301
|
Yook K, Harris TW, Bieri T, Cabunoc A, Chan J, Chen WJ, Davis P, de la Cruz N, Duong A, Fang R, Ganesan U, Grove C, Howe K, Kadam S, Kishore R, Lee R, Li Y, Muller HM, Nakamura C, Nash B, Ozersky P, Paulini M, Raciti D, Rangarajan A, Schindelman G, Shi X, Schwarz EM, Ann Tuli M, Van Auken K, Wang D, Wang X, Williams G, Hodgkin J, Berriman M, Durbin R, Kersey P, Spieth J, Stein L, Sternberg PW. WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 2011; 40:D735-41. [PMID: 22067452 PMCID: PMC3245152 DOI: 10.1093/nar/gkr954] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.
Collapse
Affiliation(s)
- Karen Yook
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Jefferies R, Morgan ER, Shaw S, Heesom K. Identification of immuno-reactive adult Angiostrongylus vasorum proteins using mass spectrometry. Mol Biochem Parasitol 2011; 180:56-61. [DOI: 10.1016/j.molbiopara.2011.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 12/01/2022]
|
303
|
|
304
|
Nitsche BM, Crabtree J, Cerqueira GC, Meyer V, Ram AFJ, Wortman JR. New resources for functional analysis of omics data for the genus Aspergillus. BMC Genomics 2011; 12:486. [PMID: 21974739 PMCID: PMC3217955 DOI: 10.1186/1471-2164-12-486] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/05/2011] [Indexed: 11/17/2022] Open
Abstract
Background Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus Aspergillus comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely A. nidulans. Results Based on protein homology, we mapped 97% of the 3,498 GO annotated A. nidulans genes to at least one of seven other Aspergillus species: A. niger, A. fumigatus, A. flavus, A. clavatus, A. terreus, A. oryzae and Neosartorya fischeri. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all Aspergillus species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (http://www.broadinstitute.org/fetgoat/index.html). To demonstrate the value of those new resources for functional analysis of omics data for the genus Aspergillus, we performed two case studies analyzing microarray data recently published for A. nidulans, A. niger and A. oryzae. Conclusions We mapped A. nidulans GO annotation to seven other Aspergilli. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus Aspergillus. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.
Collapse
Affiliation(s)
- Benjamin M Nitsche
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
305
|
Soblik H, Younis AE, Mitreva M, Renard BY, Kirchner M, Geisinger F, Steen H, Brattig NW. Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti--identification of stage-specific proteases. Mol Cell Proteomics 2011; 10:M111.010157. [PMID: 21964353 PMCID: PMC3237078 DOI: 10.1074/mcp.m111.010157] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A wide range of biomolecules, including proteins, are excreted and secreted from helminths and contribute to the parasite's successful establishment, survival, and reproduction in an adverse habitat. Excretory and secretory proteins (ESP) are active at the interface between parasite and host and comprise potential targets for intervention. The intestinal nematode Strongyloides spp. exhibits an exceptional developmental plasticity in its life cycle characterized by parasitic and free-living generations. We investigated ESP from infective larvae, parasitic females, and free-living stages of the rat parasite Strongyloides ratti, which is genetically very similar to the human pathogen, Strongyloides stercoralis. Proteomic analysis of ESP revealed 586 proteins, with the largest number of stage-specific ESP found in infective larvae (196), followed by parasitic females (79) and free-living stages (35). One hundred and forty proteins were identified in all studied stages, including anti-oxidative enzymes, heat shock proteins, and carbohydrate-binding proteins. The stage-selective ESP of (1) infective larvae included an astacin metalloproteinase, the L3 Nie antigen, and a fatty acid retinoid-binding protein; (2) parasitic females included a prolyl oligopeptidase (prolyl serine carboxypeptidase), small heat shock proteins, and a secreted acidic protein; (3) free-living stages included a lysozyme family member, a carbohydrate-hydrolyzing enzyme, and saponin-like protein. We verified the differential expression of selected genes encoding ESP by qRT-PCR. ELISA analysis revealed the recognition of ESP by antibodies of S. ratti-infected rats. A prolyl oligopeptidase was identified as abundant parasitic female-specific ESP, and the effect of pyrrolidine-based prolyl oligopeptidase inhibitors showed concentration- and time-dependent inhibitory effects on female motility. The characterization of stage-related ESP from Strongyloides will help to further understand the interaction of this unique intestinal nematode with its host.
Collapse
Affiliation(s)
- Hanns Soblik
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Bron JE, Frisch D, Goetze E, Johnson SC, Lee CE, Wyngaard GA. Observing copepods through a genomic lens. Front Zool 2011; 8:22. [PMID: 21933388 PMCID: PMC3184258 DOI: 10.1186/1742-9994-8-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/20/2011] [Indexed: 01/08/2023] Open
Abstract
Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution.
Collapse
Affiliation(s)
- James E Bron
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
307
|
Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, Takanashi T, Tsai IJ, Assefa SA, Cock PJA, Otto TD, Hunt M, Reid AJ, Sanchez-Flores A, Tsuchihara K, Yokoi T, Larsson MC, Miwa J, Maule AG, Sahashi N, Jones JT, Berriman M. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog 2011; 7:e1002219. [PMID: 21909270 PMCID: PMC3164644 DOI: 10.1371/journal.ppat.1002219] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/28/2011] [Indexed: 01/17/2023] Open
Abstract
Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.
Collapse
Affiliation(s)
- Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE. Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 2011; 21:1462-77. [PMID: 21685128 PMCID: PMC3166831 DOI: 10.1101/gr.121426.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and novel small RNA classes through gametogenesis and embryo development in the parasitic nematode Ascaris suum and compared them with known small RNAs of Caenorhabditis elegans. piRNAs, Piwi-clade Argonautes, and other proteins associated with the piRNA pathway have been lost in Ascaris. miRNAs are synthesized immediately after fertilization in utero, before pronuclear fusion, and before the first cleavage of the zygote. This is the earliest expression of small RNAs ever described at a developmental stage long thought to be transcriptionally quiescent. A comparison of the two classes of Ascaris endo-siRNAs, 22G-RNAs and 26G-RNAs, to those in C. elegans, suggests great diversification and plasticity in the use of small RNA pathways during spermatogenesis in different nematodes. Our data reveal conserved characteristics of nematode small RNAs as well as features unique to Ascaris that illustrate significant flexibility in the use of small RNAs pathways, some of which are likely an adaptation to Ascaris' life cycle and parasitism. The transcriptome assembly has been submitted to NCBI Transcriptome Shotgun Assembly Sequence Database(http://www.ncbi.nlm.nih.gov/genbank/TSA.html) under accession numbers JI163767–JI182837 and JI210738–JI257410.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Benjamin Czech
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Amanda Crunk
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Wallace
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Makedonka Mitreva
- Genetics and Genome Center, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, HHMI, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Richard E. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
309
|
Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford D, Curwen RS, Wilson RA, Dowle AA, Maizels RM. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 2011; 74:1573-94. [PMID: 21722761 PMCID: PMC4794625 DOI: 10.1016/j.jprot.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Collapse
Affiliation(s)
- James P. Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Janice Murray
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Maaike van Agtmaal
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | | | | | | | | | | | | | | | | | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
310
|
Laing R, Hunt M, Protasio AV, Saunders G, Mungall K, Laing S, Jackson F, Quail M, Beech R, Berriman M, Gilleard JS. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans. PLoS One 2011; 6:e23216. [PMID: 21858033 PMCID: PMC3156134 DOI: 10.1371/journal.pone.0023216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022] Open
Abstract
The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes.
Collapse
Affiliation(s)
- Roz Laing
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Martin Hunt
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Anna V. Protasio
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gary Saunders
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Karen Mungall
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Steven Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Frank Jackson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, United Kingdom
| | - Michael Quail
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Robin Beech
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Matthew Berriman
- Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
311
|
Abstract
In vertebrates, the thyroglobulin (Tg) gene product must be exported to the lumen of thyroid follicles for thyroid hormone synthesis. In toto, Tg is composed of multiple type-1 repeats connected by linker and hinge (altogether considered as "region I," nearly 1,200 residues); regions II-III (~720 residues); and cholinesterase-like (ChEL) domain (~570 residues). Regions II-III and ChEL rapidly acquire competence for secretion, yet regions I-II-III require 20 min to become a partially mature disulfide isomer; stabilization of a fully oxidized form requires ChEL. Transition from partially mature to mature Tg occurs as a discrete "jump" in mobility by nonreducing SDS-PAGE, suggesting formation of at most a few final pairings of Cys residues that may be separated by significant intervening primary sequence. Using two independent approaches, we have investigated which portion of Tg is engaged in this late stage of its maturation. First, we demonstrate that this event is linked to oxidation involving region I. Introduction of the Tg-C1245R mutation in the hinge (identical to that causing human goitrous hypothyroidism) inhibits this maturation, although the Cys-1245 partner remains unidentified. Second, we find that Tg truncated after its fourth type-1 repeat is a fully independent secretory protein. Together, the data indicate that final acquisition of secretory competence includes conformational maturation in the interval between linker and hinge segments of region I.
Collapse
Affiliation(s)
- Jaemin Lee
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
312
|
Cloning, expression, purification and kinetics of trehalose-6-phosphate phosphatase of filarial parasite Brugia malayi. Acta Trop 2011; 119:151-9. [PMID: 21658361 DOI: 10.1016/j.actatropica.2011.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/23/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
Abstract
The pleiotropic functions of disaccharide trehalose in the biology of nematodes and its absence from mammalian cells suggest that its biosynthesis may provide a useful target for developing novel nematicidal drugs. The trehalose-6-phosphate phosphatase (TPP), one of the enzymes of trehalose metabolism has not been characterized so far in nematodes except the free living nematode Caenorhabditis elegans where it's silencing results into lethal outcomes. This prompted us to clone and characterize Brugia malayi TPP in order to discover novel antifilarial drug target. The recombinant protein (Bm-TPP) was purified with apparent homogeneity on a metal ion column and it was found to possess high phosphatase activity with robust specificity for the substrate trehalose-6-phosphate. Bm-TPP was found to be a member of the HAD-like hydrolase super family II based on the conserved motifs required for catalytic reaction. The K(m) for substrate trehalose-6-phosphate was around 0.42 mM with pH optimum ∼7.0 and the enzyme showed an almost absolute requirement for Mg(2+) as a metal ion. Bm-TPP was expressed in all the life-stages of B. malayi. In the absence of an effective macrofilaricidal agent and validated antifilarial drug target, Bm-TPP bodes well as a rational drug target against lymphatic filariasis.
Collapse
|
313
|
Negri I, Pellecchia M, Grève P, Daffonchio D, Bandi C, Alma A. Sex and stripping: The key to the intimate relationship between Wolbachia and host? Commun Integr Biol 2011; 3:110-5. [PMID: 20585501 DOI: 10.4161/cib.3.2.10520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
Wolbachia pipientis is known to infect only arthropods and nematodes (mainly filarial worms). A unique feature shared by the two Phyla is the ability to replace the exoskeleton, a process known as ecdysis. This shared characteristic is thought to reflect a common ancestry. Arthropod moulting is induced by the steroid hormone 20-hydroxyecdysone (20E) and a role for ecdysteroids in nematode ecdysis has also been suggested. Removing Wolbachia from filarial worms impairs the host's development. From analyses of the genome of Wolbachia harbored by the filarial nematode Brugia malayi and that of its host, the bacterium may provide a source of heme, an essential component of cytochrome P450's that are necessary for steroid hormone biosynthetic pathways.In arthropods, Wolbachia is a reproductive manipulator, inducing various phenotypic effects that may be due to differences in host physiology, in particular, endocrine-related processes governing development and reproduction. Insect steroids have well-defined roles in the coordination of multiple developmental processes, and in adults they control important aspects of reproduction, including ovarian development, oogenesis, sexual behavior, and in some taxa vitellogenin biosynthesis.According to some authors ecdysteroids may also act as sex hormones. In insects sex differentiation is generally thought to be a strictly genetic process, in which each cell decides its own sexual fate based on its sex chromosome constitution, but, surprisingly, recent data demonstrate that in Drosophila sex determination is not cell-autonomous, as it happens in mammals. Thus the presence of signals coordinating the development of a gender-specific phenotype cannot be excluded.This could explain why Wolbachia interferes with insect reproduction; and also could explain why Wolbachia interferes with insect development.Thus, is "sex (=reproduction) and stripping (=ecdysis)" the key to the intimate relationship between Wolbachia and its host?
Collapse
|
314
|
HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization. PLoS One 2011; 6:e21832. [PMID: 21760913 PMCID: PMC3132748 DOI: 10.1371/journal.pone.0021832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.
Collapse
|
315
|
Interaction of a Wolbachia WSP-like protein with a nuclear-encoded protein of Brugia malayi. Int J Parasitol 2011; 41:1053-61. [PMID: 21782817 DOI: 10.1016/j.ijpara.2011.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 11/23/2022]
Abstract
The Brugia malayi endosymbiont Wolbachia has recently been shown to be essential for its host's survival and development. However, relatively little is known about Wolbachia proteins that interact with the filarial host and which might be important in maintaining the obligate symbiotic relationship. The Wolbachia surface proteins (WSPs) are members of the outer membrane protein family and we hypothesise that they might be involved in the Wolbachia-Brugia symbiotic relationship. Notably, immunolocalisation studies of two WSP members, WSP-0432 and WSP-0284 in B. malayi female adult worms showed that the corresponding proteins are not only present on the surface of Wolbachia but also in the host tissues, with WSP-0284 more abundant in the cuticle, hypodermis and the nuclei within the embryos. These results confirmed that WSPs might be secreted by Wolbachia into the worm's tissue. Our present studies focus on the potential involvement of WSP-0284 in the symbiotic relationship of Wolbachia with its filarial host. We show that WSP-0284 binds specifically to B. malayi crude protein extracts. Furthermore, a fragment of the hypothetical B. malayi protein (Bm1_46455) was found to bind WSP-0284 by panning of a B. malayi cDNA library. The interaction of WSP-0284 and this protein was further confirmed by ELISA and pull-down assays. Localisation by immunoelectron microscopy within Wolbachia cells as well as in the worm's tissues, cuticle and nuclei within embryos established that both proteins are present in similar locations within the parasite and the bacteria. Identifying such specific interactions between B. malayi and Wolbachia proteins should lead to a better understanding of the molecular basis of the filarial nematode and Wolbachia symbiosis.
Collapse
|
316
|
Genome size estimation of liver fluke Opisthorchis viverrini by real-time polymerase chain reaction based method. Parasitol Int 2011; 61:77-80. [PMID: 21757028 DOI: 10.1016/j.parint.2011.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/31/2011] [Accepted: 06/27/2011] [Indexed: 11/21/2022]
Abstract
The human liver fluke, Opisthorchis viverrini, has been categorized as a class one carcinogenic organism according to its strong association with cholangiocarcinoma, bile duct cancer which has high incidence in the northeast of Thailand. The lack of genome database of this parasite limited the studies aimed to understand the basic molecular biology of this carcinogenic liver fluke. The determination of the genome size is an initial step prior to the full genome sequencing. In this study, we applied an absolute quantitative real-time polymerase chain reaction for this aspect. Our results indicated the genome size of O. viverrini is 75.95 Mb or C value 0.083. The information of O. viverrini genome size is useful for estimation of sequence coverage and the cost of the parasite's whole genome sequencing using next-generation sequencing technologies.
Collapse
|
317
|
Sommer RJ, Streit A. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle. Annu Rev Genet 2011; 45:1-20. [PMID: 21721943 DOI: 10.1146/annurev-genet-110410-132417] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Developmental Biology, D-72076 T?bingen, Germany.
| | | |
Collapse
|
318
|
Irimia M, Maeso I, Burguera D, Hidalgo-Sánchez M, Puelles L, Roy SW, Garcia-Fernàndez J, Ferran JL. Contrasting 5' and 3' evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures. Genome Biol Evol 2011; 3:551-64. [PMID: 21680890 PMCID: PMC3140891 DOI: 10.1093/gbe/evr056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Organisms show striking differences in genome structure; however, the functional implications and fundamental forces that govern these differences remain obscure. The intron–exon organization of nuclear genes is involved in a particularly large variety of structures and functional roles. We performed a 22-species study of Meis/hth genes, intron-rich homeodomain-containing transcription factors involved in a wide range of developmental processes. Our study revealed three surprising results that suggest important and very different functions for Meis intron–exon structures. First, we find unexpected conservation across species of intron positions and lengths along most of the Meis locus. This contrasts with the high degree of structural divergence found in genome-wide studies and may attest to conserved regulatory elements residing within these conserved introns. Second, we find very different evolutionary histories for the 5′ and 3′ regions of the gene. The 5′-most 10 exons, which encode the highly conserved Meis domain and homeodomain, show striking conservation. By contrast, the 3′ of the gene, which encodes several domains implicated in transcriptional activation and response to cell signaling, shows a remarkably active evolutionary history, with diverse isoforms and frequent creation and loss of new exons and splice sites. This region-specific diversity suggests evolutionary “tinkering,” with alternative splicing allowing for more subtle regulation of protein function. Third, we find a large number of cases of convergent evolution in the 3′ region, including 1) parallel losses of ancestral coding sequence, 2) parallel gains of external and internal splice sites, and 3) recurrent truncation of C-terminal coding regions. These results attest to the importance of locus-specific splicing functions in differences in structural evolution across genes, as well as to commonalities of forces shaping the evolution of individual genes along different lineages.
Collapse
Affiliation(s)
- Manuel Irimia
- Department of Genetics, School of Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Zaslaver A, Baugh LR, Sternberg PW. Metazoan operons accelerate recovery from growth-arrested states. Cell 2011; 145:981-92. [PMID: 21663799 PMCID: PMC3152313 DOI: 10.1016/j.cell.2011.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/03/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Existing theories explain why operons are advantageous in prokaryotes, but their occurrence in metazoans is an enigma. Nematode operon genes, typically consisting of growth genes, are significantly upregulated during recovery from growth-arrested states. This expression pattern is anticorrelated to nonoperon genes, consistent with a competition for transcriptional resources. We find that transcriptional resources are initially limiting during recovery and that recovering animals are highly sensitive to any additional decrease in transcriptional resources. We provide evidence that operons become advantageous because, by clustering growth genes into operons, fewer promoters compete for the limited transcriptional machinery, effectively increasing the concentration of transcriptional resources and accelerating recovery. Mathematical modeling reveals how a moderate increase in transcriptional resources can substantially enhance transcription rate and recovery. This design principle occurs in different nematodes and the chordate C. intestinalis. As transition from arrest to rapid growth is shared by many metazoans, operons could have evolved to facilitate these processes.
Collapse
Affiliation(s)
- Alon Zaslaver
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
320
|
Bennuru S, Meng Z, Ribeiro JMC, Semnani RT, Ghedin E, Chan K, Lucas DA, Veenstra TD, Nutman TB. Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A 2011; 108:9649-54. [PMID: 21606368 PMCID: PMC3111283 DOI: 10.1073/pnas.1011481108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global proteomic analyses of pathogens have thus far been limited to unicellular organisms (e.g., protozoa and bacteria). Proteomic analyses of most eukaryotic pathogens (e.g., helminths) have been restricted to specific organs, specific stages, or secretomes. We report here a large-scale proteomic characterization of almost all the major mammalian stages of Brugia malayi, a causative agent of lymphatic filariasis, resulting in the identification of more than 62% of the products predicted from the Bm draft genome. The analysis also yielded much of the proteome of Wolbachia, the obligate endosymbiont of Bm that also expressed proteins in a stage-specific manner. Of the 11,610 predicted Bm gene products, 7,103 were definitively identified from adult male, adult female, blood-borne and uterine microfilariae, and infective L3 larvae. Among the 4,956 gene products (42.5%) inferred from the genome as "hypothetical," the present study was able to confirm 2,336 (47.1%) as bona fide proteins. Analysis of protein families and domains coupled with stage-specific expression highlight the important pathways that benefit the parasite during its development in the host. Gene set enrichment analysis identified extracellular matrix proteins and those with immunologic effects as enriched in the microfilarial and L3 stages. Parasite sex- and stage-specific protein expression identified those pathways related to parasite differentiation and demonstrates stage-specific expression by the Bm endosymbiont Wolbachia as well.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, Fleming CC, Day TA, Mousley A, Marks NJ, Maule AG. RNAi effector diversity in nematodes. PLoS Negl Trop Dis 2011; 5:e1176. [PMID: 21666793 PMCID: PMC3110158 DOI: 10.1371/journal.pntd.0001176] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022] Open
Abstract
While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.
Collapse
Affiliation(s)
- Johnathan J. Dalzell
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Neil D. Warnock
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Makedonka Mitreva
- The Genome Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David McK. Bird
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Pierre Abad
- INRA, Unité Interactions Plantes-Microorganismes et Santé Végétale, Antibes, France
| | | | - Tim A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Angela Mousley
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Molecular Biosciences-Parasitology, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
322
|
Rebello KM, Barros JSL, Mota EM, Carvalho PC, Perales J, Lenzi HL, Neves-Ferreira AGC. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. J Proteomics 2011; 74:1545-59. [PMID: 21596163 DOI: 10.1016/j.jprot.2011.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/17/2022]
Abstract
Angiostrongylus costaricensis is a nematode helminth that causes an intestinal acute inflammatory process known as abdominal angiostrongyliasis, which is a poorly understood human disease occurring in Latin America. Our aim was to study the proteomic profiles of adult parasites focusing on immunogenic proteins. Total cellular extracts from both genders showed similar 2-DE profiles, with 60% of all protein spots focused between pH 5-7 and presenting molecular masses from 20.1 to 66 kDa. A total of 53 different dominant proteins were identified in our dataset and were mainly associated with the following over-represented Gene Ontology Biological Process terms: "macromolecule metabolic process", "developmental process", "response to stress", and "biological regulation". Female and male immunoblots showed similar patterns of reactive proteins. Immunoreactive spots identified by MALDI-PSD were found to represent heat shock proteins, a putative abnormal DAuer Formation family member, and galectins. To date, very few biochemical analyses have focused on the nematode Angiostrongylus costaricensis. As such, our results contribute to a better understanding of its biology and the mechanisms underlying the host-parasite relationship associated with this species. Moreover, our findings represent a first step in the search for candidate proteins for diagnostic assays and the treatment of this parasitic infection.
Collapse
Affiliation(s)
- Karina M Rebello
- Toxinology Laboratory, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
323
|
Andrade LF, Nahum LA, Avelar LGA, Silva LL, Zerlotini A, Ruiz JC, Oliveira G. Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics 2011; 12:215. [PMID: 21548963 PMCID: PMC3117856 DOI: 10.1186/1471-2164-12-215] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/06/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. RESULTS We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. CONCLUSIONS Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection.
Collapse
Affiliation(s)
- Luiza F Andrade
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Laila A Nahum
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Lívia GA Avelar
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Larissa L Silva
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Jerônimo C Ruiz
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| |
Collapse
|
324
|
Elsworth B, Wasmuth J, Blaxter M. NEMBASE4: the nematode transcriptome resource. Int J Parasitol 2011; 41:881-94. [PMID: 21550347 DOI: 10.1016/j.ijpara.2011.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022]
Abstract
Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. To demonstrate the utility of NEMBASE4, we have used the database to examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.
Collapse
Affiliation(s)
- Benjamin Elsworth
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | |
Collapse
|
325
|
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 2011; 2011:873230. [PMID: 21603276 PMCID: PMC3092630 DOI: 10.4061/2011/873230] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
326
|
Wagner U, Hirzmann J, Hintz M, Beck E, Geyer R, Hobom G, Taubert A, Zahner H. Characterization of the DMAE-modified juvenile excretory–secretory protein Juv-p120 of Litomosoides sigmodontis. Mol Biochem Parasitol 2011; 176:80-9. [DOI: 10.1016/j.molbiopara.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 12/02/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
327
|
Affiliation(s)
- Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom.
| |
Collapse
|
328
|
Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Parasite annexins--new molecules with potential for drug and vaccine development. Bioessays 2011; 32:967-76. [PMID: 21105292 DOI: 10.1002/bies.200900195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.
Collapse
Affiliation(s)
- Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
329
|
Genome-wide identification of molecular mimicry candidates in parasites. PLoS One 2011; 6:e17546. [PMID: 21408160 PMCID: PMC3050887 DOI: 10.1371/journal.pone.0017546] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022] Open
Abstract
Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions.
Collapse
|
330
|
Identification and characterization of the cofactor-independent phosphoglycerate mutases of Dirofilaria immitis and its Wolbachia endosymbiont. Vet Parasitol 2011; 176:350-6. [DOI: 10.1016/j.vetpar.2011.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
331
|
Taubert S, Ward JD, Yamamoto KR. Nuclear hormone receptors in nematodes: evolution and function. Mol Cell Endocrinol 2011; 334:49-55. [PMID: 20438802 PMCID: PMC3042524 DOI: 10.1016/j.mce.2010.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/18/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
Abstract
Nuclear hormone receptors (NHRs) are proteins that regulate gene expression in response to developmental, environmental, and nutritional signals. The activity of some NHRs is selectively and reversibly modulated by small molecular weight compounds. However, for others - termed "orphan" receptors - no such ligands have (yet) been identified, and at least some NHRs may lack natural ligands. NHRs exhibit a stereotyped architecture, with conserved N-terminal DNA-binding domains (DBDs) and more variable C-terminal ligand-binding domains (LBDs). NHRs control the transcription of remarkably diverse and specific gene networks, apparently by integrating multiple regulatory inputs that interact with distinct receptor surfaces; these inputs include small molecule ligands, transcriptional coregulators, and response elements, the genomic sites to which the receptors bind. NHRs comprise an ancient superfamily found in all metazoans, and recent findings have revealed NHR-like regulatory factors in fungi. Here, we consider NHR function and evolution in nematodes, roundworms that inhabit terrestrial, marine, and freshwater habitats; we focus in particular on the well-established experimental organism Caenorhabditis elegans. Interestingly, the C. elegans genome encodes a massively expanded NHR family; we speculate that some of the multiple physiological activities governed by individual mammalian NHRs may be distributed among multiple members of the C. elegans family, potentially focusing and simplifying functional analyses. Accordingly, investigations of relevant NHR cofactors, ligands, and response elements might also prove to be simpler; moreover, the abbreviated intergenic regions of the C. elegans genome will facilitate the assignment of response elements to target genes. Finally, the growing interest in medically relevant nematodes is providing novel insights into the function and evolution of NHRs.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Medical Genetics, University of British Columbia; Centre for Molecular Medicine and Therapeutics; and Child & Family Research Institute, Vancouver, BC, Canada
| | - Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
332
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic helminths. Mol Cell Endocrinol 2011; 334:56-66. [PMID: 20600585 PMCID: PMC2974807 DOI: 10.1016/j.mce.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/23/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biochemistry, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
333
|
Mitreva M, Jasmer DP, Zarlenga DS, Wang Z, Abubucker S, Martin J, Taylor CM, Yin Y, Fulton L, Minx P, Yang SP, Warren WC, Fulton RS, Bhonagiri V, Zhang X, Hallsworth-Pepin K, Clifton SW, McCarter JP, Appleton J, Mardis ER, Wilson RK. The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 2011; 43:228-35. [PMID: 21336279 PMCID: PMC3057868 DOI: 10.1038/ng.769] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 01/21/2011] [Indexed: 12/02/2022]
Abstract
Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map-assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.
Collapse
Affiliation(s)
- Makedonka Mitreva
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - Douglas P. Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164
| | - Dante S. Zarlenga
- U.S. Department of Agriculture, Animal Parasitic Disease Laboratory, Beltsville, Maryland 20705
| | - Zhengyuan Wang
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Sahar Abubucker
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - John Martin
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Christina M. Taylor
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Yong Yin
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Lucinda Fulton
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - Pat Minx
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Shiaw-Pyng Yang
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Wesley C. Warren
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - Robert S. Fulton
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - Veena Bhonagiri
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Xu Zhang
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Kym Hallsworth-Pepin
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Sandra W. Clifton
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - James P. McCarter
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
- Divergence. Inc., St. Louis, MO 63132
| | - Judith Appleton
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, New York 14853
| | - Elaine R. Mardis
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | - Richard K. Wilson
- The Genome Center, Washington University School of Medicine, St. Louis, MO 63108
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
334
|
Xu S, Liu C, Tzertzinis G, Ghedin E, Evans CC, Kaplan R, Unnasch TR. In vivo transfection of developmentally competent Brugia malayi infective larvae. Int J Parasitol 2011; 41:355-62. [PMID: 21118694 PMCID: PMC3046311 DOI: 10.1016/j.ijpara.2010.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
Abstract
Transient transfection of isolated Brugia malayi embryos by biolistics has proven to be useful in defining promoter structure and function in this parasite. However, isolated transfected embryos are developmentally incompetent. A method of producing developmentally competent transfected parasites is therefore needed. We report that L3 parasites can be chemically transfected in situ in the peritoneal cavity of a gerbil with a construct consisting of a secreted luciferase reporter gene containing a promoter, the 3' untranslated region and first intron derived from the B. malayi 70 kDa heat shock protein gene. The in situ chemically transfected parasites are developmentally competent, producing adult parasites with an efficiency similar to that obtained from implanted untreated L3s. Cultured adult parasites and progeny microfilariae (mf) derived from L3s transfected with this construct secreted luciferase into the culture medium. When the transfected mf were fed to mosquitoes and the resulting L3s collected, the L3s also secreted luciferase into the culture medium. Progeny mf from transgenic adult parasites contained transgenic DNA, and the transgenic mRNA produced in these parasites was found to be correctly cis- and trans-spliced. In situ chemical transformation thus results in developmentally competent transfected B. malayi in which the transgenic sequences remain transcriptionally active in all life cycle stages and are present in the subsequent generation.
Collapse
Affiliation(s)
- Shulin Xu
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Canhui Liu
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| | | | - Elodie Ghedin
- Center for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher C Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
335
|
Abstract
Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation.
Collapse
Affiliation(s)
- Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, 2115 Biological Sciences Building, Riverside, CA 92521, United States.
| |
Collapse
|
336
|
Activity of novel nicotinic anthelmintics in cut preparations of Caenorhabditis elegans. Int J Parasitol 2011; 41:455-61. [DOI: 10.1016/j.ijpara.2010.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 11/15/2022]
|
337
|
Bailey M, Chauhan C, Liu C, Unnasch TR. The role of polymorphisms in the spliced leader addition domain in determining promoter activity in Brugia malayi. Mol Biochem Parasitol 2011; 176:37-41. [PMID: 21111761 PMCID: PMC3026910 DOI: 10.1016/j.molbiopara.2010.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022]
Abstract
Previous studies of Brugia malayi promoters have suggested that they are unusual in that they lack the CAAT or TATAA boxes that are often emblematic of eucaryotic core promoter domains. Instead, the region surrounding the spliced leader (SL) addition site appears to function as the core promoter domain in B. malayi. To test the hypothesis that polymorphisms in this SL addition domain are important determinants of promoter activity, a series of domain swap mutants were prepared replacing the SL addition domain of the B. malayi 13kDa large subunit ribosomal protein (BmRPL13) with those of other ribosomal protein (RP) promoters exhibiting a wide range of activities. These constructs were then tested for promoter activity in a homologous transient transfection system. On average, polymorphisms in the SL addition domain were found to be responsible for 80% of the variation in promoter activity exhibited by the RP promoters tested. Essentially all of this effect could be attributable to polymorphisms in the 10nt located directly upstream of the SL addition site. A comparison of the sequence of this domain to the promoter activity exhibited by the domain swap mutants suggested that promoter activity was related to the number of T residues present in the coding strand of the upstream domain. Confirming this, mutation of the upstream domain of the promoter of the BmRPS4 gene to a homogeneous stretch of 10 T residues resulted in a significant increase in promoter activity.
Collapse
Affiliation(s)
- Michelle Bailey
- Global Health Research Program, Department of Global Health, University of South Florida, Tampa FL
| | - Chitra Chauhan
- Global Health Research Program, Department of Global Health, University of South Florida, Tampa FL
| | - Canhui Liu
- Global Health Research Program, Department of Global Health, University of South Florida, Tampa FL
| | - Thomas R. Unnasch
- Global Health Research Program, Department of Global Health, University of South Florida, Tampa FL
| |
Collapse
|
338
|
Stepek G, McCormack G, Birnie AJ, Page AP. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes. Parasitology 2011; 138:237-48. [PMID: 20800010 DOI: 10.1017/s0031182010001113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities.
Collapse
Affiliation(s)
- Gillian Stepek
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G611QH, UK
| | | | | | | |
Collapse
|
339
|
Bourke CD, Maizels RM, Mutapi F. Acquired immune heterogeneity and its sources in human helminth infection. Parasitology 2011; 138:139-59. [PMID: 20946693 PMCID: PMC3021922 DOI: 10.1017/s0031182010001216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 07/18/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
Similarities in the immunobiology of different parasitic worm infections indicate that co-evolution of humans and helminths has shaped a common anti-helminth immune response. However, recent in vitro and immuno-epidemiological studies highlight fundamental differences and plasticity within host-helminth interactions. The 'trade-off' between immunity and immunopathology inherent in host immune responses occurs on a background of genetic polymorphism, variable exposure patterns and infection history. For the parasite, variation in life-cycle and antigen expression can influence the effector responses directed against them. This is particularly apparent when comparing gastrointestinal and tissue-dwelling helminths. Furthermore, insights into the impact of anti-helminthic treatment and co-infection on acquired immunity suggest that immune heterogeneity arises not from hosts and parasites in isolation, but also from the environment in which immune responses develop. Large-scale differences observed in the epidemiology of human helminthiases are a product of complex host-parasite-environment interactions which, given potential for exposure to parasite antigens in utero, can arise even before a parasite interacts with its human host. This review summarizes key differences identified in human acquired immune responses to nematode and trematode infections of public health importance and explores the factors contributing to these variations.
Collapse
Affiliation(s)
- C D Bourke
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH93JT, UK.
| | | | | |
Collapse
|
340
|
Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, Gilleard JS. Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology 2011; 138:160-74. [PMID: 20825689 PMCID: PMC3064440 DOI: 10.1017/s0031182010001198] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Consortium for Anthelmintic Resistance and Susceptibility (CARS) brings together researchers worldwide, with a focus of advancing knowledge of resistance and providing information on detection methods and treatment strategies. Advances in this field suggest mechanisms and features of resistance that are shared among different classes of anthelmintic. Benzimidazole resistance is characterized by specific amino acid substitutions in beta-tubulin. If present, these substitutions increase in frequency upon drug treatment and lead to treatment failure. In the laboratory, sequence substitutions in ion-channels can contribute to macrocyclic lactone resistance, but there is little evidence that they are significant in the field. Changes in gene expression are associated with resistance to several different classes of anthelmintic. Increased P-glycoprotein expression may prevent drug access to its site of action. Decreased expression of ion-channel subunits and the loss of specific receptors may remove the drug target. Tools for the identification and genetic analysis of parasitic nematodes and a new online database will help to coordinate research efforts in this area. Resistance may result from a loss of sensitivity as well as the appearance of resistance. A focus on the presence of anthelmintic susceptibility may be as important as the detection of resistance.
Collapse
Affiliation(s)
- R N Beech
- Institute of Parasitology, Macdonald College, McGill University, Ste Anne de Bellevue, QC H9X3V9, Canada.
| | | | | | | | | | | |
Collapse
|
341
|
Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ. Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 2011; 5:e947. [PMID: 21283610 PMCID: PMC3026763 DOI: 10.1371/journal.pntd.0000947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022] Open
Abstract
Background A better understanding of reproductive processes in parasitic nematodes may lead to development of new anthelmintics and control strategies for combating disabling and disfiguring neglected tropical diseases such as lymphatic filariasis and onchocerciasis. Transcriptomatic analysis has provided important new insights into mechanisms of reproduction and development in other invertebrates. We have performed the first genome-wide analysis of gender-associated (GA) gene expression in a filarial nematode to improve understanding of key reproductive processes in these parasites. Methodology/Principal Findings The Version 2 Filarial Microarray with 18,104 elements representing ∼85% of the filarial genome was used to identify GA gene transcripts in adult Brugia malayi worms. Approximately 19% of 14,293 genes were identified as GA genes. Many GA genes have potential Caenorhabditis elegans homologues annotated as germline-, oogenesis-, spermatogenesis-, and early embryogenesis- enriched. The potential C. elegans homologues of the filarial GA genes have a higher frequency of severe RNAi phenotypes (such as lethal and sterility) than other C. elegans genes. Molecular functions and biological processes associated with GA genes were gender-segregated. Peptidase, ligase, transferase, regulator activity for kinase and transcription, and rRNA and lipid binding were associated with female GA genes. In contrast, catalytic activity from kinase, ATP, and carbohydrate binding were associated with male GA genes. Cell cycle, transcription, translation, and biological regulation were increased in females, whereas metabolic processes of phosphate and carbohydrate metabolism, energy generation, and cell communication were increased in males. Significantly enriched pathways in females were associated with cell growth and protein synthesis, whereas metabolic pathways such as pentose phosphate and energy production pathways were enriched in males. There were also striking gender differences in environmental information processing and cell communication pathways. Many proteins encoded by GA genes are secreted by Brugia malayi, and these encode immunomodulatory molecules such as antioxidants and host cytokine mimics. Expression of many GA genes has been recently reported to be suppressed by tetracycline, which blocks reproduction in female Brugia malayi. Our localization of GA transcripts in filarial reproductive organs supports the hypothesis that these genes encode proteins involved in reproduction. Conclusions/Significance Genome-wide expression profiling coupled with a robust bioinformatics analysis has greatly expanded our understanding of the molecular biology of reproduction in filarial nematodes. This study has highlighted key molecules and pathways associated with reproductive and other biological processes and identified numerous potential candidates for rational drug design to target reproductive processes. Lymphatic filariasis is a neglected tropical disease that is caused by thread-like parasitic worms that live and reproduce in lymphatic vessels of the human host. There are no vaccines to prevent filariasis, and available drugs are not effective against all stages of the parasite. In addition, recent reports suggest that the filarial nematodes may be developing resistance to key medications. Therefore, there is an urgent need to identify new drug targets in filarial worms. The purpose of this study was to perform a genome-wide analysis of gender-associated gene transcription to improve understanding of key reproductive processes in filarial nematodes. Our results indicate that thousands of genes are differentially expressed in male and female adult worms. Many of those genes are involved in specific reproductive processes such as embryogenesis and spermatogenesis. In addition, expression of some of those genes is suppressed by tetracycline, a drug that leads to sterilization of adult female worms in many filarial species. Thus, gender-associated genes represent priority targets for design of vaccines and drugs that interfere with reproduction of filarial nematodes. Additional work with this type of integrated systems biology approach should lead to important new tools for controlling filarial diseases.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | | | | | | | |
Collapse
|
342
|
Abstract
The antifilarial effects of tetracycline drugs were first demonstrated when they were found to be highly effective against L(3) and L(4) of Brugia pahangi and Litomosoides sigmodontis in rodent models. Tetracyclines are also now known to have activity against microfilariae and adult Dirofilaria immitis, but assessment of their activity against larval and juvenile heartworms has not been reported previously. This study assessed the effects of doxycycline administered orally at 10mg/kg twice daily for 30-day periods at selected times during the early part of the life cycle of D. immitis in dogs with dual infections of D. immitis and B. pahangi. Twenty beagles were randomly allocated by weight to four groups of five dogs each. On Day 0, each dog was given 50 D. immitis L(3) and 200 B. pahangi L(3) by SC injection. Dogs received doxycycline on Days 0-29 (Group 1); Days 40-69 (Group 2); or Days 65-94 (Group 3). Group 4 served as untreated controls. Blood samples were collected for microfilariae counting and antigen testing. Necropsy for collection of adult heartworms and selected tissues were performed Days 218-222. Heartworms recovered were examined by immunohistology, conventional microscopy/transmission electron microscopy, and molecular biology techniques. No live heartworms were recovered from dogs in Group 1; dogs in Group 2 had 0 to 2 live worms (98.4% efficacy), and dogs in Group 3 had 0-36 live worms (69.6% efficacy). All control dogs had live adult heartworms (25-41). The live worms recovered from dogs in Groups 2 and 3 were less developed and smaller that worms from control dogs. Microfilariae were not detected in any dogs in Groups 1 and 2; one dog in Group 3 had 1 microfilariae/ml at necropsy. All control dogs had microfilariae at necropsy. One dog in Group 1 was antigen positive at one sampling (Day 166). One dog in Group 2 was antigen positive Days 196 and 218-222 and three dogs in Group 3 were antigen positive at one or more samplings All five control dogs were antigen positive at all three sampling times. These findings suggest that doxycycline at 10mg/kg orally twice daily for 30 days has efficacy against migrating tissue-phase larvae and juvenile worms and will delay or restrict microfilarial production.
Collapse
|
343
|
Abstract
SUMMARYSuccessful metazoan parasitism, among many other factors, requires a supply of nutrients and the removal of waste products. There is a prerequisite for a parasite-defined vasculature. The angiogenic mechanism(s) involved presumably depend on the characteristics of the tissue- and vascular system-dwelling, parasitic helminths. Simplistically, 2 possibilities or a combination of both have been considered in this review. The multifactorial induction of parasitic helminth-associated neovascularization could arise through, either a host-, a parasite- or a host-/parasite-dependent, angiogenic switch. Most studies appear to support the first and third hypotheses, but evidence exists for the intrahepatic cestodeEchinococcus multilocularis, the free-living nematodeCaenorhabditis elegansand the intravascular trematodeSchistosoma mansonifor the second inference. In contrast, the nematode anti-coagulant protein NAPc2 from adultAncylostoma caninumis also an anti-angiogenic factor.
Collapse
|
344
|
Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Rätsch G, Miller DM, Horvitz HR, Sternberg PW, Ringstad N. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:254-9. [PMID: 21173231 PMCID: PMC3017194 DOI: 10.1073/pnas.1017354108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2).
Collapse
Affiliation(s)
- Elissa A. Hallem
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - W. Clay Spencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rebecca D. McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Georg Zeller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stefan R. Henz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gunnar Rätsch
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - David M. Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Paul W. Sternberg
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Niels Ringstad
- Howard Hughes Medical Institute, Department of Biology and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- Department of Cell Biology and the Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York NY 10016
| |
Collapse
|
345
|
Abstract
Genome sequences are quickly being generated from a variety of organisms and provide researchers with an abundance of previously inaccessible information and an important source of insight into immune mechanisms. There are a variety of methods to accurately characterize genes from new genome sequences, but immune receptors pose special challenges for these techniques. Immune receptors, particularly those that directly recognize pathogens, often diverge rapidly among species and are commonly found in large, complex multigene families. Because of these characteristics, immune receptors tend to be overlooked or misannotated in large-scale genomic surveys. We describe here a computational strategy to characterize homologs of immune receptors and also to identify putative novel receptors from newly assembled genome sequences. The description of these protocols is aimed at a typical immunologist, and a substantial knowledge of bioinformatics is not expected. The approach is based on using low-stringency sequence searches to identify divergent homologs. For receptors with multiple domains, the intersection of low-stringency searches can be used to identify divergent receptor sequences with high confidence. For multigene families, these predictions can be refined using sequence conservation among gene family paralogs. This strategy has recently been useful in identifying novel expansions in immune receptors in a number of animal genomes and will likely continue to revolutionize our view of animal immunity as new genomes emerge.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of MedicalBiophysics, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
346
|
|
347
|
Abstract
Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.
Collapse
Affiliation(s)
- Brian D. Geldziler
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | - Matthew R. Marcello
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | | | - Andrew Singson
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| |
Collapse
|
348
|
Patel A, Chojnowski AN, Gaskill K, De Martini W, Goldberg RL, Siekierka JJ. The role of a Brugia malayi p38 MAP kinase ortholog (Bm-MPK1) in parasite anti-oxidative stress responses. Mol Biochem Parasitol 2010; 176:90-7. [PMID: 21185874 DOI: 10.1016/j.molbiopara.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Filariasis, caused by thread-like nematode worms, affects millions of individuals throughout the tropics and is a major cause of acute and chronic morbidity. Filarial nematodes effectively evade host immunological responses and are long lived within their hosts. Recently an emphasis has been placed on enzymatic and non-enzymatic anti-oxidant systems which counteract the generation of reactive oxygen species (ROS) by macrophages and granulocytes, a first line of defense against parasites. We have characterized an anti-oxidant pathway in the filarial parasite Brugia malayi related to the evolutionarily conserved human mitogen-activated p38 protein kinase and the Caenorhabditis elegans PMK-1 protein kinase stress pathways. We have expressed a recombinant p38/PMK-1 ortholog from B. malayi (Bm-MPK1) and have successfully activated the kinase with mammalian upstream kinases. In addition, we have demonstrated inhibition of Bm-MPK1 activity using a panel of known p38 inhibitors. Using the potent and highly selective allosteric p38 inhibitor, BIRB796, we have implicated Bm-MPK1 in a pathway which offers B. malayi protection from the effects of ROS. Our results, for the first time, describe a stress-activated protein kinase pathway within the filarial parasite B. malayi which plays a role in protecting the parasite from ROS. Inhibition of this pathway may have therapeutic benefit in treating filariasis by increasing the sensitivity of filarial parasites to ROS and other reactive intermediates.
Collapse
Affiliation(s)
- Akruti Patel
- Department of Chemistry and Biochemistry and The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ 07043, USA
| | | | | | | | | | | |
Collapse
|
349
|
Dubreuil G, Deleury E, Magliano M, Jaouannet M, Abad P, Rosso MN. Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita, are required for successful development within the host. Int J Parasitol 2010; 41:385-96. [PMID: 21145323 DOI: 10.1016/j.ijpara.2010.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 12/30/2022]
Abstract
Root-knot nematodes, Meloidogyne spp., are sedentary biotrophic parasites which are able to infest > 2000 plant species. After root invasion they settle sedentarily inside the vascular cylinder and maintain a compatible interaction for up to 8 weeks. Plant cells respond to pathogen attacks by producing reactive oxygen species (ROS). These ROS, in particular hydroperoxides, are important regulators of host-parasite interactions and partly govern the success or failure of disease. ROS producing and ROS scavenging enzymes from both the pathogen and the host finely tune the redox state at the host-pathogen interface. We have analysed the gene structure and organization of peroxiredoxins (prx) in Meloidogyne incognita and analysed their role in the establishment of the nematode in its host. Meloidogyne incognita has seven prx genes that can be grouped with other nematode prx into three clades. Clade B prx genes are more actively transcribed in parasitic stages compared with free-living pre-parasitic juveniles. We confirmed in vitro the activity of one of these, Mi-prx2.1, on hydrogen peroxide and butylhydroperoxide. We showed by ultrastructural immunocytochemistry the expression of clade B PRX proteins in the hypodermis and pseudocoelum beneath the tissues directly in contact with the environment, both in free-living and parasitic stages. Finally, knock-down of clade B prx genes led to a significant reduction in the ability of the nematodes to complete their life cycle in the host. The expression of clade B PRX proteins in the tissues in close contact with plant cells during parasitism and the impaired development of nematodes inside the host after clade B prx knock-down suggest an important role for these genes during infection.
Collapse
Affiliation(s)
- Géraldine Dubreuil
- INRA UMR 1301, CNRS UMR 6243, UNSA, 400 route des Chappes, F-06903 Sophia-Antipolis, France
| | | | | | | | | | | |
Collapse
|
350
|
Mortazavi A, Schwarz EM, Williams B, Schaeffer L, Antoshechkin I, Wold BJ, Sternberg PW. Scaffolding a Caenorhabditis nematode genome with RNA-seq. Genome Res 2010; 20:1740-7. [PMID: 20980554 PMCID: PMC2990000 DOI: 10.1101/gr.111021.110] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/24/2010] [Indexed: 11/25/2022]
Abstract
Efficient sequencing of animal and plant genomes by next-generation technology should allow many neglected organisms of biological and medical importance to be better understood. As a test case, we have assembled a draft genome of Caenorhabditis sp. 3 PS1010 through a combination of direct sequencing and scaffolding with RNA-seq. We first sequenced genomic DNA and mixed-stage cDNA using paired 75-nt reads from an Illumina GAII. A set of 230 million genomic reads yielded an 80-Mb assembly, with a supercontig N50 of 5.0 kb, covering 90% of 429 kb from previously published genomic contigs. Mixed-stage poly(A)(+) cDNA gave 47.3 million mappable 75-mers (including 5.1 million spliced reads), which separately assembled into 17.8 Mb of cDNA, with an N50 of 1.06 kb. By further scaffolding our genomic supercontigs with cDNA, we increased their N50 to 9.4 kb, nearly double the average gene size in C. elegans. We predicted 22,851 protein-coding genes, and detected expression in 78% of them. Multigenome alignment and data filtering identified 2672 DNA elements conserved between PS1010 and C. elegans that are likely to encode regulatory sequences or previously unknown ncRNAs. Genomic and cDNA sequencing followed by joint assembly is a rapid and useful strategy for biological analysis.
Collapse
Affiliation(s)
- Ali Mortazavi
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Erich M. Schwarz
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Brian Williams
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Lorian Schaeffer
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Igor Antoshechkin
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Barbara J. Wold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Paul W. Sternberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| |
Collapse
|