, Nilsson JÅ, Westerdahl H, Cornwallis CK. Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proc Biol Sci 2020; 287:20192675. [PMID: 31992169 PMCID: PMC7015325 DOI: 10.1098/rspb.2019.2675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pathogen communities can vary substantially between geographical regions due to different environmental conditions. However, little is known about how host immune systems respond to environmental variation across macro-ecological and evolutionary scales. Here, we select 37 species of songbird that inhabit diverse environments, including African and Palaearctic residents and Afro-Palaearctic migrants, to address how climate and habitat have influenced the evolution of key immune genes, the major histocompatibility complex class I (MHC-I). Resident species living in wetter regions, especially in Africa, had higher MHC-I diversity than species living in drier regions, irrespective of the habitats they occupy. By contrast, no relationship was found between MHC-I diversity and precipitation in migrants. Our results suggest that the immune system of birds has evolved greater pathogen recognition in wetter tropical regions. Furthermore, evolving transcontinental migration appears to have enabled species to escape wet, pathogen-rich areas at key periods of the year, relaxing selection for diversity in immune genes and potentially reducing immune system costs.
Collapse
|
308
|
McDevitt-Galles T, Moss WE, Calhoun DM, Johnson PTJ. Phenological synchrony shapes pathology in host-parasite systems. Proc Biol Sci 2020; 287:20192597. [PMID: 31964296 DOI: 10.1098/rspb.2019.2597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host (Pseudacris regilla) and infection by a pathogenic trematode (Ribeiroia ondatrae) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host-parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate.
Collapse
Affiliation(s)
| | - Wynne E Moss
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dana M Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,United States Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
309
|
Albouy C, Delattre V, Donati G, Frölicher TL, Albouy-Boyer S, Rufino M, Pellissier L, Mouillot D, Leprieur F. Global vulnerability of marine mammals to global warming. Sci Rep 2020; 10:548. [PMID: 31953496 PMCID: PMC6969058 DOI: 10.1038/s41598-019-57280-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Although extinctions due to climate change are still uncommon, they might surpass those caused by habitat loss or overexploitation over the next few decades. Among marine megafauna, mammals fulfill key and irreplaceable ecological roles in the ocean, and the collapse of their populations may therefore have irreversible consequences for ecosystem functioning and services. Using a trait-based approach, we assessed the vulnerability of all marine mammals to global warming under high and low greenhouse gas emission scenarios for the middle and the end of the 21st century. We showed that the North Pacific Ocean, the Greenland Sea and the Barents Sea host the species that are most vulnerable to global warming. Future conservation plans should therefore focus on these regions, where there are long histories of overexploitation and there are high levels of current threats to marine mammals. Among the most vulnerable marine mammals were several threatened species, such as the North Pacific right whale (Eubalaena japonica) and the dugong (Dugong dugon), that displayed unique combinations of functional traits. Beyond species loss, we showed that the potential extinctions of the marine mammals that were most vulnerable to global warming might induce a disproportionate loss of functional diversity, which may have profound impacts on the future functioning of marine ecosystems worldwide.
Collapse
Affiliation(s)
- Camille Albouy
- IFREMER, unité Ecologie et Modèles pour l'Halieutique, rue de l'Ile d'Yeu, BP21105, 44311, Nantes, cedex 3, France.
| | | | - Giulia Donati
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland.,Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | | | - Marta Rufino
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisboa, Portugal.,CCMAR, The Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zürich, Switzerland.,Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
310
|
Corredor‐Moreno P, Saunders DGO. Expecting the unexpected: factors influencing the emergence of fungal and oomycete plant pathogens. THE NEW PHYTOLOGIST 2020; 225:118-125. [PMID: 31225901 PMCID: PMC6916378 DOI: 10.1111/nph.16007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/06/2019] [Indexed: 05/12/2023]
Abstract
In recent years, the number of emergent plant pathogens (EPPs) has grown substantially, threatening agroecosystem stability and native biodiversity. Contributing factors include, among others, shifts in biogeography, with EPP spread facilitated by the global unification of monocultures in modern agriculture, high volumes of trade in plants and plant products and an increase in sexual recombination within pathogen populations. The unpredictable nature of EPPs as they move into new territories is a situation that has led to sudden and widespread epidemics. Understanding the underlying causes of pathogen emergence is key to managing the impact of EPPs. Here, we review some factors specifically influencing the emergence of oomycete and fungal EPPs, including new introductions through anthropogenic movement, natural dispersal and weather events, as well as genetic factors linked to shifts in host range.
Collapse
|
311
|
Ibargüengoytía NR, Kubisch E, Cabezas-Cartes F, Fernández JB, Duran F, Piantoni C, Medina MS, Sinervo B. Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia. NATURAL AND SOCIAL SCIENCES OF PATAGONIA 2020. [DOI: 10.1007/978-3-030-42752-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
312
|
Yue RPH, Lee HF. Drought-induced spatio-temporal synchrony of plague outbreak in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134138. [PMID: 31505345 DOI: 10.1016/j.scitotenv.2019.134138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Plague synchronously swept across separated regions in Europe throughout history. However, the spatio-temporal synchrony of plague and its driving mechanism have not been thoroughly investigated. In this study, we transformed the historical European plague database spanned 1347-1800 CE into country-level time-series that differentiated large-scale plague outbreak from counted data. We found that there are 74 years in which two or more countries in our study region (UK, France, Germany, Spain, and Italy) experienced large-scale plague outbreak in the same year. Our Multivariate Ripley's K-function results showed that the onset year and the cessation year of large-scale plague outbreak are synchronized at the 0-23-year and 0-20-year windows, respectively. The temporal association between such synchrony and climatic forcing was further investigated using the Superposed Epoch Analysis, and drought was found to be responsible for the synchrony. Integrating our results with a literature survey, we suggested that prior to the peak of plague, the occurrence of drought and the subsequent reintroduced rainfall dampened both the rodent community and human society and boosted the number of fleas that carried plague. Such a synthesis facilitated the outbreak of plague. At the same time, high temperature associated with such drought also confined the geographic diffusion of the plague. Hence, although continental mega-drought could initiate the synchrony of plague outbreak, the synchrony actually consisted of a number of localized plague outbreak events scattering across different regions in Europe. According to the projected rising trend of drought in terms of its magnitude, duration, and geographic extent, the risk of synchrony of rodent-borne diseases in Europe will be significantly elevated, especially in France, Italy, and Spain.
Collapse
Affiliation(s)
- Ricci P H Yue
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Harry F Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
313
|
Rieksta J, Li T, Junker RR, Jepsen JU, Ryde I, Rinnan R. Insect Herbivory Strongly Modifies Mountain Birch Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:558979. [PMID: 33193483 PMCID: PMC7652793 DOI: 10.3389/fpls.2020.558979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
Insect herbivory is known to augment emissions of biogenic volatile organic compounds (BVOCs). Yet few studies have quantified BVOC responses to insect herbivory in natural populations in pan-Arctic regions. Here, we assess how quantitative and qualitative BVOC emissions change with increasing herbivore feeding intensity in the Subarctic mountain birch (Betula pubescens var pumila (L.)) forest. We conducted three field experiments in which we manipulated the larval density of geometrid moths (Operophtera brumata and Epirrita autumnata), on branches of mountain birch and measured BVOC emissions using the branch enclosure method and gas chromatography-mass spectrometry. Our study showed that herbivory significantly increased BVOC emissions from the branches damaged by larvae. BVOC emissions increased due to insect herbivory at relatively low larvae densities, causing up to 10% of leaf area loss. Insect herbivory also changed the blend composition of BVOCs, with damaged plants producing less intercorrelated BVOC blends than undamaged ones. Our results provide a quantitative understanding of the relationship between the severity of insect herbivore damage and emissions of BVOCs at larvae densities corresponding to background herbivory levels in the Subarctic mountain birch. The results have important and practical implications for modeling induced and constitutive BVOC emissions and their feedbacks to atmospheric chemistry.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tao Li,
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jane U. Jepsen
- Norwegian Institute for Nature Research, Fram Centre, Tromsø, Norway
| | - Ingvild Ryde
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
314
|
Delisle L, Pauletto M, Vidal-Dupiol J, Petton B, Bargelloni L, Montagnani C, Pernet F, Corporeau C, Fleury E. High temperature induces transcriptomic changes in Crassostrea gigas that hinders progress of Ostreid herpesvirus (OsHV-1) and promotes survival. J Exp Biol 2020; 223:jeb.226233. [PMID: 34005719 PMCID: PMC7578350 DOI: 10.1242/jeb.226233] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.
Collapse
Affiliation(s)
- Lizenn Delisle
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Bruno Petton
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Via Domitia, F-34095 Montpellier, France
| | - Fabrice Pernet
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Elodie Fleury
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
315
|
Host thermoregulatory constraints predict growth of an amphibian chytrid pathogen (Batrachochytrium dendrobatidis). J Therm Biol 2020; 87:102472. [DOI: 10.1016/j.jtherbio.2019.102472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 01/10/2023]
|
316
|
Rosales SM, Miller MW, Williams DE, Traylor-Knowles N, Young B, Serrano XM. Microbiome differences in disease-resistant vs. susceptible Acropora corals subjected to disease challenge assays. Sci Rep 2019; 9:18279. [PMID: 31797896 PMCID: PMC6892807 DOI: 10.1038/s41598-019-54855-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
In recent decades coral gardening has become increasingly popular to restore degraded reef ecosystems. However, the growth and survivorship of nursery-reared outplanted corals are highly variable. Scientists are trying to identify genotypes that show signs of disease resistance and leverage these genotypes in restoring more resilient populations. In a previous study, a field disease grafting assay was conducted on nursery-reared Acropora cervicornis and Acropora palmata to quantify relative disease susceptibility. In this study, we further evaluate this field assay by investigating putative disease-causing agents and the microbiome of corals with disease-resistant phenotypes. We conducted 16S rRNA gene high-throughput sequencing on A. cervicornis and A. palmata that were grafted (inoculated) with a diseased A. cervicornis fragment. We found that independent of health state, A. cervicornis and A. palmata had distinct alpha and beta diversity patterns from one another and distinct dominant bacteria. In addition, despite different microbiome patterns between both inoculated coral species, the genus Sphingomonadaceae was significantly found in both diseased coral species. Additionally, a core bacteria member from the order Myxococcales was found at relatively higher abundances in corals with lower rates of disease development following grafting. In all, we identified Sphingomonadaceae as a putative coral pathogen and a bacterium from the order Myxococcales associated with corals that showed disease resistant phenotypes.
Collapse
Affiliation(s)
- Stephanie M Rosales
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA.
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA.
| | - Margaret W Miller
- SECORE International, Miami, FL, 33145, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Dana E Williams
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Benjamin Young
- University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, USA
| | - Xaymara M Serrano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, USA
| |
Collapse
|
317
|
Benítez-Malvido J, Giménez A, Graciá E, Rodríguez-Caro RC, De Ybáñez RR, Siliceo-Cantero HH, Traveset A. Impact of habitat loss on the diversity and structure of ecological networks between oxyurid nematodes and spur-thighed tortoises ( Testudo graeca L.). PeerJ 2019; 7:e8076. [PMID: 31824759 PMCID: PMC6894431 DOI: 10.7717/peerj.8076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Habitat loss and fragmentation are recognized as affecting the nature of biotic interactions, although we still know little about such changes for reptilian herbivores and their hindgut nematodes, in which endosymbiont interactions could range from mutualistic to commensal and parasitic. We investigated the potential cost and benefit of endosymbiont interactions between the spur-thighed tortoise (Testudo graeca L.) and adult oxyurid nematodes (Pharyngodonidae order Oxyurida) in scrublands of southern Spain. For this, we assessed the association between richness and abundance of oxyurid species with tortoises' growth rates and body traits (weight and carapace length) across levels of habitat loss (low, intermediate and high). Furthermore, by using an intrapopulation ecological network approach, we evaluated the structure and diversity of tortoise-oxyurid interactions by focusing on oxyurid species infesting individual tortoises with different body traits and growth rates across habitats. Overall, tortoise body traits were not related to oxyurid infestation across habitats. Oxyurid richness and abundance however, showed contrasting relationships with growth rates across levels of habitat loss. At low habitat loss, oxyurid infestation was positively associated with growth rates (suggesting a mutualistic oxyurid-tortoise relationship), but the association became negative at high habitat loss (suggesting a parasitic relationship). Furthermore, no relationship was observed when habitat loss was intermediate (suggesting a commensal relationship). The network analysis showed that the oxyurid community was not randomly assembled but significantly nested, revealing a structured pattern for all levels of habitat loss. The diversity of interactions was lowest at low habitat loss. The intermediate level, however, showed the greatest specialization, which indicates that individuals were infested by fewer oxyurids in this landscape, whereas at high habitat loss individuals were the most generalized hosts. Related to the latter, connectance was greatest at high habitat loss, reflecting a more uniform spread of interactions among oxyurid species. At an individual level, heavier and larger tortoises tended to show a greater number of oxyurid species interactions. We conclude that there is an association between habitat loss and the tortoise-oxyurid interaction. Although we cannot infer causality in their association, we hypothesize that such oxyurids could have negative, neutral and positive consequences for tortoise growth rates. Ecological network analysis can help in the understanding of the nature of such changes in tortoise-oxyurid interactions by showing how generalized or specialized such interactions are under different environmental conditions and how vulnerable endosymbiont interactions might be to further habitat loss.
Collapse
Affiliation(s)
- Julieta Benítez-Malvido
- Laboratorio de Ecología del Hábitat Alterado, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Andrés Giménez
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Elche, Spain
| | - Eva Graciá
- Departamento de Biología Aplicada, Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Elche, Spain
| | | | - Rocío Ruiz De Ybáñez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, Murcía, Spain
| | - Héctor Hugo Siliceo-Cantero
- Laboratorio de Ecología del Hábitat Alterado, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Anna Traveset
- Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Esporles, Mallorca, Spain
| |
Collapse
|
318
|
Xin L, Wei Z, Bai C, Chen H, Huang B, Wang C. Influence of temperature on the pathogenicity of Ostreid herpesvirus-1 in ark clam, Scapharca broughtonii. J Invertebr Pathol 2019; 169:107299. [PMID: 31786248 DOI: 10.1016/j.jip.2019.107299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
OsHV-1 is an epidemic pathogen of molluscs, and temperature has been recognized as a decisive environmental factor in its pathogenicity. In recent years, ark clam, Scapharca broughtonii, emerged as a host for OsHV-1. In the north of China, massive summer mortalities of ark clams infected with OsHV-1 have been continuously reported since 2012. However, the interaction between temperature and the pathogenicity of OsHV-1 was unknown in ark clams. In this study, the effect of temperature (10 °C to 18 °C stepped by 2 °C) on the occurrence of OsHV-1 disease in ark clams was analyzed. OsHV-1 infection led to gill erosion but not below the critical low temperature (between 12 °C and 14 °C). However, OsHV-1 persisted for more than 2 weeks at 12 °C post inoculation and replication was reactivated when the temperature was elevated to 18 °C. No significant reduction of OsHV-1 DNA load was found when the temperature descended to 12 °C from 18 °C, while the gill erosion remained unchanged. Ark clams failed to show the capability of effective clearance of OsHV-1 below the critical low temperature. Our results demonstrated that the pathogenicity of OsHV-1 was influenced significantly by temperature. Moreover, high temperature favored infection, which could provide more information to understand summer mortality of ark clams.
Collapse
Affiliation(s)
- Lusheng Xin
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhixin Wei
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Changming Bai
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Bowen Huang
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chongming Wang
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
319
|
Ellis JI, Jamil T, Anlauf H, Coker DJ, Curdia J, Hewitt J, Jones BH, Krokos G, Kürten B, Hariprasad D, Roth F, Carvalho S, Hoteit I. Multiple stressor effects on coral reef ecosystems. GLOBAL CHANGE BIOLOGY 2019; 25:4131-4146. [PMID: 31482629 DOI: 10.1111/gcb.14819] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/30/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Global climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air-sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients - phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change.
Collapse
Affiliation(s)
- Joanne I Ellis
- School of Science, University of Waikato, Tauranga, New Zealand
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tahira Jamil
- Earth Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Holger Anlauf
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Darren J Coker
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Joao Curdia
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | | | - Burton H Jones
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - George Krokos
- Earth Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Benjamin Kürten
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Project Management Juelich, Juelich Research Centre GmbH, Rostock, Germany
| | - Dasari Hariprasad
- Earth Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ibrahim Hoteit
- Earth Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
320
|
Rasmussen SL, Berg TB, Dabelsteen T, Jones OR. The ecology of suburban juvenile European hedgehogs ( Erinaceus europaeus) in Denmark. Ecol Evol 2019; 9:13174-13187. [PMID: 31871637 PMCID: PMC6912878 DOI: 10.1002/ece3.5764] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
European hedgehog (Erinaceus europaeus) populations are widespread across diverse habitats but are declining in Western Europe. Drastic declines have been described in the UK, with the most severe declines occurring in rural areas. Hedgehogs are widely distributed in Denmark, but their status remains unknown.Fieldwork on hedgehogs has tended to focus on rural areas, leaving their ecology in suburban habitats largely unexplored, with clear implications for conservation initiatives. Here, we study the ecology of 35 juvenile hedgehogs using radio tracking during their first year of life in the suburbs of western Copenhagen.We use radio-tracking data to estimate (a) home range sizes in autumn and spring/summer, (b) survival during their first year of life, (c) the body mass changes before, during, and after hibernation, and (d) the hibernation behavior of the juvenile hedgehogs.We show that males and females have small home ranges compared with previous studies. The 95% MCP home range sizes in autumn were 1.33 ha (95% CI = 0.88-2.00) for males and 1.40 ha (95% CI = 0.84-2.32) for females; for spring/summer they were 6.54 ha (95% CI = 3.76-11.38) for males and 1.51 ha (95% CI = 0.63-3.63) for females. The juvenile survival probabilities during the study period from September 2014 to July 2015 were .56 for females and .79 for males. All healthy individuals gained body mass during the autumn and survived hibernation with little body mass loss thus demonstrating that the juveniles in the study were capable of gaining sufficient weight in the wild to survive their first hibernation.The climate is changing, but there is a lack of knowledge on how this affects mammal ecology. The exceptionally mild autumn of 2014 caused the juvenile hedgehogs to delay hibernation for up to a month compared with previous studies in Denmark.
Collapse
Affiliation(s)
- Sophie L. Rasmussen
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- Behavioural Ecology Group, Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Thomas B. Berg
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- NaturamaSvendborgDenmark
| | - Torben Dabelsteen
- Behavioural Ecology Group, Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagen ØDenmark
| | - Owen R. Jones
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
- Interdisciplinary Centre on Population Dynamics (CPop)Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| |
Collapse
|
321
|
Vollset KW. Parasite induced mortality is context dependent in Atlantic salmon: insights from an individual-based model. Sci Rep 2019; 9:17377. [PMID: 31758025 PMCID: PMC6874588 DOI: 10.1038/s41598-019-53871-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
An individual-based model was parameterized to explore the impact of a crustacean ectoparasite (sea louse, Lepeophtheirus salmonis & Caligus spp.) on migrating Atlantic salmon smolt. The model explores how environmental and intrinsic factors can modulate the effect of sea lice on survival, growth and maturation of Atlantic salmon at sea. Relative to other effects, the parasite infestation pressure from fish farms and the encounter process emerge as the most important parameters. Although small variations in parasite-induced mortality may be masked by variable environmental effects, episodes of high infestation pressure from fish farms should be observable in wild populations of Atlantic salmon if laboratory studies accurately reflect the physiological effects of sea lice. Increases in temperature in the model negatively influenced fish survival by affecting the development time of the parasite at a rate that was not compensated for by the growth of the host. Discharge from rivers was parameterized to increase migration speed and influenced parasite induced mortality by decreasing time spent in areas with increased infestation pressure. Initial size and growth of the host was inversely related to the impact of the parasite because of size-dependent parasite-induced mortality in the early phase of migration. Overall, the model illustrates how environmental factors modulate effects on the host population by impacting either the parasite load or the relative effect of the parasite. The results suggest that linking population-level effects to parasite infestation pressure across climatic and environmental gradients may be challenging without correctly accounting for these effects.
Collapse
Affiliation(s)
- Knut Wiik Vollset
- NORCE Norwegian Research Centre, Laboratory for Freshwater ecology and Inland fisheries, Nygårdsporten 112, 5006, Bergen, Norway.
| |
Collapse
|
322
|
Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:305-318. [PMID: 31349170 DOI: 10.1016/j.scitotenv.2019.07.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.
Collapse
Affiliation(s)
- Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Marianna Intranuovo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Water Research Institute of the National Research Council, (IRSA-CNR), Taranto, Italy.
| |
Collapse
|
323
|
Rodríguez-Villalobos JC, Reyes-Bonilla H. History of perspectives on the study of coral disease in the eastern tropical Pacific. DISEASES OF AQUATIC ORGANISMS 2019; 136:243-253. [PMID: 31724557 DOI: 10.3354/dao03411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disease in coral species is one factor associated with the current degradation process of tropical reefs. The history of research on coral pathologies dates to 1970 with the first reports of diseases in the Greater Caribbean and Indo-Pacific regions, although some anecdotal observations were made earlier. Today, there is information on the health conditions of >200 coral species in 70 countries. The special natural conditions under which reefs develop in the eastern tropical Pacific (ETP) and the predominance of a single coral genus, Pocillopora (a host highly susceptible to disease), leave them vulnerable to health impairments and the loss of viability, structure and function in the wider ecosystem. Therefore, coral reefs in the ETP are ideal systems for studies of biodiversity and survivorship. To clarify the status of knowledge on coral diseases in the ETP, we reviewed scientific studies conducted there from 1970-2018, comparing 127 publications to literature on other reef regions in the Pacific. Despite the vulnerability of reefs in the ETP, only limited information exists describing and investigating the etiology of lesions and other signs of health deterioration in corals, and there are few baseline studies of coral reefs or analyses of the spatial and temporal dynamics of disease syndromes. In general, efforts to study coral diseases in the ETP are inadequate.
Collapse
Affiliation(s)
- J C Rodríguez-Villalobos
- Departamento Académico de Biología Marina, Universidad Autónoma de Baja California Sur, Carretera al sur Km 5. 5, Colonia El Mezquitito, CP 23080, La Paz, Baja California Sur, México
| | | |
Collapse
|
324
|
The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers. CLIMATE 2019. [DOI: 10.3390/cli7110132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Climate-smart agriculture (CSA) as a credible alternative to tackle food insecurity under the changing climate is gaining wide acceptance. However, many developing countries have realized that concepts that have been recommended as solutions to existing problems are not suitable in their contexts. This paper synthesizes a subset of literature on CSA in the context of small-scale agriculture in sub-Saharan Africa as it relates to the need for CSA, factors influencing CSA adoption, and the challenges involved in understanding and scaling up CSA. Findings from the literature reveal that age, farm size, the nature of farming, and access to extension services influence CSA adoption. Many investments in climate adaptation projects have found little success because of the sole focus on the technology-oriented approach whereby innovations are transferred to farmers whose understanding of the local farming circumstances are limited. Climate-smart agriculture faces the additional challenge of a questionable conceptual understanding among policymakers as well as financing bottlenecks. This paper argues that the prospects of CSA in small-scale agriculture rest on a thorough socio-economic analysis that recognizes the heterogeneity of the small farmer environment and the identification and harnessing of the capacities of farming households for its adoption and implementation.
Collapse
|
325
|
Jagadesh S, Combe M, Couppié P, Le Turnier P, Epelboin L, Nacher M, Gozlan RE. Emerging human infectious diseases of aquatic origin: a comparative biogeographic approach using Bayesian spatial modelling. Int J Health Geogr 2019; 18:23. [PMID: 31694656 PMCID: PMC6833193 DOI: 10.1186/s12942-019-0188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the increase in unprecedented and unpredictable disease outbreaks due to human-driven environmental changes in recent years, we need new analytical tools to map and predict the spatial distribution of emerging infectious diseases and identify the biogeographic drivers underpinning their emergence. The aim of the study was to identify and compare the local and global biogeographic predictors such as landscape and climate that determine the spatial structure of leptospirosis and Buruli Ulcer (BU). METHODS We obtained 232 hospital-confirmed leptospirosis (2007-2017) cases and 236 BU cases (1969-2017) in French Guiana. We performed non-spatial and spatial Bayesian regression modeling with landscape and climate predictor variables to characterize the spatial structure and the environmental drivers influencing the distribution of the two diseases. RESULTS Our results show that the distribution of both diseases is spatially dependent on environmental predictors such as elevation, topological wetness index, proximity to cropland and increasing minimum temperature at the month of potential infection. However, the spatial structure of the two diseases caused by bacterial pathogens occupying similar aquatic niche was different. Leptospirosis was widely distributed across the territory while BU was restricted to the coastal riverbeds. CONCLUSIONS Our study shows that a biogeographic approach is an effective tool to identify, compare and predict the geographic distribution of emerging diseases at an ecological scale which are spatially dependent to environmental factors such as topography, land cover and climate.
Collapse
Affiliation(s)
- Soushieta Jagadesh
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France.
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana.
| | - Marine Combe
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France
| | - Pierre Couppié
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana
- Service de Dermatologie, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Paul Le Turnier
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Loïc Epelboin
- Unité des maladies infectieuses et tropicales, Centre hospitalier Andrée Rosemon, av des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Mathieu Nacher
- Equipe EPAT 3593 Ecosystèmes amazoniens et pathologie tropicale, Université de Guyane, Cayenne, French Guiana
- Centre d'investigation clinique (CIC Inserm 1424), Centre hospitalier Andrée Rosemon, Avenue des Flamboyants, 97304, Cayenne Cedex, French Guiana
| | - Rodolphe Elie Gozlan
- ISEM, UMR226, CNRS, Université de Montpellier, IRD, EPHE, 34090, Montpellier, France
| |
Collapse
|
326
|
Briceño C, Sandoval-Rodríguez A, Yévenes K, Larraechea M, Morgado A, Chappuzeau C, Muñoz V, Dufflocq P, Olivares F. Interactions between Invasive Monk Parakeets ( Myiopsitta monachus) and Other Bird Species during Nesting Seasons in Santiago, Chile. Animals (Basel) 2019; 9:E923. [PMID: 31694253 PMCID: PMC6912311 DOI: 10.3390/ani9110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
The monk parakeet (Myiopsitta monachus) is considered to be one of the most invasive bird species because its unique ability among parrots to build their own communal nests. Currently, they are considered an invasive species in 19 countries and a pest-even in their native distribution-because of economic losses derived from their impacts. During the reproductive seasons of 2017 and 2018, we registered interactions between invasive monk parakeets and resident bird species in Santiago, Chile. We observed agonistic and affiliative interactions, and further, we described monk parakeets' nest occupancy by nine bird species, two invasive and seven native. For this reason, we consider that the monk parakeet is an allogenic ecosystem engineer with the potential to shape distribution and richness of sympatric species in urban environments. Our results contribute to an assessment of the implications of the monk parakeet's ecological invasion to other synanthropic species, and raise concern of other potential impacts, such as pathogen transmission derived from these interactions.
Collapse
Affiliation(s)
- Cristóbal Briceño
- ConserLab, Animal Preventive Medicine Department, Faculty of Animal and Veterinary Sciences, University of Chile, Santiago 8820808, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Sonn JM, Utz RM, Richards‐Zawacki CL. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 2019. [DOI: 10.1002/ecs2.2892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Julia M. Sonn
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Ryan M. Utz
- Falk School of Sustainability Chatham University Gibsonia Pennsylvania USA
| | | |
Collapse
|
328
|
Williams JJ, Newbold T. Local climatic changes affect biodiversity responses to land use: A review. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12999] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jessica J. Williams
- Department of Genetics, Evolution and Environment Centre for Biodiversity and Environment Research University College London London UK
| | - Tim Newbold
- Department of Genetics, Evolution and Environment Centre for Biodiversity and Environment Research University College London London UK
| |
Collapse
|
329
|
Wu Q, Richard M, Rutschmann A, Miles DB, Clobert J. Environmental variation mediates the prevalence and co-occurrence of parasites in the common lizard, Zootoca vivipara. BMC Ecol 2019; 19:44. [PMID: 31640667 PMCID: PMC6806499 DOI: 10.1186/s12898-019-0259-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Hosts and their parasites are under reciprocal selection, leading to coevolution. However, parasites depend not only on a host, but also on the host’s environment. In addition, a single host species is rarely infested by a single species of parasite and often supports multiple species (i.e., multi-infestation). Although the arms race between a parasite and its host has been well studied, few data are available on how environmental conditions may influence the process leading to multiple infestations. In this study, we examine whether: (1) environmental factors including altitude, temperature, vegetation cover, human disturbance, and grazing by livestock affect the prevalence of two types of ectoparasites, mites and ticks, on their host (the common lizard, Zootoca vivipara) and (2) competition is evident between mites and ticks. Results We found the probability of mite infestation increased with altitude and vegetation cover, but decreased with human disturbance and presence of livestock. In contrast, the probability of tick infestation was inversely associated with the same factors. Individuals with low body condition and males had higher mite loads. However, this pattern was not evident for tick loads. The results from a structural equation model revealed that mites and ticks indirectly and negatively affected each other’s infestation probability through an interaction involving the environmental context. We detected a direct negative association between mites and ticks only when considering estimates of parasite load. This suggests that both mites and ticks could attach to the same host, but once they start to accumulate, only one of them takes advantage. Conclusion The environment of hosts has a strong effect on infestation probabilities and parasite loads of mites and ticks. Autecological differences between mites and ticks, as indicated by their opposing patterns along environmental gradients, may explain the pattern of weak contemporary interspecific competition. Our findings emphasize the importance of including environmental factors and the natural history of each parasite species in studies of host–parasite coevolution.
Collapse
Affiliation(s)
- Qiang Wu
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France.,Université Fédérale Toulouse Midi-Pyrénées, 31013, Toulouse, France
| | - Murielle Richard
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France.
| | - Alexis Rutschmann
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France.,Université Fédérale Toulouse Midi-Pyrénées, 31013, Toulouse, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald B Miles
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France.,Department of Biological Sciences, Ohio University, 131 Life Sciences Building, Athens, OH, 45701, USA
| | - Jean Clobert
- CNRS, Station d'Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France
| |
Collapse
|
330
|
Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. ISME JOURNAL 2019; 14:389-398. [PMID: 31628440 DOI: 10.1038/s41396-019-0526-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Thermal performance curves (TPCs) are used to predict changes in species interactions, and hence, range shifts, disease dynamics and community composition, under forecasted climate change. Species interactions might in turn affect TPCs. Here, we investigate how temperature-dependent changes in a microbial host-parasite interaction (the bacterium Pseudomonas fluorescens, and its lytic bacteriophage, SBW[Formula: see text]) changes the host TPC and the ecological and evolutionary mechanisms underlying these changes. The bacteriophage had a narrower thermal tolerance for infection, with their critical thermal maximum ~6 °C lower than those at which the bacteria still had high growth. Consequently, in the presence of phage, the host TPC changed, resulting in a lower maximum growth rate. These changes were not just driven by differences in thermal tolerance, with temperature-dependent costs of evolved resistance also playing a major role: the largest cost of resistance occurred at the temperature at which bacteria grew best in the absence of phage. Our work highlights how ecological and evolutionary mechanisms can alter the effect of a parasite on host thermal performance, even over very short timescales.
Collapse
Affiliation(s)
- Daniel Padfield
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK.
| | - Meaghan Castledine
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | - Angus Buckling
- College of Life and Environmental Sciences, Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| |
Collapse
|
331
|
Widespread chytrid infection across frogs in the Peruvian Amazon suggests critical role for low elevation in pathogen spread and persistence. PLoS One 2019; 14:e0222718. [PMID: 31618214 PMCID: PMC6795419 DOI: 10.1371/journal.pone.0222718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 12/03/2022] Open
Abstract
Outbreaks of emerging infectious diseases are becoming more frequent as climate changes wildlife communities at unprecedented rates, driving population declines and raising concerns for species conservation. One critical disease is the global pandemic of chytridiomycosis in frogs, which can be caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although there is clear evidence for Bd-induced mortality across high-elevation frog communities, little attention is given to the role of lowlands in Bd’s persistence and spread because low elevations are assumed to be too warm to harbor significant levels of Bd. Here, we report widespread Bd infection across 80 frog species from three sites in the lowland Peruvian Amazon, an area with no documented Bd-related amphibian declines. Despite observing no clinical signs of infection in the field, we found that 24–46% of individuals were infected per site (up to ≈105,000 zoospore equivalents per frog) by three Bd strains from the global pandemic lineage (Bd-GPL). We also found collection site and seasonal effects to be only weak predictors of Bd prevalence and load, with lower elevation and drier habitats marginally decreasing both prevalence and load. We found no further effect of host phylogeny, ecotype, or body size. Our results showing high and widespread prevalence across a lowland tropical ecosystem contradict the expectations based on the global pattern of pathogenicity of Bd that is largely restricted to higher elevations and colder temperatures. These findings imply that the lowlands may play a critical role in the spread and persistence of Bd over time and space.
Collapse
|
332
|
Tracy AM, Pielmeier ML, Yoshioka RM, Heron SF, Harvell CD. Increases and decreases in marine disease reports in an era of global change. Proc Biol Sci 2019; 286:20191718. [PMID: 31594507 PMCID: PMC6790777 DOI: 10.1098/rspb.2019.1718] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Outbreaks of marine infectious diseases have caused widespread mass mortalities, but the lack of baseline data has precluded evaluating whether disease is increasing or decreasing in the ocean. We use an established literature proxy method from Ward and Lafferty (Ward and Lafferty 2004 PLoS Biology2, e120 (doi:10.1371/journal.pbio.0020120)) to analyse a 44-year global record of normalized disease reports from 1970 to 2013. Major marine hosts are combined into nine taxonomic groups, from seagrasses to marine mammals, to assess disease swings, defined as positive or negative multi-decadal shifts in disease reports across related hosts. Normalized disease reports increased significantly between 1970 and 2013 in corals and urchins, indicating positive disease swings in these environmentally sensitive ectotherms. Coral disease reports in the Caribbean correlated with increasing temperature anomalies, supporting the hypothesis that warming oceans drive infectious coral diseases. Meanwhile, disease risk may also decrease in a changing ocean. Disease reports decreased significantly in fishes and elasmobranchs, which have experienced steep human-induced population declines and diminishing population density that, while concerning, may reduce disease. The increases and decreases in disease reports across the 44-year record transcend short-term fluctuations and regional variation. Our results show that long-term changes in disease reports coincide with recent decades of widespread environmental change in the ocean.
Collapse
Affiliation(s)
- Allison M. Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Madeline L. Pielmeier
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Reyn M. Yoshioka
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA
| | - Scott F. Heron
- Marine Geophysical Laboratory, Physics Department, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- NOAA Coral Reef Watch, NESDIS Center for Satellite Applications and Research, College Park, MD 20740, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
333
|
Koch H, Woodward J, Langat MK, Brown MJ, Stevenson PC. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Curr Biol 2019; 29:3494-3500.e5. [DOI: 10.1016/j.cub.2019.08.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022]
|
334
|
Bennett PI, Stone JK. Environmental variables associated with Nothophaeocryptopus gaeumannii population structure and Swiss needle cast severity in Western Oregon and Washington. Ecol Evol 2019; 9:11379-11394. [PMID: 31641480 PMCID: PMC6802072 DOI: 10.1002/ece3.5639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/23/2022] Open
Abstract
The environment has a strong influence on the abundance and distribution of plant pathogenic organisms and plays a major role in plant disease. Climatological factors may also alter the dynamics of the interactions between plant pathogens and their hosts. Nothophaeocryptopus (=Phaeocryptopus) gaeumannii, the causal agent of Swiss needle cast (SNC) of Douglas-fir, is endemic to western North America where it exists as two sympatric, reproductively isolated lineages. The abundance of this fungus and the severity of SNC are strongly influenced by climate. We used statistical and population genetic analyses to examine relationships between environment, pathogen population structure, and SNC severity. Although N. gaeumannii Lineage 2 in western Oregon and Washington was most abundant where SNC symptoms were most severe, we did not detect a significant relationship between Lineage 2 and disease severity. Warmer winter temperatures were inversely correlated with foliage retention (AFR) and positively correlated with the relative abundance of Lineage 2 (PL2). However when distance inland, which was strongly correlated with both AFR and PL2, was included in the model, there was no significant relationship between Lineage 2 and AFR. Spring/early summer dew point temperatures also were positively associated with total N. gaeumannii abundance (colonization index (CI)) and inversely correlated with AFR. Warmer summer mean temperatures were associated with lower CI and higher AFR. Our results suggest that the two lineages have overlapping environmental optima, but slightly different tolerance ranges. Lineage 2 was absent from more inland sites where winters are colder and summers are warm and dry, while Lineage 1 occurred at most sites across an environmental gradient suggesting broader environmental tolerance. These relationships suggest that climate influences the abundance and distribution of this ecologically important plant pathogen and may have played a role in the evolutionary divergence of these two cryptic fungal lineages.
Collapse
Affiliation(s)
- Patrick I. Bennett
- Department of Botany and Plant PathologyOregon State UniversityCorvallisORUSA
| | - Jeffrey K. Stone
- Department of Botany and Plant PathologyOregon State UniversityCorvallisORUSA
| |
Collapse
|
335
|
Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Lenzner B, Pauchard A, Pyšek P, Rabitsch W, Richardson DM, Seebens H, van Kleunen M, van der Putten WH, Vilà M, Bacher S. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. Bioscience 2019. [DOI: 10.1093/biosci/biz101] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapid increase in the number of species whose range dynamics are human induced, and review the relationships and differences to both natural range expansion and biological invasions. We discuss the consequences for science, policy and management in an era of rapid global change and highlight four key challenges relating to basic gaps in knowledge, and the transfer of scientific understanding to biodiversity management and policy. We conclude that range-expanding species responding to human-induced environmental change will become an essential feature for biodiversity management and science in the Anthropocene. Finally, we propose the term neonative for these taxa.
Collapse
Affiliation(s)
- Franz Essl
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
- Department of Botany and Zoology, at Stellenbosch University, in Stellenbosch, South Africa
| | - Stefan Dullinger
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
| | - Piero Genovesi
- Institute for Environmental Protection and Research and is chair of the IUCN SSC Invasive Species Specialist Group, in Rome, Italy
| | - Philip E Hulme
- Bio-Protection Research Centre, at Lincoln University, in Christchurch, New Zealand
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy's Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | | | - Ingolf Kühn
- Department of Community Ecology, Halle, Germany
- Martin Luther University Halle–Wittenberg Geobotany and Botanical Garden, Halle, Germany
- German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, Leipzig, Germany
| | - Bernd Lenzner
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, at the University of Concepcion, in Concepción, Chile
- Institute of Ecology and Biodiversity, in Santiago, Chile
| | - Petr Pyšek
- Department of Invasion Ecology, in Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, at Charles University, in Prague, Czech Republic
| | - Wolfgang Rabitsch
- Environment Agency Austria's Department of Biodiversity and Nature Conservation, in Vienna, Austria
| | - David M Richardson
- Department of Botany and Zoology, at Stellenbosch University, in Stellenbosch, South Africa
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre, in Frankfurt am Main, Germany
| | - Mark van Kleunen
- Ecology section of the Department of Biology at the University of Konstanz, in Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, at Taizhou University, in Taizhou, China
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, in Wageningen, The Netherlands
- Laboratory of Nematology at Wageningen University and Research Centre, in Wageningen, The Netherlands
| | | | - Sven Bacher
- Department of Biology at the University of Fribourg, in Fribourg, Switzerland
| |
Collapse
|
336
|
The effects of climate change on avian migratory patterns and the dispersal of commercial poultry diseases in Canada - Part II. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
337
|
Gintert BE, Precht WF, Fura R, Rogers K, Rice M, Precht LL, D'Alessandro M, Croop J, Vilmar C, Robbart ML. Regional coral disease outbreak overwhelms impacts from a local dredge project. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:630. [PMID: 31520148 DOI: 10.1007/s10661-019-7767-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 05/28/2023]
Abstract
A repeated-measures coral monitoring program established as part of the PortMiami expansion program provided an unparalleled opportunity to quantify the levels of coral mortality that resulted from both local dredging stress and as a result of climate-related bleaching stress and the subsequent outbreak of a white-plague-like disease (WPD) epizootic. By comparing measured rates of coral mortality at 30 sites throughout Miami-Dade County to predicted mortality levels from three different coral mortality scenarios, we were able to evaluate the most likely source of coral mortality at both the local and regional levels during the 2014-2016 coral bleaching and WPD event. These include scenarios that assume (1) local dredging increases coral disease mortality, (2) regional climate-related stress is the proximal driver of coral disease mortality, and (3) local and regional stressors are both responsible for coral disease mortality. Our results show that species-specific susceptibility to disease is the determining factor in 93.3% of coral mortality evaluated throughout Miami-Dade County, whereas local dredging stress only accurately predicted coral mortality levels 6.7% of the time. None of the monitoring locations adjacent to the PortMiami expansion had levels of coral mortality that exceeded predictions when coral community composition was taken into account. The novel result of this analysis is that climate-mediated coral disease mortality was more than an order of magnitude (14x) more deadly than even the largest marine construction project performed in the USA, and that until climate change is addressed, it is likely that local attempts to manage coral resilience will continue to fail.
Collapse
Affiliation(s)
- Brooke E Gintert
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Ransom Everglades School, 3575 Main Hwy, Miami, FL, 33133, USA
- Division of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - William F Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA.
| | - Ryan Fura
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Kristian Rogers
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Mike Rice
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Lindsey L Precht
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Coastal Resources Section, Division of Environmental Resources Management, Miami-Dade County, Department of Regulatory and Economic Resources, 701 NW 1st Court, Miami, FL, 33128, USA
| | - Martine D'Alessandro
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Jason Croop
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Christina Vilmar
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
| | - Martha L Robbart
- Marine and Coastal Programs, Dial Cordy and Associates, Inc., 1011 Ives Dairy Road, Suite 210, Miami, FL, 33179, USA
- GHD, 3380 Fairlane Farms Road, Suite 12, Wellington, FL, 33414, USA
| |
Collapse
|
338
|
Walker WH, Meléndez‐Fernández OH, Nelson RJ, Reiter RJ. Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness. Ecol Evol 2019; 9:10044-10054. [PMID: 31534712 PMCID: PMC6745832 DOI: 10.1002/ece3.5537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023] Open
Abstract
The Earth's surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect effects on both plants and animals. Notably, changes in temperature and precipitation alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re-establish reproductive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine-tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in severe deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photoperiod and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod.
Collapse
Affiliation(s)
- William H. Walker
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Olga Hecmarie Meléndez‐Fernández
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Randy J. Nelson
- Department of NeuroscienceWest Virginia UniversityMorgantownWVUSA
- Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWVUSA
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| |
Collapse
|
339
|
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569-586. [PMID: 31213707 PMCID: PMC7136171 DOI: 10.1038/s41579-019-0222-5] [Citation(s) in RCA: 786] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
Abstract
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, and The Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Christine M Foreman
- Center for Biofilm Engineering, and Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - David A Hutchins
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science & Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David S Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia I Rich
- Microbiology Department, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Department of Microbiology, and Department of Civil, Environmental and Geodetic Engineering, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
340
|
Peters JR, Reed DC, Burkepile DE. Climate and fishing drive regime shifts in consumer-mediated nutrient cycling in kelp forests. GLOBAL CHANGE BIOLOGY 2019; 25:3179-3192. [PMID: 31119829 DOI: 10.1111/gcb.14706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom-up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer-mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long-term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18-year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4 + m-2 hr-1 to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4 + m-2 hr-1 following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster, Palinurus interupptus (Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.
Collapse
Affiliation(s)
- Joseph R Peters
- Marine Science Institute, University of California, Santa Barbara, California
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, California
| | - Daniel C Reed
- Marine Science Institute, University of California, Santa Barbara, California
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, California
| |
Collapse
|
341
|
Grünwald NJ, LeBoldus JM, Hamelin RC. Ecology and Evolution of the Sudden Oak Death Pathogen Phytophthora ramorum. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:301-321. [PMID: 31226018 DOI: 10.1146/annurev-phyto-082718-100117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sudden oak and sudden larch death pathogen Phytophthora ramorum emerged simultaneously in the United States on oak and in Europe on Rhododendron in the 1990s. This pathogen has had a devastating impact on larch plantations in the United Kingdom as well as mixed conifer and oak forests in the Western United States. Since the discovery of this pathogen, a large body of research has provided novel insights into the emergence, epidemiology, and genetics of this pandemic. Genetic and genomic resources developed for P. ramorum have been instrumental in improving our understanding of the epidemiology, evolution, and ecology of this disease. The recent reemergence of EU1 in the United States and EU2 in Europe and the discovery of P. ramorum in Asia provide renewed impetus for research on the sudden oak death pathogen.
Collapse
Affiliation(s)
- Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon 97330, USA;
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculté de Foresterie et de Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
342
|
Li YF, Xu JK, Chen YW, Ding WY, Shao AQ, Liang X, Zhu YT, Yang JL. Characterization of Gut Microbiome in the Mussel Mytilus galloprovincialis in Response to Thermal Stress. Front Physiol 2019; 10:1086. [PMID: 31507449 PMCID: PMC6714297 DOI: 10.3389/fphys.2019.01086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is essential for utilization of energy and nutrition and may have a role in host immunity in response to environmental shifts. The present study evaluated the temperature stress (increasing from 21 to 27°C) on gut microbiome and dynamics of the mussel Mytilus galloprovincialis by 16S rRNA gene sequencing with the aim of discovering the gut microbiome resilience to warming. Exposure to high temperature of 27°C significantly reduced the survival of M. galloprovincialis associated with increased microbial diversity of gut. The microbial communities were shifted with elevated temperature (from 21 to 27°C) and different exposure time (from day 0 to day 7) by principal coordinate analysis (PCoA). Linear discriminant analysis effect size (LEfSe) revealed that the relative abundance of Vibrio and Arcobacter presented in live animals as the top genus-level biomarkers during the initial exposure to 27°C and followed by microbiomes fluctuation with increasing exposure time at day 4 and day 7. The proliferation of opportunistic pathogens such as genus Vibrio and Arcobacter might increase host susceptibility to disease and contributed greatly to mortality. The results obtained in this study provide the knowledge on ecological adaptation for south domestication of M. galloprovincialis and host-bacteria interaction during temperature stress (27°C).
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jia-Kang Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yan-Wen Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Wen-Yang Ding
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - An-Qi Shao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
343
|
Leukocyte counts in three sympatric pack-ice seal species from the western Antarctic Peninsula. Polar Biol 2019. [DOI: 10.1007/s00300-019-02551-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
344
|
Leicht K, Jokela J, Seppälä O. Inbreeding does not alter the response to an experimental heat wave in a freshwater snail. PLoS One 2019; 14:e0220669. [PMID: 31393914 PMCID: PMC6687150 DOI: 10.1371/journal.pone.0220669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
Global climate change affects natural populations of many species by increasing the average temperature and the frequency of extreme weather events (e.g. summer heat waves). The ability of organisms to cope with these environmental changes can, however, depend on their genetic properties. For instance, genetic load owing to inbreeding could alter organisms' responses to climate change-mediated environmental changes but such effects are often overlooked. We investigated the effects of an experimental heat wave (25°C versus 15°C) on life history (reproduction, size) and constitutive immune defence traits (phenoloxidase-like and antibacterial activity of haemolymph) in relation to inbreeding by manipulating the mating type (outcrossing, self-fertilization) in two populations of a hermaphroditic freshwater snail, Lymnaea stagnalis. High temperature increased reproduction and size of snails but impaired their immune function. In one of the two study populations, inbreeding reduced reproductive output of snails indicating inbreeding depression. Furthermore, this effect did not depend on the temperature snails were exposed to. Our results suggest that L. stagnalis snails can be negatively affected by inbreeding but it may not alter their responses to heat waves.
Collapse
Affiliation(s)
- Katja Leicht
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jukka Jokela
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Otto Seppälä
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- * E-mail:
| |
Collapse
|
345
|
Khan MD, Thi Vu HH, Lai QT, Ahn JW. Aggravation of Human Diseases and Climate Change Nexus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2799. [PMID: 31390751 PMCID: PMC6696070 DOI: 10.3390/ijerph16152799] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023]
Abstract
For decades, researchers have debated whether climate change has an adverse impact on diseases, especially infectious diseases. They have identified a strong relationship between climate variables and vector's growth, mortality rate, reproduction, and spatiotemporal distribution. Epidemiological data further indicates the emergence and re-emergence of infectious diseases post every single extreme weather event. Based on studies conducted mostly between 1990-2018, three aspects that resemble the impact of climate change impact on diseases are: (a) emergence and re-emergence of vector-borne diseases, (b) impact of extreme weather events, and (c) social upliftment with education and adaptation. This review mainly examines and discusses the impact of climate change based on scientific evidences in published literature. Humans are highly vulnerable to diseases and other post-catastrophic effects of extreme events, as evidenced in literature. It is high time that human beings understand the adverse impacts of climate change and take proper and sustainable control measures. There is also the important requirement for allocation of effective technologies, maintenance of healthy lifestyles, and public education.
Collapse
Affiliation(s)
- Mohd Danish Khan
- Resources Recycling Department, University of Science and Technology, (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon-34113, Korea
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Hong Ha Thi Vu
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Quang Tuan Lai
- Resources Recycling Department, University of Science and Technology, (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon-34113, Korea
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea
| | - Ji Whan Ahn
- Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon-34132, Korea.
| |
Collapse
|
346
|
Price SJ, Leung WTM, Owen CJ, Puschendorf R, Sergeant C, Cunningham AA, Balloux F, Garner TWJ, Nichols RA. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. GLOBAL CHANGE BIOLOGY 2019; 25:2648-2660. [PMID: 31074105 DOI: 10.1111/gcb.14651] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The global trend of increasing environmental temperatures is often predicted to result in more severe disease epidemics. However, unambiguous evidence that temperature is a driver of epidemics is largely lacking, because it is demanding to demonstrate its role among the complex interactions between hosts, pathogens, and their shared environment. Here, we apply a three-pronged approach to understand the effects of temperature on ranavirus epidemics in UK common frogs, combining in vitro, in vivo, and field studies. Each approach suggests that higher temperatures drive increasing severity of epidemics. In wild populations, ranavirosis incidents were more frequent and more severe at higher temperatures, and their frequency increased through a period of historic warming in the 1990s. Laboratory experiments using cell culture and whole animal models showed that higher temperature increased ranavirus propagation, disease incidence, and mortality rate. These results, combined with climate projections, predict severe ranavirosis outbreaks will occur over wider areas and an extended season, possibly affecting larval recruitment. Since ranaviruses affect a variety of ectothermic hosts (amphibians, reptiles, and fish), wider ecological damage could occur. Our three complementary lines of evidence present a clear case for direct environmental modulation of these epidemics and suggest management options to protect species from disease.
Collapse
Affiliation(s)
- Stephen J Price
- UCL Genetics Institute, London, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, Devon, United Kingdom
| | - Chris Sergeant
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | | | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | |
Collapse
|
347
|
Canavan BC. Opening Pandora's Box at the roof of the world: Landscape, climate and avian influenza (H5N1). Acta Trop 2019; 196:93-101. [PMID: 31063711 DOI: 10.1016/j.actatropica.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this case study is to examine how environmental disruption and agricultural practices act synergistically to create a perfect storm for the spread of avian influenza. Actors in this case study include the vast permafrost landscape of the Qinghai-Tibet Plateau; a wild goose that migrates over the Himalayas; the highest altitude railway in the world that traverses the plateau into Tibet; and an avian virus (H5N1). Commencing in 2001, tens of thousands of railway workers travelled to remote regions of the plateau to work on the railway. In order to feed and shelter these workers, the Chinese government established captive-bred goose farms as a source of high protein food. Beginning in 2005 and continuing in subsequent years, Qinghai Lake was the scene for the unprecedented appearance of avian influenza among migratory geese. This was a key moment in the global spread of H5N1 to poultry on three continents. Remote sensing technology suggested an ecological pathway for the transfer of avian viruses among chickens, captive-bred geese, and wild geese. Within a region experiencing rapid climate change, Qinghai Lake is warming even faster than the global average. This may relate to the persistent outbreaks of avian flu strains from Qinghai during the past twelve years. Globally, exponential increases in bird flu outbreaks are not merely a matter of chance mutations in flu viruses but also a result of antecedent social and environmental factors. The Qinghai case study provides real-world examples that bring these factors into sharp focus.
Collapse
Affiliation(s)
- Barbara C Canavan
- Independent Scholar, Global Health and The Environment, 320 SE 62nd Ave., Portland, Oregon, United States.
| |
Collapse
|
348
|
Thakur MP, van der Putten WH, Cobben MMP, van Kleunen M, Geisen S. Microbial invasions in terrestrial ecosystems. Nat Rev Microbiol 2019; 17:621-631. [DOI: 10.1038/s41579-019-0236-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
|
349
|
Beale CS, Stewart JD, Setyawan E, Sianipar AB, Erdmann MV. Population dynamics of oceanic manta rays (
Mobula birostris
) in the Raja Ampat Archipelago, West Papua, Indonesia, and the impacts of the El Niño–Southern Oscillation on their movement ecology. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Calvin S. Beale
- Misool Manta Project Sorong Indonesia
- The Manta Trust Dorchester UK
| | - Joshua D. Stewart
- The Manta Trust Dorchester UK
- Scripps Institution of Oceanography UC San Diego La Jolla California
| | - Edy Setyawan
- The Manta Trust Dorchester UK
- Sea Sanctuaries Trust London UK
| | | | - Mark V. Erdmann
- Conservation International Indonesia Marine Program Bali Indonesia
| |
Collapse
|
350
|
Echevarría Ramos M, Hulshof CM. Using digitized museum collections to understand the effects of habitat on wing coloration in the Puerto Rican monarch. Biotropica 2019. [DOI: 10.1111/btp.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|