301
|
Fedorova L, Fedorov A. Introns in gene evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
302
|
Abstract
Sex determination offers an opportunity to address many classic questions of developmental biology. In addition, because sex determination evolves rapidly, it offers an opportunity to investigate the evolution of genetic hierarchies. Sex determination in Drosophila melanogaster is controlled by the master regulatory gene, Sex lethal (Sxl). DmSxl controls the alternative splicing of a downstream gene, transformer (tra), which acts with tra2 to control alternative splicing of doublesex (dsx). DmSxl also controls its own splicing, creating an autoregulatory feedback loop that ensures expression of Sxl in females, but not males. A recent paper has shown that in the dipteran Ceratitis capitata later (downstream) steps in the regulatory hierarchy are conserved, while earlier (upstream) steps are not. Cctra is regulated by alternative splicing and apparently controls the alternative splicing of Ccdsx. However, Cctra is not regulated by CcSxl. Instead it appears to autoregulate in a manner similar to the autoregulation seen with DmSxl.
Collapse
Affiliation(s)
- Patricia Graham
- Dept. Molecular Biology, Princeton University, NJ 08544-1041, USA.
| | | | | |
Collapse
|
303
|
Veistinen E, Liippo J, Lassila O. Quantification of human Aiolos splice variants by real-time PCR. J Immunol Methods 2002; 271:113-23. [PMID: 12445735 DOI: 10.1016/s0022-1759(02)00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aiolos is a transcriptional regulator of B cell development and belongs to the Ikaros family of chromatin remodelling transcription factors. All the members of Ikaros family produce multiple isoforms via alternative mRNA splicing. Altered expression of Ikaros isoforms has been found in patients with acute lymphoblastic leukemia but it is not studied whether the altered expression of Aiolos isoforms also has a role in the development of leukemias or lymphomas. We developed a quantitative real-time PCR application to detect the relative expression of Aiolos splice variants. The method is based on fluorescence resonance energy transfer (FRET)-labelled isoform specific hybridisation probes used with the LightCycler instrument. The isoform specificity is obtained by targeting the probes at the edges of chosen exons. The probes are here shown to represent a rapid, high throughput, specific and reproducible quantification method. We designed and optimised the analysis for a dominant negative Aiolos isoform, but the described method is applicable to any isoform-forming gene. This study shows that the real-time PCR with exon edge spanning probe pairs can be applied generally to reveal the importance of alternative splicing and the role of isoforms in normal development and diseases.
Collapse
Affiliation(s)
- Elli Veistinen
- Department of Medical Microbiology, Turku Graduate School of Biomedical Sciences, University of Turku, Kiinamyllynkatu 13, Finland.
| | | | | |
Collapse
|
304
|
Muh SJ, Hovhannisyan RH, Carstens RP. A Non-sequence-specific double-stranded RNA structural element regulates splicing of two mutually exclusive exons of fibroblast growth factor receptor 2 (FGFR2). J Biol Chem 2002; 277:50143-54. [PMID: 12393912 DOI: 10.1074/jbc.m207409200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) mutually exclusive exons IIIb and IIIc represents a tightly regulated and functionally relevant example of post-transcriptional gene regulation. Rat prostate cancer DT3 and AT3 cell lines demonstrate exclusive selection of either exon IIIb or exon IIIc, respectively, and have been used to characterize regulatory FGFR2 RNA cis-elements that are required for splicing regulation. Two sequences termed ISE-2 and ISAR are located in the intron between exons IIIb and IIIc and are required for cell-type specific exon IIIb. Previous studies suggest that the function of these elements involves formation of an RNA stem structure, even though they are separated by more than 700 nucleotides. Using transfected minigenes, we performed a systematic analysis of the sequence and structural components of ISE-2 and ISAR that are required for their ability to regulate FGFR2 splicing. We found that the primary sequence of these elements can be replaced by completely unrelated sequences, provided that they are also predicted to form an RNA stem structure. Thus, a nonsequence-specific double stranded RNA stem constitutes a functional element required for FGFR2 splicing; suggesting that a double-stranded RNA binding protein is a component of the splicing regulatory machinery.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Base Sequence
- Cells, Cultured
- Conserved Sequence
- Exons
- Gene Expression Regulation
- Humans
- Introns
- Mice
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Plasmids/metabolism
- RNA/metabolism
- RNA Splicing
- RNA, Double-Stranded/chemistry
- Rats
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Tumor Cells, Cultured
- Xenopus
- Xenopus Proteins
Collapse
Affiliation(s)
- Stephanie J Muh
- Renal-Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6144, USA
| | | | | |
Collapse
|
305
|
Borson ND, Lacy MQ, Wettstein PJ. Altered mRNA expression of Pax5 and Blimp-1 in B cells in multiple myeloma. Blood 2002; 100:4629-39. [PMID: 12453881 DOI: 10.1182/blood.v100.13.4629] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell disorder that potentially initiates during an early stage of B-cell development. We encountered an unidentified isoform of B cell-specific activator protein (BSAP, or Pax5) in MM cells while performing differential analyses to compare mRNA expression in malignant and normal plasma cells. Pax5 is a transcription factor that plays a central role throughout B-cell development until the point of terminal differentiation. Our finding of this unique isoform prompted us to investigate Pax5 isoform usage in plasma cells and B-cell populations in other MM and healthy subjects. In contrast to normal Pax5 expression, we observed multiple isoforms of Pax5 in conjunction with low levels of expression of the full-length Pax5 in B cells from MM patients. The expressed isoforms in MM varied considerably from patient to patient, with no clear pattern. We also performed semiquantitative analyses of the mRNA expression levels of B lymphocyte-induced maturation protein (Blimp-1), because expression levels of Pax5 and Blimp-1 have been shown to be inversely correlated. We observed the expression of Blimp-1 in the B-cell populations in all 11 MM patients but in none of 11 healthy subjects. We hypothesize that premature Blimp-1 expression coupled to altered and deficient Pax5 expression causes some proliferating B cells to prematurely differentiate to plasma cells in MM.
Collapse
Affiliation(s)
- Nancy D Borson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
306
|
Kan Z, States D, Gish W. Selecting for functional alternative splices in ESTs. Genome Res 2002; 12:1837-45. [PMID: 12466287 PMCID: PMC187565 DOI: 10.1101/gr.764102] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Accepted: 09/30/2002] [Indexed: 11/24/2022]
Abstract
The expressed sequence tag (EST) collection in dbEST provides an extensive resource for detecting alternative splicing on a genomic scale. Using genomically aligned ESTs, a computational tool (TAP) was used to identify alternative splice patterns for 6400 known human genes from the RefSeq database. With sufficient EST coverage, one or more alternatively spliced forms could be detected for nearly all genes examined. To identify high (>95%) confidence observations of alternative splicing, splice variants were clustered on the basis of having mutually exclusive structures, and sample statistics were then applied. Through this selection, alternative splices expected at a frequency of >5% within their respective clusters were seen for only 17%-28% of genes. Although intron retention events (potentially unspliced messages) had been seen for 36% of the genes overall, the same statistical selection yielded reliable cases of intron retention for <5% of genes. For high-confidence alternative splices in the human ESTs, we also noted significantly higher rates both of cross-species conservation in mouse ESTs and of validation in the GenBank mRNA collection. We suggest quantitative analytical approaches such as these can aid in selecting useful targets for further experimental characterization and in so doing may help elucidate the mechanisms and biological implications of alternative splicing.
Collapse
Affiliation(s)
- Zhengyan Kan
- Department of Genetics, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
307
|
Spike CA, Davies AG, Shaw JE, Herman RK. MEC-8 regulates alternative splicing ofunc-52transcripts inC. eleganshypodermal cells. Development 2002; 129:4999-5008. [PMID: 12397108 DOI: 10.1242/dev.129.21.4999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work has shown that C. elegans MEC-8 is a putative RNA-binding protein that promotes specific alternative splices ofunc-52 transcripts. unc-52 encodes homologs of mammalian perlecan that are located extracellularly between muscle and hypodermis and are essential for muscle development in both embryos and larvae. We show that MEC-8 is a nuclear protein found in hypodermis at most stages of development and not in most late embryonic or larval body-wall muscle. We have also found that overexpression of MEC-8 in hypodermis but not muscle can suppress certainunc-52 mutant phenotypes. These are unexpected results because it has been proposed that UNC-52 is produced exclusively by muscle. We have constructed various tissue-specific unc-52 minigenes fused to a gene for green fluorescent protein that have allowed us to monitor tissue-specificmec-8-dependent alternative splicing; we show that mec-8must be expressed in the same cell type as the unc-52 minigene in order to regulate its expression, supporting the view that MEC-8 acts directly on unc-52 transcripts and that UNC-52 must be synthesized primarily by the hypodermis. Indeed, our analysis of unc-52 genetic mosaics has shown that the focus of unc-52 action is not in body-wall muscle but most likely is in hypodermis.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
308
|
Lee KY, Chamberlin ME, Horodyski FM. Biological activity of Manduca sexta allatotropin-like peptides, predicted products of tissue-specific and developmentally regulated alternatively spliced mRNAs. Peptides 2002; 23:1933-41. [PMID: 12431731 DOI: 10.1016/s0196-9781(02)00181-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insect neuropeptide, allatotropin (Manse-AT), exerts multiple functions including the stimulation of juvenile hormone (JH) biosynthesis in adults and the inhibition of active ion transport across the midgut epithelium of feeding larvae. The Manse-AT gene is expressed in multiple regions of the nervous system as three mRNAs that differ by alternative splicing. The specific mRNA isoform present differs in a tissue- and developmental-specific manner thus providing a mechanism for the regulated production of peptides specific to each isoform. These peptides are predicted to include three allatotropin-like (Manse-ATL) peptides that exhibit limited structural identity to Manse-AT and overlapping biological activities.
Collapse
Affiliation(s)
- Kyeong-Yeoll Lee
- Department of Biomedical Sciences and the College of Osteopathic Medicine, 228 Irvine Hall, Ohio University, Athens 45701, USA
| | | | | |
Collapse
|
309
|
Gemignani F, Sazani P, Morcos P, Kole R. Temperature-dependent splicing of beta-globin pre-mRNA. Nucleic Acids Res 2002; 30:4592-8. [PMID: 12409448 PMCID: PMC135830 DOI: 10.1093/nar/gkf607] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A T-->G mutation at nucleotide 705 of human beta-globin intron 2 creates an aberrant 5' splice site and activates a cryptic 3' splice site upstream. In consequence, the pre-mRNA is spliced via aberrant splice sites, despite the presence of the still functional correct sites. Surprisingly, when IVS2-705 HeLa or K562 cells were cultured at temperatures below 30 degrees C, aberrant splicing was inhibited and correct splicing was restored. Similar temperature effects were seen for another beta-globin pre-mRNA, IVS2-745, and in a construct in which a beta-globin intron was inserted into a coding sequence of EGFP. Temperature-induced alternative splicing was affected by the nature of the internal aberrant splice sites flanking the correct sites and by exonic sequences. The results indicate that in the context of thalassemic splicing mutations and possibly in other alternatively spliced pre-mRNAs, temperature is one of the parameters that affect splice site selection.
Collapse
Affiliation(s)
- Federica Gemignani
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, CB 7295, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
310
|
Seong JY, Han J, Park S, Wuttke W, Jarry H, Kim K. Exonic splicing enhancer-dependent splicing of the gonadotropin-releasing hormone premessenger ribonucleic acid is mediated by tra2alpha, a 40-kilodalton serine/arginine-rich protein. Mol Endocrinol 2002; 16:2426-38. [PMID: 12403832 DOI: 10.1210/me.2001-0297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In an earlier study, we found that excision of the first intron (intron A) from the rat GnRH primary transcript is attenuated in non-GnRH-producing cells. This attenuation can be partially relieved by exonic splicing enhancers (ESEs) located in GnRH exons 3 and 4. In the present study, we confirmed that intron A of the mouse GnRH pre-mRNA was not excised in a HeLa nuclear extract (NE) in vitro or in COS-7 cells in vivo. Intron A could, however, be partially removed when exon 3 and/or 4 were linked to exon 2. In the presence of an ESE in exon 4 (ESE4), an addition of GT1 NE further increased the excision rate of intron A, whereas the addition of KK1 (a non-GnRH-producing cell) NE decreased it. To define the GnRH neuron-specific splicing activity, GT1 NE was fractionated by ultracentrifugation and ammonium sulfate precipitation. A 50-90% ammonium sulfate pellet (ASP50-90) fraction was further precipitated with 20 mM MgCl(2) to isolate a serine/arginine-rich (SR) protein fraction. Among the ASP fractions, ASP40-50 significantly increased the excision rate of intron A in the presence of HeLa NE or SR protein-rich fraction. However, the ASP40-50 fraction alone could not remove intron A. This result suggests the presence of a cofactor protein(s) in the ASP40-50 fraction that may mediate the interaction between a 3' spliceosome complex and the ESE4-SR protein complex. UV cross-linking and gel mobility shift analysis revealed that Tra2alpha but not other SR proteins tested, specifically binds to ESE4. Moreover, Tra2alpha stimulated intron A excision in a dose-dependent manner. These results imply that Tra2alpha and a cofactor protein in the ASP40-50 fraction are involved in mediating the GnRH neuron-specific excision of intron A from the GnRH primary transcript.
Collapse
Affiliation(s)
- Jae Young Seong
- Hormone Research Center, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
311
|
Ray BK, Murphy R, Ray P, Ray A. SAF-2, a splice variant of SAF-1, acts as a negative regulator of transcription. J Biol Chem 2002; 277:46822-30. [PMID: 12270922 DOI: 10.1074/jbc.m206299200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A-activating factor-1 (SAF-1), a Cys(2)His(2)-type zinc finger transcription factor, regulates inflammation-induced expression of serum amyloid A protein that is linked to the pathogenesis of reactive amyloidosis, rheumatoid arthritis, and atherosclerosis. Here we report the identification of a novel splice variant, SAF-2, of the SAF family bearing strong sequence similarity to SAF-1. The N-terminal 426 amino acids of both SAF-1 and SAF-2 are identical containing two polyalanine tracts, one proline-rich domain, and six zinc fingers. However, the C terminus of SAF-2 containing two additional zinc fingers is different from SAF-1, which indicates the capability of different biochemical function. We show that SAF-2 interacts more avidly with the SAF-binding element, but its transactivation potential is much lower than SAF-1. Furthermore, co-expression of SAF-2 markedly suppresses SAF-1-regulated promoter function. Finally, we show that the level of SAF-2 protein is reduced during many inflammatory conditions, whereas the SAF-1 protein level remains unchanged. Together, these data suggest that the relative abundance of SAF-2 plays a critical role in the fine tuned regulation of inflammation-responsive genes that are controlled by SAF-1.
Collapse
Affiliation(s)
- Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211.
| | | | | | | |
Collapse
|
312
|
Gorlov IP, Saunders GF. A method for isolating alternatively spliced isoforms: isolation of murine Pax6 isoforms. Anal Biochem 2002; 308:401-4. [PMID: 12419357 DOI: 10.1016/s0003-2697(02)00244-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Ivan P Gorlov
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
313
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
314
|
Peruzzi D, Aluigi M, Manzoli L, Billi AM, Di Giorgio FP, Morleo M, Martelli AM, Cocco L. Molecular characterization of the human PLC beta1 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:46-54. [PMID: 12213492 DOI: 10.1016/s1388-1981(02)00269-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inositide-specific phospholipase C (PLC) signaling constitutes a central intermediate in a number of cellular functions among which the control of cell growth raises a particular interest. Indeed, we have previously shown that nuclear phospholipase C beta1 (PLC beta1) is central for the regulation of mitogen-induced cell growth. We have also assigned by fluorescence in situ hybridization (FISH) analysis the PLC beta1 to human chromosome 20p12. In this study, we have carried out a detailed analysis of the human gene, showing the existence of alternative splicing, which gives rise, besides the two forms (1a and 1b) already shown in rodents, to a new 600 bp smaller form coding for a 110 kDa protein. We have also identified a new exon at the 5', showing no homology with the rodent sequence. Here we provide the complete determination of the exon/intron structure of the gene spanning 250 kb of DNA. We found that the exons are quite small, ranging from 49 to 222 bp, while the introns vary between 108 bp and 34,400 bp. The availability of the understanding of the genome organization of this inositide-specific PLC, which represents a key step of the cell cycle related signaling, could actually pave the way for further genetic analysis of p12 region of human chromosome 20 in diseases involving alterations of the control of cell growth such as malignancies.
Collapse
Affiliation(s)
- Daniela Peruzzi
- Department of Anatomical Sciences, Cellular Signalling Laboratory, University of Bologna, Via Irnerio, 48, I-40126 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Xu Q, Modrek B, Lee C. Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res 2002; 30:3754-66. [PMID: 12202761 PMCID: PMC137414 DOI: 10.1093/nar/gkf492] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/08/2002] [Accepted: 07/08/2002] [Indexed: 11/13/2022] Open
Abstract
We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye-retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10-30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.
Collapse
Affiliation(s)
- Qiang Xu
- Molecular Biology Institute and Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
316
|
Gromak N, Smith CWJ. A splicing silencer that regulates smooth muscle specific alternative splicing is active in multiple cell types. Nucleic Acids Res 2002; 30:3548-57. [PMID: 12177296 PMCID: PMC134246 DOI: 10.1093/nar/gkf480] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 07/01/2002] [Accepted: 07/01/2002] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing of alpha-tropomyosin (alpha-TM) involves mutually exclusive selection of exons 2 and 3. Selection of exon 2 in smooth muscle (SM) cells is due to inhibition of exon 3, which requires both binding sites for polypyrimidine tract-binding protein as well as UGC (or CUG) repeat elements on both sides of exon 3. Point mutations or substitutions of the UGC-containing upstream regulatory element (URE) with other UGC elements disrupted the alpha-TM splicing pattern in transfected cells. Multimerisation of the URE caused enhanced exon skipping in SM and various non-SM cells. In the presence of multiple UREs the degree of splicing regulation was decreased due to the high levels of exon skipping in non-SM cell lines. These results suggest that the URE is not an intrinsically SM- specific element, but that its functional strength is fine tuned to exploit differences in the activities of regulatory factors between SM and other cell types. Co-transfection of tropomyosin reporters with members of the CUG-binding protein family, which are candidate URE-binding proteins, indicated that these factors do not mediate repression of tropomyosin exon 3.
Collapse
Affiliation(s)
- Natalia Gromak
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
317
|
Pane A, Salvemini M, Delli Bovi P, Polito C, Saccone G. Thetransformergene inCeratitis capitataprovides a genetic basis for selecting and remembering the sexual fate. Development 2002; 129:3715-25. [PMID: 12117820 DOI: 10.1242/dev.129.15.3715] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medfly Ceratitis capitata contains a gene (Cctra) with structural and functional homology to the Drosophila melanogaster sex-determining gene transformer (tra). Similar to tra in Drosophila, Cctra is regulated by alternative splicing such that only females can encode a full-length protein. In contrast to Drosophila, however, where tra is a subordinate target of Sex-lethal (Sxl), Cctra seems to initiate an autoregulatory mechanism in XX embryos that provides continuous tra female-specific function and act as a cellular memory maintaining the female pathway. Indeed, a transient interference with Cctra expression in XX embryos by RNAi treatment can cause complete sexual transformation of both germline and soma in adult flies, resulting in a fertile male XX phenotype. The male pathway seems to result when Cctra autoregulation is prevented and instead splice variants with truncated open reading frames are produced. We propose that this repression is achieved by the Y-linked male-determining factor (M).
Collapse
Affiliation(s)
- Attilio Pane
- Dipartimento di Genetica, Biologia Generale e Molecolare, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| | | | | | | | | |
Collapse
|
318
|
Mercatante DR, Kole R. Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:126-32. [PMID: 12084454 DOI: 10.1016/s0925-4439(02)00075-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of various diseases including cancer. The use of antisense oligonucleotides to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. However, to utilize antisense oligonucleotides as molecular chemotherapeutic agents, the global effects of these molecules need to be examined. The advent of gene expression array technology has now made it possible to simultaneously examine changes that occur in the expression levels of several thousand genes in response to antisense treatment. This analysis should help in the development of more specific and efficacious antisense oligonucleotides as molecular therapeutics.
Collapse
Affiliation(s)
- Danielle R Mercatante
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
319
|
Simard MJ, Chabot B. SRp30c is a repressor of 3' splice site utilization. Mol Cell Biol 2002; 22:4001-10. [PMID: 12024014 PMCID: PMC133842 DOI: 10.1128/mcb.22.12.4001-4010.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Revised: 02/21/2002] [Accepted: 03/11/2002] [Indexed: 01/04/2023] Open
Abstract
Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that the activity of CE9 is mediated by a trans-acting factor. UV cross-linking analysis revealed the specific association of a 25-kDa nuclear protein with CE9. Using RNA affinity chromatography, we isolated a 25-kDa protein that binds to CE9 RNA. This protein corresponds to SRp30c. Consistent with a role for SRp30c in the activity of CE9, recombinant SRp30c interacts specifically with CE9 and can promote splicing repression in vitro in a CE9-dependent manner. The closest homologue of SRp30c, ASF/SF2, does not bind to CE9 and does not repress splicing even when the intronic SRp30c binding sites are replaced with high-affinity ASF/SF2 binding sites. Only the first 7 nucleotides of CE9 are sufficient for binding to SRp30c, and mutations that abolish binding also prevent repression. Our results indicate that SRp30c can function as a repressor of 3' splice site utilization and suggest that the SRp30c-CE9 interaction may contribute to the control of hnRNP A1 alternative splicing.
Collapse
Affiliation(s)
- Martin J Simard
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|
320
|
Wilanowski T, Tuckfield A, Cerruti L, O'Connell S, Saint R, Parekh V, Tao J, Cunningham JM, Jane SM. A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mech Dev 2002; 114:37-50. [PMID: 12175488 DOI: 10.1016/s0925-4773(02)00046-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila transcription factor Grainyhead regulates several key developmental processes. Three mammalian genes, CP2, LBP-1a and LBP-9 have been previously identified as homologues of grainyhead. We now report the cloning of two new mammalian genes (Mammalian grainyhead (MGR) and Brother-of-MGR (BOM)) and one new Drosophila gene (dCP2) that rewrite the phylogeny of this family. We demonstrate that MGR and BOM are more closely related to grh, whereas CP2, LBP-1a and LBP-9 are descendants of the dCP2 gene. MGR shares the greatest sequence homology with grh, is expressed in tissue-restricted patterns more comparable to grh and binds to and transactivates the promoter of the human Engrailed-1 gene, the mammalian homologue of the key grainyhead target gene, engrailed. This sequence and functional conservation indicates that the new mammalian members of this family play important developmental roles.
Collapse
Affiliation(s)
- Tomasz Wilanowski
- Rotary Bone Marrow Research Laboratory, Royal Melbourne Hospital Research Foundation, c/o Royal Melbourne Hospital Post Office, Grattan Street, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Abstract
Familial dysautonomia is a developmental disorder of the sensory and autonomic nervous system. Recent studies have shown that two mutations in the gene IKBKAP are responsible for the disease. IKAP, the IKBKAP-encoded protein, is a member of the recently identified human Elongator complex. The major FD mutation is a splice mutation that results in aberrant tissue-specific mRNA splicing.
Collapse
Affiliation(s)
- Susan A Slaugenhaupt
- Harvard Institute of Human Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
322
|
Hashimoto Y, Zhang C, Kawauchi J, Imoto I, Adachi MT, Inazawa J, Amagasa T, Hai T, Kitajima S. An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res 2002; 30:2398-406. [PMID: 12034827 PMCID: PMC117192 DOI: 10.1093/nar/30.11.2398] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/CREB family of transcription factors and its expression is increased by various pathophysiological conditions and in several cancer cells. In this study, we describe two alternatively spliced ATF3DeltaZip mRNAs: ATF3DeltaZip2a and ATF3DeltaZip2b. Both variants encoded the same truncated protein of 135 amino acids, which lacked the leucine zipper domain and was incapable of binding to the ATF/CRE motif. The ATF3DeltaZip2 protein was shown to be localized in the nuclei and counteracted the transcriptional repression by the full-length ATF3. Western blot analysis showed that ATF3DeltaZip2 was expressed in cells exposed to A23187. Further study showed that, similar to the full-length ATF3, the expression of ATF3DeltaZip2 was induced by a wide range of stress stimuli. However, its expression was not detectable in cancer cells that constitutively over-expressed ATF3. Taken together, our results suggest that ATF3DeltaZip2, a protein derived from alternatively spliced mRNAs, is induced by various stress signals and may modulate the activity of the full-length ATF3 protein during stress response.
Collapse
Affiliation(s)
- Yoshinori Hashimoto
- Department of Biochemical Genetics, Medical Research Institute and Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
Alternative splicing has emerged as a mechanism that can account for a large proportion of the disparity between the modest number of genes in the human genome and the much higher complexity of the expressed proteome. At least a third, and probably the majority, of human genes are alternatively spliced, and some genes can generate thousands of protein isoforms by complex alternative splicing events. Analysis of the transcriptome will therefore require the development of massively parallel technologies that are able to encompass the complexity arising from alternative splicing.
Collapse
Affiliation(s)
- Gavin C Roberts
- Cambridge Consultants Limited, Science Park, Milton Road, Cambridge, CB4 0DW, Cambridge, UK
| | | |
Collapse
|
324
|
Arikan MC, Memmott J, Broderick JA, Lafyatis R, Screaton G, Stamm S, Andreadis A. Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:109-21. [PMID: 12007838 DOI: 10.1016/s0169-328x(02)00178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. The N-terminal domain of the protein interacts with the axonal membrane, and is modulated by differential inclusion of exons 2 and 3. These two tau exons are alternatively spliced cassettes, in which exon 3 never appears independently of exon 2. Previous work with tau minigene constructs indicated that exon 3 is intrinsically suboptimal and its primary regulator is a weak branch point. In this study, we confirm the role of the weak branch point in the regulation of exon 3 but also show that the exon is additionally regulated by a combination of exonic enhancers and silencers. Furthermore, we demonstrate that known splicing regulators affect the ratio of exon 3 isoforms, Lastly, we tentatively pinpoint the site of action of several splicing factors which regulate tau exon 3.
Collapse
Affiliation(s)
- Meltem Cevik Arikan
- Department of Biomedical Sciences, E.K. Shriver Center for Mental Retardation, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
325
|
Gambaryan S, Palmetshofer A, Glazova M, Smolenski A, Kristjansson GI, Zimmer M, Lohmann SM. Inhibition of cGMP-dependent protein kinase II by its own splice isoform. Biochem Biophys Res Commun 2002; 293:1438-44. [PMID: 12054676 DOI: 10.1016/s0006-291x(02)00412-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
cGMP- and cAMP-dependent protein kinases (cGK I, cGK II, and cAK) are important mediators of many signaling pathways that increase cyclic nucleotide concentrations and ultimately phosphorylation of substrates vital to cellular functions. Here we demonstrate a novel mRNA splice isoform of cGK II arising from alternative 5' splicing within exon 11. The novel splice variant encodes a protein (cGK II Delta(441-469)) lacking 29 amino acids of the cGK II Mg-ATP-binding/catalytic domain, including the conserved glycine-rich loop consensus motif Gly-x-Gly-x-x-Gly-x-Val which interacts with ATP in the protein kinase family of enzymes. cGK II Delta(441-469) has no intrinsic enzymatic activity itself, however, it antagonizes cGK II and cGK I, but not cAK. Thus, the activation and cellular functions of cGK II may be determined not only by intracellular cGMP levels but also by alternative splicing which may regulate the balance of expression of cGK II versus its own inhibitor, cGK II Delta(441-469).
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, Medical University Clinic, Josef Schneider Strasse 2, Wuerzburg D-97080, Germany.
| | | | | | | | | | | | | |
Collapse
|
326
|
Vandenbroucke I, Callens T, De Paepe A, Messiaen L. Complex splicing pattern generates great diversity in human NF1 transcripts. BMC Genomics 2002; 3:13. [PMID: 12057013 PMCID: PMC115845 DOI: 10.1186/1471-2164-3-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2002] [Accepted: 05/24/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutation analysis of the neurofibromatosis type 1 (NF1) gene has shown that about 30% of NF1 patients carry a splice mutation resulting in the production of one or several shortened transcripts. Some of these transcripts were also found in fresh lymphocytes of healthy individuals, albeit typically at a very low level. Starting from this initial observation, we were interested to gain further insight into the complex nature of NF1 mRNA processing. RESULTS We have used a RT-PCR plasmid library based method to identify novel NF1 splice variants. Several transcripts were observed with specific insertions/deletions and a survey was made. This large group of variants detected in one single gene allows to perform a comparative analysis of the factors involved in splice regulation. Exons that are prone to skipping were systematically analysed for 5' and 3' splice site strength, branch point strength and secondary structure. CONCLUSION Our study revealed a complex splicing pattern, generating a great diversity in NF1 transcripts. We found that, on average, exons that are spliced out in part of the mRNA have significantly weaker acceptor sites. Some variants identified in this study could have distinct roles and might expand our knowledge of neurofibromin.
Collapse
Affiliation(s)
- Ina Vandenbroucke
- Centre for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Tom Callens
- Centre for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Anne De Paepe
- Centre for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Ludwine Messiaen
- Centre for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
327
|
Burgess HA, Reiner O. Alternative splice variants of doublecortin-like kinase are differentially expressed and have different kinase activities. J Biol Chem 2002; 277:17696-705. [PMID: 11884394 DOI: 10.1074/jbc.m111981200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alternative splicing of mRNA transcripts expands the range of protein products from a single gene locus. Several splice variants of DCLK (doublecortin-like kinase) have previously been reported. Here, we report the genomic organization underlying the splice variants of DCLK and examine the expression profile of two splice variants affecting the kinase domain of DCLK and CPG16 (candidate plasticity gene 16), one containing an Arg-rich domain and the other affecting the C terminus of the protein. These splice alternatives were differentially expressed in embryonic and adult brain. Both splice variants disrupted DCLK PEST domains; however, all splice variants remained sensitive to proteolysis by calpain. The adult-specific C-terminal splice variant of DCLK had reduced autophosphorylation activity, but similar kinase activity for myelin basic protein relative to the embryonic splice variant. The splice variant adding an Arg-rich domain gained an autophosphorylation site at Ser-382. Although this protein isoform was expressed mainly in the adult brain, the phosphorylated form was strongly enriched in embryonic brain and adult olfactory bulb, suggesting a possible role in migrating neurons.
Collapse
Affiliation(s)
- Harold A Burgess
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
328
|
Abstract
Alternative splicing is an important means of regulating the expression of eukaryotic genes and enhancing protein diversity. A detailed examination of the Drosophila Sex-lethal gene has led to two significant discoveries-the role of the splicing factor SPF45 in defining the site of exon ligation, and that alternative splicing can be regulated at the second step.
Collapse
Affiliation(s)
- Brenton R Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington 06030, USA.
| |
Collapse
|
329
|
Mei B, Zhao L, Chen L, Sul HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J 2002; 364:137-44. [PMID: 11988086 PMCID: PMC1222555 DOI: 10.1042/bj3640137] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We originally identified preadipocyte factor-1 (Pref-1) as an inhibitor of adipogenesis by the fact that constitutive expression of full-length Pref-1A inhibits differentiation of 3T3-L1 cells into adipocytes. Subsequently, we found that the membrane form of Pref-1 is proteolytically processed at two sites in the extracellular domain, resulting in the larger (50 kDa) and smaller (25 kDa) soluble forms. A specific form(s) of Pref-1, which is active in inhibiting adipocyte differentiation, has not been elucidated. Here, various artificial constructs and alternative-splicing variants of Pref-1 were stably transfected into 3T3-L1 cells, or conditioned media from COS cells transfected with the various forms were added into differentiating 3T3-L1 cells. Judging by Oil Red O staining for lipid accumulation and expression of adipocyte markers, we determined that, unlike the full-length Pref-1A and the constructed large soluble form, the artificial membrane form of Pref-1 lacking the processing site proximal to the membrane was not effective in inhibiting adipogenesis. Furthermore, conditioned media from COS cells transfected with the construct containing only the first three epidermal growth factor repeats, corresponding to the small soluble form, was not effective in inhibiting adipocyte differentiation. Of the four alternative-splicing products, Pref-1A and Pref-1B, which generate both large and small soluble forms, inhibited adipogenesis, whereas Pref-1C and Pref-1D, which lack the processing site proximal to the membrane and therefore generate only the smaller soluble form, did not show any effect. We conclude that only the large soluble form, and not the transmembrane or the small soluble form, of Pref-1 is biologically active and that alternative splicing therefore determines Pref-1 function in adipocyte differentiation.
Collapse
Affiliation(s)
- Baisong Mei
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
330
|
Expert-Bezançon A, Le Caer JP, Marie J. Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative exon 6A from chicken beta-tropomyosin pre-mRNA. J Biol Chem 2002; 277:16614-23. [PMID: 11867641 DOI: 10.1074/jbc.m201083200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing of the chicken beta-tropomyosin exon 6A is stimulated, both in vivo and in vitro, by an intronic pyrimidine-rich element (S4) located 37 nucleotides downstream of exon 6A. Several pyrimidine-rich sequences are able to substitute for the natural S4 enhancer with various stimulatory effects. We show that the different enhancer sequences recruit U1 small nuclear ribonucleoprotein (SnRNP) to the exon 6A 5' splice site, with an efficiency that correlates with the splicing activation. By using RNA affinity and two-dimensional gel electrophoresis, we characterized several proteins that bind to the different enhancer sequences. Heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP I (polypyrimidine track-binding protein, PTB) exhibit a higher level of interaction with the strong enhancer sequences (S4) than with the weakest enhancers. Functional analysis shows that hnRNP K is a component of the enhancer complex that promotes exon 6A splicing through the wild-type S4 sequence. The addition of recombinant hnRNP K to nuclear extracts preincubated with poly(rC) RNA competitor completely restores splicing efficiency to the original level. hnRNP I (PTB) was also found associated with the strong enhancer sequences. Its function in the splicing of exon 6A is discussed.
Collapse
|
331
|
Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J, Chandra D, Traag J, Klein RD, Fischer SM, Chopra D, Shen J, Zhau HE, Chung LWK, Tang DG. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem 2002; 277:16189-201. [PMID: 11839751 DOI: 10.1074/jbc.m111936200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. The biological function of 15-LOX2 and the role of loss of 15-LOX2 expression in prostate tumorigenesis, however, remain unknown. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial cells. Western blotting with multiple primary prostate cell strains and prostate cancer cell lines reveals that the expression of 15-LOX2 is lost in all prostate cancer cell lines, accompanied by decreased enzymatic activity revealed by liquid chromatography/tandem mass spectrometry analyses. Further experiments show that the loss of 15-LOX2 expression results from transcriptional repression caused by mechanism(s) other than promoter hypermethylation or histone deacetylation. Subsequent functional studies indicate the following: 1) the 15-LOX2 product, 15(S)-hydroxyeicosatetraenoic acid, inhibits prostate cancer cell cycle progression; 2) 15-LOX2 expression in primary prostate epithelial cells is inversely correlated with cell cycle; and 3) restoration of 15-LOX2 expression in prostate cancer cells partially inhibits cell cycle progression. Taken together, these results suggest that 15-LOX2 could be a suppressor of prostate cancer development, which functions by restricting cell cycle progression.
Collapse
Affiliation(s)
- Shaohua Tang
- Department of Carcinogenesis, the University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Schrijver I, Koerper MA, Jones CD, Zehnder JL. Homozygous factor V splice site mutation associated with severe factor V deficiency. Blood 2002; 99:3063-5. [PMID: 11929802 DOI: 10.1182/blood.v99.8.3063] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated a family whose proband has a severe bleeding disorder and factor V antigenic and functional levels of 8% and less than 1% of control values, respectively. Molecular analysis of the factor V gene revealed a novel homozygous mutation in the last nucleotide of exon 10. 1701G>T causes activation of a cryptic exonic splice site in exon 10, which encodes part of the factor V heavy chain (A2 domain). This leads to the deletion of 35 nucleotides and results in a frameshift with a premature stop codon at amino acid position 498. The G1701 and corresponding Gln509 are conserved in murine, bovine, and porcine factor V and in human factor VIII. Few factor V deficiency mutations have been identified as yet. Several are present in the heterozygous form in combination with factor V Leiden (Arg506Gln). This is the first reported homozygous splice site mutation in a patient with factor V deficiency.
Collapse
Affiliation(s)
- Iris Schrijver
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
333
|
Wu JI, Reed RB, Grabowski PJ, Artzt K. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci U S A 2002; 99:4233-8. [PMID: 11917126 PMCID: PMC123631 DOI: 10.1073/pnas.072090399] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Proteomic diversity is frequently achieved by alternative RNA-splicing events that can be fine-tuned in tissue-specific and developmentally regulated ways. Understanding this type of genetic regulation is compelling because of the extensive complexity of alternative splicing found in the nervous system. quaking (qk), one of the classical mouse dysmyelination mutants, is defective for the expression of myelin-associated glycoprotein (MAG), and the misregulation of MAG pre-mRNA alternative splicing is implicated as a causal factor. The qk locus encodes several RNA-binding proteins with heterogeneous nuclear ribonucleoprotein K-type homology, a characteristic of several known alternative splicing regulators. Here we test the nuclear-localized qk isoform (QKI-5) for its ability to regulate alternative splicing of MAG pre-mRNA in transient coexpression assays. QKI-5 exhibits properties of a negative regulator of MAG exon 12 alternative splicing. An intronic sequence element required for the repressive function and binding of QKI-5 is also identified. Direct evidence for irregularities in alternative splicing of MAG and other myelin protein transcripts in the qk mouse is demonstrated.
Collapse
Affiliation(s)
- Jiang I Wu
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712-1064, USA
| | | | | | | |
Collapse
|
334
|
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3:285-98. [PMID: 11967553 DOI: 10.1038/nrg775] [Citation(s) in RCA: 1625] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Point mutations in the coding regions of genes are commonly assumed to exert their effects by altering single amino acids in the encoded proteins. However, there is increasing evidence that many human disease genes harbour exonic mutations that affect pre-mRNA splicing. Nonsense, missense and even translationally silent mutations can inactivate genes by inducing the splicing machinery to skip the mutant exons. Similarly, coding-region single-nucleotide polymorphisms might cause phenotypic variability by influencing splicing accuracy or efficiency. As the splicing mechanisms that depend on exonic signals are elucidated, new therapeutic approaches to treating certain genetic diseases can begin to be explored.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
335
|
Yeakley JM, Fan JB, Doucet D, Luo L, Wickham E, Ye Z, Chee MS, Fu XD. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol 2002; 20:353-8. [PMID: 11923840 DOI: 10.1038/nbt0402-353] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human transcriptome is marked by extensive alternative mRNA splicing and the expression of many closely related genes, which may be difficult to distinguish using standard microarray techniques. Here we describe a sensitive and specific assay for parallel analysis of mRNA isoforms on a fiber-optic microarray platform. The method permits analysis of mRNA transcripts without prior RNA purification or cDNA synthesis. Using an endogenously expressed viral transcript as a model, we demonstrated that the assay readily detects mRNA isoforms from as little as 10-100 pg of total cellular RNA or directly from a few cells. Multiplexed analysis of human cancer cell lines revealed differences in mRNA splicing and suggested a potential autocrine mechanism in the development of choriocarcinomas. Our approach may be useful in the large-scale analysis of the role of alternative splicing in development and disease.
Collapse
Affiliation(s)
- Joanne M Yeakley
- Department of Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
336
|
Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP. Structure and characterization of the mouse UT-A gene (Slc14a2). Am J Physiol Renal Physiol 2002; 282:F630-8. [PMID: 11880324 DOI: 10.1152/ajprenal.00264.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The movement of urea across plasma membranes is modulated by facilitated urea transporter proteins. These proteins are the products of two closely related genes, termed UT-A (Slc14a2) and UT-B (Slc14a1). By genomic library screening and P1 artificial chromosome "shotgun" sequencing, we have determined the structure of the mouse UT-A gene. The gene is >300 kb in length, contains 24 exons, and has 2 distinct promoters. Flanking the 5'-region of the gene is the UT-Aalpha promoter that regulates transcription of UT-A1 and UT-A3. The second promoter, termed UT-Abeta, is present in intron 13 and regulates transcription of UT-A2. cAMP agonists (100 microM dibutryl cAMP, 25 microM forskolin, 0.5 mM IBMX) increased the activity of a 2.2-kb UT-Aalpha promoter construct 6.2-fold [from 0.026 +/- 0.003 to 0.160 +/- 0.004, relative light units (RLU)/microg protein] and a 2.4-kb UT-Abeta promoter construct 9.5-fold (from 0.020 +/- 0.002 to 0.190 +/- 0.043 RLU/microg protein) above that in untreated controls. Interestingly, only the UT-Abeta promoter contained consensus sequences for CREs and deletion of these elements abolished cAMP sensitivity. Increasing the tonicity of culture medium from 300 to 600 mosmol/kg H(2)O with NaCl caused a significant increase (from 0.060 +/- 0.004 to 0.095 +/- 0.010 RLU/microg protein) in UT-Aalpha promoter activity but had no effect on the UT-Abeta promoter. A tonicity-responsive enhancer was identified in UT-Aalpha and is suggested to be responsible for mediating this effect. Levels of UT-A2 and UT-A3 mRNA were increased in thirsted mice compared with control animals, indicating that the activities of both promoters are likely to be elevated during prolonged antidiuresis.
Collapse
Affiliation(s)
- R A Fenton
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
337
|
Affiliation(s)
- Paula Grabowski
- Department of Biological Sciences, Howard Hughes Medical Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA. pag4+@pitt.edu
| |
Collapse
|
338
|
Wong YW, Sia GM, Too HP. Quantification of mouse glial cell-line derived neurotrophic factor family receptor alpha 2 alternatively spliced isoforms by real time detection PCR using SYBR Green I. Neurosci Lett 2002; 320:141-5. [PMID: 11852182 DOI: 10.1016/s0304-3940(01)02282-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurturin (NTN) belongs to the glial cell-line derived neurotrophic factor (GDNF) family of growth factors. Both NTN and GDNF have been shown to potently prevent the degeneration of dopaminergic neuron in vitro and in vivo. The GDNF family receptor alpha 2 (GFR alpha-2) is the preferred receptor for NTN. In addition to the known full-length isoform (GFR alpha-2a), we have previously reported the isolation of two novel alternatively spliced isoforms (GFR alpha-2b and GFR alpha-2c). All three isoforms are expressed in all mammalian tissues examined, including human fetal brain. However, the expression levels of these isoforms have yet to be quantified. In this report, we have developed a real time polymerase chain reaction (PCR) detection method using SYBR Green I to detect the expression levels of the three splice variants (GFR alpha-2a, GFR alpha-2b and GFR alpha-2c). Of the three isoforms, GFR alpha-2a was found to be the most abundant receptor expressed in the whole murine brain. The real time PCR detection method using SYBR Green I developed in this report can be used to unambiguously quantitate expression levels of the GFR alpha-2 isoforms and can be extended to the quantitation of other alternatively spliced isoforms.
Collapse
Affiliation(s)
- Y W Wong
- Department of Biochemistry, National University of Singapore, Lower Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | |
Collapse
|
339
|
Chen C, Gentles AJ, Jurka J, Karlin S. Genes, pseudogenes, and Alu sequence organization across human chromosomes 21 and 22. Proc Natl Acad Sci U S A 2002; 99:2930-5. [PMID: 11867739 PMCID: PMC122450 DOI: 10.1073/pnas.052692099] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2001] [Indexed: 11/18/2022] Open
Abstract
Human chromosomes 21 and 22 (mainly the q-arms) were the first complete parts of the human genome released. Our analysis of genes, pseudogenes (Psig), and Alu repeats across these chromosomes include the following findings: The number of gene structures containing untranslated exons exceeds 25%; the terminal exon tends to be the largest among exons, whereas, the initial intron tends to be the largest among introns; single-exon gene length is approximately the mean gene exon number times the mean internal exon length; processed Psig lengths are on average approximately the same as single-exon gene length; and the G+C content and length of genes are uncorrelated. The counts and distribution of genes, Psig, and Alu sequences and G+C variation are evaluated with respect to clusters and overdispersions. Other assessments concern comparisons of intergenic lengths, properties of Psig sequences, and correlations between Alu and Psig sequences.
Collapse
Affiliation(s)
- Chingfer Chen
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA
| | | | | | | |
Collapse
|
340
|
Abstract
A new study from the Schüpbach lab implicates a splicing factor, Half-pint, in the regulation of oogenesis in Drosophila. Through processing of the otu mRNA, Hfp appears to control both mitosis and RNA localization in the germline.
Collapse
Affiliation(s)
- Donald Rio
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
341
|
Abstract
Alternative splicing is used by metazoans to increase protein diversity and to alter gene expression during development. However, few factors that control splice site choice in vivo have been identified. Here we describe a factor, Half pint (Hfp), that regulates RNA splicing in Drosophila. Females harboring hypomorphic mutations in hfp lay short eggs and show defects in germline mitosis, nuclear morphology, and RNA localization during oogenesis. We find that hfp encodes the Drosophila ortholog of human PUF60 and functions in both constitutive and alternative splicing in vivo. In particular, hfp mutants display striking defects in the developmentally regulated splicing of ovarian tumor (otu). Furthermore, transgenic expression of the missing otu splice form can rescue the ovarian phenotypes of hfp.
Collapse
Affiliation(s)
- Cheryl Van Buskirk
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
342
|
Charlet-B N, Logan P, Singh G, Cooper TA. Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell 2002; 9:649-58. [PMID: 11931771 DOI: 10.1016/s1097-2765(02)00479-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inclusion of cardiac troponin T (cTNT) exon 5 in embryonic muscle requires conserved flanking intronic elements (MSEs). ETR-3, a member of the CELF family, binds U/G motifs in two MSEs and directly activates exon inclusion in vitro. Binding and activation by ETR-3 are directly antagonized by polypyrimidine tract binding protein (PTB). We use dominant-negative mutants to demonstrate that endogenous CELF and PTB activities are required for MSE-dependent activation and repression in muscle and nonmuscle cells, respectively. Combined use of CELF and PTB dominant-negative mutants provides an in vivo demonstration that antagonistic splicing activities exist within the same cells. We conclude that cell-specific regulation results from the dominance of one among actively competing regulatory states rather than modulation of a nonregulated default state.
Collapse
Affiliation(s)
- Nicolas Charlet-B
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
343
|
Abstract
Information technologies for chemical structure prediction, heterogeneous database access, pattern discovery, and systems and molecular modeling have evolved to become core components of the modern drug discovery process. As this evolution continues, the balance between in silico modeling and 'wet' chemistry will continue to shift and it might eventually be possible to step through the discovery pipeline without the aid of traditional laboratory techniques. Rapid advances in the industrialization of gene sequencing combined with databases of protein sequence and structure have created a target-rich but lead-poor environment. During the next decade, newer information technologies that facilitate the molecular modeling of drug-target interactions are likely to shift this balance towards molecular-based personalized medicine -- the ultimate goal of the drug discovery process.
Collapse
Affiliation(s)
- Jeffrey Augen
- Strategy, IBM Life Sciences, Route 100, Somers, NY 10589, USA.
| |
Collapse
|
344
|
Hayakawa M, Sakashita E, Ueno E, Tominaga SI, Hamamoto T, Kagawa Y, Endo H. Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA. J Biol Chem 2002; 277:6974-84. [PMID: 11744705 DOI: 10.1074/jbc.m110138200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chem. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'-AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.
Collapse
Affiliation(s)
- Morisada Hayakawa
- Department of Biochemistry, Jichi Medical School, Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
345
|
Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I, Nakamura T. Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 2002; 99:1428-33. [PMID: 11830496 DOI: 10.1182/blood.v99.4.1428] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that the chromosomal translocation t(7;11)(p15;p15) in patients with human acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) invariably involves fusion of the nucleoporin gene, NUP98, on chromosome 11 and the class 1 HOX gene, HOXA9, on chromosome 7, and that the fusion gene NUP98-HOXA9 is an important gene in myeloid leukemogenesis. Here are reported 2 novel chromosome 7p15 targets of the t(7;11)(p15;p15) chromosomal translocation in 2 patients with CML and myelodysplastic syndrome (MDS). Southern blot and polymerase chain reaction (PCR) analyses of leukemia cell DNA failed to show rearrangement of HOXA9, whereas NUP98 was found to be rearranged in both cases. Reverse transcription-PCR analysis using a NUP98 primer and a degenerate primer corresponding to the third helix of the homeodomain of HOXA demonstrated that NUP98 was fused in-frame to HOXA11 in the patient with CML and to HOXA13 in the patient with MDS. The chromosomal breakpoints on 7p15 were located within introns of HOXA11 or HOXA13 genes. In both patients chimeric NUP98-HOXA9 transcripts were also observed. These findings suggest that AbdB-type HOXA genes are common targets of t(7;11)(p15;p15) chromosomal translocations and that a single translocation can produce more than one NUP98-HOXA fusion gene, presumably because of altered splicing.
Collapse
Affiliation(s)
- Takashi Fujino
- Department of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
346
|
Yoo JY, Huso DL, Nathans D, Desiderio S. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell 2002; 108:331-44. [PMID: 11853668 DOI: 10.1016/s0092-8674(02)00636-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alternative splicing of the gene for Stat3, a transcription factor activated by the IL-6 family of cytokines, produces two isoforms: Stat3alpha and a dominant-negative variant, Stat3beta. Stat3beta-deficient mice were generated by gene targeting. Despite intact expression and phosphorylation of Stat3alpha, overall Stat3 activity was impaired in Stat3beta(-/-) cells. Global comparison of transcription in Stat3beta(+/+) and Stat3beta(-/-) cells revealed stable differences. Stat3beta-deficient mice exhibit diminished recovery from endotoxic shock and hyperresponsiveness of a subset of endotoxin-inducible genes in liver. The hepatic response to endotoxin in wild-type mice is accompanied by a transient increase in the ratio of Stat3beta to Stat3alpha. These findings indicate a critical role for Stat3beta in the control of systemic inflammation.
Collapse
Affiliation(s)
- Joo-Yeon Yoo
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
347
|
Abstract
Multidomain guanine nucleotide (GDP/GTP) exchange factor (GEF) proteins coordinate diverse inputs that signal the actin cytoskeleton. Mammals have two such proteins (Kalirin, Trio), while Drosophila has one, which plays essential roles within and outside the nervous system. For Kalirin, numerous isoforms containing different combinations of functional domains are generated through alternative splicing and use of alternative transcriptional start sites. These different isoforms potentially allow a wide variety of proteins to interact with Kalirin, thereby affecting the activity of the functional domains. Humans, like rats, express a large set of Kalirin isoform mRNAs, and we identified a novel Kalirin isoform, containing only the second GEF domain. Kalirin isoforms are predominantly expressed in the brain, while Trio is expressed in a wider variety of tissues. Alternative splicing and transcription of Kalirin are differentially regulated during development in rats and humans, resulting in expression of isoforms of Kalirin containing different functional domains at different times and locations. The prevalence of Kalirin in the cortex throughout life suggests roles in axonal development and the mature brain.
Collapse
Affiliation(s)
- Clifton E McPherson
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
348
|
Suzuki H, Jin Y, Otani H, Yasuda K, Inoue K. Regulation of alternative splicing of alpha-actinin transcript by Bruno-like proteins. Genes Cells 2002; 7:133-41. [PMID: 11895477 DOI: 10.1046/j.1356-9597.2001.00506.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Bruno-like or CELF proteins, such as mammalian CUGBP1 and Etr-3, Xenopus EDEN-BP, and Drosophila Bruno (Bru), are regulators of gene expression at the post-transcriptional level, and contain three RNA-recognition motifs (RRMs). It has been shown that mammalian CUGBP1 and Etr-3 regulate alternative splicing of cardiac troponin T pre-mRNA via binding to CUG-triplet repeats. RESULTS Using in vitro selection and UV-crosslinking experiments, we found that zebrafish Bruno-like proteins bound to repeat elements of uridine and purine (termed UREs). It is known that non-muscle (NM) and smooth muscle (SM) exons of the rat alpha-actinin gene are used in a mutually exclusive manner. Transfection experiments in mammalian cells showed that zebrafish Brul and Etr-3 induced the muscle-specific splicing of rat alpha-actinin pre-mRNA via binding to the URE at the branch point upstream of the NM exon. In contrast, zebrafish Etr-1 promoted skipping of both the NM and SM exons in a manner which was not dependent on URE-binding. CONCLUSIONS Our results showed that Bruno-like proteins bind to UREs and regulate the alternative splicing of alpha-actinin pre-mRNA. Members of the Bruno family play multiple roles in splicing regulation.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | |
Collapse
|
349
|
Hayes GM, Carpenito C, Davis PD, Dougherty ST, Dirks JF, Dougherty GJ. Alternative splicing as a novel of means of regulating the expression of therapeutic genes. Cancer Gene Ther 2002; 9:133-41. [PMID: 11857030 DOI: 10.1038/sj.cgt.7700427] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Indexed: 11/09/2022]
Abstract
In order to determine the potential of alternative splicing as a means of targeting the expression of therapeutic genes to tumor cells in vivo, a series of episomal plasmid-based "splice-activated gene expression" (pSAGE) vectors was generated, which contain minigene cassettes composed of various combinations of the three alternatively spliced exons present in the differentially expressed adhesion protein CD44R1 (v8, v9, and v10) with or without their corresponding intronic sequences, positioned in-frame between the CD44 leader sequence and a "leaderless" human liver/bone/kidney alkaline phosphatase (ALP) cDNA. Because both the v8-v9 and v9-v10 introns contain multiple in-frame stop codons, the expression and enzymatic activity of ALP are dependent upon the accurate removal of intronic sequences from the pre-mRNA transcripts encoded by these constructs. The various pSAGE constructs were introduced into CD44H-positive (T24) and CD44R1-positive (PC3) target cells by electroporation and transfectants selected in hygromycin B. ALP expression was determined by staining with the ALP substrate, BCIP/INT, and the transfected cells tested for their sensitivity to the inactive prodrug, etoposide phosphate. ALP-mediated dephosphorylation of etoposide phosphate generates the potent topoisomerase II inhibitor etoposide. The data obtained indicate that whereas the v8-v9 intron is spliced in both CD44H- and CD44R1-positive cells, the v9-v10 intron is efficiently and accurately removed only in CD44R1-positive cells. Furthermore, only CD44R1-positive cells were sensitized to etoposide phosphate when transfected with the v9-v10.ALP construct. These data emphasize the potential usefulness of alternative splicing as a novel means of targeting gene expression to tumor cells in vivo.
Collapse
Affiliation(s)
- Gregory M Hayes
- Department of Radiation Oncology, UCLA Center for Health Sciences, Los Angeles, California 90095-1724, USA
| | | | | | | | | | | |
Collapse
|
350
|
Hao J, McDaniel K, Weyer C, Barrera J, Nagle RB. Cell line-specific translation of two laminin 5 beta3 chain isoforms. Gene 2002; 283:237-44. [PMID: 11867230 DOI: 10.1016/s0378-1119(01)00850-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In sequencing the beta3 chain of laminin 5 mRNA from LNCaP cells, we observed three different human cDNA clones (XM_001716, NM_000228 and L25541) in the GenBank that identified different sequences in the untranslated regions (UTR). XM_001716 and NM_000228 are almost identical cDNA clones with approximately 99% homology. However, they are quite different from L25541 in both the 5' UTR and the 3' UTR. Development of a PCR assay to specifically detect two of these different forms of the message led to the observation that they were differentially expressed in various cell lines. The message designated B3A (NM_000228, and XM_001716) was absent in LNCaP and MCF7 and greatly reduced in PC3-N, but was present in eight other epithelial cell lines. B3B (L25541) was present in all cell lines studied. The cell lines that failed to express the B3A form also failed to express the protein based on both immunoblotting and immunohistochemical analysis. It appears from this data that there are two isoforms of the beta3 mRNA, and that the 5' UTRs of the mRNAs play an important role in regulating translation of the beta3 protein. Since laminin 5 is lost in prostate carcinoma, the mechanism of control that results in the translation of the two forms of message may be important in tumorigenesis.
Collapse
Affiliation(s)
- Junshan Hao
- Department of Pathology, Arizona Cancer Center University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|