301
|
Tecon R, Leveau JHJ. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology. Environ Microbiol 2012; 14:1325-32. [DOI: 10.1111/j.1462-2920.2012.02715.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
302
|
Sohn KH, Saucet SB, Clarke CR, Vinatzer BA, O'Brien HE, Guttman DS, Jones JDG. HopAS1 recognition significantly contributes to Arabidopsis nonhost resistance to Pseudomonas syringae pathogens. THE NEW PHYTOLOGIST 2012; 193:58-66. [PMID: 22053875 DOI: 10.1111/j.1469-8137.2011.03950.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Plant immunity is activated by sensing either conserved microbial signatures, called pathogen/microbe-associated molecular patterns (P/MAMPs), or specific effectors secreted by pathogens. However, it is not known why most microbes are nonpathogenic in most plant species. • Nonhost resistance (NHR) consists of multiple layers of innate immunity and protects plants from the vast majority of potentially pathogenic microbes. Effector-triggered immunity (ETI) has been implicated in race-specific disease resistance. However, the role of ETI in NHR is unclear. • Pseudomonas syringae pv. tomato (Pto) T1 is pathogenic in tomato (Solanum lycopersicum) yet nonpathogenic in Arabidopsis. Here, we show that, in addition to the type III secretion system (T3SS)-dependent effector (T3SE) avrRpt2, a second T3SE of Pto T1, hopAS1, triggers ETI in nonhost Arabidopsis. • hopAS1 is broadly present in P. syringae strains, contributes to virulence in tomato, and is quantitatively required for Arabidopsis NHR to Pto T1. Strikingly, all tested P. syringae strains that are pathogenic in Arabidopsis carry truncated hopAS1 variants of forms, demonstrating that HopAS1-triggered immunity plays an important role in Arabidopsis NHR to a broad-range of P. syringae strains.
Collapse
Affiliation(s)
- Kee Hoon Sohn
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Simon B Saucet
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall, Blacksburg VA 24061, USA
| | - Boris A Vinatzer
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall, Blacksburg VA 24061, USA
| | - Heath E O'Brien
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Jonathan D G Jones
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
303
|
Opoku-Ansah J, Ibarra-Rivera TR, Pirrung MC, Bachmann AS. Syringolin B-inspired proteasome inhibitor analogue TIR-203 exhibits enhanced biological activity in multiple myeloma and neuroblastoma. PHARMACEUTICAL BIOLOGY 2012; 50:25-29. [PMID: 22196580 DOI: 10.3109/13880209.2011.626784] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT The bacterium Pseudomonas syringae pv. syringae (Pss) is a pathogen of many plant species and causes, for example, brown spot disease in bean plants (Phaseolus vulgaris). Pss excretes the syringolins, natural product molecules that act as a virulence factors and inhibit the proteasome of the host plants. OBJECTIVE Proteasome inhibitors belong to an important class of anticancer agents and bortezomib (Velcade(®)) has been Food and Drug Administration-approved for the treatment of multiple myeloma (MM) and mantle cell lymphoma. Syringolins represent a new class of proteasome inhibitors and the present work was undertaken to design a potent syringolin-inspired analogue (TIR-203) for anticancer drug development. MATERIALS AND METHODS TIR-203 was tested against human MM and neuroblastoma (NB) cells. Cancer cells were treated with TIR-203 at various concentrations (0-10 µM) and the cell viability was measured using the MTS assay. To determine the effects on proteasomal activities, the cell culture-based proteasome inhibition assay was used. Syringolin A (SylA) and bortezomib were included as controls. RESULTS TIR-203 inhibited the cell proliferation of MM and NB cells in a dose-dependent manner at significantly lower concentrations than SylA. In MM cells, TIR-203 effectively inhibited the chymotrypsin-like (CT-L), caspase-like (C-L), and trypsin-like (T-L) activities of the proteasome. In NB cells, TIR-203 inhibited the CT-L and C-L activities, but not the T-L activity. DISCUSSION AND CONCLUSIONS The newly designed proteasome inhibitor TIR-203 is more potent than the natural product SylA and strongly inhibits the cell viability and proteasomal activity of MM and NB cells.
Collapse
Affiliation(s)
- John Opoku-Ansah
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | | | | | | |
Collapse
|
304
|
Monteil CL, Guilbaud C, Glaux C, Lafolie F, Soubeyrand S, Morris CE. Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack. Environ Microbiol 2011; 14:2099-112. [DOI: 10.1111/j.1462-2920.2011.02680.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
305
|
Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB, Guarnaccia C, Pongor S, Onofri A, Buonaurio R, Venturi V. Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. THE ISME JOURNAL 2011; 5:1857-70. [PMID: 21677694 PMCID: PMC3223305 DOI: 10.1038/ismej.2011.65] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 11/09/2022]
Abstract
Pathogenic bacteria interact not only with the host organism but most probably also with the resident microbial flora. In the knot disease of the olive tree (Olea europaea), the causative agent is the bacterium Pseudomonas savastanoi pv. savastanoi (Psv). Two bacterial species, namely Pantoea agglomerans and Erwinia toletana, which are not pathogenic and are olive plant epiphytes and endophytes, have been found very often to be associated with the olive knot. We identified the chemical signals that are produced by strains of the three species isolated from olive knot and found that they belong to the N-acyl-homoserine lactone family of QS signals. The luxI/R family genes responsible for the production and response to these signals in all three bacterial species have been identified and characterized. Genomic knockout mutagenesis and in planta experiments showed that virulence of Psv critically depends on QS; however, the lack of signal production can be complemented by wild-type E. toletana or P. agglomerans. It is also apparent that the disease caused by Psv is aggravated by the presence of the two other bacterial species. In this paper we discuss the potential role of QS in establishing a stable consortia leading to a poly-bacterial disease.
Collapse
Affiliation(s)
- Taha Hosni
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giulia Devescovi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - M' Barek Fatmi
- Institut Agronomique et Vétérinaire Hassan II, Complexe Horticole d'Agadir, Agadir, Morocco
| | - Corrado Guarnaccia
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Sandor Pongor
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Andrea Onofri
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Buonaurio
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
306
|
Duclairoir Poc C, Groboillot A, Lesouhaitier O, Morin JP, Orange N, Feuilloley MJ. Caenorhabditis elegans: a model to monitor bacterial air quality. BMC Res Notes 2011; 4:503. [PMID: 22099854 PMCID: PMC3279514 DOI: 10.1186/1756-0500-4-503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/18/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. FINDINGS The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. CONCLUSIONS Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test.
Collapse
Affiliation(s)
- Cécile Duclairoir Poc
- Laboratory of Microbiology-Signals and MicroEnvironment, Normandy University, University of Rouen, EA 4312, 55 rue Saint Germain, 27000 Evreux, France.
| | | | | | | | | | | |
Collapse
|
307
|
Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N. Composition of epiphytic bacterial communities differs on petals and leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:918-924. [PMID: 21972888 DOI: 10.1111/j.1438-8677.2011.00454.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The epiphytic bacterial communities colonising roots and leaves have been described for many plant species. In contrast, microbiologists have rarely considered flowers of naturally growing plants. We identified bacteria isolated from the surface of petals and leaves of two plant species, Saponaria officinalis (Caryophyllaceae) and Lotus corniculatus (Fabaceae). The bacterial diversity was much lower on petals than on leaves of the same plants. Moreover, the bacterial communities differed strongly in composition: while Pseudomonadaceae and Microbacteriaceae were the most abundant families on leaves, Enterobacteriaceae dominated the floral communities. We hypothesise that antibacterial floral volatiles trigger the low diversity on petals, which is supported by agar diffusion assays using substances emitted by flowers and leaves of S. officinalis. These results suggest that bacteria should be included in the interpretation of floral traits, and possible effects of bacteria on pollination are proposed and discussed.
Collapse
Affiliation(s)
- R R Junker
- Department of Animal Ecology & Tropical Biology, University of Würzburg, Biozentrum, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
308
|
Owen JG, Ackerley DF. Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 2011; 11:218. [PMID: 21967163 PMCID: PMC3207962 DOI: 10.1186/1471-2180-11-218] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/03/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pseudomonas syringae pv. phaseolicola 1448a (P. syringae 1448a), the causative agent of bean halo blight, is a bacterium capable of occupying diverse biological niches. Under conditions of iron starvation P. syringae 1448a secretes siderophores for active uptake of iron. The primary siderophore of P. syringae 1448a is pyoverdine, a fluorescent molecule that is assembled from amino acid precursors by non-ribosomal peptide synthetase (NRPS) enzymes. Whereas other species of Pseudomonas often exhibit structural variations in the pyoverdine produced by different strains, all P. syringae pathovars previously tested have been found to make an identical pyoverdine molecule. P. syringae 1448a also appears to have the genetic potential to make two secondary siderophores, achromobactin and yersiniabactin, each of which has previously been detected in different P. syringae pathovars. RESULTS Five putative pyoverdine NRPS genes in P. syringae 1448a were characterized in-silico and their role in pyoverdine biosynthesis was confirmed by gene knockout. Pyoverdine was purified from P. syringae 1448a and analyzed by MALDI-TOF and MS/MS spectroscopy. Peaks were detected corresponding to the expected sizes for the pyoverdine structure previously found in other P. syringae pathovars, but surprisingly P. syringae 1448a appears to also produce a variant pyoverdine species that has an additional 71 Da monomer incorporated into the peptide side chain. Creation of pyoverdine null mutants of P. syringae 1448a revealed that this strain also produces achromobactin as a temperature-regulated secondary siderophore, but does not appear to make yersiniabactin. Pyoverdine and achromobactin null mutants were characterized in regard to siderophore production, iron uptake, virulence and growth in iron limited conditions. CONCLUSIONS This study provides the first evidence of a P. syringae pathovar producing a side chain variant form of pyoverdine. We also describe novel IC₅₀ and liquid CAS assays to quantify the contribution of different siderophores across a range of iron starvation conditions, and show that although achromobactin has potential to contribute to fitness its contribution is masked by the presence of pyoverdine, which is a significantly more effective siderophore. Neither pyoverdine nor achromobactin appear to be required for P. syringae 1448a to cause bean halo blight, indicating that these siderophores are not promising targets for crop protection strategies.
Collapse
Affiliation(s)
- Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington 6140, New Zealand
- Howard Hughes Medical Institute, Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
309
|
Yang HJ, Lee JS, Cha JY, Baik HS. Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells 2011; 32:317-23. [PMID: 21904881 PMCID: PMC3887642 DOI: 10.1007/s10059-011-1017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.
Collapse
Affiliation(s)
- Hyun Ju Yang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
- Present address: Alcoholic Beverage Research Institute, Daesun Distilling Co. Ltd., Busan 619-951, Korea
| | - Jun Seung Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
| | - Ji Young Cha
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | - Hyung Suk Baik
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
310
|
Cai R, Yan S, Liu H, Leman S, Vinatzer BA. Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. tomato and its close relatives as a model. INFECTION GENETICS AND EVOLUTION 2011; 11:1738-51. [DOI: 10.1016/j.meegid.2011.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
311
|
Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol 2011; 28:1266-74. [PMID: 21839375 DOI: 10.1016/j.fm.2011.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 11/25/2022]
Abstract
The present study was designed to investigate the ability of six Bacillus cereus strains to attach and form biofilm on cabbage and lettuce surfaces. These six strains were; a reference strain DSMZ 345 and five biofilm-producing strains (aquatic strains; TUB8, TUB30, TUB31, TUB32 and TUB33) isolated from drinking-water distribution network. Hydrophobicity, biofilm formation ability, attachment strength (S(R)) of spores and vegetative cells of the six B. cereus strains were also determined. Due to their high hydrophobicity, spores of all strains had high ability to attach polystyrene and did not affect by dilution of tryptone soy broth (TSB, 1:20 v/v) in the in vitro experiment. Significant (p < 0.05) enhancement in vitro biofilm formation by vegetative cells of B. cereus was recorded in the diluted TSB. The highest biofilm formation on cabbage and lettuce surfaces was obtained by spores and vegetative cells of all tested strains on the 4(th) hour of the incubation period. These populations were significantly (p < 0.05) increased by elongating incubation time from 4 h to 24 h except DSMZ 345 and TUB8. Biofilm formation behavior obtained by B. cereus spores and vegetative cells on the polystyrene surface was different compared with that recorded on produce surface. The S(R) of both spores and vegetative cells of the studied strains to the lettuce surface was higher than that of the cabbage surface. The hydrophobicity, biofilm formation and S(R) of spores and vegetative cells of the biofilm-producing strains were higher than that of the reference strain DSMZ 345. Scanning electron microscopy (SEM) exposed random distribution of cells either on the surface or cut edge, without clear obvious affinity for the surface structures. Increasing in the presence of large clusters of cells on leaf surfaces was demonstrated after 4 and 24 h. In conclusion, use of aquatic environmental isolates is more useful for studying biofilm formation than the reference strain. Lettuce surface supported the attachment of B. cereus spores and vegetative cells compared with the cabbage surface. Further investigations are required to improve our knowledge of biofilm formation mechanisms by the human pathogenic microorganisms, especially by using the environmental and clinical isolates. To ensure safety level of green-leafy vegetables, biofilm formation after harvest should be considered as critical control point during handling of these vegetables.
Collapse
|
312
|
Studholme DJ. Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2011; 12:829-38. [PMID: 21726380 PMCID: PMC6640474 DOI: 10.1111/j.1364-3703.2011.00713.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One reason for the success of Pseudomonas syringae as a model pathogen has been the availability of three complete genome sequences since 2005. Now, at the beginning of 2011, more than 25 strains of P. syringae have been sequenced and many more will soon be released. To date, published analyses of P. syringae have been largely descriptive, focusing on catalogues of genetic differences among strains and between species. Numerous powerful statistical tools are now available that have yet to be applied to P. syringae genomic data for robust and quantitative reconstruction of evolutionary events. The aim of this review is to provide a snapshot of the current status of P. syringae genome sequence data resources, including very recent and unpublished studies, and thereby demonstrate the richness of resources available for this species. Furthermore, certain specific opportunities and challenges in making the best use of these data resources are highlighted.
Collapse
Affiliation(s)
- David J Studholme
- Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
313
|
Misas-Villamil JC, Kolodziejek I, van der Hoorn RAL. Pseudomonas syringae colonizes distant tissues in Nicotiana benthamiana through xylem vessels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:774-82. [PMID: 21554458 DOI: 10.1111/j.1365-313x.2011.04632.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to move from the primary infection site and colonize distant tissue in the leaf is an important property of bacterial plant pathogens, yet this aspect has hardly been investigated for model pathogens. Here we show that GFP-expressing Pseudomonas syringae pv. syringae DC3000 that lacks the HopQ1-1 effector (PtoDC3000ΔhQ) has a strong capacity to colonize distant leaf tissue from wound-inoculated sites in N. benthamiana. Distant colonization occurs within 1 week after toothpick inoculation and is characterized by distant colonies in the apoplast along the vasculature. Distant colonization is blocked by the non-host resistance response triggered by HopQ1-1 in an SGT1-dependent manner and is associated with an explosive growth of the bacterial population, and displays robust growth differences between compatible and incompatible interactions. Scanning electron microscopy revealed that PtoDC3000ΔhQ bacteria are present in xylem vessels, indicating that they use the xylem to move through the leaf blade. Distant colonization does not require flagellin-mediated motility, and is common for P. syringae pathovars that represent different phylogroups.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
314
|
Burch AY, Browne PJ, Dunlap CA, Price NP, Lindow SE. Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 2011; 13:2681-91. [PMID: 21883788 DOI: 10.1111/j.1462-2920.2011.02534.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Biosurfactants are diverse molecules with numerous biological functions and industrial applications. A variety of environments were examined for biosurfactant-producing bacteria including soil, water and leaf surfaces. Biosurfactant production was assessed with an atomized oil assay for a large number of bacterial isolates and compared with a commonly used drop collapse assay from broth and plate cultures. The atomized oil assay detected every strain that produced a biosurfactant detectable by the drop collapse test, and also identified additional strains that were not detected with the drop collapse assay because they produced low levels of surfactant or hydrophobic (low water solubility) surfactants such as pumilacidins. Not all strains that produced a biosurfactant detectable by the drop collapse when cultured on agar surfaces produced surfactants detectable by drop collapse when cultured in broth, and vice versa. Many bacterial strains exhibited preferential production of surfactants when grown on an agar surface compared with broth cultures, and such surface enhancement of production could also be stimulated by increasing the viscosity of liquid culture media. Surface induction of surfactant production in the epiphyte Pseudomonas syringae was regulated at the transcriptional level.
Collapse
Affiliation(s)
- Adrien Y Burch
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
315
|
An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. J Bacteriol 2011; 193:5775-83. [PMID: 21840980 DOI: 10.1128/jb.05114-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade.
Collapse
|
316
|
Halgren A, Azevedo M, Mills D, Armstrong D, Thimmaiah M, McPhail K, Banowetz G. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. J Appl Microbiol 2011; 111:949-59. [DOI: 10.1111/j.1365-2672.2011.05098.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
317
|
Stanwood JM, Dighton J. Seasonality and management, not proximity to highway, affect species richness and community composition of epiphytic phylloplane fungi found on (wild and cultivated) Vaccinium spp. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2011.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
318
|
Koskella B, Thompson JN, Preston GM, Buckling A. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat 2011; 177:440-51. [PMID: 21460566 DOI: 10.1086/658991] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ecological, epidemiological, and evolutionary consequences of host-parasite interactions are critically shaped by the spatial scale at which parasites adapt to hosts. The scale of interaction between hyperparasites and their parasites is likely to be influenced by the host of the parasite and potentially likely to differ among within-host environments. Here we examine the scale at which bacteriophages adapt to their host bacteria by studying natural isolates from the surface or interior of horse chestnut leaves. We find that phages are more infective to bacteria from the same tree relative to those from other trees but do not differ in infectivity to bacteria from different leaves within the same tree. The results suggest that phages target common bacterial species, including an important plant pathogen, within plant host tissues; this result has important implications for therapeutic phage epidemiology. Furthermore, we show that phages from the leaf interior are more infective to their local hosts than phages from the leaf surface are to theirs, suggesting either increased resistance of bacteria on the leaf surface or increased phage adaptation within the leaf. These results highlight that biotic environment can play a key role in shaping the spatial scale of parasite adaptation and influencing the outcome of coevolutionary interactions.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
319
|
Niwa R, Yoshida S, Furuya N, Tsuchiya K, Tsushima S. Method for simple and rapid enumeration of total epiphytic bacteria in the washing solution of rice plants. Can J Microbiol 2011; 57:62-7. [PMID: 21217798 DOI: 10.1139/w10-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phyllosphere is one of the most common habitats for terrestrial bacteria. However, little is known about the populations of bacteria, including unculturable bacteria, that thrive on plant surfaces. Here, we developed a fluorescent nuclear staining technique to easily and rapidly observe and enumerate populations of total and living epiphytic bacteria, with particular emphasis on the concentration by centrifugation and fixation of the epiphytic bacteria. An investigation on the optimal conditions for centrifugation and fixation revealed that centrifugation at 20 400g for 2 min and fixation with 0.5% glutaraldehyde solution were the optimum conditions for observation of the bacteria. Using this technique, we assessed the populations of the total and living bacteria on the surface of rice plants. When epiphytic bacteria were recovered from rice seeds (Oryza sativa 'Koshihikari'), the number of total and living bacterial cells was 7.36 and 6.85 log₁₀·g⁻¹ (fresh mass) in the seed washing, respectively. In contrast, the numbers of total and living bacterial cells in the leaf sheath washings were 5.5-5.8 and 5.3-5.7 log₁₀·g⁻¹, respectively. Approximately 5%-30% of the total bacteria in the washing solution of rice plant were culturable. The usefulness of the enumeration method and the amount of bacteria on the plant surfaces are discussed.
Collapse
Affiliation(s)
- Rieko Niwa
- National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
320
|
Saldaña Z, Sánchez E, Xicohtencatl-Cortes J, Puente JL, Girón JA. Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli o157:h7. Front Microbiol 2011; 2:119. [PMID: 21887151 PMCID: PMC3157101 DOI: 10.3389/fmicb.2011.00119] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/12/2011] [Indexed: 01/03/2023] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection.
Collapse
Affiliation(s)
- Zeus Saldaña
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
321
|
Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev 2011; 35:555-75. [DOI: 10.1111/j.1574-6976.2011.00264.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
322
|
Koskella B, Taylor TB, Bates J, Buckling A. Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. ISME JOURNAL 2011; 5:1809-17. [PMID: 21509046 DOI: 10.1038/ismej.2011.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | | | | | | |
Collapse
|
323
|
Lopez-Velasco G, Welbaum G, Boyer R, Mane S, Ponder M. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol 2011; 110:1203-14. [DOI: 10.1111/j.1365-2672.2011.04969.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
324
|
Abstract
Multihost pathogens occur widely on both natural and agriculturally managed hosts. Despite the importance of such generalists, evolutionary studies of host-pathogen interactions have largely focused on tightly coupled interactions between species pairs. We characterized resistance in a collection of Arabidopsis thaliana hosts, including 24 accessions collected from the Midwest USA and 24 from around the world, and patterns of virulence in a collection of Pseudomonas syringae strains, including 24 strains collected from wild Midwest populations of A. thaliana (residents) and 18 from an array of cultivated species (nonresidents). All of the nonresident strains and half of the resident strains elicited a resistance response on one or more A. thaliana accessions. The resident strains that failed to elicit any resistance response possessed an alternative type III secretion system (T3SS) that is unable to deliver effectors into plant host cells; as a result, these seemingly nonpathogenic strains are incapable of engaging in gene for gene interactions with A. thaliana. The remaining resident strains triggered greater resistance compared to nonresident strains, consistent with maladaptation of the resident bacterial population. We weigh the plausibility of two explanations: general maladaptation of pathogen strains and a more novel hypothesis whereby community level epidemiological dynamics result in adaptive dynamics favoring ephemeral hosts like A. thaliana.
Collapse
Affiliation(s)
- Joel M Kniskern
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
325
|
Lee JS, Cha JY, Baik HS. Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528. ACTA ACUST UNITED AC 2011. [DOI: 10.5352/jls.2011.21.2.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
326
|
McGhee GC, Sundin GW. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. PHYTOPATHOLOGY 2011; 101:192-204. [PMID: 20923369 DOI: 10.1094/phyto-04-10-0128] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora. The efficacy of Ks formulated as Kasumin 2L for control of fire blight was evaluated in six experiments conducted over four field seasons in our experimental orchards in East Lansing, MI. Blossom blight control was statistically equivalent to the industry standard streptomycin in all experiments. E. amylovora populations remained constant on apple flower stigmas pretreated with Kasumin and were ≈100-fold lower than on stigmas treated with water. Kasumin applied to apple trees in the field also resulted in a 100-fold reduced total culturable bacterial population compared with trees treated with water. We performed a prospective analysis of the potential for kasugamycin resistance (Ks(R)) development in E. amylovora which focused on spontaneous resistance development and acquisition of a transferrable Ks(R) gene. In replicated lab experiments, the development of spontaneous resistance in E. amylovora to Ks at 250 or 500 ppm was not observed when cells were directly plated on medium containing high concentrations of the antibiotic. However, exposure to increasing concentrations of Ks in media (initial concentration 25 μg ml(-1)) resulted in the selection of Ks resistance (at 150 μg ml(-1)) in the E. amylovora strains Ea110, Ea273, and Ea1189. Analysis of mutants indicated that they harbored mutations in the kasugamycin target ksgA gene and that all mutants were impacted in relative fitness observable through a reduced growth rate in vitro and decreased virulence in immature pear fruit. The possible occurrence of a reservoir of Ks(R) genes in orchard environments was also examined. Culturable gram-negative bacteria were surveyed from six experimental apple orchards that had received at least one Kasumin application. In total, 401 Ks(R) isolates (42 different species) were recovered from apple flowers and leaves and orchard soil samples. Although we have not established the presence of a transferrable Ks(R) gene in orchard bacteria, the frequency, number of species, and presence of Ks(R) enterobacterial species in orchard samples suggests the possible role of nontarget bacteria in the future transfer of a Ks(R) gene to E. amylovora. Our data confirm the importance of kasugamycin as an alternate antibiotic for fire blight management and lay the groundwork for the development and incorporation of resistance management strategies.
Collapse
Affiliation(s)
- Gayle C McGhee
- Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
327
|
O'Brien HE, Thakur S, Guttman DS. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:269-89. [PMID: 21568703 DOI: 10.1146/annurev-phyto-072910-095242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae causes serious diseases in a wide range of important crop plants, with recent severe outbreaks on the New Zealand kiwifruit crop and among British horse chestnut trees. Next-generation genome sequencing of over 25 new strains has greatly broadened our understanding of how this species adapts to a diverse range of plant hosts. Not unexpectedly, the genomes were found to be highly dynamic, and extensive polymorphism was found in the distribution of type III secreted effectors (T3SEs) and other virulence-associated genes, even among strains within the same pathovar. An underexplored area brought to light by these data is the specific metabolic adaptations required for growth on woody hosts. These studies provide a tremendous wealth of candidates for more refined functional characterization, which is greatly enhancing our ability to disentangle the web of host-pathogen interactions that determine disease outcomes.
Collapse
Affiliation(s)
- Heath E O'Brien
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada
| | | | | |
Collapse
|
328
|
Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS, Kaiser M, van der Hoorn RA. Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. PLANT PHYSIOLOGY 2011; 155:477-89. [PMID: 21045122 PMCID: PMC3075764 DOI: 10.1104/pp.110.163733] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/20/2023]
Abstract
Syringolin A (SylA) is a nonribosomal cyclic peptide produced by the bacterial pathogen Pseudomonas syringae pv syringae that can inhibit the eukaryotic proteasome. The proteasome is a multisubunit proteolytic complex that resides in the nucleus and cytoplasm and contains three subunits with different catalytic activities: β1, β2, and β5. Here, we studied how SylA targets the plant proteasome in living cells using activity-based profiling and imaging. We further developed this technology by introducing new, more selective probes and establishing procedures of noninvasive imaging in living Arabidopsis (Arabidopsis thaliana) cells. These studies showed that SylA preferentially targets β2 and β5 of the plant proteasome in vitro and in vivo. Structure-activity analysis revealed that the dipeptide tail of SylA contributes to β2 specificity and identified a nonreactive SylA derivative that proved essential for imaging experiments. Interestingly, subcellular imaging with probes based on epoxomicin and SylA showed that SylA accumulates in the nucleus of the plant cell and suggests that SylA targets the nuclear proteasome. Furthermore, subcellular fractionation studies showed that SylA labels nuclear and cytoplasmic proteasomes. The selectivity of SylA for the catalytic subunits and subcellular compartments is discussed, and the subunit selectivity is explained by crystallographic data.
Collapse
|
329
|
Elhariry HM. Biofilm formation by Aeromonas hydrophila on green-leafy vegetables: cabbage and lettuce. Foodborne Pathog Dis 2011; 8:125-31. [PMID: 21034267 DOI: 10.1089/fpd.2010.0642] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila is the most well known of the six species of Aeromonas, which has been linked to two groups of human diseases: septicemia and gastroenteritis. Reference strain ATCC 7966 and biofilm strains TUB19, TUB20, and TUB21 were investigated for their ability to form biofilm in vitro (after 48 h on polystyrene surface) and on the surface of two green-leafy vegetables, cabbage and lettuce (after 1, 2, 4, and 24 h). Attachment strength (S(R)) of these strains to the vegetable surface was also measured in the same time intervals. The ATCC 7966 and TUB19 had high ability to form biofilm in vitro compared with TUB20 and TUB21 in full strength tryptone soy broth or under starvation conditions in diluted tryptone soy broth (1:20, v/v). Cell surface hydrophobicity of the biofilm strains was lower than that of the reference strain. The biofilm of all tested strains on polystyrene surfaces differed from that on the vegetable surfaces. All strains studied rapidly attached to both green leafy vegetables (after 1 h). S(R) and cell populations (loosely and strongly attached cells) significantly (p < 0.05) increased with contact time; however, no significant (p > 0.05) differences in cell populations were recorded after 4 and 24 h. The highest S(R) and cell population (log CFU cm⁻²) were recorded by TUB19. In conclusion, the use of A. hydrophila strains isolated from environmental biofilm samples may be more useful for understanding biofilm formation on green-leafy vegetables than the reference or laboratory strains. The attachment of A. hydrophila was significantly affected by the surfaces of green-leafy vegetables. Further studies are required to improve our understanding of the interaction between human microbial pathogens and surfaces of raw vegetables.
Collapse
Affiliation(s)
- Hesham M Elhariry
- Department of Biology, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia.
| |
Collapse
|
330
|
Beattie GA. Water relations in the interaction of foliar bacterial pathogens with plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:533-55. [PMID: 21438680 DOI: 10.1146/annurev-phyto-073009-114436] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011-3211, USA.
| |
Collapse
|
331
|
Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Appl Environ Microbiol 2010; 77:498-504. [PMID: 21075871 DOI: 10.1128/aem.01661-10] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nontyphoid salmonellosis caused by Salmonella enterica is the most common bacterial food-borne illness in humans, and fresh produce, including tomatoes, is a common vehicle. Accumulating data indicate that human enteric pathogenic bacteria, including S. enterica, interact actively with plants. Tomato plants were inoculated with S. enterica to evaluate plausible contamination routes and to determine if the tomato cultivar affects S. enterica colonization. S. enterica population levels on tomato leaves were cultivar dependent. S. enterica levels on Solanum pimpinellifolium (West Virginia 700 [WVa700]) were lower than on S. lycopersicum cultivars. S. enterica preferentially colonized type 1 trichomes and rarely interacted with stomata, unlike what has been reported for cut lettuce leaves. Early S. enterica leaf colonization led to contamination of all fruit, with levels as high as 10(5) CFU per fruit. Reduced bacterial speck lesion formation correlated with reduced S. enterica populations in the phyllosphere. Tomato pedicels and calyxes also harbored large S. enterica populations following inoculation via contaminated water postharvest. WVa700 green fruit harbored significantly smaller S. enterica populations than did red fruit or S. lycopersicum fruit. We found that plants irrigated with contaminated water had larger S. enterica populations than plants grown from seeds planted in infested soil. However, both routes of contamination resulted in detectable S. enterica populations in the phyllosphere. Phyllosphere S. enterica populations pose a risk of fruit contamination and subsequent human disease. Restricting S. enterica phyllosphere populations may result in reduced fruit contamination. We have identified WVa700 as a tomato cultivar that can restrict S. enterica survival in the phyllosphere.
Collapse
|
332
|
Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 2010; 12:2885-93. [PMID: 20545741 PMCID: PMC3156554 DOI: 10.1111/j.1462-2920.2010.02258.x] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Large populations of bacteria live on leaf surfaces and these phyllosphere bacteria can have important effects on plant health. However, we currently have a limited understanding of bacterial diversity on tree leaves and the inter- and intra-specific variability in phyllosphere community structure. We used a barcoded pyrosequencing technique to characterize the bacterial communities from leaves of 56 tree species in Boulder, Colorado, USA, quantifying the intra- and inter-individual variability in the bacterial communities from 10 of these species. We also examined the geographic variability in phyllosphere communities on Pinus ponderosa from several locations across the globe. Individual tree species harboured high levels of bacterial diversity and there was considerable variability in community composition between trees. The bacterial communities were organized in patterns predictable from the relatedness of the trees as there was significant correspondence between tree phylogeny and bacterial community phylogeny. Inter-specific variability in bacterial community composition exceeded intra-specific variability, a pattern that held even across continents where we observed minimal geographic differentiation in the bacterial communities on P. ponderosa needles.
Collapse
Affiliation(s)
- Amanda J. Redford
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Robert M. Bowers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yan Linhart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
333
|
Unterseher M, Schnittler M. Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech (Fagus sylvatica). FUNGAL ECOL 2010. [DOI: 10.1016/j.funeco.2010.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
334
|
Baker CM, Chitrakar R, Obulareddy N, Panchal S, Williams P, Melotto M. Molecular battles between plant and pathogenic bacteria in the phyllosphere. Braz J Med Biol Res 2010; 43:698-704. [PMID: 20602017 PMCID: PMC3041987 DOI: 10.1590/s0100-879x2010007500060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022] Open
Abstract
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Collapse
Affiliation(s)
- C M Baker
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|
335
|
Ibekwe AM, Papiernik SK, Yang CH. Influence of soil fumigation by methyl bromide and methyl iodide on rhizosphere and phyllosphere microbial community structure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:427-36. [PMID: 20512733 DOI: 10.1080/03601231003800131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Rhizosphere and phyllosphere microbial communities were evaluated on roots and leaves of growth chamber-grown lettuce (Lactuca sativa (L.) cv. Green Forest) plants by culture-dependent and -independent methods after soil fumigation. Denaturing gradient gel electrophoresis (DGGE) with 16S rRNA primers followed by cloning and sequencing was used to identify major rRNA bands from the rhizosphere and phyllosphere. Three weeks after fumigation, there were no differences (P = 0.16) in rhizosphere microbial communities between the fumigated treatments and the control. The same effect was observed during week seven after fumigation (P=0.49). Also, no significant differences (P=0.49) were found in the phyllosphere microbial communities between the fumigated treatments and the control during the growth period of the plant. A majority of the bands in the rhizosphere were related to known bacterial sequences with a 96 to 100 % sequence similarity. Some of the derived sequences were related to Pseudomonas syringae pv. tomato DC300 and Bradyrhizobium japonicum USDA 110. A total of 23 isolates were identified from leaf surface by both culture-dependent and independent methods, and only Photorhabdus luminescens was found on leaf surface using both techniques. All the Biolog isolates from phyllosphere were from the Proteobacteria phylum compared to the culture-independent bands from the leaves that were from different bacterial phyla. Based on our data, methyl bromide (MeBr) and methyl iodide (MeI) did not have any significant negative effects on rhizosphere and phyllosphere microbial communities throughout the growing period of lettuce.
Collapse
Affiliation(s)
- A M Ibekwe
- USDA-ARS, U.S. Salinity Laboratory, Riverside, California 92507, USA.
| | | | | |
Collapse
|
336
|
Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 2010; 76:5452-62. [PMID: 20581190 DOI: 10.1128/aem.00686-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv. syringae strain B728a, for which a complete genome sequence is available. P. syringae pv. syringae B728a is able to produce the compatible solutes betaine, ectoine, N-acetylglutaminylglutamine amide (NAGGN), and trehalose. Analysis of osmolyte profiles of P. syringae pv. syringae B728a under a variety of in vitro and in planta conditions reveals that the osmolytes differentially contribute to water stress tolerance in this species and that they interact at the level of transcription to yield a hierarchy of expression. While the interruption of a putative gene cluster coding for NAGGN biosynthesis provided the first experimental evidence of the NAGGN biosynthetic pathway, application of this knockout strain and also a gfp reporter gene fusion strain demonstrated the small contribution of NAGGN to cell survival and desiccation tolerance of P. syringae pv. syringae B728a under in planta conditions. Additionally, detailed investigation of ectC, an orphan of the ectoine cluster (lacking the ectA and ectB homologs), revealed its functionality and that ectoine production could be detected in NaCl-amended cultures of P. syringae pv. syringae B728a to which sterilized leaves of Syringa vulgaris had been added.
Collapse
|
337
|
Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol 2010; 76:5363-72. [PMID: 20562275 DOI: 10.1128/aem.00592-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel biosurfactant detection assay was developed for the observation of surfactants on agar plates. By using an airbrush to apply a fine mist of oil droplets, surfactants can be observed instantaneously as halos around biosurfactant-producing colonies. This atomized oil assay can detect a wide range of different synthetic and bacterially produced surfactants. This method could detect much lower concentrations of many surfactants than a commonly used water drop collapse method. It is semiquantitative and therefore has broad applicability for uses such as high-throughput mutagenesis screens of biosurfactant-producing bacterial strains. The atomized oil assay was used to screen for mutants of the plant pathogen Pseudomonas syringae pv. syringae B728a that were altered in the production of biosurfactants. Transposon mutants displaying significantly altered surfactant halos were identified and further analyzed. All mutants identified displayed altered swarming motility, as would be expected of surfactant mutants. Additionally, measurements of the transcription of the syringafactin biosynthetic cluster in the mutants, the principal biosurfactant known to be produced by B728a, revealed novel regulators of this pathway.
Collapse
|
338
|
Pérez-Martínez I, Rodríguez-Moreno L, Lambertsen L, Matas IM, Murillo J, Tegli S, Jiménez AJ, Ramos C. Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.). Appl Environ Microbiol 2010; 76:3611-9. [PMID: 20363790 PMCID: PMC2876471 DOI: 10.1128/aem.00133-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/26/2010] [Indexed: 01/16/2023] Open
Abstract
Pseudomonas savastanoi pv. savastanoi strain NCPPB 3335 is a model bacterial pathogen for studying the molecular basis of disease production in woody hosts. We report the sequencing of the hrpS-to-hrpZ region of NCPPB 3335, which has allowed us to determine the phylogenetic position of this pathogen with respect to previously sequenced Pseudomonas syringae hrp clusters. In addition, we constructed a mutant of NCPPB 3335, termed T3, which carries a deletion from the 3' end of the hrpS gene to the 5' end of the hrpZ operon. Despite its inability to multiply in olive tissues and to induce tumor formation in woody olive plants, P. savastanoi pv. savastanoi T3 can induce knot formation on young micropropagated olive plants. However, the necrosis and formation of internal open cavities previously reported in knots induced by the wild-type strain were not observed in those induced by P. savastanoi pv. savastanoi T3. Tagging of P. savastanoi pv. savastanoi T3 with green fluorescent protein (GFP) allowed real-time monitoring of its behavior on olive plants. In olive plant tissues, the wild-type strain formed aggregates that colonized the intercellular spaces and internal cavities of the hypertrophic knots, while the mutant T3 strain showed a disorganized distribution within the parenchyma of the knot. Ultrastructural analysis of knot sections revealed the release of extensive outer membrane vesicles from the bacterial cell surface of the P. savastanoi pv. savastanoi T3 mutant, while the wild-type strain exhibited very few vesicles. This phenomenon has not been described before for any other bacterial phytopathogen during host infection.
Collapse
Affiliation(s)
- Isabel Pérez-Martínez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Luis Rodríguez-Moreno
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Lotte Lambertsen
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Isabel M. Matas
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Jesús Murillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Stefania Tegli
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Antonio J. Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| | - Cayo Ramos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain, Departamento de Producción Agraria, Universidad Pública de Navarra, Campus de Arrosadía, E-31006 Pamplona, Spain, Dipartimento di Biotecnologie Agrarie, Universitá degli Studi di Firenze, Sez. Patologia Vegetale, Laboratorio di Patologia Vegetale Molecolare, Via della Lastruccia 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
339
|
Knepper C, Day B. From perception to activation: the molecular-genetic and biochemical landscape of disease resistance signaling in plants. THE ARABIDOPSIS BOOK 2010; 8:e012. [PMID: 22303251 PMCID: PMC3244959 DOI: 10.1199/tab.0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
More than 60 years ago, H.H. Flor proposed the "Gene-for-Gene" hypothesis, which described the genetic relationship between host plants and pathogens. In the decades that followed Flor's seminal work, our understanding of the plant-pathogen interaction has evolved into a sophisticated model, detailing the molecular genetic and biochemical processes that control host-range, disease resistance signaling and susceptibility. The interaction between plants and microbes is an intimate exchange of signals that has evolved for millennia, resulting in the modification and adaptation of pathogen virulence strategies and host recognition elements. In total, plants have evolved mechanisms to combat the ever-changing landscape of biotic interactions bombarding their environment, while in parallel, plant pathogens have co-evolved mechanisms to sense and adapt to these changes. On average, the typical plant is susceptible to attack by dozens of microbial pathogens, yet in most cases, remains resistant to many of these challenges. The sum of research in our field has revealed that these interactions are regulated by multiple layers of intimately linked signaling networks. As an evolved model of Flor's initial observations, the current paradigm in host-pathogen interactions is that pathogen effector molecules, in large part, drive the recognition, activation and subsequent physiological responses in plants that give rise to resistance and susceptibility. In this Chapter, we will discuss our current understanding of the association between plants and microbial pathogens, detailing the pressures placed on both host and microbe to either maintain disease resistance, or induce susceptibility and disease. From recognition to transcriptional reprogramming, we will review current data and literature that has advanced the classical model of the Gene-for-Gene hypothesis to our current understanding of basal and effector triggered immunity.
Collapse
Affiliation(s)
- Caleb Knepper
- Michigan State University. Program in Genetics. East Lansing, MI 48824. USA
- Michigan State University. Department of Energy Plant Research Laboratory. East Lansing, MI 48824. USA
| | - Brad Day
- Michigan State University. Program in Genetics. East Lansing, MI 48824. USA
- Michigan State University. Department of Plant Pathology. East Lansing, MI 48824. USA
| |
Collapse
|
340
|
Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010; 192:3584-96. [PMID: 20472799 DOI: 10.1128/jb.00114-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. syringae B728a is a resident on leaves of common bean, where it utilizes several well-studied virulence factors, including secreted effectors and toxins, to develop a pathogenic interaction with its host. The B728a genome was recently sequenced, revealing the presence of 1,297 genes with unknown function. This study demonstrates that a 29.9-kb cluster of genes in the B728a genome shares homology to the novel type VI secretion system (T6SS) locus recently described for other gram-negative bacteria. Western blot analyses showed that B728a secretes Hcp, a T6SS protein, in culture and that this secretion is dependent on clpV, a gene that likely encodes an AAA(+) ATPase. In addition, we have identified two B728a sensor kinases that have homology to the P. aeruginosa proteins RetS and LadS. We demonstrate that B728a RetS and LadS reciprocally regulate the T6SS and collectively modulate several virulence-related activities. Quantitative PCR analyses indicated that RetS and LadS regulate genes associated with the type III secretion system and that LadS controls the expression of genes involved in the production of the exopolysaccharides alginate and levan. These analyses also revealed that LadS and the hybrid sensor kinase GacS positively regulate the expression of a putative novel exopolysaccharide called Psl. Plate assays demonstrated that RetS negatively controls mucoidy, while LadS negatively regulates swarming motility. A mutation in retS affected B728a population levels on the surfaces of bean leaves. A model for the LadS and RetS control of B728a virulence activities is proposed.
Collapse
|
341
|
A microarray for screening the variability of 16S-23S rRNA internal transcribed spacer in Pseudomonas syringae. J Microbiol Methods 2010; 82:90-4. [PMID: 20470837 DOI: 10.1016/j.mimet.2010.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/03/2010] [Accepted: 05/07/2010] [Indexed: 11/22/2022]
Abstract
The 16S-23S ribosomal internal transcribed spacer (ITS1) is often used as a subspecies or strain-specific molecular marker for various kinds of bacteria. However, the presence of different copies of ITS1 within a single genome has been reported. Such mosaicism may influence correct typing of many bacteria and therefore knowledge about exact configuration of this region in a particular genome is essential. In order to screen the variability of ITS1 among and within Pseudomonas syringae genomes, an oligonucleotide microarray targeting different configurations of ITS1 was developed. The microarray revealed seven distinct variants in 13 pathovars tested and detected mosaicism within the genomes of P. syringae pv. coronafaciens, pisi, syringae and tabaci. In addition, the findings presented here challenge the using of rRNA analysis for pathovar and strain determination.
Collapse
|
342
|
Ning J, Bai Z, Gang G, Jiang D, Hu Q, He J, Zhang H, Zhuang G. Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere. FEMS Microbiol Lett 2010; 306:135-43. [DOI: 10.1111/j.1574-6968.2010.01946.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
343
|
Balint-Kurti P, Simmons SJ, Blum JE, Ballaré CL, Stapleton AE. Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:473-84. [PMID: 20192834 DOI: 10.1094/mpmi-23-4-0473] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant leaves host a specific set of microbial epiphytes. Plant genetic and solar UV-B radiation effects on the diversity of the phyllosphere were examined by measuring epiphytic bacterial ribosomal DNA diversity in a maize recombinant inbred (RI) mapping population. Several chromosomal quantitative trait loci (QTL) with significant effects on bacterial diversity were identified, some of which had effects only in the presence of UV-B radiation and others that had effects both with and without UV-B. Candidate genes with allele-specific effects were mapped to the bacterial diversity chromosomal regions. A glutamate decarboxylase candidate gene was located at a UV-B-specific chromosomal locus, and in a comparison between two RI lines with contrasting bacterial diversity phenotypes, high bacterial diversity was associated with high levels of glutamate decarboxylase enzyme activity, a component of the gamma-aminobutyric acid (GABA) pathway. The bacterial diversity loci exhibited a significant overlap with loci connected with Southern leaf blight (SLB) susceptibility in the field. A SLB-resistant inbred genotype had less beta bacterial diversity, and antibiotic treatment of inbreds increased this diversity. These results suggest that the GABA pathway is genetically associated with phyllosphere bacterial diversity. Furthermore, the colocalization of QTL between low bacterial diversity and fungal blight-resistance and the increase in beta diversity in antibiotic-treated leaves suggest that occupation of leaf habitats by a particular set of suppressive bacteria may restrict phyllosphere bacterial variability and increase resistance to fungal infection.
Collapse
Affiliation(s)
- Peter Balint-Kurti
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
344
|
Isaeva OV, Glushakova AM, Garbuz SA, Kachalkin AV, Chernov IY. Endophytic yeast fungi in plant storage tissues. BIOL BULL+ 2010. [DOI: 10.1134/s1062359010010048] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
345
|
Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM. Diversity of endophytic bacteria in Brazilian sugarcane. GENETICS AND MOLECULAR RESEARCH 2010; 9:250-8. [PMID: 20198580 DOI: 10.4238/vol9-1gmr703] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endophytic bacteria live inside plant tissues without causing disease. Studies of endophytes in sugarcane have focused on the isolation of diazotrophic bacteria. We examined the diversity of endophytic bacteria in the internal tissues of sugarcane stems and leaves, using molecular and biochemical methods. Potato-agar medium was used to cultivate the endophytes; 32 isolates were selected for analysis. DNA was extracted and the 16S rRNA gene was partially sequenced and used for molecular identification. Gram staining, catalase and oxidase tests, and the API-20E system were used to characterize the isolates. The strains were divided into five groups, based on the 16S rRNA sequences. Group I comprised 14 representatives of the Enterobacteriaceae; group II was composed of Bacilli; group III contained one representative, Curtobacterium sp; group IV contained representatives of the Pseudomonadaceae family, and group V had one isolate with an uncultured bacterium. Four isolates were able to reduce acetylene to ethylene. Most of the bacteria isolated from the sugarcane stem and leaf tissues belonged to Enterobacteriaceae and Pseudomonaceae, respectively, demonstrating niche specificity. Overall, we found the endophytic bacteria in sugarcane to be more diverse than previously reported.
Collapse
Affiliation(s)
- G S Magnani
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | | | | | | | |
Collapse
|
346
|
Penaloza-Vazquez A, Sreedharan A, Bender CL. Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ Microbiol 2010; 12:1452-67. [PMID: 20132277 DOI: 10.1111/j.1462-2920.2010.02160.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen that causes a rapid dieback on ornamental pear trees. In the present study, the transcriptional expression of hrpM/opgH, algD, hrpR and rpoD was evaluated in P. syringae FF5 and FF5.M2 (hrpM/opgH mutant). The temporal expression of these genes was evaluated during biofilm formation, the hypersensitive reaction (HR) on tobacco plants, and when the bacteria were subjected to different environmental stresses. The results indicate that mutations in hrpM negatively impair several traits including biofilm formation, the ability to cause disease in host plants and the HR in non-host plants, and the expression of hrpR, a regulatory gene modulating the latter two traits. Furthermore, FF5.M2 was decreased in swarming motility and unable to respond to different environmental challenges. Interestingly, FF5.M2 showed an exponential increase in the expression of algD, which is the first gene to be transcribed during the biosynthesis of the alginate, a virulence factor in P. syringae. The expression of both hrpM and algD were required for biofilm formation, and hrpM was expressed earlier than algD during biofilm development. These findings indicate that hrpM expression is required for several traits in P. syringae and plays an important role in how this bacterium responds to environmental challenges.
Collapse
Affiliation(s)
- Alejandro Penaloza-Vazquez
- 127 Noble Research Center, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
347
|
Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J. Robustness of the bacterial community in the cabbage white butterfly larval midgut. MICROBIAL ECOLOGY 2010; 59:199-211. [PMID: 19924467 PMCID: PMC2836246 DOI: 10.1007/s00248-009-9595-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/16/2009] [Indexed: 05/03/2023]
Abstract
Microbial communities typically vary in composition and structure over space and time. Little is known about the inherent characteristics of communities that govern various drivers of these changes, such as random variation, changes in response to perturbation, or susceptibility to invasion. In this study, we use 16S ribosomal RNA gene sequences to describe variation among bacterial communities in the midguts of cabbage white butterfly (Pieris rapae) larvae and examine the influence of community structure on susceptibility to invasion. We compared communities in larvae experiencing the same conditions at different times (temporal variation) or fed different diets (perturbation). The most highly represented phylum was Proteobacteria, which was present in all midgut communities. The observed species richness ranged from six to 15, and the most abundant members affiliated with the genera Methylobacteria, Asaia, Acinetobacter, Enterobacter, and Pantoea. Individual larvae subjected to the same conditions at the same time harbored communities that were highly similar in structure and membership, whereas the communities observed within larval populations changed with diet and over time. In addition, structural changes due to perturbation coincided with enhanced susceptibility to invasion by Enterobacter sp. NAB3R and Pantoea stewartii CWB600, suggesting that resistance to invasion is in part governed by community structure. These findings along with the observed conservation of membership at the phylum level, variation in structure and membership at lower taxonomic levels, and its relative simplicity make the cabbage white butterfly larval community an attractive model for studying community dynamics and robustness.
Collapse
Affiliation(s)
- Courtney J. Robinson
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Departments of Internal Medicine and Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48104 USA
| | - Patrick Schloss
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: University of Michigan, Department of Microbiology & Immunology, Ann Arbor, 48109 MI USA
| | - Yolied Ramos
- Department of Industrial Microbiology, University of Puerto Rico-Mayagüez, Mayagüez, PR 00681 USA
| | - Kenneth Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Jo Handelsman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 USA
- 1550 Linden Drive, Madison, WI 53706 USA
- University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
348
|
Clarke CR, Cai R, Studholme DJ, Guttman DS, Vinatzer BA. Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc Locus are common leaf colonizers equipped with an atypical type III secretion system. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:198-210. [PMID: 20064063 DOI: 10.1094/mpmi-23-2-0198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae is best known as a plant pathogen that causes disease by translocating immune-suppressing effector proteins into plant cells through a type III secretion system (T3SS). However, P. syringae strains belonging to a newly described phylogenetic subgroup (group 2c) are missing the canonical P. syringae hrp/hrc cluster coding for a T3SS, flanking effector loci, and any close orthologue of known P. syringae effectors. Nonetheless, P. syringae group 2c strains are common leaf colonizers and grow on some tested plant species to population densities higher than those obtained by other P. syringae strains on nonhost species. Moreover, group 2c strains have genes necessary for the production of phytotoxins, have an ice nucleation gene, and, most interestingly, contain a novel hrp/hrc cluster, which is only distantly related to the canonical P. syringae hrp/hrc cluster. This hrp/hrc cluster appears to encode a functional T3SS although the genes hrpK and hrpS, present in the classical P. syringae hrp/hrc cluster, are missing. The genome sequence of a representative group 2c strain also revealed distant orthologues of the P. syringae effector genes avrE1 and hopM1 and the P. aeruginosa effector genes exoU and exoY. A putative life cycle for group 2c P. syringae is discussed.
Collapse
Affiliation(s)
- Christopher R Clarke
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Latham Hall, Ag Quad Lane, Blacksburg 24061, USA
| | | | | | | | | |
Collapse
|
349
|
Zhang L, Huang E, Lin J, Gelbič I, Zhang Q, Guan Y, Huang T, Guan X. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata. Microbiol Res 2010; 165:133-41. [DOI: 10.1016/j.micres.2009.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/06/2009] [Accepted: 03/08/2009] [Indexed: 11/30/2022]
|
350
|
Gu L, Bai Z, Jin B, Hu Q, Wang H, Zhuang G, Zhang H. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. J Environ Sci (China) 2010; 22:134-41. [PMID: 20397397 DOI: 10.1016/s1001-0742(09)60084-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.
Collapse
Affiliation(s)
- Likun Gu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | | | | | | | | | | | | |
Collapse
|