301
|
HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Associated with Dendritic Cell Vaccine-Induced T Cell Responses. J Virol 2015; 89:9189-99. [PMID: 26109727 DOI: 10.1128/jvi.01062-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED HIV-1-specific immune responses induced by a dendritic cell (DC)-based therapeutic vaccine might have some effect on the viral reservoir. Patients on combination antiretroviral therapy (cART) were randomized to receive DCs pulsed with autologous HIV-1 (n = 24) (DC-HIV-1) or nonpulsed DCs (n = 12) (DC-control). We measured the levels of total and integrated HIV-1 DNA in CD4 T cells isolated from these patients at 6 time points: before any cART; before the first cART interruption, which was at 56 weeks before the first immunization to isolate virus for pulsing DCs; before and after vaccinations (VAC1 and VAC2); and at weeks 12 and 48 after the second cART interruption. The vaccinations did not influence HIV-1 DNA levels in vaccinated subjects. After the cART interruption at week 12 postvaccination, while total HIV-1 DNA increased significantly in both arms, integrated HIV-1 DNA did not change in vaccinees (mean of 1.8 log10 to 1.9 copies/10(6) CD4 T cells, P = 0.22) and did increase in controls (mean of 1.8 log10 to 2.1 copies/10(6) CD4 T cells, P = 0.02) (P = 0.03 for the difference between groups). However, this lack of increase of integrated HIV-1 DNA observed in the DC-HIV-1 group was transient, and at week 48 after cART interruption, no differences were observed between the groups. The HIV-1-specific T cell responses at the VAC2 time point were inversely correlated with the total and integrated HIV-1 DNA levels after cART interruption in vaccinees (r [Pearson's correlation coefficient] = -0.69, P = 0.002, and r = -0.82, P < 0.0001, respectively). No correlations were found in controls. HIV-1-specific T cell immune responses elicited by DC therapeutic vaccines drive changes in HIV-1 DNA after vaccination and cART interruption. (This study has been registered at ClinicalTrials.gov under registration no. NCT00402142.) IMPORTANCE There is an intense interest in developing strategies to target HIV-1 reservoirs as they create barriers to curing the disease. The development of therapeutic vaccines aimed at enhancing immune-mediated clearance of virus-producing cells is of high priority. Few therapeutic vaccine clinical trials have investigated the role of therapeutic vaccines as a strategy to safely eliminate or control viral reservoirs. We recently reported that a dendritic cell-based therapeutic vaccine was able to significantly decrease the viral set point in vaccinated patients, with a concomitant increase in HIV-1-specific T cell responses. The HIV-1-specific T cell immune responses elicited by this therapeutic dendritic cell vaccine drove changes in the viral reservoir after vaccinations and significantly delayed the replenishment of integrated HIV-1 DNA after cART interruption. These data help in understanding how an immunization could shift the virus-host balance and are instrumental for better design of strategies to reach a functional cure of HIV-1 infection.
Collapse
|
302
|
Jiao YM, Liu CE, Luo LJ, Zhu WJ, Zhang T, Zhang LG, Su LS, Li HJ, Wu H. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity. Int J Infect Dis 2015; 37:42-9. [PMID: 26095899 DOI: 10.1016/j.ijid.2015.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A major question when attempting to eradicate and treat HIV-1 infection is how to reactivate latent proviruses. Stimulating HIV-1-specific cytolytic T lymphocytes (CTL) has been shown to facilitate the elimination of the latent viral reservoir after viral reactivation. Regulatory T (Treg) cells are known to be capable of lowering both HIV-specific immunoreactions and general immune activation during HIV-1 infection. It was hypothesized that the depletion of Treg cells could increase the HIV-1-specific cytolytic T lymphocyte response and reactivate HIV-1 p24 production. METHODS Treg cells were isolated by isolation kit according to the surface marker of Treg cells. Real-time PCR method was used to quantify HIV-1 DNA. P24 antigens in the cell culture supernatant was done by ELISA. Cells activation and HIV specific HIV-1 CD8+ T cells were analyses using a FACSCalibur flow cytometer and CELLQUEST software. RESULTS This study included both HIV-infected patients who were antiviral treatment-naïve and patients with sustained viral responses to antiretroviral therapy (ART) for 1 or 5 years. It was found that the HIV-DNA levels in Treg cells were approximately 10-fold higher than those in non-Treg CD4+ cells and that the depletion of Treg cells could enhance the frequency of HIV-1-specific CTL and immune activation after 5 years of effective ART. CONCLUSIONS CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.
Collapse
Affiliation(s)
- Yan-Mei Jiao
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Cui-E Liu
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li-Jing Luo
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Wei-Jun Zhu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Beijing, China
| | - Tong Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li-Guo Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Li-Shan Su
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, NC, USA
| | - Hong-Jun Li
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China.
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
303
|
Elimination of HIV-1-Infected Primary T Cell Reservoirs in an In Vitro Model of Latency. PLoS One 2015; 10:e0126917. [PMID: 25993666 PMCID: PMC4437782 DOI: 10.1371/journal.pone.0126917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022] Open
Abstract
Establishment of long-lived cellular reservoirs of HIV-1 represents a major therapeutic challenge to virus eradication. In this study, we utilized a human primary cell model of HIV-1 latency to evaluate the requirements for efficient virus reactivation from, and the selective elimination of, latently infected human T cells. Ectopic expression of BCL2 supported the replication and spread of R5-tropic HIV-1 in activated CD4+ T cells. After IL-2 withdrawal, the HIV-1-infected T cells survived as resting cells for several months. Unexpectedly, these resting T cells continue to produce detectable levels of infectious virus, albeit at a lower frequency than cells maintained in IL-2. In the presence of HIV-1 inhibitors, reactivation of the resting T cells with γc-cytokines and allogeneic dendritic cells completely extinguished HIV-1 infectivity. We also evaluated the ability of the bacterial LukED cytotoxin to target and kill CCR5-expressing cells. After γc-cytokine stimulation, LukED treatment eliminated both HIV-1-infected resting cells and the non-infected CCR5+ cells. Importantly, complete clearance of in vitro HIV-1 reservoirs by LukED required a lower threshold of cytokine signals relative to HIV-1 inhibitors. Thus, the primary T cell-based HIV-1 latency model could facilitate the development of novel agents and therapeutic strategies that could effectively eradicate HIV-1.
Collapse
|
304
|
Khan SZ, Hand N, Zeichner SL. Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 2015; 12:42. [PMID: 25980942 PMCID: PMC4469242 DOI: 10.1186/s12977-015-0169-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Despite much work, safe and effective approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1 remain an elusive goal. Patients infected with HIV-1 treated with cytotoxic agents or bone marrow transplantation can experience decreases in the reservoir of HIV-1 latently infected cells. Other viruses capable of long-term latency, such as herpesviruses, can sense host cell apoptosis and respond by initiating replication. These observations suggest that other viruses capable of long-term latency, like HIV-1, might also sense when its host cell is about to undergo apoptosis and respond by initiating replication. Results Pro-monocytic (U1) and lymphoid (ACH-2) HIV-1 persistently infected cell lines were treated with cytotoxic drugs – doxorubicin, etoposide, fludarabine phosphate, or vincristine – and activation of latent HIV-1 was evaluated using assays for HIV-1 RNA and p24 production. Both cell lines showed dose-dependent increases in apoptosis and associated HIV-1 activation following exposure to the cytotoxic agents. Pretreatment of the cells with the pan-caspase inhibitor Z-VAD-FMK prior to exposure to the cytotoxic agents inhibited apoptosis and viral activation. Direct exposure of the latently infected cell lines to activated caspases also induced viral replication. HIV-1 virions produced in association with host cell apoptosis were infectious. Conclusions The results indicate that latent HIV-1 can sense when its host cell is undergoing apoptosis and responds by completing its replication cycle. The results may help explain why patients treated with cytotoxic regimens for bone marrow transplantation showed reductions in the reservoir of latently infected cells. The results also suggest that the mechanisms that HIV-1 uses to sense and respond to host cell apoptosis signals may represent helpful new targets for approaches to attack and deplete the long-lived reservoir of cells latently infected with HIV-1.
Collapse
Affiliation(s)
- Sohrab Z Khan
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Nicholas Hand
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA.
| | - Steven L Zeichner
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. .,Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine, Washington, DC, USA. .,Department of Pediatrics, The George Washington University, School of Medicine, Washington, DC, USA.
| |
Collapse
|
305
|
Chehadeh W, Albaksami O, Altawalah H, Ahmad S, Madi N, John SE, Abraham PS, Al-Nakib W. Phylogenetic analysis of HIV-1 subtypes and drug resistance profile among treatment-naïve people in Kuwait. J Med Virol 2015; 87:1521-6. [PMID: 25976289 DOI: 10.1002/jmv.24212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 01/09/2023]
Abstract
Mutations associated with resistance to antiretroviral therapy are a major cause of failure to treatment, and surveillance for the emergence of HIV resistance became a component of all antiretroviral treatment programs. As transmission of resistant viruses to newly infected persons is possible, we aimed to determine the prevalence of primary mutations associated with antiretroviral resistance among treatment-naïve patients, with respect to HIV subtype. Viral RNA was extracted from plasma samples of 43 treatment-naïve patients. Protease (PR) and reverse transcriptase (RT) regions were amplified and sequenced using the TRUGENE HIV-1 Genotyping Assay. A phylogenetic analysis was performed for HIV subtype assignment. Complete sequence information could be obtained for 35 patients. A total of ten different HIV-1 subtypes and recombinant forms were found in Kuwait with predominance of subtypes B, C, and CRF01_AE. A62V and A98G were non-polymorphic resistance-associated mutations (RAMs) detected in the RT region of two and three patients, respectively. Non-polymorphic mutations associated with resistance to protease inhibitors were not detected. Our results support continuous surveillance of RAMs in newly infected individuals to assess the effectiveness of first-line antiretroviral regimen available in Kuwait.
Collapse
Affiliation(s)
- Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | | | - Haya Altawalah
- Virology Unit, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Nada Madi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Sonia E John
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Priya S Abraham
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Widad Al-Nakib
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait.,Virology Unit, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait
| |
Collapse
|
306
|
BenMarzouk-Hidalgo OJ, Torres-Cornejo A, Gutiérrez-Valencia A, Ruiz-Valderas R, Viciana P, López-Cortés LF. Differential effects of viremia and microbial translocation on immune activation in HIV-infected patients throughout ritonavir-boosted darunavir monotherapy. Medicine (Baltimore) 2015; 94:e781. [PMID: 25929922 PMCID: PMC4603072 DOI: 10.1097/md.0000000000000781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article is to evaluate the evolution of microbial translocation (MT) and its role in CD4 and CD8 T cells immune activation (IA) in HIV-1-infected patients on ritonavir-boosted darunavir monotherapy (mtDRV/rtv).Prospective study of consecutive HIV-1-infected patients switched to mtDRV/rtv as a simplification regimen. Subjects were classified according to the virological behavior during a 24-month follow-up as continuous undetectable viral load, blips, intermittent viremia, and virological failure (VF). MT was evaluated by plasma LPS and 16S genomic rDNA (16S rDNA) levels, whereas IA was assessed by the coexpression of HLA-DR and CD38 in CD4 and CD8 T cells, and plasma sCD14 levels.Seventy-one patients were included in this substudy of the MonDar cohort (ClinicalTrials.gov: NCT01505722). At baseline, CD4 (ρ = -0.352, P = 0.01) and CD8 T-cell activation (ρ = -0.468, P < 0.001) were correlated with time with viral suppression, but not with MT markers. A significant decrease in plasma LPS levels was found only in patients without VF (baseline, 77.8 vs month 24, 60.4 pg/mL; P < 0.001]. Both plasma 16S rDNA and sCD14 levels were unchanged irrespective of the viral behavior. The only variable independently associated with a decrease in CD4 and CD8 T cells activation was an undetectable HIV-1 viremia (β = 4.78, P < 0.001 and β = 2.93, P = 0.005, respectively).MT does not have a pivotal role in T-cell activation, at least in patients with long-term viral suppression. The viremic episodes and VF are the main factors related to CD4 and CD8 T-cells IA, even during mtDRV/rtv.
Collapse
Affiliation(s)
- Omar J BenMarzouk-Hidalgo
- From the Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva. Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avenida Manuel Siurot, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
307
|
Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS. A hardwired HIV latency program. Cell 2015; 160:990-1001. [PMID: 25723172 DOI: 10.1016/j.cell.2015.02.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Biological circuits can be controlled by two general schemes: environmental sensing or autonomous programs. For viruses such as HIV, the prevailing hypothesis is that latent infection is controlled by cellular state (i.e., environment), with latency simply an epiphenomenon of infected cells transitioning from an activated to resting state. However, we find that HIV expression persists despite the activated-to-resting cellular transition. Mathematical modeling indicates that HIV's Tat positive-feedback circuitry enables this persistence and strongly controls latency. To overcome the inherent crosstalk between viral circuitry and cellular activation and to directly test this hypothesis, we synthetically decouple viral dependence on cellular environment from viral transcription. These circuits enable control of viral transcription without cellular activation and show that Tat feedback is sufficient to regulate latency independent of cellular activation. Overall, synthetic reconstruction demonstrates that a largely autonomous, viral-encoded program underlies HIV latency—potentially explaining why cell-targeted latency-reversing agents exhibit incomplete penetrance.
Collapse
Affiliation(s)
- Brandon S Razooky
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Anand Pai
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Katherine Aull
- Biophysics Graduate Group, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Igor M Rouzine
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158
| | - Leor S Weinberger
- The Gladstone Institutes (Virology and Immunology), San Francisco, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; Department of Biochemistry and Biophysics, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158; QB3, California Institute of Quantitative Biosciences, University of California, San Francisco, 94158.
| |
Collapse
|
308
|
Rouzine IM, Weinberger AD, Weinberger LS. An evolutionary role for HIV latency in enhancing viral transmission. Cell 2015; 160:1002-1012. [PMID: 25723173 DOI: 10.1016/j.cell.2015.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023]
Abstract
HIV latency is the chief obstacle to eradicating HIV but is widely believed to be an evolutionary accident providing no lentiviral fitness advantage. However, findings of latency being "hardwired" into HIV's gene-regulatory circuitry appear inconsistent with latency being an evolutionary accident, given HIV's rapid mutation rate. Here, we propose that latency is an evolutionary "bet-hedging" strategy whose frequency has been optimized to maximize lentiviral transmission by reducing viral extinction during mucosal infections. The model quantitatively fits the available patient data, matches observations of high-frequency latency establishment in cell culture and primates, and generates two counterintuitive but testable predictions. The first prediction is that conventional CD8-depletion experiments in SIV-infected macaques increase latent cells more than viremia. The second prediction is that strains engineered to have higher replicative fitness—via reduced latency—will exhibit lower infectivity in animal-model mucosal inoculations. Therapeutically, the theory predicts treatment approaches that may substantially enhance "activate-and-kill" HIV-cure strategies.
Collapse
Affiliation(s)
- Igor M Rouzine
- Gladstone Institutes (Virology and Immunology), San Francisco, CA 94158, USA
| | - Ariel D Weinberger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Leor S Weinberger
- Gladstone Institutes (Virology and Immunology), San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; QB3, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
309
|
Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections. Antimicrob Agents Chemother 2015; 59:3984-94. [PMID: 25896701 DOI: 10.1128/aac.00574-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.
Collapse
|
310
|
Abstract
Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infected cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. Using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for noncontrollers consistent with observations.
Collapse
|
311
|
Campos N, Myburgh R, Garcel A, Vautrin A, Lapasset L, Nadal ES, Mahuteau-Betzer F, Najman R, Fornarelli P, Tantale K, Basyuk E, Séveno M, Venables JP, Pau B, Bertrand E, Wainberg MA, Speck RF, Scherrer D, Tazi J. Long lasting control of viral rebound with a new drug ABX464 targeting Rev - mediated viral RNA biogenesis. Retrovirology 2015; 12:30. [PMID: 25889234 PMCID: PMC4422473 DOI: 10.1186/s12977-015-0159-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis. RESULTS Current HIV therapies reduce viral load during treatment but titers rebound after treatment is discontinued. We devised a new drug that has a long lasting effect after viral load reduction. We demonstrate here that ABX464 compromises HIV replication of clinical isolates of different subtypes without selecting for drug resistance in PBMCs or macrophages. ABX464 alone, also efficiently compromised viral proliferation in two humanized mouse models infected with HIV that require a combination of 3TC, Raltegravir and Tenofovir (HAART) to achieve viral inhibition in current protocols. Crucially, while viral load increased dramatically just one week after stopping HAART treatment, only slight rebound was observed following treatment cessation with ABX464 and the magnitude of the rebound was maintained below to that of HAART for two months after stopping the treatment. Using a system to visualize single HIV RNA molecules in living cells, we show that ABX464 inhibits viral replication by preventing Rev-mediated export of unspliced HIV-1 transcripts to the cytoplasm and by interacting with the Cap Binding Complex (CBC). Deep sequencing of viral RNA from treated cells established that retained viral RNA is massively spliced but importantly, normal cellular splicing is unaffected by the drug. Consistently ABX464 is non-toxic in humans and therefore represents a promising complement to current HIV therapies. CONCLUSIONS ABX464 represents a novel class of anti-HIV molecules with unique properties. ABX464 has a long lasting effect in humanized mice and neutralizes the expression of HIV-1 proviral genome of infected immune cells including reservoirs and it is therefore a promising drug toward a functional cure of HIV.
Collapse
Affiliation(s)
- Noëlie Campos
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Renier Myburgh
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Aude Garcel
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Audrey Vautrin
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Laure Lapasset
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Erika Schläpfer Nadal
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Florence Mahuteau-Betzer
- Institut Curie, CNRS UMR9187, INSERM U1196, Centre universitaire, Bâtiment 110, 15 rue Georges Clémenceau, 91405, ORSAY CEDEX, France.
| | - Romain Najman
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | | | - Katjana Tantale
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Eugénia Basyuk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Martial Séveno
- Plate-forme de Protéomique Fonctionnelle (FPP) IGF, UMR 5203 CNRS - INSERM U661- UM, 141 rue de la Cardonille (pièce 029), 34094, Montpellier CEDEX 05, France.
| | - Julian P Venables
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Bernard Pau
- Université de Montpellier, UFR Pharmacie, 15 Avenue Charles Flahault, 34000, Montpellier, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Mark A Wainberg
- McGill AIDS Center, Lady Davis Institute - Jewish General Hospital, Montréal, QC, Canada.
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology Department of Internal Medicin, University of Zurich, University Hospital, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Didier Scherrer
- ABIVAX, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| |
Collapse
|
312
|
Li C, Guan X, Du T, Jin W, Wu B, Liu Y, Wang P, Hu B, Griffin GE, Shattock RJ, Hu Q. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 2015; 96:2381-2393. [PMID: 25854553 DOI: 10.1099/vir.0.000139] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Wei Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biao Wu
- Department of General Surgery, Wuhan No.1 Hospital, Wuhan 430022, PR China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Ping Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bodan Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - George E Griffin
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Robin J Shattock
- Section of Infectious Diseases, Faculty of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China.,Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
313
|
Kulpa DA, Chomont N. HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30490-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
314
|
Abstract
Despite considerable advancements that shattered previously held dogmas about the metastatic cascade, the evolution of therapies to treat metastatic disease has not kept up. In this Opinion article, I argue that, rather than waiting for metastases to emerge before initiating treatment, it would be more effective to target metastatic seeds before they sprout. Specifically, I advocate directing therapies towards the niches that harbour dormant disseminated tumour cells to sensitize them to cytotoxic agents. Treatment sensitization, achieved by disrupting reservoirs of leukaemic stem cells and latent HIV, argues that this approach, although unconventional, could succeed in improving patient survival by delaying or even preventing metastasis.
Collapse
Affiliation(s)
- Cyrus M. Ghajar
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 (USA)
- To whom correspondence should be addressed: Cyrus M. Ghajar, PhD, Public Health Sciences Division/ Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, P: 206.667.7080, F: 206.667.2537,
| |
Collapse
|
315
|
Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses 2015; 7:1578-98. [PMID: 25835530 PMCID: PMC4411666 DOI: 10.3390/v7041578] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes latency in resting memory CD4+ T cells and cells of myeloid lineage. In contrast to the T cells, cells of myeloid lineage are resistant to the HIV-1 induced cytopathic effect. Cells of myeloid lineage including macrophages are present in anatomical sanctuaries making them a difficult drug target. In addition, the long life span of macrophages as compared to the CD4+ T cells make them important viral reservoirs in infected individuals especially in the late stage of viral infection where CD4+ T cells are largely depleted. In the past decade, HIV-1 persistence in resting CD4+ T cells has gained considerable attention. It is currently believed that rebound viremia following cessation of combination anti-retroviral therapy (cART) originates from this source. However, the clinical relevance of this reservoir has been questioned. It is suggested that the resting CD4+ T cells are only one source of residual viremia and other viral reservoirs such as tissue macrophages should be seriously considered. In the present review we will discuss how macrophages contribute to the development of long-lived latent reservoirs and how macrophages can be used as a therapeutic target in eradicating latent reservoir.
Collapse
|
316
|
Abstract
PURPOSE OF REVIEW Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly because of their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. RECENT FINDINGS Although nonhuman primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV-infected and simian immunodeficiency virus (SIV)-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining programmed death-1 (PD-1) blockade with suppressive antiretroviral therapy provide further support to the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon antiretroviral therapy interruption. Future in-vivo studies should build on recent in-vitro data, supporting the simultaneous targeting of multiple regulators of cell exhaustion. SUMMARY In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice.
Collapse
|
317
|
HIV vaccine research: the challenge and the way forward. J Immunol Res 2015; 2015:503978. [PMID: 25861656 PMCID: PMC4377490 DOI: 10.1155/2015/503978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) is a worldwide epidemic, with over 35 million people infected currently. Therefore, the development of a safe and effective HIV-1 vaccine is on top of the global health priority. In the past few years, there have been many promising advances in the prevention of HIV/AIDS, among which the RV144 Thai trial has been encouraging and suggests optimization of the current vaccine strategies or search for novel strategies. Here we reviewed the brief history of HIV-1 vaccine, analyzed key challenges existing now, and illustrated future research priority/directions for a therapeutic or prophylactic HIV-1 vaccine, with the hope of accelerating the speed of vaccine development. We believe that an effective HIV-1 vaccine, together with other prevention approaches, will bring an end to this epidemic in the near future.
Collapse
|
318
|
Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6:6413. [PMID: 25752527 DOI: 10.1038/ncomms7413] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023] Open
Abstract
To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.
Collapse
|
319
|
Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, Vaeteewoottacharn K, McDonald F, Suico MA, Shuto T, Kai H, Okada S. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol 2015; 89:2643-2658. [PMID: 25520503 PMCID: PMC4325709 DOI: 10.1128/jvi.03105-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The transcription factor NF-κB is important for HIV-1 transcription initiation in primary HIV-1 infection and reactivation in latently HIV-1-infected cells. However, comparative analysis of the regulation and function of NF-κB in latently HIV-1-infected cells has not been done. Here we show that the expression of IκB-α, an endogenous inhibitor of NF-κB, is enhanced by latent HIV-1 infection via induction of the host-derived factor COMMD1/Murr1 in myeloid cells but not in lymphoid cells by using four sets of latently HIV-1-infected cells and the respective parental cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during Toll-like receptor ligand and tumor necrosis factor alpha treatment and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the phosphoinositol 3-kinase (PI3K)-JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Our findings indicate that COMMD1 induction is the NF-κB inhibition mechanism in latently HIV-1-infected cells that contributes to innate immune deficiency and reinforces HIV-1 latency. Thus, COMMD1 might be a double-edged sword that is beneficial in primary infection but not beneficial in latent infection when HIV-1 eradication is considered. IMPORTANCE HIV-1 latency is a major barrier to viral eradication in the era of combination antiretroviral therapy. In this study, we found that COMMD1/Murr1, previously identified as an HIV-1 restriction factor, inhibits the proteasomal degradation of IκB-α by increasing the interaction with IκB-α in latently HIV-1-infected myeloid cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during the innate immune response and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the PI3K-JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Thus, the host-derived factor COMMD1 is beneficial in suppressing primary infection but enhances latent infection, indicating that it may be a double-edged sword in HIV-1 eradication.
Collapse
Affiliation(s)
- Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Hattori
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Fiona McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
320
|
Kaczmarek Michaels K, Natarajan M, Euler Z, Alter G, Viglianti G, Henderson AJ. Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3267-74. [PMID: 25710909 DOI: 10.4049/jimmunol.1402581] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD4(+) T cell subsets differentially support HIV-1 replication. For example, quiescent CD4(+) memory T cells are susceptible to HIV-1 infection but do not support robust HIV-1 transcription and have been implicated as the primary reservoir of latent HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 transcription and mediate the establishment and maintenance of HIV-1 latency. We report that B lymphocyte-induced maturation protein-1 (Blimp-1), a critical regulator of B and T cell differentiation, is highly expressed in memory CD4(+) T cells compared with naive CD4(+) T cells and represses basal and Tat-mediated HIV-1 transcription. Blimp-1 binds an IFN-stimulated response element within HIV-1 provirus, and it is displaced following T cell activation. Reduction of Blimp-1 in infected primary T cells including CD4(+) memory T cells increases RNA polymerase II processivity, histone acetylation, and baseline HIV-1 transcription. Therefore, the transcriptional repressor, Blimp-1, is an intrinsic factor that predisposes CD4(+) memory T cells to latent HIV-1 infection.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Zelda Euler
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Andrew J Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
321
|
Chorin E, Gal-Garber O, Yagel Y, Turner D, Avidor B, Berke G, Hassin D. Peripheral blood mononuclear cells of HIV-infected patients contain CD8 T cells that form conjugates with and kill HIV-infected autologous CD4 T cells. Immunology 2015; 144:412-421. [PMID: 25216453 DOI: 10.1111/imm.12385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMC) of untreated, HIV-infected patients contain HIV-specific CD8 T cells as well as their corresponding targets, HIV-infected CD4 T cells. To determine if CD4 T-cell depletion in HIV-infected patients may result from autologous CD8-CD4 T-cell interaction, CD8 and CD4 T cells procured from PBMC of acute and chronic untreated HIV-infected patients were sorted and co-incubated. Formation of CD8-CD4 T-cell conjugates was observed by fluorescence microscopy. Apoptosis of CD4 T cells in conjugation was recorded by digitized images and was further observed and measured by FACS using Annexin staining. Perforin expression in the CD8 T cells was measured using intracellular monoclonal perforin antibody staining. HIV DNA in the conjugated CD4 T cells was detected by in situ PCR. We found that 6·1 ± 0·5% of CD4 T cells from acute HIV-infected patients and 3·0 ± 0·5% from chronic HIV-infected patients formed CD8-CD4 T-cell conjugates. Annexin binding and cell morphology typical of apoptosis were observed in the conjugated CD4 T cells. The majority of CD8 T cells that had conjugated to CD4 T cells expressed perforin. The conjugated CD4 T cells exhibited nuclear HIV DNA. CD8 T cells and HIV-infected CD4 T cells, both procured from the PBMC of untreated HIV-infected patients, form conjugates. Apoptotic lytic activity has been observed in the conjugated CD4 T cells. We propose that CD4 T-cell annihilation in HIV-infected patients results, at least in part, from the interactions of perforin-rich CD8 T cells with autologous, HIV-infected CD4 T cells.
Collapse
Affiliation(s)
- Ehud Chorin
- Department of Internal Medicine 'H' and the Kobler AIDS Centre, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Gal-Garber
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Yagel
- Department of Internal Medicine 'H' and the Kobler AIDS Centre, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dan Turner
- Department of Internal Medicine 'H' and the Kobler AIDS Centre, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Boaz Avidor
- Department of Internal Medicine 'H' and the Kobler AIDS Centre, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Berke
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Hassin
- Department of Internal Medicine 'H' and the Kobler AIDS Centre, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
322
|
Guendel I, Iordanskiy S, Sampey GC, Van Duyne R, Calvert V, Petricoin E, Saifuddin M, Kehn-Hall K, Kashanchi F. Role of Bruton's tyrosine kinase inhibitors in HIV-1-infected cells. J Neurovirol 2015; 21:257-75. [PMID: 25672887 DOI: 10.1007/s13365-015-0323-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Many cellular cofactors have been documented to be critical for various stages of viral replication. Using high-throughput proteomic assays, we have previously identified Bruton's tyrosine kinase (BTK) as a host protein that was uniquely upregulated in the plasma membrane of human immunodeficiency virus (HIV-1)-infected T cells. Here, we have further characterized the BTK expression in HIV-1 infection and show that this cellular factor is specifically expressed in infected myeloid cells. Significant upregulation of the phosphorylated form of BTK was observed in infected cells. Using size exclusion chromatography, we found BTK to be virtually absent in the uninfected U937 cells; however, new BTK protein complexes were identified and distributed in both high molecular weight (∼600 kDa) and a small molecular weight complex (∼60-120 kDa) in the infected U1 cells. BTK levels were highest in cells either chronically expressing virus or induced/infected myeloid cells and that BTK translocated to the membrane following induction of the infected cells. BTK knockdown in HIV-1-infected cells using small interfering RNA (siRNA) resulted in selective death of infected, but not uninfected, cells. Using BTK-specific antibody and small-molecule inhibitors including LFM-A13 and a FDA-approved compound, ibrutinib (PCI-32765), we have found that HIV-1-infected cells are sensitive to apoptotic cell death and result in a decrease in virus production. Overall, our data suggests that HIV-1-infected cells are sensitive to treatments targeting BTK expressed in infected cells.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Sánchez-Taltavull D, Alarcón T. Stochastic modelling of viral blips in HIV-1-infected patients: effects of inhomogeneous density fluctuations. J Theor Biol 2015; 371:79-89. [PMID: 25681146 DOI: 10.1016/j.jtbi.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 12/22/2022]
Abstract
We propose a stochastic model of HIV-1 infection dynamics under HAART in order to analyse the origin and dynamics of the so-called viral blips, i.e. episodes of transient viremia that occur in the phase of where the disease remains in a latent state during which the viral load raises above the detection limit of standard clinical assays. Based on prior work in the subject, we consider an infection model in which latently infected cell compartment sustains a residual (latent) infection over long periods of time. Unlike previous models, we include the effects of inhomogeneities in cell and virus concentration in the blood stream. We further consider the effect of burst virion production. By comparing with the experimental results obtained during a study in which intensive sampling was carried out on HIV-1-infected patients undergoing HAART over a long period of time, we conclude that our model supports the hypothesis that viral blips are consistent with random fluctuations around the average viral load. We further observe that agreement between our simulation results and the blip statistics obtained in the aforementioned study improves when burst virion production is considered. We also study the effect of sample manipulation artifacts on the results produced by our model, in particular, that of the post-extraction handling time, i.e. the time elapsed between sample extraction and actual test. Our results support the notion that the statistics of viral blips can be critically affected by such artifacts.
Collapse
Affiliation(s)
- Daniel Sánchez-Taltavull
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain; Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 08007 Barcelona, Spain.
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain; Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
324
|
Impact of low-level viremia on clinical and virological outcomes in treated HIV-1-infected patients. AIDS 2015; 29:373-83. [PMID: 25686685 DOI: 10.1097/qad.0000000000000544] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The goal of antiretroviral therapy (ART) is to reduce HIV-related morbidity and mortality by suppressing HIV replication. The prognostic value of persistent low-level viremia (LLV), particularly for clinical outcomes, is unknown. OBJECTIVE Assess the association of different levels of LLV with virological failure, AIDS event, and death among HIV-infected patients receiving combination ART. METHODS We analyzed data from 18 cohorts in Europe and North America, contributing to the ART Cohort Collaboration. Eligible patients achieved viral load below 50 copies/ml within 3-9 months after ART initiation. LLV50-199 was defined as two consecutive viral loads between 50 and 199 copies/ml and LLV200-499 as two consecutive viral loads between 50 and 499 copies/ml, with at least one between 200 and 499 copies/ml. We used Cox models to estimate the association of LLV with virological failure (two consecutive viral loads at least 500 copies/ml or one viral load at least 500 copies/ml, followed by a modification of ART) and AIDS event/death. RESULTS Among 17 902 patients, 624 (3.5%) experienced LLV50-199 and 482 (2.7%) LLV200-499. Median follow-up was 2.3 and 3.1 years for virological and clinical outcomes, respectively. There were 1903 virological failure, 532 AIDS events and 480 deaths. LLV200-499 was strongly associated with virological failure [adjusted hazard ratio (aHR) 3.97, 95% confidence interval (CI) 3.05-5.17]. LLV50-199 was weakly associated with virological failure (aHR 1.38, 95% CI 0.96-2.00). LLV50-199 and LLV200-499 were not associated with AIDS event/death (aHR 1.13, 95% CI 0.81-1.68; and aHR 0.95, 95% CI 0.62-1.48, [corrected] respectively). CONCLUSION LLV200-499 was strongly associated with virological failure, but not with AIDS event/death. Our results support the US guidelines, which define virological failure as a confirmed viral load above 200 copies/ml.
Collapse
|
325
|
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2015; 15:455-65. [PMID: 24793763 DOI: 10.1631/jzus.b1400059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human P-TEFb in the late 1990 s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human P-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, P-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-P-TEFb complex) that collectively constitute a P-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.
Collapse
Affiliation(s)
- Rong-diao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | |
Collapse
|
326
|
Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 2015; 517:381-5. [PMID: 25561180 PMCID: PMC4406054 DOI: 10.1038/nature14053] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-1 persists in a stable latent reservoir, primarily in resting memory CD4(+) T cells. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed and tested both in vitro and in vivo. A key remaining question is whether virus-specific immune mechanisms, including cytotoxic T lymphocytes (CTLs), can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad-spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.
Collapse
|
327
|
León B, Navarro G, Dickey BJ, Stepan G, Tsai A, Jones GS, Morales ME, Barnes T, Ahmadyar S, Tsiang M, Geleziunas R, Cihlar T, Pagratis N, Tian Y, Yu H, Linington RG. Abyssomicin 2 reactivates latent HIV-1 by a PKC- and HDAC-independent mechanism. Org Lett 2015; 17:262-5. [PMID: 25560385 DOI: 10.1021/ol503349y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Screening of a marine natural products library afforded three new analogues of the tetronic acid containing polyketide abyssomicin family and identified abyssomicin 2 as a selective reactivator of latent HIV virus. Examination of the mode of action of this new latent HIV reactivating agent demonstrated that it functions via a distinct mechanism compared to that of existing reactivating agents and is effective at reactivating latent virus in a subset of primary patient cell lines.
Collapse
Affiliation(s)
- Brian León
- Department of Chemistry and Biochemistry, University of California, Santa Cruz , 1156 High Street, Santa Cruz, California 95064, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Imami N, Herasimtschuk AA. Multifarious immunotherapeutic approaches to cure HIV-1 infection. Hum Vaccin Immunother 2015; 11:2287-93. [PMID: 26048144 PMCID: PMC4635699 DOI: 10.1080/21645515.2015.1021523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/15/2015] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy in the context of treated HIV-1 infection aims to improve immune responses to achieve better control of the virus. To date, multifaceted immunotherapeutic approaches have been shown to reduce immune activation and increase CD4 T-lymphocyte counts, further to the effects of antiretroviral therapy alone, in addition to improving HIV-1-specific T-cell responses. While sterilizing cure of HIV-1 would involve elimination of all replication-competent virus, a functional cure in which the host has long-lasting control of viral replication may be more feasible. In this commentary, we discuss novel strategies aimed at targeting the latent viral reservoir with cure of HIV-1 infection being the ultimate goal, an achievement that would have considerable impact on worldwide HIV-1 infection.
Collapse
Affiliation(s)
- Nesrina Imami
- Department of Medicine; Imperial College London; London, UK
| | | |
Collapse
|
329
|
Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e236. [DOI: 10.1038/mtna.2015.10] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/25/2015] [Indexed: 11/08/2022]
|
330
|
Wang X, Wang P, Fu Z, Ji H, Qu X, Zeng H, Zhu X, Deng J, Lu P, Zha S, Song Z, Zhu H. Designed transcription activator-like effector proteins efficiently induced the expression of latent HIV-1 in latently infected cells. AIDS Res Hum Retroviruses 2015; 31:98-106. [PMID: 25403229 DOI: 10.1089/aid.2014.0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
HIV latency is the foremost barrier to clearing HIV infection from patients. Reactivation of latent HIV-1 represents a promising strategy to deplete these viral reservoirs. Here, we report a novel approach to reactivate latent HIV-1 provirus using artificially designed transcription activator-like effector (TALE) fusion proteins containing a DNA-binding domain specifically targeting the HIV-1 promoter and the herpes simplex virus-based transcriptional activator VP64 domain. We engineered four TALE genes (TALE1-4) encoding TALE proteins, each specifically targeting different 20-bp DNA sequences within the HIV-1 promoter, and we constructed four TALE-VP64 expression vectors corresponding to TALE1-4. We found that TALE1-VP64 effectively reactivated HIV-1 gene expression in latently infected C11 and A10.6 cells. We further confirmed that TALE1-VP64 reactivated latent HIV-1 via specific binding to the HIV-LTR promoter. Moreover, we also found that TALE1-VP64 did not affect cell proliferation or cell cycle distribution. Taken together, our data demonstrated that TALE1-VP64 can specifically and effectively reactivate latent HIV-1 transcription, suggesting that this strategy may provide a novel approach for anti-HIV-1 latency therapy in the future.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheng Fu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haiyan Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanxian Zeng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junxiao Deng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shijun Zha
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhishuo Song
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
331
|
Xia S, Liu Q, Wang Q, Sun Z, Su S, Du L, Ying T, Lu L, Jiang S. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194:200-10. [PMID: 25451066 PMCID: PMC7114414 DOI: 10.1016/j.virusres.2014.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 01/04/2023]
Abstract
The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection.
Collapse
Affiliation(s)
- Shuai Xia
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Qi Liu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China; Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali 671000, China
| | - Qian Wang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Zhiwu Sun
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Shan Su
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Tianlei Ying
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China.
| | - Shibo Jiang
- Key Lab of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Xuhui District, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
332
|
Ramirez Valdez KP, Kuwata T, Maruta Y, Tanaka K, Alam M, Yoshimura K, Matsushita S. Complementary and synergistic activities of anti-V3, CD4bs and CD4i antibodies derived from a single individual can cover a wide range of HIV-1 strains. Virology 2014; 475:187-203. [PMID: 25486586 DOI: 10.1016/j.virol.2014.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/17/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Antibodies with modest neutralizing activity and narrow breadth are commonly elicited in HIV-1. Here, we evaluated the complementary and synergistic activities of a set of monoclonal antibodies (MAb) isolated from a single patient, directed to V3, CD4 binding site (CD4bs), and CD4 induced (CD4i) epitopes. Despite low somatic hypermutation percentages in the variable regions, these MAbs covered viral strains from subtypes B, C, A and CRF01_AE and transmitted/founder viruses in terms of binding, neutralizing and antibody-dependent cell-mediated cytotoxicity (ADCC) activities. In addition, a combination of the anti-V3 and CD4bs MAbs showed a synergistic effect over the neutralization of HIV-1JR-FL. A humoral response from a single patient covered a wide range of viruses by complementary and synergistic activities of antibodies with different specificities. Inducing a set of narrow neutralizing antibodies, easier to induce than the broadly neutralizing antibodies, could be a strategy for developing an effective vaccine against HIV-1.
Collapse
Affiliation(s)
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kazuhisa Yoshimura
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
333
|
Blankson JN, Siliciano JD, Siliciano RF. Finding a cure for human immunodeficiency virus-1 infection. Infect Dis Clin North Am 2014; 28:633-50. [PMID: 25277513 PMCID: PMC4253590 DOI: 10.1016/j.idc.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Remarkable advances have been made in the treatment of human immunodeficiency virus (HIV)-1 infection, but in the entire history of the epidemic, only 1 patient has been cured. Herein we review the fundamental mechanisms that render HIV-1 infection difficult to cure and then discuss recent clinical and experimental situations in which some form of cure has been achieved. Finally, we consider approaches that are currently being taken to develop a general cure for HIV-1 infection.
Collapse
Affiliation(s)
- Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733, North Broadway, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, 733, North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
334
|
Persaud D, Patel K, Karalius B, Rainwater-Lovett K, Ziemniak C, Ellis A, Chen YH, Richman D, Siberry GK, Van Dyke RB, Burchett S, Seage GR, Luzuriaga K. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr 2014; 168:1138-46. [PMID: 25286283 PMCID: PMC4324476 DOI: 10.1001/jamapediatrics.2014.1560] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IMPORTANCE Combination antiretroviral therapy initiated within several weeks of human immunodeficiency virus (HIV) infection in adults limits proviral reservoirs that preclude HIV cure. Biomarkers of restricted proviral reservoirs may aid in the monitoring of HIV remission or cure. OBJECTIVES To quantify peripheral blood proviral reservoir size in perinatally HIV-infected (PHIV+) adolescents and to identify correlates of limited proviral reservoirs. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional study including 144 PHIV+ youths (median age, 14.3 years) enrolled in the United States-based Pediatric HIV/AIDS Cohort Study and receiving durable (median duration, 10.2 years) combination antiretroviral therapy, stratified by age at virologic control. MAIN OUTCOMES AND MEASURES The primary end point was peripheral blood mononuclear cell (PBMC) proviral load after virologic control at different ages. Correlations between proviral load and markers of active HIV production (ie, HIV-specific antibodies, 2-long terminal repeat circles) and markers of immune activation and inflammation were also assessed. RESULTS Proviral reservoir size was markedly reduced in the PHIV+ youth who achieved virologic control before 1 year of age (4.2 [interquartile range, 2.6-8.6] copies per 1 million PBMCs) compared with those who achieved virologic control at 1 to 5 years of age (19.4 [interquartile range, 5.5-99.8] copies per 1 million PBMCs) or after 5 years of age (70.7 [interquartile range, 23.2-209.4] copies per 1 million PBMCs; P < .001). A proviral burden of less than 10 copies per 1 million PBMCs in PHIV+ youth was measured in 11 (79%), 20 (40%), and 13 (18%) participants with virologic control before 1 year, at 1 to 5 years, and after 5 years of age, respectively (P < .001). Lower proviral load was associated with undetectable 2-long terminal repeat circles (P < .001) and HIV-negative or indeterminate serostatus (P < .001) but not with concentrations of soluble immune activation markers CD14 and CD163. CONCLUSIONS AND RELEVANCE Early effective combination antiretroviral therapy with prolonged virologic suppression after perinatal HIV infection leads to negligible peripheral blood proviral reservoirs in adolescence and is associated with negative or indeterminate HIV serostatus. These findings highlight the long-term effect of early effective control of HIV replication on biomarkers of HIV persistence in perinatal infection and the utility of HIV serostatus as a biomarker for small proviral reservoir size, although not necessarily for cure.
Collapse
Affiliation(s)
- Deborah Persaud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kunjal Patel
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | - Brad Karalius
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | | | - Carrie Ziemniak
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Angela Ellis
- Frontier Science & Technology Research Foundation, Inc., Buffalo, NY
| | - Ya Hui Chen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Douglas Richman
- University of California San Diego, La Jolla, and the Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - George K. Siberry
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda MD
| | - Russell B. Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans LA
| | - Sandra Burchett
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA
| | - George R. Seage
- Department of Epidemiology and the Center for Biostatistics in AIDS Research (CBAR), Harvard School of Public Health, Boston MA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, Department of Pediatrics, and Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
335
|
Del Prete GQ, Shoemaker R, Oswald K, Lara A, Trubey CM, Fast R, Schneider DK, Kiser R, Coalter V, Wiles A, Wiles R, Freemire B, Keele BF, Estes JD, Quiñones OA, Smedley J, Macallister R, Sanchez RI, Wai JS, Tan CM, Alvord WG, Hazuda DJ, Piatak M, Lifson JD. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques. Antimicrob Agents Chemother 2014; 58:6790-806. [PMID: 25182644 PMCID: PMC4249371 DOI: 10.1128/aac.03746-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodney Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandi Freemire
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - John S Wai
- Merck Research Labs, West Point, Pennsylvania, USA
| | | | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
336
|
Herasimtschuk A, Downey J, Nelson M, Moyle G, Mandalia S, Sikut R, Adojaan M, Stanescu I, Gotch F, Imami N. Therapeutic immunisation plus cytokine and hormone therapy improves CD4 T-cell counts, restores anti-HIV-1 responses and reduces immune activation in treated chronic HIV-1 infection. Vaccine 2014; 32:7005-7013. [PMID: 25454870 DOI: 10.1016/j.vaccine.2014.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND This randomised, open label, phase I, immunotherapeutic study investigated the effects of interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant human growth hormone (rhGH), and therapeutic immunisation (a Clade B DNA vaccine) on combination antiretroviral therapy (cART)-treated HIV-1-infected individuals, with the objective to reverse residual T-cell dysfunction. METHODS Twelve HIV-1(+) patients on suppressive cART with baseline CD4 T-cell counts >400 cells/mm(3) blood were randomised into one of three groups: (1) vaccine, IL-2, GM-CSF and rhGH (n=3); (2) vaccine alone (n=4); or (3) IL-2, GM-CSF and rhGH (n=5). Samples were collected at weeks 0, 1, 2, 4, 6, 8, 12, 16, 24 and 48. Interferon (IFN)-γ, IL-2, IL-4 and perforin ELISpot assays performed at each time point quantified functional responses to Gag p17/p24, Nef, Rev, and Tat peptides; and detailed T-cell immunophenotyping was undertaken by flow cytometry. Proviral DNA was also measured. RESULTS Median baseline CD4 T-cell count was 757 cells/mm(3) (interquartile range [IQR] 567-886 cells/mm(3)), median age 48 years (IQR 42-51 years), and plasma HIV-1-RNA <50 copies/ml for all subjects. Patients who received vaccine plus IL-2, GM-CSF and rhGH (group 1) showed the most marked changes. Assessing mean changes from baseline to week 48 revealed significantly elevated numbers of CD4 T cells (p=0.0083) and improved CD4/CD8 T-cell ratios (p=0.0033). This was accompanied by a significant reduction in expression of CD38 on CD4 T cells (p=0.0194), significantly increased IFN-γ and IL-2 production in response to Gag (p=0.0122) and elevated IFN-γ production in response to Tat (p=0.041) at week 48 compared to baseline. Subjects in all treatment groups showed significantly reduced PD-1 expression at week 48 compared to baseline, with some reductions in proviral DNA. CONCLUSIONS Multifarious immunotherapeutic approaches in the context of fully suppressive cART further reduce immune activation, and improve both CD4 T-lymphocyte counts and HIV-1-specific T-cell responses (NCT01130376).
Collapse
Affiliation(s)
| | | | - Mark Nelson
- Chelsea and Westminster Hospital, London, UK
| | | | - Sundhiya Mandalia
- Imperial College London, London, UK; Chelsea and Westminster Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
337
|
Immonen TT, Leitner T. Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages. Retrovirology 2014; 11:81. [PMID: 25318357 PMCID: PMC4201670 DOI: 10.1186/s12977-014-0081-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 02/01/2023] Open
Abstract
Background HIV-1 can persist for the duration of a patient’s life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle. Results We developed a novel molecular clock–based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past. Conclusions These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0081-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taina T Immonen
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Thomas Leitner
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
338
|
Murry JP, Godoy J, Mukim A, Swann J, Bruce JW, Ahlquist P, Bosque A, Planelles V, Spina CA, Young JAT. Sulfonation pathway inhibitors block reactivation of latent HIV-1. Virology 2014; 471-473:1-12. [PMID: 25310595 DOI: 10.1016/j.virol.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful.
Collapse
Affiliation(s)
- Jeffrey P Murry
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joseph Godoy
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amey Mukim
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Justine Swann
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James W Bruce
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Ahlquist
- Morgridge Institute for Research, Madison, WI, USA; Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alberto Bosque
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Celsa A Spina
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John A T Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
339
|
Tan X, Elledge SJ. When noise makes music: HIV reactivation with transcriptional noise enhancers. Genome Med 2014; 6:55. [PMID: 25276233 PMCID: PMC4179226 DOI: 10.1186/s13073-014-0055-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 11/22/2022] Open
Abstract
Reactivating latent HIV is key to depleting the virus reservoir in AIDS
patients. A recent paper has described the rationale for and discovery of a new
class of drugs - transcriptional noise enhancers - that can synergize with
conventional transcription activators to more effectively reactivate latently
infected T cells. As well as describing a promising new strategy in the bid to find
a cure for AIDS, this study more broadly highlights the utility of exploring drug
combinations in treatment of human disease.
Collapse
Affiliation(s)
- Xu Tan
- School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115 USA
| |
Collapse
|
340
|
Zhou J, Rossi J. Cell-type-specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med 2014; 62:914-9. [PMID: 25118114 PMCID: PMC4172518 DOI: 10.1097/jim.0000000000000103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human immunodeficiency virus (HIV) is a virus that causes acquired immunodeficiency syndrome, a chronic and incurable disease of the human immune system. As the standard of care for the patients with HIV-1, current highly active antiretroviral treatment has been therapeutically effective in most patients; however, it is not curative, and highly active antiretroviral treatment is intolerable because of severe adverse effects. Therefore, nucleic acid-based therapeutics, such as antisense oligonucleotide, ribozyme, messenger RNA, RNA interference (RNAi)-based therapeutics, aptamer, and so on, have been actively developed as alternative or adjuvant agents for those chemical antiviral drugs to surmount those drawbacks. The combinatorial use of various antiviral nucleic acids could be more efficacious in blocking viral replication and preventing the emergence of resistant variants. In this regard, RNAi can function as a gene-specific therapeutic option for controlling HIV-1 replication. Another type of therapeutic nucleic acid--aptamers--shows promise as a new and potent class of anti-HIV agent and can additionally function as a cell-type-specific delivery vehicle for targeted RNAi. The combined use of small interfering RNA (siRNAs) and aptamers could effectively block viral replication and prevent the emergence of resistant variants. The present review offers a brief overview of the use of cell-type-specific aptamer and aptamer-siRNA conjugates' development in our group for the treatment of HIV-1. Their potentials for targeted delivering RNAi therapeutics (eg, siRNA) and suppressing HIV-1 replication in vitro and in humanized animal model will be highlighted here.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010
| |
Collapse
|
341
|
A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat Rev Microbiol 2014; 12:772-80. [PMID: 25263222 DOI: 10.1038/nrmicro3351] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the early years of the AIDS epidemic, a diagnosis of HIV-1 infection was equivalent to a death sentence. The development of combination antiretroviral therapy (cART) in the 1990s to combat HIV-1 infection was one of the most impressive achievements of medical science. Today, patients who are treated early with cART can expect a near-normal lifespan. In this Opinion article, we propose a fundamental theory to explain the mechanistic basis of cART and why it works so well, including a model to assess and predict the efficacy of antiretroviral drugs alone or in combination.
Collapse
|
342
|
Affiliation(s)
- Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
343
|
Fitness impaired drug resistant HIV-1 is not compromised in cell-to-cell transmission or establishment of and reactivation from latency. Viruses 2014; 6:3487-99. [PMID: 25243372 PMCID: PMC4189035 DOI: 10.3390/v6093487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Both the presence of latently infected cells and cell-to-cell viral transmission are means whereby HIV can partially evade the inhibitory activities of antiretroviral drugs. The clinical use of a novel integrase inhibitor, dolutegravir (DTG), has established hope that this compound may limit HIV persistence, since no treatment-naïve patient treated with DTG has yet developed resistance against this drug, even though a R263K substitution in integrase confers low-level resistance to this drug in tissue culture. Here, we have studied the impact of R263K on HIV replication capacity and the ability of HIV to establish or be reactivated from latency and/or spread through cell-to-cell transmission. We affirm that DTG-resistant viruses have diminished capacity to replicate and establish infection. However, DTG-resistant viruses were efficiently transmitted via cell-to-cell contacts, and were as likely to establish and be reactivated from latent infection as wildtype viruses. Both cell-to-cell transmission of HIV and the establishment of and reemergence from latency are important for the establishment and maintenance of viral reservoirs. Since the DTG and other drug-resistant viruses studied here do not seem to have been impaired in regard to these activities, studies should be undertaken to characterize HIV reservoirs in patients who have been treated with DTG.
Collapse
|
344
|
Alidjinou EK, Bocket L, Hober D. Quantification of viral DNA during HIV-1 infection: A review of relevant clinical uses and laboratory methods. ACTA ACUST UNITED AC 2014; 63:53-9. [PMID: 25201144 DOI: 10.1016/j.patbio.2014.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 01/25/2023]
Abstract
Effective antiretroviral therapy usually leads to undetectable HIV-1 RNA in the plasma. However, the virus persists in some cells of infected patients as various DNA forms, both integrated and unintegrated. This reservoir represents the greatest challenge to the complete cure of HIV-1 infection and its characteristics highly impact the course of the disease. The quantification of HIV-1 DNA in blood samples constitutes currently the most practical approach to measure this residual infection. Real-time quantitative PCR (qPCR) is the most common method used for HIV-DNA quantification and many strategies have been developed to measure the different forms of HIV-1 DNA. In the literature, several "in-house" PCR methods have been used and there is a need for standardization to have comparable results. In addition, qPCR is limited for the precise quantification of low levels by background noise. Among new assays in development, digital PCR was shown to allow an accurate quantification of HIV-1 DNA. Total HIV-1 DNA is most commonly measured in clinical routine. The absolute quantification of proviruses and unintegrated forms is more often used for research purposes.
Collapse
Affiliation(s)
- E K Alidjinou
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - L Bocket
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France
| | - D Hober
- Laboratoire de virologie EA3610, faculté de médecine, institut Hippocrate, université Lille 2, CHRU Lille, 152, rue du Dr-Yersin, 59120 Loos-lez-Lille, France.
| |
Collapse
|
345
|
Henrich TJ, Hanhauser E, Marty FM, Sirignano MN, Keating S, Lee TH, Robles YP, Davis BT, Li JZ, Heisey A, Hill AL, Busch MP, Armand P, Soiffer RJ, Altfeld M, Kuritzkes DR. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med 2014; 161:319-27. [PMID: 25047577 PMCID: PMC4236912 DOI: 10.7326/m14-1027] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It is unknown whether the reduction in HIV-1 reservoirs seen after allogeneic hematopoietic stem cell transplantation (HSCT) with susceptible donor cells is sufficient to achieve sustained HIV-1 remission. OBJECTIVE To characterize HIV-1 reservoirs in blood and tissues and perform analytic antiretroviral treatment interruptions to determine the potential for allogeneic HSCT to lead to sustained, antiretroviral-free HIV-1 remission. DESIGN Case report with characterization of HIV-1 reservoirs and immunity before and after antiretroviral interruption. SETTING Tertiary care center. PATIENTS Two men with HIV with undetectable HIV-1 after allogeneic HSCT for hematologic tumors. MEASUREMENTS Quantification of HIV-1 in various tissues after HSCT and the duration of antiretroviral-free HIV-1 remission after treatment interruption. RESULTS No HIV-1 was detected from peripheral blood or rectal mucosa before analytic treatment interruption. Plasma HIV-1 RNA and cell-associated HIV-1 DNA remained undetectable until 12 and 32 weeks after antiretroviral cessation. Both patients experienced rebound viremia within 2 weeks of the most recent negative viral load measurement and developed symptoms consistent with the acute retroviral syndrome. One patient developed new efavirenz resistance after reinitiation of antiretroviral therapy. Reinitiation of active therapy led to viral decay and resolution of symptoms in both patients. LIMITATION The study involved only 2 patients. CONCLUSION Allogeneic HSCT may lead to loss of detectable HIV-1 from blood and gut tissue and variable periods of antiretroviral-free HIV-1 remission, but viral rebound can occur despite a minimum 3-log10 reduction in reservoir size. Long-lived tissue reservoirs may have contributed to viral persistence. The definition of the nature and half-life of such reservoirs is essential to achieve durable antiretroviral-free HIV-1 remission. PRIMARY FUNDING SOURCE Foundation for AIDS Research and National Institute of Allergy and Infectious Diseases.
Collapse
|
346
|
Cure of HIV infection: is the long wait over? J Allergy Clin Immunol 2014; 134:20-2. [PMID: 25117800 DOI: 10.1016/j.jaci.2014.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
|
347
|
Zeng H, Liu S, Wang P, Qu X, Ji H, Wang X, Zhu X, Song Z, Yang X, Ma Z, Zhu H. Dilazep synergistically reactivates latent HIV-1 in latently infected cells. Mol Biol Rep 2014; 41:7697-704. [PMID: 25091947 DOI: 10.1007/s11033-014-3662-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/27/2014] [Indexed: 12/21/2022]
Abstract
The long-lived latently infected cells persist in spite of prolonged highly active anti-retroviral therapy and present a major barrier to a cure of human immunodeficiency virus type 1 (HIV-1) infection. Elimination of this reservoir requires reactivation of the latent virus. None of the current agents can safely and effectively reactivate latent HIV-1 reservoirs. Dilazep, a nucleoside transport inhibitor, is used to treat ischemic dysfunction. However, little is known about the effect of dilazep in inducing HIV expression in latently infected cells. Using the Jurkat T cell model of HIV-1 latency, we found that dilazep effectively reactivates latent HIV-1 gene expression in a dose manner. We observed that dilazep synergistically reactivated latent HIV-1 transcription with valproic acid. We also found that dilazep activates viral latency without inducing cell surface activation markers CD25 and CD69 activation. In summary, dilazep, alone or in combination with VPA, could be useful in future eradication strategies.
Collapse
Affiliation(s)
- Hanxian Zeng
- School of Life Sciences, Institute of Genetics, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Nair V, Okello M, Mishra S, Mirsalis J, O'Loughlin K, Zhong Y. Pharmacokinetics and dose-range finding toxicity of a novel anti-HIV active integrase inhibitor. Antiviral Res 2014; 108:25-9. [PMID: 24821255 PMCID: PMC4101043 DOI: 10.1016/j.antiviral.2014.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
Integration of viral DNA into human chromosomal DNA catalyzed by HIV integrase represents the "point of no return" in HIV infection. For this reason, HIV integrase is considered a crucial target in the development of new anti-HIV therapeutic agents. We have discovered a novel HIV integrase inhibitor 1, that exhibits potent antiviral activity and a favorable metabolism profile. This paper reports on the pharmacokinetics and toxicokinetics of compound 1 and the relevance of these findings with respect to further development of this integrase-targeted antiviral agent. Oral administration of compound 1 in Sprague Dawley rats revealed rapid absorption. Drug exposure increased with increasing drug concentration, indicative of appropriate dose-dependence correlation. Compound 1 exhibited suitable plasma half-life, extensive extravascular distribution and acceptable bioavailability. Toxicity studies revealed no compound-related clinical pathology findings. There were no changes in erythropoietic, white blood cell or platelet parameters in male and female rats. There was no test-article related change in other clinical chemistry parameters. In addition, there were no detectable levels of bilirubin in the urine and there were no treatment-related effects on urobilinogen or other urinalysis parameters. The preclinical studies also revealed that the no observed adverse effect level and the maximum tolerated dose were both high (>500mg/kg/day). The broad and significant antiviral activity and favorable metabolism profile of this integrase inhibitor, when combined with the in vivo pharmacokinetic and toxicokinetic data and their pharmacological relevance, provide compelling and critical support for its further development as an anti-HIV therapeutic agent.
Collapse
Affiliation(s)
- Vasu Nair
- Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA.
| | - Maurice Okello
- Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| | - Sanjay Mishra
- Center for Drug Discovery and the College of Pharmacy University of Georgia, Athens, GA 30602, USA
| | - Jon Mirsalis
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | | | - Yu Zhong
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|
349
|
|
350
|
Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ-NF-κB signaling. AIDS 2014; 28:1555-66. [PMID: 24804860 DOI: 10.1097/qad.0000000000000289] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although HAART effectively suppresses viral replication, it fails to eradicate latent viral reservoirs. The 'shock and kill' strategy involves the activation of HIV from latent reservoirs and targeting them for eradication. Our goal was to develop new approaches for activating HIV from latent reservoirs. DESIGN We investigated capacity of Ingenol B (IngB), a newly modified derivative of Ingenol ester that was originally isolated from a Brazilian plant in Amazon, for its capacity and mechanisms of HIV reactivation. METHODS Reactivation of HIV-1 by IngB was evaluated in J-Lat A1 cell culture model of HIV latency as well as in purified primary CD4 T cells from long-term HAART-treated virologically-suppressed HIV-infected individuals. The underlining molecular mechanisms of viral reactivation were investigated using flow cytometry, RT-qPCR and chromatin immunoprecipitation. RESULTS IngB is highly effective in reactivating HIV in J-Lat A1 cells with relatively low cellular toxicity. It is also able to reactivate latent HIV in purified CD4 T cells from HAART-treated HIV-positive individuals ex vivo. Our data show that IngB may reactivate HIV expression by both activating protein kinase C (PKC)δ-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway and directly inducing NF-κB protein expression. Importantly, IngB has a synergistic effect with JQ1, a BET bromodomain inhibitor, in latent HIV reactivation. CONCLUSIONS IngB is a new promising compound to activate latent HIV reservoirs. Our data suggest that formulating novel derivatives from Ingenol esters may be an innovative approach to develop new lead compounds to reactivate latent HIV.
Collapse
|