301
|
Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A, Pradet-Balade B, Bäcker V, Kornblihtt A, Marcello A, Bertrand E. The transcriptional cycle of HIV-1 in real-time and live cells. ACTA ACUST UNITED AC 2007; 179:291-304. [PMID: 17954611 PMCID: PMC2064765 DOI: 10.1083/jcb.200706018] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA polymerase II (RNAPII) is a fundamental enzyme, but few studies have analyzed its activity in living cells. Using human immunodeficiency virus (HIV) type 1 reporters, we study real-time messenger RNA (mRNA) biogenesis by photobleaching nascent RNAs and RNAPII at specific transcription sites. Through modeling, the use of mutant polymerases, drugs, and quantitative in situ hybridization, we investigate the kinetics of the HIV-1 transcription cycle. Initiation appears efficient because most polymerases demonstrate stable gene association. We calculate an elongation rate of approximately 1.9 kb/min, and, surprisingly, polymerases remain at transcription sites 2.5 min longer than nascent RNAs. With a total polymerase residency time estimated at 333 s, 114 are assigned to elongation, and 63 are assigned to 3′-end processing and/or transcript release. However, mRNAs were released seconds after polyadenylation onset, and analysis of polymerase density by chromatin immunoprecipitation suggests that they pause or lose processivity after passing the polyA site. The strengths and limitations of this kinetic approach to analyze mRNA biogenesis in living cells are discussed.
Collapse
Affiliation(s)
- Stéphanie Boireau
- Institute of Molecular Genetics of Montpellier, Unité Mixte de Recherche 5535, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Abstract
Trafficking of proteins and RNAs is essential for cellular function and homeostasis. While it has long been appreciated that proteins and RNAs move within cells, only recently has it become possible to visualize trafficking events in vivo. Analysis of protein and RNA motion within the cell nucleus have been particularly intriguing as they have revealed an unanticipated degree of dynamics within the organelle. These methods have revealed that the intranuclear trafficking occurs largely by energy-independent mechanisms and is driven by diffusion. RNA molecules and non-DNA binding proteins undergo constrained diffusion, largely limited by the spatial constraint imposed by chromatin, and chromatin binding proteins move by a stop-and-go mechanism where their free diffusion is interrupted by random association with the chromatin fiber. The ability and mode of motion of proteins and RNAs has implications for how they find nuclear targets on chromatin and in nuclear subcompartments and how macromolecular complexes are assembled in vivo. Most importantly, the dynamic nature of proteins and RNAs is emerging as a means to control physiological cellular responses and pathways.
Collapse
|
303
|
Ishihama Y, Tadakuma H, Tani T, Funatsu T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp Cell Res 2007; 314:748-62. [PMID: 18053984 DOI: 10.1016/j.yexcr.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/19/2022]
Abstract
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.
Collapse
Affiliation(s)
- Yo Ishihama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
304
|
Wells AL, Condeelis JS, Singer RH, Zenklusen D. Imaging real-time gene expression in living systems with single-transcript resolution: construct design and imaging system setup. Cold Spring Harb Protoc 2007; 2007:pdb.top28. [PMID: 21356986 DOI: 10.1101/pdb.top28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThe most common way for a cell to respond to internal and external signals is to change its gene expression pattern. This requires the synchronization of regulatory steps along the expression pathway. Biological imaging techniques can be used to visualize and measure such processes in individual live cells in real time. This article discusses the use of a fluorescent RNA-binding protein system that allows real-time analysis of gene expression with single-transcript resolution.
Collapse
Affiliation(s)
- Amber L Wells
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
305
|
Marguet P, Balagadde F, Tan C, You L. Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 2007; 4:607-23. [PMID: 17251159 PMCID: PMC2373384 DOI: 10.1098/rsif.2006.0206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biological research is experiencing an increasing focus on the application of knowledge rather than on its generation. Thanks to the increased understanding of cellular systems and technological advances, biologists are more frequently asking not only 'how can I understand the structure and behaviour of this biological system?', but also 'how can I apply that knowledge to generate novel functions in different biological systems or in other contexts?' Active pursuit of the latter has nurtured the emergence of synthetic biology. Here, we discuss the motivation behind, and foundational technologies enabling, the development of this nascent field. We examine some early successes and applications while highlighting the challenges involved. Finally, we consider future directions and mention non-scientific considerations that can influence the field's growth.
Collapse
Affiliation(s)
- Philippe Marguet
- Department of Biochemistry, Duke University Medical CenterDurham, NC 27710, USA
| | - Frederick Balagadde
- Department of Bioengineering, Stanford UniversityStanford, CA 94305-9505, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke UniversityDurham, NC 27708-0320, USA
- Institute for Genome Sciences and Policy, Duke University Medical CenterDurham, NC 27710, USA
- Author and address for correspondence: CIEMAS 2345, 101 Science Drive, Durham, NC 27708, USA ()
| |
Collapse
|
306
|
Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH. In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 2007; 14:796-806. [PMID: 17676063 PMCID: PMC4942130 DOI: 10.1038/nsmb1280] [Citation(s) in RCA: 514] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/28/2007] [Indexed: 12/17/2022]
Abstract
We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min(-1), much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Rafalska-Metcalf IU, Janicki SM. Show and tell: visualizing gene expression in living cells. J Cell Sci 2007; 120:2301-7. [PMID: 17606985 DOI: 10.1242/jcs.008664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis. These studies show how imaging gene expression in single living cells can reveal new regulatory mechanisms. They also expand our understanding of the role of chromatin and RNA dynamics in modulating cellular responses to developmental and environmental signals.
Collapse
|
308
|
Pantazis P, González-Gaitán M. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:044004. [PMID: 17867808 DOI: 10.1117/1.2770478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In biological imaging of fluorescent molecules, multiphoton laser scanning microscopy (MPLSM) has become the favorite method of fluorescence microscopy in tissue explants and living animals. The great power of MPLSM with pulsed lasers in the infrared wavelength lies in its relatively deep optical penetration and reduced ability to cause potential nonspecific phototoxicity. These properties are of crucial importance for long time-lapse imaging. Since the excited area is intrinsically confined to the high-intensity focal volume of the illuminating beam, MPLSM can also be applied as a tool for selectively manipulating fluorophores in a known, three-dimensionally defined volume within the tissue. Here we introduce localized multiphoton photoactivation (MP-PA) as a technique suitable for analyzing the dynamics of photoactivated molecules with three-dimensional spatial resolution of a few micrometers. Short, intense laser light pulses uncage photoactivatable molecules via multiphoton excitation in a defined volume. MP-PA is demonstrated on photoactivatable paGFP in Drosophila wing imaginal discs. This technique is especially useful for extracting quantitative information about the properties of photoactivatable fusion proteins in different cellular locations in living tissue as well as to label single or small patches of cells in tissue to track their subsequent lineage.
Collapse
Affiliation(s)
- Periklis Pantazis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
309
|
Cai D, Verhey KJ, Meyhöfer E. Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J 2007; 92:4137-44. [PMID: 17400704 PMCID: PMC1877757 DOI: 10.1529/biophysj.106.100206] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/09/2007] [Indexed: 01/21/2023] Open
Abstract
Understanding dynamic cellular processes requires precise knowledge of the distribution, transport, and interactions of individual molecules in living cells. Despite recent progress in in vivo imaging, it has not been possible to express and directly track single molecules in the cytoplasm of live cells. Here, we overcome these limitations by combining fluorescent protein-labeling with high resolution total internal reflection fluorescence microcopy, using the molecular motor Kinesin-1 as model system. First, we engineered a three-tandem monomeric Citrine tag for genetic labeling of individual molecules and expressed this motor in COS cells. Detailed analysis of the quantized photobleaching behavior of individual fluorescent spots demonstrates that we are indeed detecting single proteins in the cytoplasm of live cells. Tracking the movement of individual cytoplasmic molecules reveals that individual Kinesin-1 motors in vivo move with an average speed of 0.78 +/- 0.11 microm/s and display an average run length of 1.17 +/- 0.38 microm, which agrees well with in vitro measurements. Thus, Kinesin-1's speed and processivity are not upregulated or hindered by macromolecular crowding. Second, we demonstrate that standard deviation maps of the fluorescence intensity computed from single molecule image sequences can be used to reveal important physiological information about infrequent cellular events in the noisy fluorescence background of live cells. Finally, we show that tandem fluorescent protein tags enable single-molecule, in vitro analyses of extracted, mammalian-expressed proteins. Thus, by combining direct genetic labeling and single molecule imaging in vivo, our work establishes an important new biophysical method for observing single molecules expressed and localized in the mammalian cytoplasm.
Collapse
Affiliation(s)
- Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
310
|
Alvarez M, Nardocci G, Thiry M, Alvarez R, Reyes M, Molina A, Vera MI. The nuclear phenotypic plasticity observed in fish during rRNA regulation entails Cajal bodies dynamics. Biochem Biophys Res Commun 2007; 360:40-5. [PMID: 17588531 DOI: 10.1016/j.bbrc.2007.05.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 12/11/2022]
Abstract
Cajal bodies (CBs) are small mobile organelles found throughout the nucleoplasm of animal and plant cells. The dynamics of these organelles involves interactions with the nucleolus. The later has been found to play a substantial role in the compensatory response that evolved in eurythermal fish to adapt to the cyclic seasonal habitat changes, i.e., temperature and photoperiod. Contrary to being constitutive, rRNA synthesis is dramatically regulated between summer and winter, thus affecting ribosomal biogenesis which plays a central role in the acclimatization process. To examine whether CBs, up to now, never described in fish, were also sustaining the phenotypic plasticity observed in nuclei of fish undergoing seasonal acclimatization, we identified these organelles both, by transmission electronic microscopy and immunodetection with the marker protein p80-coilin. We found transcripts in all tissues analyzed. Furthermore we assessed that p80-coilin gene expression was always higher in summer-acclimatized fish when compared to that adapted to the cold season, indicating that p80-coilin expression is modulated upon seasonal acclimatization. Concurrently, CBs were more frequently found in summer-acclimatized carp which suggests that the organization of CBs is involved in adaptive processes and contribute to the phenotypic plasticity of fish cell nuclei observed concomitantly with profound reprogramming of nucleolar components and regulation of ribosomal rRNAs.
Collapse
Affiliation(s)
- Marco Alvarez
- Department of Biological Sciences, Universidad Andres Bello, and Millennium Institute for Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
311
|
Abstract
The final step in the maturation of paramyxoviruses, orthomyxoviruses and viruses of several other families, entails the budding of the viral nucleocapsid through the plasma membrane of the host cell. Many medically important viruses, such as influenza, parainfluenza, respiratory syncytial virus (RSV) and Ebola, can form filamentous particles when budding. Although filamentous virions have been previously studied, details of how viral filaments bud from the plasma membrane remain largely unknown. Using molecular beacon (MB)-fluorescent probes to image the viral genomic RNA (vRNA) of human RSV (hRSV) in live Vero cells, the dynamics of assembled viral filaments was observed to consist of three primary types of motion prior to egress from the plasma membrane: (i) filament projection and rotation, (ii) migration and (iii) non-directed motion. In addition, from information gained by imaging the 3D distribution of cellular vRNA, observing and characterizing vRNA dynamics, imaging vRNA/Myosin Va colocalization, and studying the effects of cytochalasin D (actin depolymerizing agent) exposure, a model for filamentous virion egress is presented.
Collapse
Affiliation(s)
| | - Gang Bao
- *To whom correspondence should be addressed. ;
| |
Collapse
|
312
|
Clark A, Meignin C, Davis I. A Dynein-dependent shortcut rapidly delivers axis determination transcripts into the Drosophila oocyte. Development 2007; 134:1955-65. [PMID: 17442699 PMCID: PMC2140221 DOI: 10.1242/dev.02832] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary axes of Drosophila are set up by the localization of transcripts within the oocyte. These mRNAs originate in the nurse cells, but how they move into the oocyte remains poorly understood. Here, we study the path and mechanism of movement of gurken RNA within the nurse cells and towards and through ring canals connecting them to the oocyte. gurken transcripts, but not control transcripts, recruit the cytoplasmic Dynein-associated co-factors Bicaudal D (BicD) and Egalitarian in the nurse cells. gurken RNA requires BicD and Dynein for its transport towards the ring canals, where it accumulates before moving into the oocyte. Our results suggest that bicoid and oskar transcripts are also delivered to the oocyte by the same mechanism, which is distinct from cytoplasmic flow. We propose that Dynein-mediated transport of specific RNAs along specialized networks of microtubules increases the efficiency of their delivery, over the flow of general cytoplasmic components, into the oocyte.
Collapse
Affiliation(s)
| | - Carine Meignin
- The Wellcome Trust Centre for Cell Biology, Michael Swann building, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ilan Davis
- The Wellcome Trust Centre for Cell Biology, Michael Swann building, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
313
|
Ishii Y, Yanagida T. How single molecule detection measures the dynamic actions of life. HFSP JOURNAL 2007. [PMID: 19404457 DOI: 10.2976/1.2723643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biomolecules dynamically work in cells in which a variety of molecules assemble and interact in unique manner. The molecular mechanisms underlying several biological processes have been elucidated from the results obtained from the descriptions of cell function, from the snapshots of the structures of biomolecules involved in these processes, and from the biochemical properties of these reactions in vitro. Recently developed single molecule measurements have revealed the dynamic properties of the biomolecules that have been hidden in the data that have been averaged over large numbers of molecules in both ensemble measurement and in cells. Single molecule imaging and manipulation of single molecules have allowed the visualization of the dynamic operations of molecular motors, enzymatic reactions, structural dynamics of biomolecules, and cell signaling processes. The results have shown that the single molecule techniques are powerful tools to monitor the dynamic actions of biomolecules and their assemblies. This approach has been applied to a variety of fields within the life sciences. As new information emerges about the dynamic actions of biomolecules using methods of single molecule detection new views on how biological processes work will be revealed.
Collapse
|
314
|
Ishii Y, Yanagida T. How single molecule detection measures the dynamic actions of life. HFSP JOURNAL 2007; 1:15-29. [PMID: 19404457 DOI: 10.2976/1.2723643/10.2976/1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Indexed: 12/31/2022]
Abstract
Biomolecules dynamically work in cells in which a variety of molecules assemble and interact in unique manner. The molecular mechanisms underlying several biological processes have been elucidated from the results obtained from the descriptions of cell function, from the snapshots of the structures of biomolecules involved in these processes, and from the biochemical properties of these reactions in vitro. Recently developed single molecule measurements have revealed the dynamic properties of the biomolecules that have been hidden in the data that have been averaged over large numbers of molecules in both ensemble measurement and in cells. Single molecule imaging and manipulation of single molecules have allowed the visualization of the dynamic operations of molecular motors, enzymatic reactions, structural dynamics of biomolecules, and cell signaling processes. The results have shown that the single molecule techniques are powerful tools to monitor the dynamic actions of biomolecules and their assemblies. This approach has been applied to a variety of fields within the life sciences. As new information emerges about the dynamic actions of biomolecules using methods of single molecule detection new views on how biological processes work will be revealed.
Collapse
|
315
|
Braga J, McNally JG, Carmo-Fonseca M. A reaction-diffusion model to study RNA motion by quantitative fluorescence recovery after photobleaching. Biophys J 2007; 92:2694-703. [PMID: 17259280 PMCID: PMC1831683 DOI: 10.1529/biophysj.106.096693] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/05/2007] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study molecular dynamics inside living cells. During the past years, several laboratories have used FRAP to image the motion of RNA-protein and other macromolecular complexes in the nucleus and cytoplasm. In the case of mRNAs, there is growing evidence indicating that these molecules assemble into large ribonucleoprotein complexes that diffuse throughout the nucleus by Brownian motion. However, estimates of the corresponding diffusion rate yielded values that differ by up to one order of magnitude. In vivo labeling of RNA relies on indirect tagging with a fluorescent probe, and here we show how the binding affinity of the probe to the target RNA influences the effective diffusion estimates of the resulting complex. We extend current reaction-diffusion models for FRAP by allowing for diffusion of the bound complex. This more general model can be used to fit any fluorescence recovery curve involving two interacting mobile species in the cell (a fluorescent probe and its target substrate). The results show that interpreting FRAP data in light of the new model reconciles the discrepant mRNA diffusion-rate values previously reported.
Collapse
Affiliation(s)
- José Braga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | | | | |
Collapse
|
316
|
Ozawa T, Natori Y, Sato M, Umezawa Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 2007; 4:413-9. [PMID: 17401370 DOI: 10.1038/nmeth1030] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 02/21/2007] [Indexed: 11/08/2022]
Abstract
We developed genetically encoded RNA probes for characterizing localization and dynamics of mitochondrial RNA (mtRNA) in single living cells. The probes consist of two RNA-binding domains of PUMILIO1, each connected with split fragments of a fluorescent protein capable of reconstituting upon binding to a target RNA. We designed the probes to specifically recognize a 16-base sequence of mtRNA encoding NADH dehydrogenase subunit 6 (ND6) and to be targeted into the mitochondrial matrix, which allowed real-time imaging of ND6 mtRNA localization in living cells. We showed that ND6 mtRNA is localized within mitochondria and concentrated particularly on mitochondrial DNA (mtDNA). Movement of the ND6 mtRNA is restricted but oxidative stress induces the mtRNA to disperse in the mitochondria and gradually decompose. These probes provide a means to study spatial and temporal mRNA dynamics in intracellular compartments in living mammalian cells.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
317
|
Abstract
The localisation of transcripts to specific regions of the cell probably occurs in all cell types and has many distinct functions that go from the control of body axis formation to learning and memory. mRNAs can be localised by a variety of mechanisms including local protection from degradation, diffusion to a localised anchor, and active transport by motor proteins along the cytoskeleton. In this review, I consider the evidence for each of these mechanisms using a limited, but illustrative, number of examples of localised mRNAs.
Collapse
Affiliation(s)
- Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street CB2 3EJ, United Kingdom.
| |
Collapse
|
318
|
Sparano BA, Koide K. Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J Am Chem Soc 2007; 129:4785-94. [PMID: 17385867 DOI: 10.1021/ja070111z] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe a new paradigm for the development of small molecule-based RNA sensors. We prepared a series of potential PET (photoinduced electron transfer) sensors on the basis of 2',7'-dichlorofluorescein (DCF) fluorophore conjugated with two aniline derivatives as electron donors (quenchers). NMR and fluorescent spectroscopic analyses of these DCF derivatives revealed the correlation between the conformations, the PET, and the fluorescent intensities of these DCF derivatives, enabling us to select a sensor candidate. RNA aptamers were raised against the aniline-based quencher via in vitro selection (SELEX). One of these aptamers enhanced the fluorescence intensity of the DCF-aniline conjugate in a concentration-dependent manner. To demonstrate the power and generality of this approach, additional in vitro selection was performed and aptamers from this selection were found to have similar activities. These results show that one can develop fluorescence-inducing reporter RNA and morph it into remotely related sequences without prior structural insight into RNA-ligand binding.
Collapse
Affiliation(s)
- Brian A Sparano
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
319
|
Brown CR, Silver PA. Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 2007; 17:100-6. [PMID: 17317147 DOI: 10.1016/j.gde.2007.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/08/2007] [Indexed: 02/03/2023]
Abstract
The nonrandom spatial distribution of chromosomes and genes in the eukaryotic nucleus has been appreciated for decades, although a detailed understanding of the functional role of such positioning has remained illusive. The most prominent structural feature of the nucleus is the nuclear periphery, classically considered as a zone of gene repression caused by the presence of heterochromatin and silencing factors. However, several recent studies have uncovered dynamic associations between nuclear pore complexes embedded in the nuclear membrane and actively transcribed genes. These interactions, mediated by DNA, RNA and proteins, add an additional level of control to eukaryotic gene expression. The existence of a peripheral transcriptional activation zone in the nucleus suggests that the spatial organization of the genome plays a significant role in transcriptional regulation.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
320
|
Saxton MJ. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys J 2007; 92:1178-91. [PMID: 17142285 PMCID: PMC1783867 DOI: 10.1529/biophysj.106.092619] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/06/2006] [Indexed: 01/31/2023] Open
Abstract
Anomalous subdiffusion has been reported for two-dimensional diffusion in the plasma membrane and three-dimensional diffusion in the nucleus and cytoplasm. If a particle diffuses in a suitable infinite hierarchy of binding sites, diffusion is well known to be anomalous at all times. But if the hierarchy is finite, diffusion is anomalous at short times and normal at long times. For a prescribed set of binding sites, Monte Carlo calculations yield the anomalous diffusion exponent and the average time over which diffusion is anomalous. If even a single binding site is present, there is a very short, almost artifactual, period of anomalous subdiffusion, but a hierarchy of binding sites extends the anomalous regime considerably. As is well known, an essential requirement for anomalous subdiffusion due to binding is that the diffusing particle cannot be in thermal equilibrium with the binding sites; an equilibrated particle diffuses normally at all times. Anomalous subdiffusion due to barriers, however, still occurs at thermal equilibrium, and anomalous subdiffusion due to a combination of binding sites and barriers is reduced but not eliminated on equilibration. This physical model is translated directly into a plausible biological model testable by single-particle tracking.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|
321
|
Rodriguez AJ, Condeelis J, Singer RH, Dictenberg JB. Imaging mRNA movement from transcription sites to translation sites. Semin Cell Dev Biol 2007; 18:202-8. [PMID: 17376719 PMCID: PMC4956988 DOI: 10.1016/j.semcdb.2007.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA localization is one mechanism to temporally and spatially restrict protein synthesis to specific subcellular compartments in response to extracellular stimuli. To understand the mechanisms of mRNA localization, a number of methods have been developed to follow the path of these molecules in living cells including direct labeling of target mRNAs, the MS2-GFP system, and molecular beacons. We review advances in these methods with the goal of identifying the particular strengths and weaknesses of the various approaches in their ability to follow the movements of mRNAs from transcription sites to translation sites.
Collapse
Affiliation(s)
| | | | - Robert H. Singer
- Corresponding author. Tel.: +1 718 430 8646; fax: +1 718 430 8697. (R.H. Singer)
| | | |
Collapse
|
322
|
Ishimatsu K, Horikawa K, Takeda H. Coupling cellular oscillators: A mechanism that maintains synchrony against developmental noise in the segmentation clock. Dev Dyn 2007; 236:1416-21. [PMID: 17420984 DOI: 10.1002/dvdy.21139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A unique feature of vertebrate segmentation is its strict periodicity, which is governed by the segmentation clock consisting of numerous cellular oscillators. These cellular oscillators, driven by a negative-feedback loop of Hairy transcription factor, are linked through Notch-dependent intercellular coupling and display the synchronous expression of clock genes. Combining our transplantation experiments in zebrafish with mathematical simulations, we review how the cellular oscillators maintain synchrony and form a robust system that is resistant to the effects of developmental noise such as stochastic gene expression and active cell proliferation. The accumulated evidence indicates that the segmentation clock behaves as a "coupled oscillators," a mechanism that also underlies the synchronous flashing seen in fireflies.
Collapse
Affiliation(s)
- Kana Ishimatsu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
323
|
Azuma R, Kitagawa T, Kobayashi H, Konagaya A. Particle simulation approach for subcellular dynamics and interactions of biological molecules. BMC Bioinformatics 2006; 7 Suppl 4:S20. [PMID: 17217513 PMCID: PMC1780110 DOI: 10.1186/1471-2105-7-s4-s20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatio-temporal dynamics within cells can now be visualized at appropriate resolution, due to the advances in molecular imaging technologies. Even single-particle tracking (SPT) and single fluorophore video imaging (SFVI) are now being applied to observation of molecular-level dynamics. However, little is known concerning how molecular-level dynamics affect properties at the cellular level. RESULTS We propose an algorithm designed for three-dimensional simulation of the reaction-diffusion dynamics of molecules, based on a particle model. Chemical reactions proceed through the interactions of particles in space, with activation energies determining the rates of these chemical reactions at each interaction. This energy-based model can include the cellular membrane, membranes of other organelles, and cytoskeleton. The simulation algorithm was tested for a reversible enzyme reaction model and its validity was confirmed. Snapshot images taken from simulated molecular interactions on the cell-surface revealed clustering domains (size approximately 0.2 microm) associated with rafts. Sample trajectories of raft constructs exhibited "hop diffusion". These domains corralled the diffusive motion of membrane proteins. CONCLUSION These findings demonstrate that our approach is promising for modelling the localization properties of biological phenomena.
Collapse
Affiliation(s)
- Ryuzo Azuma
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuji Kitagawa
- Dept. of Mathematics and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
| | - Akihiko Konagaya
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Dept. of Mathematics and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
324
|
Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006; 14:707-33. [PMID: 17115328 DOI: 10.1007/s10577-006-1086-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
In spite of strong evidence that the nucleus is a highly organized organelle, a consensus on basic principles of the global nuclear architecture has not so far been achieved. The chromosome territory-interchromatin compartment (CT-IC) model postulates an IC which expands between chromatin domains both in the interior and the periphery of CT. Other models, however, dispute the existence of the IC and claim that numerous chromatin loops expand between and within CTs. The present study was undertaken to resolve these conflicting views. (1) We demonstrate that most chromatin exists in the form of higher-order chromatin domains with a compaction level at least 10 times above the level of extended 30 nm chromatin fibers. A similar compaction level was obtained in a detailed analysis of a particularly gene-dense chromosome region on HSA 11, which often expanded from its CT as a finger-like chromatin protrusion. (2) We further applied an approach which allows the experimental manipulation of both chromatin condensation and the width of IC channels in a fully reversible manner. These experiments, together with electron microscopic observations, demonstrate the existence of the IC as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment.
Collapse
Affiliation(s)
- Heiner Albiez
- Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Abstract
Even a seemingly uniform culture of bacteria is made up of cells very different from each other in terms of their levels of a given protein. This individuality has now finally been quantified at single-molecule resolution. Since the earliest days of molecular biology it has been known that even a seemingly uniform culture of bacteria is made up of cells very different from each other in terms of their levels of a given protein. This individuality has now finally been quantified at single-molecule resolution, as reported in two recent papers.
Collapse
Affiliation(s)
- Ido Golding
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edward C Cox
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
326
|
Siebrasse JP, Grünwald D, Kubitscheck U. Single-molecule tracking in eukaryotic cell nuclei. Anal Bioanal Chem 2006; 387:41-4. [PMID: 17033772 DOI: 10.1007/s00216-006-0763-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Jan Peter Siebrasse
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115, Bonn, Germany
| | | | | |
Collapse
|
327
|
Klingauf M, Stanĕk D, Neugebauer KM. Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell 2006; 17:4972-81. [PMID: 16987958 PMCID: PMC1679666 DOI: 10.1091/mbc.e06-06-0513] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo specific assembly steps in Cajal bodies (CBs), nonmembrane-bound compartments within cell nuclei. An example is the U4/U6 di-snRNP, assembled from U4 and U6 monomers. These snRNPs can also assemble in the nucleoplasm when cells lack CBs. Here, we address the hypothesis that snRNP concentration in CBs facilitates assembly, by comparing the predicted rates of U4 and U6 snRNP association in nuclei with and without CBs. This was accomplished by a random walk-and-capture simulation applied to a three-dimensional model of the HeLa cell nucleus, derived from measurements of living cells. Results of the simulations indicated that snRNP capture is optimal when nuclei contain three to four CBs. Interestingly, this is the observed number of CBs in most cells. Microinjection experiments showed that U4 snRNA targeting to CBs was U6 snRNP independent and that snRNA concentration in CBs is approximately 20-fold higher than in nucleoplasm. Finally, combination of the simulation with calculated association rates predicted that the presence of CBs enhances U4 and U6 snRNP association by up to 11-fold, largely owing to this concentration difference. This provides a chemical foundation for the proposal that these and other cellular compartments promote molecular interactions, by increasing the local concentration of individual components.
Collapse
Affiliation(s)
- Mirko Klingauf
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Stanĕk
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Karla M. Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
328
|
Grünwald D, Spottke B, Buschmann V, Kubitscheck U. Intranuclear binding kinetics and mobility of single native U1 snRNP particles in living cells. Mol Biol Cell 2006; 17:5017-27. [PMID: 16987963 PMCID: PMC1679670 DOI: 10.1091/mbc.e06-06-0559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay behavior on time scales ranging from milliseconds to seconds, reflecting the involvement of U1 snRNPs in numerous distinct interactions. The average dwell times for U1 snRNPs bound at sites within the nucleoplasm did not differ significantly from those in speckles, indicating that similar processes occur in both compartments. Mobile U1 snRNPs moved with diffusion constants in the range from 0.5 to 8 microm2/s. These values were consistent with uncomplexed U1 snRNPs diffusing at a viscosity of 5 cPoise and U1 snRNPs moving in a largely restricted manner, and U1 snRNPs contained in large supramolecular assemblies such as spliceosomes or supraspliceosomes.
Collapse
Affiliation(s)
- David Grünwald
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| | - Beatrice Spottke
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| | | | - Ulrich Kubitscheck
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| |
Collapse
|
329
|
Rasmussen SV, Pedersen FS. Co-localization of gammaretroviral RNAs at their transcription site favours co-packaging. J Gen Virol 2006; 87:2279-2289. [PMID: 16847124 DOI: 10.1099/vir.0.81759-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A retroviral vector-rescue system in which co-packaging of the two co-expressed vectors is required for transduction of one of the vectors has been established previously. By using this rescue system, two distinct packaging-cell populations have been generated. One cell population expressed retroviral RNA from co-localized transcription sites, resulting in local and overlapping accumulation of both RNA transcripts. In the other cell population, the two transcription cassettes were introduced separately, leading to distinct transcription sites of the two RNAs and no significant co-localization of the RNAs. Titre measurements from the two distinct cell populations showed large differences in rescue titre, which is an indirect measure of co-packaging efficiency. Thus, the cell populations with overlapping RNA accumulation gave rise to 15-80-fold-higher rescue titres than cell populations with non-overlapping RNA accumulation. These data show that the spatial position of proviral transcription sites affects the level of retroviral RNA co-packaging and suggest that there is already a linkage of RNAs for co-packaging at the transcription site. It is hypothesized that this linkage is due to RNA dimerization taking place at the transcription site.
Collapse
Affiliation(s)
- Søren Vestergaard Rasmussen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | - Finn Skou Pedersen
- Department of Medical Microbiology and Immunology, University of Aarhus, C. F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| |
Collapse
|
330
|
Pack C, Saito K, Tamura M, Kinjo M. Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys J 2006; 91:3921-36. [PMID: 16950841 PMCID: PMC1630477 DOI: 10.1529/biophysj.105.079467] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four different tandem EGFPs were constructed to elucidate the nuclear microenvironment by quantifying its diffusional properties in both aqueous solution and the nuclei of living cells. Diffusion of tandem EGFP was dependent on the length of the protein as a rod-like molecule or molecular ruler in solution. On the other hand, we found two kinds of mobility, fast diffusional mobility and much slower diffusional mobility depending on cellular compartments in living cells. Diffusion in the cytoplasm and the nucleoplasm was mainly measured as fast diffusional mobility. In contrast, diffusion in the nucleolus was complex and mainly much slower diffusional mobility, although both the fast and the slow diffusional mobilities were dependent on the protein length. Interestingly, we found that diffusion in the nucleolus was clearly changed by energy depletion, even though the diffusion in the cytoplasm and the nucleoplasm was not changed. Our results suggest that the nucleolar microenvironment is sensitive to energy depletion and very different from the nucleoplasm.
Collapse
Affiliation(s)
- Changi Pack
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
331
|
Abruzzi KC, Belostotsky DA, Chekanova JA, Dower K, Rosbash M. 3'-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J 2006; 25:4253-62. [PMID: 16946703 PMCID: PMC1570430 DOI: 10.1038/sj.emboj.7601305] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 08/02/2006] [Indexed: 11/09/2022] Open
Abstract
Multiple studies indicate that mRNA processing defects cause mRNAs to accumulate in discrete nuclear foci or dots, in mammalian cells as well as yeast. To investigate this phenomenon, we have studied a series of GAL reporter constructs integrated into the yeast genome adjacent to an array of TetR-GFP-bound TetO sites. mRNA within dots is predominantly post-transcriptional, and dots are adjacent to but distinct from their transcription site. These reporter genes also localize to the nuclear periphery upon gene induction, like their endogenous GAL counterparts. Surprisingly, this peripheral localization persists long after transcriptional shutoff, and there is a comparable persistence of the RNA in the dots. Moreover, dot disappearance and gene delocalization from the nuclear periphery occur with similar kinetics after transcriptional shutoff. Both kinetics depend in turn on reporter gene 3'-end formation signals. Our experiments indicate that gene association with the nuclear periphery does not require ongoing transcription and suggest that the mRNPs within dots may make a major contribution to the gene-nuclear periphery tether.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Dmitry A Belostotsky
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Julia A Chekanova
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Ken Dower
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Tel.: +1 781 736 3160; Fax: +1 781 736 3164; E-mail:
| |
Collapse
|
332
|
Abstract
The past few years have brought about a fundamental change in our understanding and definition of the RNA world and its role in the functional and regulatory architecture of the cell. The discovery of small RNAs that regulate many aspects of differentiation and development have joined the already known non-coding RNAs that are involved in chromosome dosage compensation, imprinting, and other functions to become key players in regulating the flow of genetic information. It is also evident that there are tens or even hundreds of thousands of other non-coding RNAs that are transcribed from the mammalian genome, as well as many other yet-to-be-discovered small regulatory RNAs. In the recent symposium RNA: Networks & Imaging held in Heidelberg, the dual roles of RNA as a messenger and a regulator in the flow of genetic information were discussed and new molecular genetic and imaging methods to study RNA presented.
Collapse
Affiliation(s)
- Marc Kenzelmann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | |
Collapse
|
333
|
Shav-Tal Y, Darzacq X, Singer RH. Gene expression within a dynamic nuclear landscape. EMBO J 2006; 25:3469-79. [PMID: 16900099 PMCID: PMC1538565 DOI: 10.1038/sj.emboj.7601226] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/07/2006] [Indexed: 01/01/2023] Open
Abstract
Molecular imaging in living cells or organisms now allows us to observe macromolecular assemblies with a time resolution sufficient to address cause-and-effect relationships on specific molecules. These emerging technologies have gained much interest from the scientific community since they have been able to reveal novel concepts in cell biology, thereby changing our vision of the cell. One main paradigm is that cells stochastically vary, thus implying that population analysis may be misleading. In fact, cells should be analyzed within time-resolved single-cell experiments rather than being compared to other cells within a population. Technological imaging developments as well as the stochastic events present in gene expression have been reviewed. Here, we discuss how the structural organization of the nucleus is revealed using noninvasive single-cell approaches, which ultimately lead to the resolution required for the analysis of highly controlled molecular processes taking place within live cells. We also describe the efforts being made towards physiological approaches within the context of living organisms.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| | | | | |
Collapse
|
334
|
Ali GS, Reddy ASN. ATP, phosphorylation and transcription regulate the mobility of plant splicing factors. J Cell Sci 2006; 119:3527-38. [PMID: 16895966 DOI: 10.1242/jcs.03144] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serine-arginine-rich (SR) proteins, a family of spliceosomal proteins, function at multiple steps in the assembly of the spliceosome in non-plant systems. Limited studies with metazoan SR splicing factors (ASF/SF2 and SC35) indicated that their mobility is not dependent on ATP and phosphorylation. In addition, inhibition of transcription slightly increased their mobility. Here, we analyzed the mobility of SR45, a plant-specific SR protein with unique domain organization, and SR1/SRp34, a plant homolog of metazoan ASF/SF2, using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). Our results show that, in contrast to metazoan SR splicing factors, the movement of the plant SR proteins is dependent on ATP, phosphorylation and transcription. To understand the underlying mechanism for these observations, we carried out mobility analyses with the domain-deletion mutants of SR45 in ATP-depleted cells and in the presence of inhibitors of transcription or phosphorylation. Our results show that the sensitivity of SR45 to these inhibitors is conferred by an RNA-recognition motif (RRM) and the serine-arginine-rich (RS) domain 2. These results provide important insights into the mechanisms of plant SR protein movement and suggest fundamental differences in the regulation of the mobility of plant and animal SR splicing factors.
Collapse
Affiliation(s)
- Gul Shad Ali
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
335
|
Abstract
The exchange of molecules between the nucleus and cytoplasm is mediated through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Altering the interactions between transport receptors and their cargo has been shown to be a major regulatory mechanism to control traffic through NPCs. New evidence now suggests that NPC proteins play active roles in translocation, and that transport is also controlled by dynamic changes in NPC composition and architecture. This view of ever-changing NPCs necessitates the re-evaluation of current models of nuclear transport and how this process is regulated.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21st Avenue South, Nashville, TN 37232 USA
| | | |
Collapse
|
336
|
Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 2006; 441:719-23. [PMID: 16760970 DOI: 10.1038/nature04861] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 05/05/2006] [Indexed: 11/08/2022]
Abstract
Periodic somite segmentation in vertebrate embryos is controlled by the 'segmentation clock', which consists of numerous cellular oscillators. Although the properties of a single oscillator, driven by a hairy negative-feedback loop, have been investigated, the system-level properties of the segmentation clock remain largely unknown. To explore these characteristics, we have examined the response of a normally oscillating clock in zebrafish to experimental stimuli using in vivo mosaic experiments and mathematical simulation. We demonstrate that the segmentation clock behaves as a coupled oscillator, by showing that Notch-dependent intercellular communication, the activity of which is regulated by the internal hairy oscillator, couples neighbouring cells to facilitate synchronized oscillation. Furthermore, the oscillation phase of individual oscillators fluctuates due to developmental noise such as stochastic gene expression and active cell proliferation. The intercellular coupling was found to have a crucial role in minimizing the effects of this noise to maintain coherent oscillation.
Collapse
Affiliation(s)
- Kazuki Horikawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
337
|
Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. NANO LETTERS 2006; 6:1491-5. [PMID: 16834436 DOI: 10.1021/nl060921t] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report a simple method using semiconductor quantum dots (QDs) to track the motion of intracellular proteins with a high sensitivity. We characterized the in vivo motion of individual QD-tagged kinesin motors in living HeLa cells. Single-molecule measurements provided important parameters of the motor, such as its velocity and processivity, as well as an estimate of the force necessary to carry a QD. Our measurements demonstrate the importance of single-molecule experiments in the investigation of intracellular transport as well as the potential of single quantum-dot imaging for the study of important processes such as cellular trafficking, cell polarization, and division.
Collapse
Affiliation(s)
- Sébastien Courty
- Laboratoire Kastler Brossel, CNRS UMR 8552, Ecole normale supérieure, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | |
Collapse
|
338
|
Cole CN, Scarcelli JJ. Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol 2006; 18:299-306. [PMID: 16682182 DOI: 10.1016/j.ceb.2006.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
All movement of molecules and macromolecules between the cytoplasm and the nucleus takes place through nuclear pore complexes (NPCs), very large macromolecular complexes that are the only channels connecting these compartments. mRNA export is mediated by multiple, highly conserved protein factors that couple steps of nuclear pre-mRNA biogenesis to mRNA transport. Mature messenger ribonucleoproteins (mRNPs) diffuse from sites of transcription to NPCs, although some active genes are positioned at the nuclear periphery where they interact physically with components of NPCs. As properly processed mRNPs translocate through the pore, certain mRNP proteins are removed, probably through the enzymatic action of the DEAD-box helicase Dbp5, which binds to Nup159 and Gle1, components of the cytoplasmic filaments of the NPC. Gle1 and the phosphoinositide IP6 activate Dbp5's ATPase activity in vitro and this could provide critical spatial regulation of Dbp5 activity in vivo.
Collapse
Affiliation(s)
- Charles N Cole
- Department of Biochemistry, Dartmouth Medical School Hanover, NH 03755, USA.
| | | |
Collapse
|
339
|
Kozlova N, Braga J, Lundgren J, Rino J, Young P, Carmo-Fonseca M, Visa N. Studies on the role of NonA in mRNA biogenesis. Exp Cell Res 2006; 312:2619-30. [PMID: 16750525 DOI: 10.1016/j.yexcr.2006.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
The NonA protein of Drosophila melanogaster is an abundant nuclear protein that belongs to the DBHS (Drosophila behavior, human splicing) protein family. The DBHS proteins bind both DNA and RNA in vitro and have been involved in different aspects of gene expression, including pre-mRNA splicing, transcription regulation and nuclear retention of mRNA. We have used double-stranded RNA interference in Drosophila S2 cells to silence the expression of NonA and to investigate its role in mRNA biogenesis. We show that knockdown of NonA does not affect transcription nor splicing. We demonstrate that NonA forms a complex with the essential nuclear export factor NXF1 in an RNA-dependent manner. We have constructed stable S2 cell lines that express full-length and truncated NXF1 fused to GFP in order to perform fluorescence recovery after photobleaching experiments. We show that knockdown of NonA reduces the intranuclear mobility of NXF1-GFP associated with poly(A)(+) RNA in vivo, while the mobility of the truncated NXF1-GFP that does not bind RNA is not affected. Our data suggest that NonA facilitates the intranuclear mobility of mRNP particles.
Collapse
Affiliation(s)
- Natalia Kozlova
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
340
|
Shav-Tal Y. The living test-tube: imaging of real-time gene expression. SOFT MATTER 2006; 2:361-370. [PMID: 32680249 DOI: 10.1039/b600234j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells are dynamic entities. Not only are some cells motile but there is constant motion of organelles, proteins, nucleic acids and other molecules within every living cell. These complex molecular pathways control the life cycle of a cell and all come down to the basic players of the gene expression pathway: DNA, RNA and protein. It is therefore imperative to study biological processes as they naturally occur-in living cells, and to unravel the biophysical rules that govern intracellular dynamics. Towards this end, genetically encoded fluorescent proteins have become one of the major tools available for the study of kinetic processes taking place in real-time. This review will focus on the technical developments available for the study of gene activity in living cells and will summarize the novel biological information extracted from these approaches.
Collapse
Affiliation(s)
- Yaron Shav-Tal
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
341
|
Gorski SA, Dundr M, Misteli T. The road much traveled: trafficking in the cell nucleus. Curr Opin Cell Biol 2006; 18:284-90. [PMID: 16621498 DOI: 10.1016/j.ceb.2006.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/27/2006] [Indexed: 11/20/2022]
Abstract
Trafficking of RNA molecules and proteins within the cell nucleus is central to genome function. Recent work has revealed the nature of RNA and protein motion within the nucleus and across the nuclear membrane. These studies have given insight into how molecules find their destinations within the nucleus and have uncovered some of the structural properties of the nuclear microenvironment. Control of RNA and protein trafficking is now emerging as a physiological regulatory mechanism in gene expression and nuclear function.
Collapse
|
342
|
Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. ACTA ACUST UNITED AC 2006; 173:207-18. [PMID: 16618814 PMCID: PMC2063812 DOI: 10.1083/jcb.200601105] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
343
|
Tadakuma H, Ishihama Y, Shibuya T, Tani T, Funatsu T. Imaging of single mRNA molecules moving within a living cell nucleus. Biochem Biophys Res Commun 2006; 344:772-9. [PMID: 16631111 DOI: 10.1016/j.bbrc.2006.03.202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, pre-mRNAs are transcribed in the nucleus, processed by 5' capping, 3'-polyadenylation, and splicing, and exported to the cytoplasm for translation. To examine the nuclear mRNA transport mechanism, intron-deficient mRNAs of truncated beta-globin and EGFP were synthesized, fluorescently labeled in vitro, and injected into the nucleus of living Xenopus A6 cells. The trajectories of single mRNA molecules in the nucleus were visualized using video-rate confocal microscopy. Approximately half the mRNAs moved by Brownian motion in the nucleoplasm, except the nucleoli, with an apparent diffusion coefficient of 0.2microm(2)/s, about 1/150 of that in water. The slow diffusion could not be explained by simple diffusion obeying the Stokes-Einstein equation, suggesting interactions of the mRNAs with nuclear components. The remaining mRNAs were stationary with an average residence time of about 30s, comparable to the time required for mRNA diffusion from the site of synthesis to nuclear pores.
Collapse
Affiliation(s)
- Hisashi Tadakuma
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
344
|
Abstract
The combination of specific probes and advanced optical microscopy now allows quantitative probing of biochemical reactions in living cells. On selected systems, one can detect and track a particular protein with single-molecule sensitivity, nanometer spatial precision, and millisecond time resolution. Metabolites, usually difficult to detect, can be imaged and monitored in living cells with coherent anti-Stokes Raman scattering microscopy. Here, we describe the application of these techniques in studying gene expression, active transport, and lipid metabolism.
Collapse
Affiliation(s)
- X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
345
|
Chang L, Shav-Tal Y, Trcek T, Singer RH, Goldman RD. Assembling an intermediate filament network by dynamic cotranslation. ACTA ACUST UNITED AC 2006; 172:747-58. [PMID: 16505169 PMCID: PMC2063706 DOI: 10.1083/jcb.200511033] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have been able to observe the dynamic interactions between a specific messenger RNA (mRNA) and its protein product in vivo by studying the synthesis and assembly of peripherin intermediate filaments (IFs). The results show that peripherin mRNA-containing particles (messenger ribonucleoproteins [mRNPs]) move mainly along microtubules (MT). These mRNPs are translationally silent, initiating translation when they cease moving. Many peripherin mRNPs contain multiple mRNAs, possibly amplifying the total amount of protein synthesized within these "translation factories." This mRNA clustering is dependent on MT, regulatory sequences within the RNA and the nascent protein. Peripherin is cotranslationally assembled into insoluble, nonfilamentous particles that are precursors to the long IF that form extensive cytoskeletal networks. The results show that the motility and targeting of peripherin mRNPs, their translational control, and the assembly of an IF cytoskeletal system are linked together in a process we have termed dynamic cotranslation.
Collapse
Affiliation(s)
- Lynne Chang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
346
|
Yu J, Xiao J, Ren X, Lao K, Xie XS. Probing gene expression in live cells, one protein molecule at a time. Science 2006; 311:1600-3. [PMID: 16543458 DOI: 10.1126/science.1119623] [Citation(s) in RCA: 627] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We directly observed real-time production of single protein molecules in individual Escherichia coli cells. A fusion protein of a fast-maturing yellow fluorescent protein (YFP) and a membrane-targeting peptide was expressed under a repressed condition. The membrane-localized YFP can be detected with single-molecule sensitivity. We found that the protein molecules are produced in bursts, with each burst originating from a stochastically transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. The quantitative study of low-level gene expression demonstrates the potential of single-molecule experiments in elucidating the workings of fundamental biological processes in living cells.
Collapse
Affiliation(s)
- Ji Yu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
347
|
Politz JCR, Tuft RA, Prasanth KV, Baudendistel N, Fogarty KE, Lifshitz LM, Langowski J, Spector DL, Pederson T. Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm. Mol Biol Cell 2006; 17:1239-49. [PMID: 16371503 PMCID: PMC1382313 DOI: 10.1091/mbc.e05-10-0952] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/02/2005] [Indexed: 12/28/2022] Open
Abstract
Speckles are nuclear bodies that contain pre-mRNA splicing factors and polyadenylated RNA. Because nuclear poly(A) RNA consists of both mRNA transcripts and nucleus-restricted RNAs, we tested whether poly(A) RNA in speckles is dynamic or rather an immobile, perhaps structural, component. Fluorescein-labeled oligo(dT) was introduced into HeLa cells stably expressing a red fluorescent protein chimera of the splicing factor SC35 and allowed to hybridize. Fluorescence correlation spectroscopy (FCS) showed that the mobility of the tagged poly(A) RNA was virtually identical in both speckles and at random nucleoplasmic sites. This same result was observed in photoactivation-tracking studies in which caged fluorescein-labeled oligo(dT) was used as hybridization probe, and the rate of movement away from either a speckle or nucleoplasmic site was monitored using digital imaging microscopy after photoactivation. Furthermore, the tagged poly(A) RNA was observed to rapidly distribute throughout the entire nucleoplasm and other speckles, regardless of whether the tracking observations were initiated in a speckle or the nucleoplasm. Finally, in both FCS and photoactivation-tracking studies, a temperature reduction from 37 to 22 degrees C had no discernible effect on the behavior of poly(A) RNA in either speckles or the nucleoplasm, strongly suggesting that its movement in and out of speckles does not require metabolic energy.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Santangelo P, Nitin N, Bao G. Nanostructured Probes for RNA Detection in Living Cells. Ann Biomed Eng 2006; 34:39-50. [PMID: 16463087 DOI: 10.1007/s10439-005-9003-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/30/2005] [Indexed: 01/29/2023]
Abstract
The ability to visualize in real-time the expression level and localization of specific RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we review the recent development of nanostructured oligonucleotide probes for living cell RNA detection, and discuss the biological and engineering issues and challenges of quantifying gene expression in vivo. In particular, we describe methods that use dual FRET (fluorescence resonance energy transfer) or single molecular beacons in combination with peptide-based or membrane-permeabilization-based delivery, to image the relative level, localization, and dynamics of RNA in live cells. Examples of detecting endogenous mRNAs, as well as imaging their subcellular localization and colocalization are given to illustrate the biological applications, and issues in molecular beacon design, probe delivery, and target accessibility are discussed. The nanostructured probes promise to open new and exciting opportunities in sensitive gene detection for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Philip Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
349
|
Santangelo P, Nitin N, LaConte L, Woolums A, Bao G. Live-cell characterization and analysis of a clinical isolate of bovine respiratory syncytial virus, using molecular beacons. J Virol 2006; 80:682-8. [PMID: 16378971 PMCID: PMC1346841 DOI: 10.1128/jvi.80.2.682-688.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Understanding viral pathogenesis is critical for prevention of outbreaks, development of antiviral drugs, and biodefense. Here, we utilize molecular beacons to directly detect the viral genome and characterize a clinical isolate of bovine respiratory syncytial virus (bRSV) in living cells. Molecular beacons are dual-labeled, hairpin oligonucleotide probes with a reporter fluorophore at one end and a quencher at the other; they are designed to fluoresce only when hybridizing to a complementary target. By imaging the fluorescence signal of molecular beacons, the spread of bRSV was monitored for 7 days with a signal-to-noise ratio of 50 to 200, and the measured time course of infection was quantified with a mathematical model for viral growth. We found that molecular beacon signal could be detected in single living cells infected with a viral titer of 2 x 10(3.6) 50% tissue culture infective doses/ml diluted 1,000 fold, demonstrating high detection sensitivity. Low background in uninfected cells and simultaneous staining of fixed cells with molecular beacons and antibodies showed high detection specificity. Furthermore, using confocal microscopy to image the viral genome in live, infected cells, we observed a connected, highly three-dimensional, amorphous inclusion body structure not seen in fixed cells. Taken together, the use of molecular beacons for active virus imaging provides a powerful tool for rapid viral infection detection, the characterization of RNA viruses, and the design of new antiviral drugs.
Collapse
Affiliation(s)
- Philip Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
350
|
Abstract
The mammalian nucleus is arguably the most complex cellular organelle. It houses the vast majority of an organism's genetic material and is the site of all major genome regulatory processes. Reductionist approaches have been spectacularly successful at dissecting at the molecular level many of the key processes that occur within the nucleus, particularly gene expression. At the same time, the limitations of analyzing single nuclear processes in spatial and temporal isolation and the validity of generalizing observations of single gene loci are becoming evident. The next level of understanding of genome function is to integrate our knowledge of their sequences and the molecular mechanisms involved in nuclear processes with our insights into the spatial and temporal organization of the nucleus and to elucidate the interplay between protein and gene networks in regulatory circuits. To do so, catalogues of genomes and proteomes as well as a precise understanding of the behavior of molecules in living cells are required. Converging technological developments in genomics, proteomics, dynamics and computation are now leading towards such an integrated biological understanding of genome biology and nuclear function.
Collapse
Affiliation(s)
- Stanislaw Gorski
- National Cancer Institute, NIH, 41 Library Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|