301
|
Debsharma K, Santhi J, Baire B, Prasad E. Aggregation-Induced Emission Active Donor-Acceptor Fluorophore as a Dual Sensor for Volatile Acids and Aromatic Amines. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48249-48260. [PMID: 31790187 DOI: 10.1021/acsami.9b17988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, a novel donor (D)-acceptor (A) fluorophore based on indeno-pyrrole derivative (PYROMe) has been utilized as a dual sensor for volatile acids and aromatic amines, where sensory responses were regulated by the aggregation-induced emission (AIE) property. The twisted structural framework of PYROMe, confirmed by crystal study, avoids closed cofacial encounter upon aggregation and aided with augmented rigidity via different noncovalent interactions that ultimately ensued restricted intramolecular rotation (RIR). Consequently, PYROMe exhibited AIE in THF/H2O mixture along with bright solid-state emission. The accessibility of protonation at carbonyl site and feasible HOMO energy to accept electrons from aromatic amines during photoexcitation enabled PYROMe as a potential dual sensor. A thin film of PYROMe was utilized for the quantitative detection of volatile acids and aromatic amines, and the detection limit (DL) was found to be as low as 0.77 ppm and 6.04 ppb for trifluoroacetic acid (TFA) and aniline vapors, respectively. Beyond the established scopes of substituted indeno-pyrroles, the present study paves the way, for the first time, toward an AIE-driven dual-stimuli response in indeno-pyrrole based D-A fluorophores.
Collapse
Affiliation(s)
- Kingshuk Debsharma
- Department of Chemistry , Indian Institute of Technology Madras (IIT M) , Chennai 600036 , India
| | - Jampani Santhi
- Department of Chemistry , Indian Institute of Technology Madras (IIT M) , Chennai 600036 , India
| | - Beeraiah Baire
- Department of Chemistry , Indian Institute of Technology Madras (IIT M) , Chennai 600036 , India
| | - Edamana Prasad
- Department of Chemistry , Indian Institute of Technology Madras (IIT M) , Chennai 600036 , India
| |
Collapse
|
302
|
Lartigue L, Coupeau M, Lesault M. Luminophore and Magnetic Multicore Nanoassemblies for Dual-Mode MRI and Fluorescence Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E28. [PMID: 31861876 PMCID: PMC7023187 DOI: 10.3390/nano10010028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Nanoassemblies encompass a large variety of systems (organic, crystalline, amorphous and porous). The nanometric size enables these systems to interact with biological entities and cellular organelles of similar dimensions (proteins, cells, …). Over the past 20 years, the exploitation of their singular properties as contrast agents has led to the improvement of medical imaging. The use of nanoprobes also allows the combination of several active units within the same nanostructure, paving the way to multi-imaging. Thus, the nano-object provides various additional information which helps simplify the number of clinical procedures required. In this review, we are interested in the combination between fluorescent units and magnetic nanoparticles to perform dual-mode magnetic resonance imaging (MRI) and fluorescent imaging. The effect of magnetic interaction in multicore iron oxide nanoparticles on the MRI contrast agent properties is highlighted.
Collapse
Affiliation(s)
- Lénaïc Lartigue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France; (M.C.); (M.L.)
| | | | | |
Collapse
|
303
|
Wu P, Xia L, Huangfu M, Fu F, Wang M, Wen B, Yang Z, Wang J. Lanthanide-Based Metal–Organic Frameworks Containing “V-Shaped” Tetracarboxylate Ligands: Synthesis, Crystal Structures, “Naked-Eye” Luminescent Detection, and Catalytic Properties. Inorg Chem 2019; 59:264-273. [DOI: 10.1021/acs.inorgchem.9b02177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pengyan Wu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Lingling Xia
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengjie Huangfu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Fubin Fu
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Mengqiu Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Bingxin Wen
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Ziyun Yang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| | - Jian Wang
- School of Chemistry and Materials Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People’s Republic of China
| |
Collapse
|
304
|
Chen YC, Sood C, Francis AC, Melikyan GB, Dickson RM. Facile autofluorescence suppression enabling tracking of single viruses in live cells. J Biol Chem 2019; 294:19111-19118. [PMID: 31694918 DOI: 10.1074/jbc.ra119.010268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Indexed: 11/06/2022] Open
Abstract
Live cell fluorescence imaging is the method of choice for studying dynamic processes, such as nuclear transport, vesicular trafficking, and virus entry and egress. However, endogenous cellular autofluorescence masks a useful fluorescence signal, limiting the ability to reliably visualize low-abundance fluorescent proteins. Here, we employed synchronously amplified fluorescence image recovery (SAFIRe), which optically alters ground versus photophysical dark state populations within fluorescent proteins to modulate and selectively detect their background-free emission. Using a photoswitchable rsFastLime fluorescent protein combined with a simple illumination and image-processing scheme, we demonstrate the utility of this approach for suppressing undesirable, unmodulatable fluorescence background. Significantly, we adapted this technique to different commercial wide-field and spinning-disk confocal microscopes, obtaining >10-fold improvements in signal to background. SAFIRe allowed visualization of rsFastLime targeted to mitochondria by efficiently suppressing endogenous autofluorescence or overexpressed cytosolic unmodulatable EGFP. Suppression of the overlapping EGFP signal provided a means to perform multiplexed imaging of rsFastLime and spectrally overlapping fluorophores. Importantly, we used SAFIRe to reliably visualize and track single rsFastLime-labeled HIV-1 particles in living cells exhibiting high and uneven autofluorescence signals. Time-lapse SAFIRe imaging can be performed for an extended period of time to visualize HIV-1 entry into cells. SAFIRe should be broadly applicable for imaging live cell dynamics with commercial microscopes, even in strongly autofluorescent cells or cells expressing spectrally overlapping fluorescent proteins.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400.,Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Chetan Sood
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Ashwanth C Francis
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322
| | - Gregory B Melikyan
- Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322 .,Children's Healthcare of Atlanta, Atlanta, Georgia 30332
| | - Robert M Dickson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
305
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
306
|
Niu N, Zhou H, Liu N, Ren J, Li W, Yu C. A benzoperylene self-assembly complex with turn-on excimer emission for wash-free cell membrane fluorescence imaging. Chem Commun (Camb) 2019; 55:14446-14449. [PMID: 31724658 DOI: 10.1039/c9cc06648a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rational design of a benzoperylene probe BP-3 with positive charge allows for turn-on excimer emission, and wash-free cell membrane imaging. BP-3 possesses excellent chemical, thermal and photo stability. And the Stokes shift of the excimer emission is considerably large (90-100 nm), which very much avoids the background fluorescence interference.
Collapse
Affiliation(s)
- Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | | | | | | | | | | |
Collapse
|
307
|
Ouyang J, Sun L, Zeng Z, Zeng C, Zeng F, Wu S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation‐Induced NIR‐I/II Fluorescence Imaging. Angew Chem Int Ed Engl 2019; 59:10111-10121. [DOI: 10.1002/anie.201913149] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| |
Collapse
|
308
|
Ouyang J, Sun L, Zeng Z, Zeng C, Zeng F, Wu S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation‐Induced NIR‐I/II Fluorescence Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juan Ouyang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesCollege of Materials Science and EngineeringSouth China University of Technology Wushan Road 381 Guangzhou 510640 China
| |
Collapse
|
309
|
Gallo E. Fluorogen-Activating Proteins: Next-Generation Fluorescence Probes for Biological Research. Bioconjug Chem 2019; 31:16-27. [DOI: 10.1021/acs.bioconjchem.9b00710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Charles Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
310
|
Protein trap: a new Swiss army knife for geneticists? Mol Biol Rep 2019; 47:1445-1458. [PMID: 31728729 DOI: 10.1007/s11033-019-05181-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
The protein trap is a powerful tool for genetic and biochemical studies of gene function in the animal kingdom. Although the original protein trap was developed for flies, it can be easily adapted to other multicellular organisms, both known models and ones with an unsequenced genome. The protein trap has been successfully applied to the fruit fly, crustaceans Parhyale hawaiensis, zebrafish, and insect and animal cell cultures. This approach is based on the integration into genes of an artificial exon that carries DNA encoding a fluorescent marker, standardized immunoepitopes, an integrase docking site, and splice acceptor and donor sites. The protein trap for cell cultures additionally contains an antibiotic resistance gene, which facilitates the selection of trapped clones. Resulting chimeric tagged mRNAs can be interfered by dsRNA against GFP (iGFPi-in vivo GFP interference), or the chimeric proteins can be efficiently knocked down by deGradFP technology. Both RNA and protein knockdowns produce a strong loss of function phenotype in tagged cells. The fluorescent and protein affinity tags can be used for tagged protein localisation within the cell and for identifying their binding partners in their native complexes. Insertion into protein trap integrase docking sites allows the replacement of trap contents by any new constructs, including other markers, cell toxins, stop-codons, and binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS, that reliably reflect endogenous gene expression. A distinctive feature of the protein trap approach is that all manipulations with a gene or its product occur only in the endogenous locus, which cannot be achieved by any other method.
Collapse
|
311
|
Dietz MS, Wehrheim SS, Harwardt MLIE, Niemann HH, Heilemann M. Competitive Binding Study Revealing the Influence of Fluorophore Labels on Biomolecular Interactions. NANO LETTERS 2019; 19:8245-8249. [PMID: 31621335 DOI: 10.1021/acs.nanolett.9b03736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescence methods are important tools in modern biology. Direct labeling of biomolecules with a fluorophore might, however, change interaction surfaces. Here, we introduce a competitive binding assay in combination with fluorescence correlation spectroscopy that reports binding affinities of both labeled and unlabeled biomolecules to their binding target. We investigated how fluorophore labels at different positions of a DNA oligonucleotide affect hybridization to a complementary oligonucleotide and found dissociation constants varying within 2 orders of magnitude. We next demonstrated that placing a fluorophore label at position Leu280 in the protein ligand internalin B does not alter the binding affinity to the MET receptor tyrosine kinase, compared to unlabeled internalin B. Our approach is simple to implement and can be applied to investigate the influence of fluorophore labels in a large variety of biomolecular interactions.
Collapse
Affiliation(s)
- Marina S Dietz
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - S Sophia Wehrheim
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - Marie-Lena I E Harwardt
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Mike Heilemann
- Single-Molecule Biophysics, Institute of Physical and Theoretical Chemistry , Goethe-University Frankfurt , Max-von-Laue-Straße 7 , 60438 Frankfurt/Main , Germany
| |
Collapse
|
312
|
Doh JK, Enns CA, Beatty KE. Implementing VIPER for Imaging Cellular Proteins by Fluorescence Microscopy. Bio Protoc 2019; 9:e3413. [PMID: 32665966 PMCID: PMC7360171 DOI: 10.21769/bioprotoc.3413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Genetically-encoded tags are useful tools for multicolor and multi-scale cellular imaging. Versatile Interacting Peptide (VIP) tags, such as VIPER, are new genetically-encoded tags that can be used in various imaging applications. VIP tags consist of a coiled-coil heterodimer, with one peptide serving as the genetic tag and the other ("probe peptide") delivering a reporter compatible with imaging. Heterodimer formation is rapid and specific, allowing proteins to be selectively labeled for live-cell and fixed-cell imaging. In this Bio-Protocol, we include a detailed guide for implementing the VIPER technology for imaging receptors on live cells and intracellular targets in fixed cells. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER (Doh et al., 2019a and 2019b).
Collapse
Affiliation(s)
- Julia K. Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Caroline A. Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kimberly E. Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
313
|
Sun S, Zhang G, Cheng Z, Gan W, Cui M. Large-scale femtosecond holography for near simultaneous optogenetic neural modulation. OPTICS EXPRESS 2019; 27:32228-32234. [PMID: 31684439 PMCID: PMC7045872 DOI: 10.1364/oe.27.032228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
For better understanding of brain functions, optogenetic neural modulation has been widely employed in neural science research. For deep tissue in vivo applications, large-scale two-photon based near simultaneous 3D laser excitation is needed. Although 3D holographic laser excitation is nowadays common practice, the inherent short coherence length of the commonly used femtosecond pulses fundamentally restricts the achievable field-of-view. Here we report a technique for near simultaneous large-scale femtosecond holographic 3D excitation. Specifically, we achieved two-photon excitation over 1.3 mm field-of-view within 1.3 milliseconds, which is sufficiently fast even for spike timing recording. The method is scalable and compatible with the commonly used two-photon sources and imaging systems in neuroscience research.
Collapse
Affiliation(s)
- Shiyi Sun
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Guangle Zhang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
314
|
Sarkar SK, Pegu M, Behera SK, Narra SK, Thilagar P. Aggregation‐Induced and Polymorphism‐Dependent Thermally Activated Delayed Fluorescence (TADF) Characteristics of an Oligothiophene: Applications in Time‐Dependent Live Cell Multicolour Imaging. Chem Asian J 2019; 14:4588-4593. [DOI: 10.1002/asia.201901138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Samir Kumar Sarkar
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Meenakshi Pegu
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Santosh Kumar Behera
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Siva Krishna Narra
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| |
Collapse
|
315
|
Hingorani DV, Chapelin F, Stares E, Adams SR, Okada H, Ahrens ET. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn Reson Med 2019; 83:974-987. [PMID: 31631402 DOI: 10.1002/mrm.27988] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE A bottleneck in developing cell therapies for cancer is assaying cell biodistribution, persistence, and survival in vivo. Ex vivo cell labeling using perfluorocarbon (PFC) nanoemulsions, paired with 19 F MRI detection, is a non-invasive approach for cell product detection in vivo. Lymphocytes are small and weakly phagocytic limiting PFC labeling levels and MRI sensitivity. To boost labeling, we designed PFC nanoemulsion imaging probes displaying a cell-penetrating peptide, namely the transactivating transcription sequence (TAT) of the human immunodeficiency virus. We report optimized synthesis schemes for preparing TAT co-surfactant to complement the common surfactants used in PFC nanoemulsion preparations. METHODS We performed ex vivo labeling of primary human chimeric antigen receptor (CAR) T cells with nanoemulsion. Intracellular labeling was validated using electron microscopy and confocal imaging. To detect signal enhancement in vivo, labeled CAR T cells were intra-tumorally injected into mice bearing flank glioma tumors. RESULTS By incorporating TAT into the nanoemulsion, a labeling efficiency of ~1012 fluorine atoms per CAR T cell was achieved that is a >8-fold increase compared to nanoemulsion without TAT while retaining high cell viability (~84%). Flow cytometry phenotypic assays show that CAR T cells are unaltered after labeling with TAT nanoemulsion, and in vitro tumor cell killing assays display intact cytotoxic function. The 19 F MRI signal detected from TAT-labeled CAR T cells was 8 times higher than cells labeled with PFC without TAT. CONCLUSION The peptide-PFC nanoemulsion synthesis scheme presented can significantly enhance cell labeling and imaging sensitivity and is generalizable for other targeted imaging probes.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiology, University of California San Diego, California
| | - Fanny Chapelin
- Department of Bioengineering, University of California San Diego, California
| | - Emma Stares
- Department of Radiology, University of California San Diego, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, California
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, California
| |
Collapse
|
316
|
A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells. Nat Chem Biol 2019; 16:69-76. [PMID: 31636432 PMCID: PMC6920041 DOI: 10.1038/s41589-019-0381-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 08/22/2019] [Indexed: 01/19/2023]
Abstract
Live-cell imaging of RNA has remained a challenge because of the lack of naturally fluorescent RNAs. Recently developed RNA aptamers that can light-up small fluorogenic dyes could overcome this limitation, but they still suffer from poor brightness and photostability. Here, we propose a concept of cell-permeable fluorogenic dimer of sulforhodamine B dyes (Gemini-561) and corresponding dimerized aptamer (o-Coral) that can drastically enhance performance of the current RNA imaging method. The unprecedented brightness and photostability together with high affinity of this complex allowed, for the first time, direct fluorescence imaging in live mammalian cells of RNA polymerase-III transcription products as well as messenger RNAs labelled with a single copy of the aptamer, i.e. without tag multimerization. The developed fluorogenic module enables fast and sensitive detection of RNA inside live cells, while the proposed design concept opens the route to new generation of ultrabright RNA probes.
Collapse
|
317
|
Boeri L, Albani D, Raimondi MT, Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev 2019; 11:817-831. [PMID: 31628607 PMCID: PMC6815268 DOI: 10.1007/s12551-019-00594-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have immune-modulatory and tissue-regenerative properties that make them a suitable and promising tool for cell-based therapy application. Since the bio-chemo-mechanical environment influences MSC fate and behavior, the understanding of the mechanosensors involved in the transduction of mechanical inputs into chemical signals could be pivotal. In this context, the nuclear pore complex is a molecular machinery that is believed to have a key role in force transmission and in nucleocytoplasmic shuttling regulation. To fully understand the nuclear pore complex role and the nucleocytoplasmic transport dynamics, recent advancements in fluorescence microscopy provided the possibility to study passive and facilitated nuclear transports also in mechanically stimulated cell culture conditions. Here, we review the current available methods for the investigation of nucleocytoplasmic shuttling, including photo-perturbation-based approaches, fluorescence correlation spectroscopy, and single-particle tracking techniques. For each method, we analyze the advantages, disadvantages, and technical limitations. Finally, we summarize the recent knowledge on mechanical regulation of nucleocytoplasmic translocation in MSC, the relevant progresses made so far, and the future perspectives in the field.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20123, Milan, Italy.
| |
Collapse
|
318
|
Kang M, Zhou C, Wu S, Yu B, Zhang Z, Song N, Lee MMS, Xu W, Xu FJ, Wang D, Wang L, Tang BZ. Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. J Am Chem Soc 2019; 141:16781-16789. [PMID: 31553608 DOI: 10.1021/jacs.9b07162] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bacterial infectious diseases, especially those caused by Gram-positive bacteria, have been seriously threatening human health. Preparation of a multifunctional system bearing both rapid bacterial differentiation and effective antibacterial effects is highly in demand, but remains a severe challenge. Herein, we rationally designed and successfully developed a sequence of aggregation-induced emission luminogens (AIEgens) with orderly enhanced D-A strength. Evaluation of structure-function relationships reveals that AIEgens having intrinsic positive charge and proper ClogP value are able to stain Gram-positive bacteria. Meanwhile, one of the presented AIEgens (TTPy) can generate reactive oxygen species (ROS) in extraordinarily high efficiency under white light irradiation due to the smaller singlet-triplet energy gap. Thanks to the NIR emission, excellent specificity to Gram-positive bacteria, and effective ROS generation efficiency, TTPy has been proved to perform well in selective photodynamic killing of Gram-positive bacteria in vitro, such as S. aureus and S. epidermidis, even in S. aureus-infected rat wounds.
Collapse
Affiliation(s)
- Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Chengcheng Zhou
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Shuangmei Wu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Nan Song
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China.,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Michelle Mei Suet Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China
| |
Collapse
|
319
|
Imoto T, Muramatsu M, Miyasaka H, Mizukami S, Kikuchi K. Improvement in Photostability of Fluorescein by Lanthanide Ions Based on Energy Transfer-based Triplet State Quenching. CHEM LETT 2019. [DOI: 10.1246/cl.190469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuma Imoto
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masayasu Muramatsu
- Division of Frontier Materials Science, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazuya Kikuchi
- Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
320
|
Varnosfaderani ZG, Emamzadeh R, Nazari M, Zarean M. Detection of a prostate cancer cell line using a bioluminescent affiprobe: An attempt to develop a new molecular probe for ex vivo studies. Int J Biol Macromol 2019; 138:755-763. [DOI: 10.1016/j.ijbiomac.2019.07.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
|
321
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
322
|
Oguz M, Bhatti AA, Dogan B, Karakurt S, Durdagi S, Yilmaz M. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn 2019; 38:3801-3813. [PMID: 31526236 DOI: 10.1080/07391102.2019.1668301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Naringenin is considered as an important flavonoid in phytochemistry because of its important effect on cancer chemoprevention. Unfortunately its poor solubility has restricted its therapeutic applications. In this study, an efficient water-soluble fluorescent calix[4]arene (compound 5) was synthesized as host macromolecule to increase solubility and cytotoxicity in cancer cells of water-insoluble naringenin as well as to clarify localization of naringenin into the cells. Complex formed by host-guest interaction between compound 5 and naringenin was analyzed with UV-visible, fluorescence, FTIR spectroscopic techniques and molecular modeling studies. Stern-Volmer analysis showed binding constant value of Ksv 3.5 × 107 M-1 suggesting strong interaction between host and guest. Binding capacity shows 77% of naringenin was loaded on compound 5. Anticarcinogenic effects of naringenin complex were evaluated on human colorectal carcinoma cells (DLD-1) and it was found that 5-naringenin complex inhibits proliferation of DLD-1 cells 3.4-fold more compared to free naringenin. Fluorescence imaging studies show 5-naringenin complex was accumulated into the cytoplasm instead of the nucleus. Increased solubility and cytotoxicity of naringenin with fluorescent calix[4]arene makes it one of the potential candidates as a therapeutic enhancer. For deep understanding of host-guest interaction mechanisms, complementary multiscale molecular modeling studies were also carried out.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Oguz
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Advanced Material and Nanotechnology, Selcuk University, Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Selcuk University, Konya, Turkey.,Department of Chemistry, Government College University Hyderabad, Hyderabad, Pakistan
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Karakurt
- Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
323
|
Ng JSW, Hanspal MA, Matharu NS, Barros TP, Esbjörner EK, Wilson MR, Yerbury JJ, Dobson CM, Kumita JR. Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis. Biochemistry 2019; 58:4086-4095. [PMID: 31529970 PMCID: PMC6775541 DOI: 10.1021/acs.biochem.9b00592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
TAR DNA-binding protein
43 (TDP-43) has been identified as the
major constituent of the proteinaceous inclusions that are characteristic
of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin
positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43
inclusions are a pathological hallmark of >95% of patients with
sporadic
ALS and of the majority of familial ALS cases, and they are also found
in a significant proportion of FTLD cases. ALS is the most common
form of motor neuron disease, characterized by progressive weakness
and muscular wasting, and typically leads to death within a few years
of diagnosis. To determine how the translocation and misfolding of
TDP-43 contribute to ALS pathogenicity, it is crucial to define the
dynamic behavior of this protein within the cellular environment.
It is therefore necessary to develop cell models that allow the location
of the protein to be defined. We report the use of TDP-43 with a tetracysteine
tag for visualization using fluorogenic biarsenical compounds and
show that this model displays features of ALS observed in other cell
models. We also demonstrate that this labeling procedure enables live-cell
imaging of the translocation of the protein from the nucleus into
the cytosol.
Collapse
Affiliation(s)
- Janice S W Ng
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Maya A Hanspal
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Naunehal S Matharu
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Teresa P Barros
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Division of Chemical Biology , Chalmers University of Technology , Kemivägen 10 , 412 96 Gothenburg , Sweden
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute , Wollongong , NSW 2522 , Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health , University of Wollongong , Northfields Avenue , Wollongong , NSW 2522 , Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute , Wollongong , NSW 2522 , Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health , University of Wollongong , Northfields Avenue , Wollongong , NSW 2522 , Australia
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Janet R Kumita
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
324
|
Abstract
Fluorescent sensing has emerged as a powerful tool for detecting various analytes and visualizing numerous biological processes by virtue of its superb sensitivity, rapidness, excellent temporal resolution, easy operation, and low cost. Of particular interest is activity-based sensing (ABS), a burgeoning sensing approach that is actualized on the basis of dynamic molecular reactivity rather than conventional lock-and-key molecular recognition. ABS has been recognized to possess some distinct advantages, such as high specificity, extraordinary sensitivity, and accurate signal outputs. A majority of ABS sensors are constructed by modifying conventional fluorogens, which are strongly emissive when molecularly dissolved in solvents but experience emission quenching upon aggregate formation or concentration increase. The aggregation-caused quenching (ACQ) phenomenon leads to a limited amount of labeling of the analyte with the sensor and low photobleaching resistance, which could impede practical applications of the ABS protocol. As an anti-ACQ phenomenon, aggregation-induced emission (AIE) provides a straightforward solution to the ACQ problem. Thanks to their intrinsic advantages, including high photobleaching threshold, high signal-to-noise ratio, fluorescence turn-on nature, and large Stokes shift, AIE-active luminogens (AIEgens) represent a class of extraordinary fluorogen alternatives for the ABS protocol. The use of AIEgen-involved ABS can integrate the advantages of AIEgens and ABS, and additionally, the AIE process offers some unique properties to the ABS approach. For instance, in some cases of water-soluble AIEgen-involved ABS, chemical reaction not only leads to a chang in the emission color of the AIEgens but also causes solubility variations, which could result in specific "light-up" signaling. In this Account, the basic concepts and mechanistic insights of the ABS approach involving the AIE principle are briefly summarized, and then we highlight the new breakthroughs, seminal studies, and trends in the area that have been most recently reported by our group. This emerging sensing protocol has been successfully utilized for detecting an array of targets including ions, small molecules, biomacromolecules, and microenvironments, all of which closely relate to human health, medical, and public concerns. These detections are smoothly achieved on the basis of various reactions (e.g., hydrolysis, boronate cleavage, dephosphorylation, addition, cyclization, and rearrangement reactions) through different sensing principles. In these studies, the AIEgen-involved ABS strategy generally shows good biocompatibility, high selectivity, excellent reliability and high signal contrast, strongly indicating its great potential for high-tech innovations in the sensing field, among which bioprobing is of particular interest. With this Account, we hope to spark new ideas and inspire new endeavors in this emerging research area, further promoting state-of-the-art developments in the field of sensing.
Collapse
Affiliation(s)
- Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, State Key Laboratory of Neuroscience, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
325
|
Keevend K, Puust L, Kurvits K, Gerken LRH, Starsich FHL, Li JH, Matter MT, Spyrogianni A, Sotiriou GA, Stiefel M, Herrmann IK. Ultrabright and Stable Luminescent Labels for Correlative Cathodoluminescence Electron Microscopy Bioimaging. NANO LETTERS 2019; 19:6013-6018. [PMID: 31373824 DOI: 10.1021/acs.nanolett.9b01819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanistic understanding of structure-function relationships in biological systems heavily relies on imaging. While fluorescence microscopy allows the study of specific proteins following their labeling with fluorophores, electron microscopy enables holistic ultrastructural analysis based on differences in electron density. To identify specific proteins in electron microscopy, immunogold labeling has become the method of choice. However, the distinction of immunogold-based protein labels from naturally occurring electron dense granules and the identification of several different proteins in the same sample remain challenging. Correlative cathodoluminescence electron microscopy (CCLEM) bioimaging has recently been suggested to provide an attractive alternative based on labels emitting characteristic light. While luminescence excitation by an electron beam enables subdiffraction imaging, structural damage to the sample by high-energy electrons has been identified as a potential obstacle. Here, we investigate the feasibility of various commonly used luminescent labels for CCLEM bioimaging. We demonstrate that organic fluorophores and semiconductor quantum dots suffer from a considerable loss of emission intensity, even when using moderate beam voltages (2 kV) and currents (0.4 nA). Rare-earth element-doped nanocrystals, in particular Y2O3:Tb3+ and YVO4:Bi3+,Eu3+ nanoparticles with green and orange-red emission, respectively, feature remarkably high brightness and stability in the CCLEM bioimaging setting. We further illustrate how these nanocrystals can be readily differentiated from morphologically similar naturally occurring dense granules based on optical emission, making them attractive nanoparticle core materials for molecular labeling and (multi)color CCLEM.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , ETH Zurich , Auguste-Piccard- Hof 1 , CH-8093 Zurich , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Laurits Puust
- Laboratory of Laser Spectroscopy, Institute of Physics , University of Tartu , W. Ostwaldi St 1 , 50411 Tartu , Estonia
| | - Karoliine Kurvits
- Laboratory of Laser Spectroscopy, Institute of Physics , University of Tartu , W. Ostwaldi St 1 , 50411 Tartu , Estonia
| | - Lukas R H Gerken
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Fabian H L Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Jian-Hao Li
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Martin T Matter
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Anastasia Spyrogianni
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , SE-17177 Stockholm , Sweden
| | - Michael Stiefel
- Laboratory for Transport at Nanoscale Interfaces, Department Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| |
Collapse
|
326
|
Kumar S, Arora A, Kaushal J, Oswal P, Kumar A, Kumar P. Developing a simple and water soluble thiophene-functionalized Ru(II)-polypyridyl complex for ferric ion detection. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
327
|
Klett J, Gómez-Casero E, Méndez-Pertuz M, Urbano-Cuadrado M, Megias D, Blasco MA, Martínez S, Pastor J, Blanco-Aparicio C. Screening protocol for the identification of modulators by immunofluorescent cell-based assay. Chem Biol Drug Des 2019; 95:66-78. [PMID: 31469231 DOI: 10.1111/cbdd.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/05/2019] [Accepted: 08/11/2019] [Indexed: 11/30/2022]
Abstract
High-throughput assays are a common strategy for the identification of compounds able to modulate a certain cellular activity. Here, we show an automatized analysis platform for the quantification of nuclear foci as inhibitory effect of compounds on a target protein labeled by fluorescent antibodies. Our experience led us to a fast analysis platform that combines cell-based assays, high-content screening, and confocal microscopy, with an automatic and user-friendly statistical analysis of plate-based assays including positive and negative controls, able to identify inhibitory effect of compounds tested together with the Z-prime and Window of individual plate-based assays to assess the reliability of the results. The platform integrates a web-based tool implemented in Pipeline Pilot and R, and allows computing the inhibition values of different parameters obtained from the high-content screening and confocal microscopy analysis. This facilitates the exploration of the results using the different parameters, providing information at different levels as the number of foci observed, the sum of intensity of foci, area of foci, etc, the detection and filtering of outliers over the assay plate, and finally providing a set of statistics of the parameters studied together with a set of plots that we believe significantly helps to the interpretation of the assay results.
Collapse
Affiliation(s)
- Javier Klett
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Gómez-Casero
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marinela Méndez-Pertuz
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Urbano-Cuadrado
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megias
- Microscopy Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Martínez
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joaquín Pastor
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
328
|
Monte Carlo Simulation of Brownian Motion using a Piezo-Actuated Microscope Stage. PROCEEDINGS OF THE ... AMERICAN CONTROL CONFERENCE. AMERICAN CONTROL CONFERENCE 2019; 2019:567-572. [PMID: 32773960 DOI: 10.23919/acc.2019.8814397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single particle tracking is a powerful tool for studying and understanding the motions of biological macromolecules integral to cellular processes. In the past three decades there has been continuous and rapid development of these techniques in both optical microscope design and in algorithms to estimate the statistics and positions of the molecule's trajectory. Although there has been great progress, comparison between different microscope configurations and estimation algorithms has been difficult beyond simulated data. In this paper we explore using a piezo actuated microscope stage to reproduce Brownian motion. Our goal is to use this as a tool to test performance of single particle tracking optical microscopes and estimation algorithms. In this study, Monte Carlo simulations were used to assess the ability of piezo actuated microscope stages for reproducing Brownian motion. Surprisingly, the dynamics of the stage together with configuration of the system allow for preservation of the Brownian motion statistics. Further, feed forward model inverse control allows for low error tracking of Brownian motion trajectories over a wide range of diffusion constants, varying stage response times, and trajectory discrete time steps. These results show great promise in using a piezo actuated microscope stage for testing single particle tracking experimental setups.
Collapse
|
329
|
Soorkia S, Jouvet C, Grégoire G. UV Photoinduced Dynamics of Conformer-Resolved Aromatic Peptides. Chem Rev 2019; 120:3296-3327. [DOI: 10.1021/acs.chemrev.9b00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
330
|
Schlüter F, Ravoo BJ, Rizzo F. Self-assembled multilayer surfaces of highly fluorescent spirobifluorene-based dye for label-free protein recognition. J Mater Chem B 2019; 7:4933-4939. [PMID: 31411615 DOI: 10.1039/c9tb00854c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The preparation of smart surfaces for protein detection is a challenging field of research. With the aim to achieve label-free detection in the solid state, we report on the organic surface functionalization for protein recognition without the need of previous chemical modification of the fluorophore. Layer-by-layer deposition of polyelectrolyte poly(vinyl benzyl tetramethylammonium) chloride (p(VBTMA)Cl) and a tetrasulfonate water-soluble low molecular weight fluorophore (1) based on spirobifluorene leads to modified glass and quartz substrates with outstanding photophysical properties in response to bovine serum albumin (BSA). The absorbance, photoluminescence as well as the fluorescence lifetimes were recorded for all surfaces. The surface structure and height of the different number of bilayers polymer/fluorophore were characterized by atomic force microscopy and ellipsometry. The results show linear trends in the absorption, fluorescence and height of the multilayer with increasing number of functionalization steps. Upon incubation with BSA the multilayer shows an increase in fluorescence up to 3-fold, which is also detectable with the naked eye. In conclusion, we report an easy, fast and biocompatible approach for the construction of protein sensors by self-assembly.
Collapse
Affiliation(s)
- Friederike Schlüter
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Fabio Rizzo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany. and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany and Institute of Molecular Science and Technologies (ISTM) and INSTM, National Research Council (CNR), via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
331
|
Yang L, Nian S, Zhang G, Sharman E, Miao H, Zhang X, Chen X, Luo Y, Jiang J. Role of Hydrogen Bonding in Green Fluorescent Protein-like Chromophore Emission. Sci Rep 2019; 9:11640. [PMID: 31406231 PMCID: PMC6690883 DOI: 10.1038/s41598-019-47660-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
The fluorescence emission from green fluorescent protein (GFP) is known to be heavily influenced by hydrogen bonding between the core fluorophore and the surrounding side chains or water molecules. Yet how to utilize this feature for modulating the fluorescence of GFP chromophore or GFP-like fluorophore still remains elusive. Here we present theoretical calculations to predict how hydrogen bonding could influence the excited states of the GFP-like fluorophores. These studies provide both a new perspective for understanding the photophysical properties of GFP as well as a solid basis for the rational design of GFP-based fluorophores.
Collapse
Affiliation(s)
- Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shifeng Nian
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Edward Sharman
- Department of Neurology, University of California, Irvine, California, 92697, United States
| | - Hui Miao
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuepeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xiaofeng Chen
- Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), CAS Centre for Excellence in Nanoscience, Department of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
332
|
Jiang N, Li H, Sun H. Recognition of Proteins by Metal Chelation-Based Fluorescent Probes in Cells. Front Chem 2019; 7:560. [PMID: 31448265 PMCID: PMC6695521 DOI: 10.3389/fchem.2019.00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
Fluorescent probes such as thiol-reactive and Ni2+-nitrilotriacetate (NTA) based probes provide a powerful toolbox for real-time visualization of a protein and a proteome in living cells. Herein, we first went through basic principles and applications of thiol-reactive based probes in protein imaging and recognition. We then summarize a family of metal-NTA based fluorescence probes in the visualization of His6-tagged protein and identification of metalloproteins at proteome-wide scale. The pros and cons of the probes, as well as ways to optimize them, are discussed.
Collapse
Affiliation(s)
| | | | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
333
|
Abou-Hatab S, Matsika S. Theoretical Investigation of Positional Substitution and Solvent Effects on n-Cyanoindole Fluorescent Probes. J Phys Chem B 2019; 123:7424-7435. [DOI: 10.1021/acs.jpcb.9b05961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Salsabil Abou-Hatab
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
334
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
335
|
Fedotov IV, Zheltikov AM. Background-free two-photon fluorescence readout via a three-photon charge-state modulation of nitrogen-vacancy centers in diamond. OPTICS LETTERS 2019; 44:3737-3740. [PMID: 31368956 DOI: 10.1364/ol.44.003737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that a background-free readout of two-photon fluorescence from nitrogen-vacancy (NV) centers in a strongly fluorescing environment can be accomplished by all-optical means via a multiphoton charge-state modulation of NV centers in a mixture of negatively charged and neutral NV centers. A 100 fs, 1060 nm output of an ytterbium fiber laser is ideally suited for this modality of multiphoton microscopy, providing, as our experiments show, an efficient two-photon excitation of both NV- and NV0 charge states, but keeping the nonlinearity of n-photon ionization needed for NV-/NV0 charge-state modulation to a minimum, n=3.
Collapse
|
336
|
Liang D, Wu K, Tei R, Bumpus TW, Ye J, Baskin JM. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. Proc Natl Acad Sci U S A 2019; 116:15453-15462. [PMID: 31311871 PMCID: PMC6681737 DOI: 10.1073/pnas.1903949116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fidelity of signal transduction requires spatiotemporal control of the production of signaling agents. Phosphatidic acid (PA) is a pleiotropic lipid second messenger whose modes of action differ based on upstream stimulus, biosynthetic source, and site of production. How cells regulate the local production of PA to effect diverse signaling outcomes remains elusive. Unlike other second messengers, sites of PA biosynthesis cannot be accurately visualized with subcellular precision. Here, we describe a rapid, chemoenzymatic approach for imaging physiological PA production by phospholipase D (PLD) enzymes. Our method capitalizes on the remarkable discovery that bulky, hydrophilic trans-cyclooctene-containing primary alcohols can supplant water as the nucleophile in the PLD active site in a transphosphatidylation reaction of PLD's lipid substrate, phosphatidylcholine. The resultant trans-cyclooctene-containing lipids are tagged with a fluorogenic tetrazine reagent via a no-rinse, inverse electron-demand Diels-Alder (IEDDA) reaction, enabling their immediate visualization by confocal microscopy in real time. Strikingly, the fluorescent reporter lipids initially produced at the plasma membrane (PM) induced by phorbol ester stimulation of PLD were rapidly internalized via apparent nonvesicular pathways rather than endocytosis, suggesting applications of this activity-based imaging toolset for probing mechanisms of intracellular phospholipid transport. By instead focusing on the initial 10 s of the IEDDA reaction, we precisely pinpointed the subcellular locations of endogenous PLD activity as elicited by physiological agonists of G protein-coupled receptor and receptor tyrosine kinase signaling. These tools hold promise to shed light on both lipid trafficking pathways and physiological and pathological effects of localized PLD signaling.
Collapse
Affiliation(s)
- Dongjun Liang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kane Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Reika Tei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Johnny Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
337
|
Saxena S, Pradeep A, Jayakannan M. Enzyme-Responsive Theranostic FRET Probe Based on l-Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:5245-5262. [DOI: 10.1021/acsabm.9b00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Anu Pradeep
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
338
|
Wang X, Zhang L, Zhuang S, Huang M, Gao Y. A novel fluorescent sensor for Sn
4+
detection: Dark resonance energy transfer from silole to rhodamine. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiuji Wang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Lijian Zhang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Shaoqin Zhuang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Meifei Huang
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| | - Yihua Gao
- Analysis CenterGuangdong Medical University Dongguan 523808 P. R. China
| |
Collapse
|
339
|
An efficient protocol of cryo-correlative light and electron microscopy for the study of neuronal synapses. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0092-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
340
|
Aggregation-induced emission fluorescent probe for monitoring endogenous alkaline phosphatase in living cells. Talanta 2019; 205:120143. [PMID: 31450444 DOI: 10.1016/j.talanta.2019.120143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/24/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022]
Abstract
Alkaline phosphatase (ALP) is a non-specific phosphate monoesterase and often regarded as an important biomarker of hypothyroidism and hepatobiliary diseases in medical diagnosis. In-situ detection of endogenous ALP and exploration of the distribution of ALP in cells are of great importance for the diagnosis of diseases associated with ALP. In this work, we designed and synthesized an aggregation-induced emission (AIE) fluorescent probe, (E)-2-(((9H-fluoren-9-ylidene) hydrazono)methyl)phenyl dihydrogen phosphate (FAS-P), that can respond to ALP with a remarkable large Stokes shift (>200 nm) based on excited state intramolecular proton transfer (ESIPT) mechanism. The probe FAS-P has high selectivity and sensitivity to the detection of ALP. And there is a linear relationship between the fluorescence intensity of FAS-P and ALP activity in the range of 1-100 U L-1, the limit of detection (LOD) is as low as 0.6 U L-1. More importantly, we successfully applied FAS-P to detect ALP in living cells and the monitoring of ALP in real time.
Collapse
|
341
|
Li B, Zhou X, Yang P, Zhu L, Zhong Y, Cai Z, Jiang B, Cai X, Liu J, Jiang X. Photoactivatable Fluorogenic Labeling via Turn-On "Click-Like" Nitroso-Diene Bioorthogonal Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802039. [PMID: 31380178 PMCID: PMC6662066 DOI: 10.1002/advs.201802039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Fluorogenic labeling enables imaging cellular molecules of interest with minimal background. This process is accompanied with the notable increase of the quantum yield of fluorophore, thus minimizing the background signals from unactivated profluorophores. Herein, the development of a highly efficient and bioorthogonal nitroso-based Diels-Alder fluorogenic reaction is presented and its usefulness is validated as effective and controllable in fluorescent probes and live-cell labeling strategies for dynamic cellular imaging. It is demonstrated that nitroso-based cycloaddition is an efficient fluorogenic labeling tool through experiments of further UV-activatable fluorescent labeling on proteins and live cells. The ability of tuning the fluorescence of labeled proteins by UV-irradiation enables selective activation of proteins of interest in a particular cell compartment at a given time point, while leaving the remaining labeled molecules untouched.
Collapse
Affiliation(s)
- Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Xian‐Hao Zhou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201210China
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Peng‐Yu Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Liping Zhu
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yuan Zhong
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zhengjun Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiaoqing Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
342
|
Dake F, Hayashi S. High-resolution nonlinear fluorescence microscopy using repetitive stimulated transition based on the saturation of stimulated emission implemented with two-color continuous-wave lasers. OPTICS LETTERS 2019; 44:3402-3405. [PMID: 31259971 DOI: 10.1364/ol.44.003402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
High-resolution nonlinear fluorescence (NF) microscopy that utilizes repetitive stimulated transition due to the saturation of stimulated emission caused by two-color continuous-wave lasers was developed. The resulting NF signal, detected via the lock-in technique, is produced by the multiplicative combination of incident beams, which results in an improvement of the optical resolution. The proposed method is demonstrated to have a three-dimensional optical resolution superior to that of conventional NF microscopy. The results of biological imaging reveal the feasibility and superiority of the proposed method.
Collapse
|
343
|
Sun N, Su K, Zhou Z, Tian X, Jianhua Z, Chao D, Wang D, Lissel F, Zhao X, Chen C. High-Performance Emission/Color Dual-Switchable Polymer-Bearing Pendant Tetraphenylethylene (TPE) and Triphenylamine (TPA) Moieties. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00079] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ningwei Sun
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Leibniz Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
| | - Kaixin Su
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwei Zhou
- Leibniz Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
| | - Xuzhou Tian
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhao Jianhua
- Institute of Building Science and Technology, School of Architecture, Tianjin University, Tianjin 300072, P. R. China
| | - Danming Chao
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Daming Wang
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Franziska Lissel
- Leibniz Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
| | - Xiaogang Zhao
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunhai Chen
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
344
|
Puthuvakkal A, Manoj K. Crystal structure and spectral studies of green fluorescent protein (GFP) chromophore analogue ethyl 2-[(4Z)-(6-hydroxy naphthalen-2-yl) methylene)-2-methyl-5-oxo-4,5-di hydro-1H-imidazol-1-yl] acetate. ACTA ACUST UNITED AC 2019. [DOI: 10.5155/eurjchem.10.2.175-179.1869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetically modified green fluorescent protein chromophore derivative was prepared, its crystal structure and spectral properties were studied. Crystal data for C19H18N2O4: triclinic, space group P-1 (no. 2), a = 8.2506(17) Å, b = 11.934(2) Å, c = 17.461(4) Å, α = 102.89(3)°, β = 94.62(3)°, γ = 96.68(3)°, V = 1654.5(6) Å3, Z = 4, T = 173(2) K, μ(MoKα) = 0.096 mm-1, Dcalc = 1.358 g/cm3, 7227 reflections measured (4.722° ≤ 2Θ ≤ 53.996°), 7227 unique (Rint = 0.0453, Rsigma = 0.0662) which were used in all calculations. The final R1 was 0.0561 (I > 2σ(I)) and wR2 was 0.1658 (all data). The single crystal structure showed, the benzylidine moiety adopts Z-conformation in solid state and the molecules were associated by various O−H···O and C−H···O non-covalent interactions. The UV absorption-emission spectral analysis indicated that a significant red shift of emission observed at alkaline pH indicating its utility for live cell imaging applications.
Collapse
Affiliation(s)
- Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| |
Collapse
|
345
|
Jradi FM, Lavis LD. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chem Biol 2019; 14:1077-1090. [PMID: 30997987 DOI: 10.1021/acschembio.9b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of single-molecule localization microscopy (SMLM) has sparked a revolution in biological imaging, allowing "super-resolution" fluorescence microscopy below the diffraction limit of light. The past decade has seen an explosion in not only optical hardware for SMLM but also the development or repurposing of fluorescent proteins and small-molecule fluorescent probes for this technique. In this review, written by chemists for chemists, we detail the history of single-molecule localization microscopy and collate the collection of probes with demonstrated utility in SMLM. We hope it will serve as a primer for probe choice in localization microscopy as well as an inspiration for the development of new fluorophores that enable imaging of biological samples with exquisite detail.
Collapse
Affiliation(s)
- Fadi M. Jradi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
346
|
Label-free Imaging and Bending Analysis of Microtubules by ROCS Microscopy and Optical Trapping. Biophys J 2019; 114:168-177. [PMID: 29320684 DOI: 10.1016/j.bpj.2017.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Mechanical manipulation of single cytoskeleton filaments and their monitoring over long times is difficult because of fluorescence bleaching or phototoxic protein degradation. The integration of label-free microscopy techniques, capable of imaging freely diffusing, weak scatterers such as microtubules (MTs) in real-time, and independent of their orientation, with optical trapping and tracking systems, would allow many new applications. Here, we show that rotating-coherent-scattering microscopy (ROCS) in dark-field mode can also provide strong contrast for structures far from the coverslip such as arrangements of isolated MTs and networks. We could acquire thousands of images over up to 30 min without loss in image contrast or visible photodamage. We further demonstrate the combination of ROCS imaging with fast and nanometer-precise 3D interferometric back-focal-plane tracking of multiple beads in time-shared optical traps using acoustooptic deflectors to specifically construct and microrheologically probe small microtubule networks with well-defined geometries. Thereby, we explore the frequency-dependent elastic response of single microtubule filaments between 0.5 Hz and 5 kHz, which allows for investigating their viscoelastic response up to the fourth-order bending mode. Our spectral analysis reveals constant filament stiffness at low frequencies and frequency-dependent stiffening following a power law ∼ωp with a length-dependent exponent p(L). We find further evidence for the dependence of the MT persistence length on the contour length L, which is still controversially debated. We could also demonstrate slower stiffening at high frequencies for longer filaments, which we believe is determined by the molecular architecture of the MT. Our results shed new light on the nanomechanics of this essential, multifunctional cytoskeletal element and pose new questions about the adaptability of the cytoskeleton.
Collapse
|
347
|
WellInverter: a web application for the analysis of fluorescent reporter gene data. BMC Bioinformatics 2019; 20:309. [PMID: 31185910 PMCID: PMC6558888 DOI: 10.1186/s12859-019-2920-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Fluorescent reporter genes have become widely used for monitoring gene expression in living cells. When a microbial strain carrying a reporter gene is grown in a microplate reader, the fluorescence and the absorbance (optical density) of the culture can be automatically measured every few minutes in a highly parallelized way. The extraction of useful information from the resulting large amounts of data is not easy to achieve, because the fluorescence and absorbance measurements are only indirectly related to promoter activities and protein concentrations, requiring mathematical models of the expression of reporter genes for their interpretation. Although the principles of the analysis of reporter gene data are well-established today, there is a lack of general-purpose bioinformatics tools based on generic measurement models and sound inference procedures. This has motivated the development of WellInverter, a web application based on well-known methods for regularized linear inversion. Results We present a new version of WellInverter that considerably improves the performance and usability of the original application. In particular, we have put in place a parallel computing architecture with a load balancer to distribute analysis queries over several back-end servers, we have completely redesigned the graphical user interface to better support the different analysis steps, and we have developed a plug-in system for the parsing of data files produced by microplate readers from different manufacturers. We illustrate the functioning of WellInverter by analyzing data of the expression of a fluorescent reporter gene controlled by a phage promoter in growing Escherichia coli populations. We show that the expression pattern in different growth media, supporting different growth rates, corresponds to the pattern expected for a constitutive gene. Conclusions The new version of WellInverter is a robust, easy-to-use and scalable web application, which has been deployed on two publicly accessible web servers and which can also be installed locally. A demo version of the application with two sample datasets is available on-line. Electronic supplementary material The online version of this article (10.1186/s12859-019-2920-4) contains supplementary material, which is available to authorized users.
Collapse
|
348
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Development of an effective protein-labeling system based on smart fluorogenic probes. J Biol Inorg Chem 2019; 24:443-455. [PMID: 31152238 DOI: 10.1007/s00775-019-01669-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022]
Abstract
Proteins are an important component of living systems and play a crucial role in various physiological functions. Fluorescence imaging of proteins is a powerful tool for monitoring protein dynamics. Fluorescent protein (FP)-based labeling methods are frequently used to monitor the movement and interaction of cellular proteins. However, alternative methods have also been developed that allow the use of synthetic fluorescent probes to target a protein of interest (POI). Synthetic fluorescent probes have various advantages over FP-based labeling methods. They are smaller in size than the fluorescent proteins, offer a wide variety of colors and have improved photochemical properties. There are various chemical recognition-based labeling techniques that can be used for labeling a POI with a synthetic probe. In this review, we focus on the development of protein-labeling systems, particularly the SNAP-tag, BL-tag, and PYP-tag systems, and understanding the fluorescence behavior of the fluorescently labeled target protein in these systems. We also discuss the smart fluorogenic probes for these protein-labeling systems and their applications. The fluorogenic protein labeling will be a useful tool to investigate complex biological phenomena in future work on cell biology.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
349
|
Jiao Y, Weng M, Yang M. Multi-Object Portion Tracking in 4D Fluorescence Microscopy Imagery with Deep Feature Maps. PROCEEDINGS. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2019; 2019:1087-1096. [PMID: 32565667 PMCID: PMC7304548 DOI: 10.1109/cvprw.2019.00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
3D fluorescence microscopy of living organisms has increasingly become an essential and powerful tool in biomedical research and diagnosis. An exploding amount of imaging data has been collected, whereas efficient and effective computational tools to extract information from them are still lagging behind. This is largely due to the challenges in analyzing biological data. Interesting biological structures are not only small, but are often morphologically irregular and highly dynamic. Although tracking cells in live organisms has been studied for years, existing tracking methods for cells are not effective in tracking subcellular structures, such as protein complexes, which feature in continuous morphological changes including split and merge, in addition to fast migration and complex motion. In this paper, we first define the problem of multi-object portion tracking to model the protein object tracking process. A multi-object tracking method with portion matching is proposed based on 3D segmentation results. The proposed method distills deep feature maps from deep networks, then recognizes and matches objects' portions using an extended search. Experimental results confirm that the proposed method achieves 2.96% higher on consistent tracking accuracy and 35.48% higher on event identification accuracy than the state-of-art methods.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas
| | - Mo Weng
- School of Life Science, University of Nevada, Las Vegas
| | - Mei Yang
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas
| |
Collapse
|
350
|
Yang Y, Jiang N, Lai YT, Chang YY, Yang X, Sun H, Li H. Green Fluorescent Probe for Imaging His 6-Tagged Proteins Inside Living Cells. ACS Sens 2019; 4:1190-1196. [PMID: 31012309 DOI: 10.1021/acssensors.8b01128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Small molecule-based fluorescent probes offer great opportunities for specifically tracking proteins in living systems with minimal perturbation on the protein function and localization. Herein, we report a small green fluorescent probe (Ni2+- NTA-AF) consisting of a Ni2+-NTA moiety, a fluorescein, and an arylazide group, that binds specifically to His6-tagged proteins with fluorescence enhancement in vitro upon photoactivation of the arylazide group. Importantly, the probe can cross the cell membranes and stoichiometrically label His6-tagged proteins rapidly (∼15 min) in living prokaryotic and eukaryotic cells exemplified by a DNA repair protein Xeroderma pigmentosum group A (XPA). Using the probe, we successfully visualized Sirtuin 5, which is localized to the mitochondria. This probe exhibits high quantum yields and improved solubility, offering a new opportunity for imaging intracellular His6-tagged proteins inside living cells with better contrast.
Collapse
Affiliation(s)
- Ya Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nan Jiang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xinming Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|