301
|
Kalogeropoulos A, Georgiopoulou V, Harris TB, Kritchevsky SB, Bauer DC, Smith AL, Strotmeyer E, Newman AB, Wilson PWF, Psaty BM, Butler J. Glycemic status and incident heart failure in elderly without history of diabetes mellitus: the health, aging, and body composition study. J Card Fail 2009; 15:593-9. [PMID: 19700136 DOI: 10.1016/j.cardfail.2009.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND It is unclear whether measures of glycemic status beyond fasting glucose (FG) levels improve incident heart failure (HF) prediction in patients without history of diabetes mellitus (DM). METHODS AND RESULTS The association of measures of glycemic status at baseline (including FG, oral glucose tolerance testing [OGTT], fasting insulin, hemoglobin A(1c) [HbA(1c)] levels, and homeostasis model assessment of insulin resistance [HOMA-IR] and insulin secretion [HOMA-B]) with incident HF, defined as hospitalization for new-onset HF, was evaluated in 2386 elderly participants without history of DM enrolled in the Health, Aging, and Body Composition Study (median age, 73 years; 47.6% men; 62.5% white, 37.5% black) using Cox models. After a median follow-up of 7.2 years, 185 (7.8%) participants developed HF. Incident HF rate was 10.7 cases per 1000 person-years with FG <100mg/dL, 13.1 with FG 100-125 mg/dL, and 26.6 with FG >or=126 mg/dL (P=.002; P=.003 for trend). In adjusted models (for body mass index, age, history of coronary artery disease and smoking, left ventricular hypertrophy, systolic blood pressure and heart rate [HR], and creatinine and albumin levels), FG was the strongest predictor of incident HF (adjusted HR per 10mg/dL, 1.10; 95% CI, 1.02-1.18; P=.009); the addition of OGTT, fasting insulin, HbA(1c), HOMA-IR, or HOMA-B did not improve HF prediction. Results were similar across race and gender. When only HF with left ventricular ejection fraction (LVEF) <or=40% was considered (n=69), FG showed a strong association in adjusted models (HR per 10mg/dL, 1.15; 95% CI, 1.03-1.29; P=.01). In comparison, when only HF with LVEF >40%, was considered (n=71), the association was weaker (HR per 10mg/dL, 1.05; 95% CI; 0.94-1.18; P=.41). CONCLUSIONS Fasting glucose is a strong predictor of HF risk in elderly without history of DM. Other glycemic measures provide no incremental prediction information.
Collapse
|
302
|
Dekel Y, Glucksam Y, Elron-Gross I, Margalit R. Insights into modeling streptozotocin-induced diabetes in ICR mice. Lab Anim (NY) 2009; 38:55-60. [PMID: 19165193 DOI: 10.1038/laban0209-55] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/05/2008] [Indexed: 02/02/2023]
Abstract
Streptozotocin (STZ)-induced diabetes in ICR mice is often used to model diabetes mellitus and its complications, as well as other pathologies. In studies of diabetes progression and effects of newly developed treatments, experimental results may be difficult to interpret because blood glucose levels (BGLs) of untreated diabetic control animals tend to decline substantially during typical experimental time spans of 8-11 h. To address this problem, the authors examined several experimental conditions that might affect BGL stability, including STZ dose, initial mouse weight, fasting regimen and light:dark cycle. The authors found that diabetes severity was dependent on initial mouse weight and that weight loss after diabetes induction was less severe in heavier mice. Furthermore, a dose of 150 mg STZ per kg body weight was sufficient to induce stabilized acute diabetes without causing many complications. Finally, BGL could be stabilized in diabetic mice that were not treated with insulin by avoiding pre-fasting before an 8-h experiment and by allowing mice limited access to food during the experiment.
Collapse
Affiliation(s)
- Yaron Dekel
- Department of Biochemistry, The George W. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
303
|
Forcheron F, Basset A, Abdallah P, Del Carmine P, Gadot N, Beylot M. Diabetic cardiomyopathy: effects of fenofibrate and metformin in an experimental model--the Zucker diabetic rat. Cardiovasc Diabetol 2009; 8:16. [PMID: 19317897 PMCID: PMC2664796 DOI: 10.1186/1475-2840-8-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/24/2009] [Indexed: 01/31/2023] Open
Abstract
Background Diabetic cardiomyopathy (DCM) contributes to cardiac failure in diabetic patients. It is characterized by excessive lipids accumulation, with increased triacylglycerol (TAG) stores, and fibrosis in left ventricle (LV). The mechanisms responsible are incompletely known and no specific treatment is presently defined. We evaluated the possible usefulness of two molecules promoting lipid oxidation, fenofibrate and metformin, in an experimental model of DCM, the Zucker diabetic rat (ZDF). Methods ZDF and controls (C) rats were studied at 7, 14 and 21 weeks. After an initial study at 7 weeks, ZDF rats received no treatment, metformin or fenofibrate until final studies (at 14 or 21 weeks). C rats received no treatment. Each study comprised measurements of metabolic parameters (plasma glucose, TAG, insulin levels) and sampling of heart for histology and measurements of TAG content and relevant mRNA concentration. Results ZDF rats were insulin-resistant at 7 weeks, type 2 diabetic at 14 weeks and diabetic with insulin deficiency at 21 weeks. Their plasma TAG levels were increased. ZDF rats had at 7 weeks an increased LV TAG content with some fibrosis. LV TAG content increased in untreated ZDF rats at 14 and 21 weeks and was always higher than in C. Fibrosis increased also moderately in untreated ZDF rats. Metformin and fenofibrate decreased plasma TAG concentrations. LV TAG content was decreased by metformin (14 and 21 weeks) and by fenofibrate (14 weeks). Fibrosis was reduced by fenofibrate only and was increased by metformin. Among the mRNA measured, fenofibrate increased Acyl-CoA Oxidase mRNA level, metformin decreased Acyl-CoA Synthase and increased AdipoR1 and pro-inflammatory mRNA levels. Conclusion Fenofibrate had favourable actions on DCM. Metformin had beneficial effect on TAG content but not on fibrosis. PPARα agonists could be useful for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Fabien Forcheron
- EA4173-ERI22 Agressions vasculaires et réponses tissulaires Faculté Rockefeller, UCBLyon1 and INSERM, Lyon, France.
| | | | | | | | | | | |
Collapse
|
304
|
Wang F, Kim MS, Puthanveetil P, Kewalramani G, Deppe S, Ghosh S, Abrahani A, Rodrigues B. Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid. Am J Physiol Heart Circ Physiol 2009; 296:H1108-16. [PMID: 19218500 DOI: 10.1152/ajpheart.01312.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Following diabetes, the heart increases its lipoprotein lipase (LPL) at the coronary lumen by transferring LPL from the cardiomyocyte to the endothelial lumen. We examined how hyperglycemia controls secretion of heparanase, the enzyme that cleaves myocyte heparan sulphate proteoglycan to initiate this movement. Diazoxide (DZ) was used to decrease serum insulin and generate hyperglycemia. A modified Langendorff technique was used to separate coronary from interstitial effluent, which were assayed for heparanase and LPL. Within 30 min of DZ, interstitial heparanase increased, an effect that closely mirrored an augmentation in interstitial LPL. Endothelial cells were incubated with palmitic acid (PA) or glucose, and heparanase secretion was determined. PA increased intracellular heparanase, with no effect on secretion of this enzyme. Unlike PA, glucose dose-dependently lowered endothelial intracellular heparanase, which was strongly associated with increased heparanase activity in the incubation medium. Preincubation with cytochalasin D or nocodazole prevented the high glucose-induced depletion of intracellular heparanase. Our data suggest that following hyperglycemia, translocation of LPL from the cardiomyocyte cell surface to the apical side of endothelial cells is dependent on the ability of the fatty acid to increase endothelial intracellular heparanase followed by rapid secretion of this enzyme by glucose, which requires an intact microtubule and actin cytoskeleton.
Collapse
Affiliation(s)
- Fang Wang
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The Univ. of British Columbia, 2146 East Mall, Vancouver, BC, Canada V6T 1Z3.
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Dabkowski ER, Williamson CL, Bukowski VC, Chapman RS, Leonard SS, Peer CJ, Callery PS, Hollander JM. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol 2009; 296:H359-69. [PMID: 19060128 PMCID: PMC2643887 DOI: 10.1152/ajpheart.00467.2008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 12/02/2008] [Indexed: 01/12/2023]
Abstract
Diabetic cardiomyopathy is the leading cause of heart failure among diabetic patients, and mitochondrial dysfunction has been implicated as an underlying cause in the pathogenesis. Cardiac mitochondria consist of two spatially, functionally, and morphologically distinct subpopulations, termed subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). SSM are situated beneath the plasma membrane, whereas IFM are embedded between myofibrils. The goal of this study was to determine whether spatially distinct cardiac mitochondrial subpopulations respond differently to a diabetic phenotype. Swiss-Webster mice were subjected to intraperitoneal injections of streptozotocin or citrate saline vehicle. Five weeks after injections, diabetic hearts displayed decreased rates of contraction, relaxation, and left ventricular developed pressures (P < 0.05 for all three). Both mitochondrial size (forward scatter, P < 0.01) and complexity (side scatter, P < 0.01) were decreased in diabetic IFM but not diabetic SSM. Electron transport chain complex II respiration was decreased in diabetic SSM (P < 0.05) and diabetic IFM (P < 0.01), with the decrease being greater in IFM. Furthermore, IFM complex I respiration and complex III activity were decreased with diabetes (P < 0.01) but were unchanged in SSM. Superoxide production was increased only in diabetic IFM (P < 0.01). Oxidative damage to proteins and lipids, indexed through nitrotyrosine residues and lipid peroxidation, were higher in diabetic IFM (P < 0.05 and P < 0.01, respectively). The mitochondria-specific phospholipid cardiolipin was decreased in diabetic IFM (P < 0.01) but not SSM. These results indicate that diabetes mellitus imposes a greater stress on the IFM subpopulation, which is associated, in part, with increased superoxide generation and oxidative damage, resulting in morphological and functional abnormalities that may contribute to the pathogenesis of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Erinne R Dabkowski
- Division of Exercise Physiology, Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Zhao XY, Qiao GF, Li BX, Chai LM, Li Z, Lu YJ, Yang BF. HYPOGLYCAEMIC AND HYPOLIPIDAEMIC EFFECTS OF EMODIN AND ITS EFFECT ON L-TYPE CALCIUM CHANNELS IN DYSLIPIDAEMIC-DIABETIC RATS. Clin Exp Pharmacol Physiol 2009; 36:29-34. [DOI: 10.1111/j.1440-1681.2008.05051.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
307
|
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol 2009; 296:H13-28. [PMID: 19028792 PMCID: PMC2637779 DOI: 10.1152/ajpheart.01056.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.
Collapse
Affiliation(s)
- Boglarka Laczy
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Diabetes mellitus is well recognized as a potent and prevalent risk factor for accelerated atherosclerosis and ischemic heart disease. However, there is also evidence of cardiac dysfunction in diabetes in the absence of coronary atherosclerosis, termed diabetic cardiomyopathy. Changes in ventricular structure and left ventricular systolic and diastolic dysfunction have all been noted even in patients with well-controlled diabetes and without overt macrovascular complications. Insulin resistance, hyperglycemia, and increased free fatty acid metabolism promote coronary microvascular disease, sympathetic nervous system dysfunction, and ventricular remodeling, and may contribute to the altered cardiac phenotype seen in diabetes. In addition to standard therapy (angiotensin-converting enzyme inhibitors and beta-blockers), diabetic patients with left ventricular dysfunction are likely to benefit from targeted therapies to reduce insulin resistance and modulate substrate use.
Collapse
Affiliation(s)
- Ankur A Karnik
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
309
|
Niu YG, Evans RD. Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference. Am J Physiol Endocrinol Metab 2008; 295:E1106-16. [PMID: 18780778 DOI: 10.1152/ajpendo.90260.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.
Collapse
Affiliation(s)
- You-Guo Niu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
310
|
Hu J, Klein JD, Du J, Wang XH. Cardiac muscle protein catabolism in diabetes mellitus: activation of the ubiquitin-proteasome system by insulin deficiency. Endocrinology 2008; 149:5384-90. [PMID: 18653708 PMCID: PMC2734490 DOI: 10.1210/en.2008-0132] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein degradation is increased by both insulin deficiency and insulin resistance in humans and animal models. In skeletal muscle this insulin-dependent increase in protein degradation involves activation of both caspase-3 and the ubiquitin-proteasome system. The influence of abnormal insulin signaling on protein metabolism in cardiac muscle is not well understood; therefore, we measured protein degradation in cardiac muscle of mice with streptozotocin-induced diabetes. Insulin deficiency increased both total muscle proteolysis (measured as tyrosine release in muscle slices or extracts) and the degradation of the myofibrillar protein actin (measured as the appearance of a 14-kDa actin fragment). Expression of ubiquitin mRNA and chymotrypsin-like activity in the proteasome were increased, indicating activation of the ubiquitin-proteasome system in diabetic mouse heart. We also evaluated possible signaling pathways that might regulate cardiac muscle proteolysis. Insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and Akt phosphorylation were decreased. Insulin replacement prevented the decrease in IRS-1/Akt phosphorylation, the increase in proteolysis, and attenuated the increase in ubiquitin mRNA. We conclude that insulinopenia accelerates proteolysis in cardiac muscle by reducing IRS-1/Akt signaling, which leads to activation of the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- Junping Hu
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
311
|
Wang Y, Ebermann L, Sterner-Kock A, Wika S, Schultheiss HP, Dörner A, Walther T. Myocardial overexpression of adenine nucleotide translocase 1 ameliorates diabetic cardiomyopathy in mice. Exp Physiol 2008; 94:220-7. [PMID: 18945756 DOI: 10.1113/expphysiol.2008.044800] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction is implicated in the pathogenesis of diabetic cardiomyopathy, a common complication of diabetes. Adenosine nucleotide translocase (ANT) translocates ADP/ATP across the inner mitochondrial membrane. Our study aimed to test the hypothesis that overexpression of ANT1 in cardiomyocytes has cardioprotective effects in diabetic cardiomyopathy induced by streptozotocin (STZ). Mice specifically overexpressing murine ANT1 in the heart were generated using alpha-myosin heavy chain promoter. Expression of ANT1 mRNA and protein in hearts was characterized by real-time polymerase chain reaction and Western blot analysis. Five- to 6-month-old male transgenic mice and their age-matched wild-type littermates were subjected to type 1 diabetes induced by STZ. Six weeks later, haemodynamic measurement was performed to assess cardiac function. Ventricular mRNA expression of atrial natriuretic peptide, a molecular marker of heart failure, was characterized by RNase-protection assay. Both ANT1 mRNA and ANT1 protein were specifically overexpressed in the heart of transgenic mice. Heart weight was decreased and cardiac function was dramatically impaired in wild-type mice 6 weeks after induction of diabetes, but ANT1 overexpression prevented these significant changes. The mRNA expression level of atrial natriuretic peptide confirmed the haemodynamic findings, being upregulated in wild-type mice receiving STZ, but showing no statistical differences in ANT1 transgenic mice. Cardiomyocyte-restricted overexpression of ANT1 prevents the development of diabetic cardiomyopathy; therefore, accelerated ADP/ATP exchange could be a new promising target to treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yong Wang
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
312
|
Carley AN, Severson DL. What are the biochemical mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice? Cardiovasc Drugs Ther 2008; 22:83-9. [PMID: 18247111 DOI: 10.1007/s10557-008-6088-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 01/20/2023]
Abstract
INTRODUCTION It is generally accepted that diabetic hearts have an altered metabolic phenotype, with enhanced fatty acid (FA) utilization. The over-utilization of FA by diabetic hearts can have deleterious functional consequences, contributing to a distinct diabetic cardiomyopathy. The objective of this review will be to examine which biochemical mechanisms are responsible for enhanced FA utilization by diabetic hearts. METHODOLOGY AND RESULTS Studies were performed with db/db mice, a monogenic model of type 2 diabetes with extreme obesity and hyperglycemia. Perfused db/db hearts exhibit enhanced FA oxidation and esterification. Hypothesis 1: Cardiac FA uptake is enhanced in db/db hearts. The plasma membrane content of two FA transporters, fatty acid translocase/CD36 (FAT/CD36) and plasma membrane fatty acid binding protein (FABPpm), was increased in db/db hearts, consistent with hypothesis 1. Hypothesis 2: Cardiac FA oxidation is enhanced in db/db hearts due to mitochondrial alterations. However, the activity of carnitine palmitoyl transferase-1 (CPT-1) and sensitivity to inhibition by malonyl CoA was unchanged in mitochondria from db/db hearts. Furthermore, total malonyl CoA content was increased, not decreased as predicted for elevated FA oxidation. Finally, the content of uncoupling protein-3 was unchanged in db/db heart mitochondria. CONCLUSION Increased plasma membrane content of FA transporters (FAT/CD36 and FABPpm) will increase FA uptake into db/db cardiomyocytes and thus increase FA utilization. On the other hand, mitochondrial mechanisms do not contribute to elevated rates of FA oxidation in db/db hearts.
Collapse
Affiliation(s)
- Andrew N Carley
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1, Canada
| | | |
Collapse
|
313
|
Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. ACTA ACUST UNITED AC 2008; 5:715-24. [PMID: 18813212 DOI: 10.1038/ncpcardio1347] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 07/30/2008] [Indexed: 02/06/2023]
Abstract
According to the International Diabetes Federation the number of people between the ages of 20 and 79 years diagnosed with diabetes mellitus is projected to reach 380 million worldwide by 2025. Cardiovascular disease, including heart failure, is the major cause of death in patients with diabetes. A contributing factor to heart failure in such patients is the development of diabetic cardiomyopathy--a clinical myocardial condition distinguished by ventricular dysfunction that can present independently of other risk factors such as hypertension or coronary artery disease. This disorder has been associated with both type 1 and type 2 diabetes, and is characterized by early-onset diastolic dysfunction and late-onset systolic dysfunction. The development of diabetic cardiomyopathy and the cellular and molecular perturbations associated with the pathology are complex and multifactorial. Hallmark mechanisms include abnormalities in regulation of calcium homeostasis, and associated abnormal ventricular excitation-contraction coupling, metabolic disturbances, and alterations in insulin signaling. An emerging concept is that disruptions in calcium homeostasis might be linked to diminished insulin responsiveness. An understanding of the cellular effect of these abnormalities on cardiomyocytes should be useful in predicting the maladaptive cardiac structural and functional consequences of diabetes.
Collapse
Affiliation(s)
- Djamel Lebeche
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
314
|
Tabbi-Anneni I, Buchanan J, Cooksey RC, Abel ED. Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese (ob/ob) mouse hearts. Endocrinology 2008; 149:4043-50. [PMID: 18450963 PMCID: PMC2488224 DOI: 10.1210/en.2007-1646] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The goal of this study was to determine whether inhibiting the renin-angiotensin system would restore insulin signaling and normalize substrate use in hearts from obese ob/ob mice. Mice were treated for 4 wk with Captopril (4 mg/kg x d). Circulating levels of free fatty acids, triglycerides, and insulin were measured and glucose tolerance tests performed. Rates of palmitate oxidation and glycolysis, oxygen consumption, and cardiac power were determined in isolated working hearts in the presence and absence of insulin, along with levels of phosphorylation of Akt and AMP-activated protein kinase (AMPK). Captopril treatment did not correct the hyperinsulinemia or impaired glucose tolerance in ob/ob mice. Rates of fatty acid oxidation were increased and glycolysis decreased in ob/ob hearts, and insulin did not modulate substrate use in hearts of ob/ob mice and did not increase Akt phosphorylation. Captopril restored the ability of insulin to regulate fatty acid oxidation and glycolysis in hearts of ob/ob mice, possibly by increasing Akt phosphorylation. Moreover, AMPK phosphorylation, which was increased in hearts of ob/ob mice, was normalized by Captopril treatment, suggesting that in addition to restoring insulin sensitivity, Captopril treatment improved myocardial energetics. Thus, angiotensin-converting enzyme inhibitors restore the responsiveness of ob/ob mouse hearts to insulin and normalizes AMPK activity independently of effects on systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Imene Tabbi-Anneni
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
315
|
Abstract
PURPOSE OF REVIEW Diabetic patients with heart failure have a poor prognosis. Although it has been demonstrated in animal models that metabolic maladaptation plays a pivotal role in contractile dysfunction of the heart, the understanding of 'diabetic cardiomyopathy' and its treatment in humans remains incomplete. RECENT FINDINGS Epidemiological studies show that structural changes in the left ventricle can be demonstrated before onset of clinical diabetes. Diastolic dysfunction is the earliest manifestation that is associated with increasing level of serum-free fatty acids and worsening glycemic control. Spectroscopic and histologic evidence in the human myocardium indicates a maladaptive metabolic response in diabetes, characterized by intramyocellular triglyceride accumulation. Studies also suggest a link between myocardial isoform switching, calcium homeostasis and altered metabolism in the development of heart failure. However, treatment directed at deranged metabolic control in diabetes is effective only in animals, and not in humans. SUMMARY Although clinical studies suggest the existence of 'diabetic cardiomyopathy', it is still difficult to prove causality. However, animal models and human studies suggest that systemic metabolic derangements may lead to metabolic, functional and structural maladaptation of the heart. The exact mechanisms of heart failure in diabetes remain elusive.
Collapse
|
316
|
Okoshi K, Guimarães JFC, Di Muzio BP, Fernandes AAH, Okoshi MP. [Diabetic cardiomyopathy]. ACTA ACUST UNITED AC 2008; 51:160-7. [PMID: 17505622 DOI: 10.1590/s0004-27302007000200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 11/23/2006] [Indexed: 01/07/2023]
Abstract
Diabetic cardiomyopathy is a myocardial disease caused by diabetes mellitus unrelated to vascular and valvular pathology or systemic arterial hypertension. Clinical and experimental studies have shown that diabetes mellitus causes myocardial hypertrophy, necrosis, and apoptosis, and increases interstitial tissue. The pathophysiology of diabetic cardiomyopathy is incompletely understood. It appears that metabolic perturbations such as hyperlipidemia, hyperinsulinemia, hyperglycemia, and changes in cardiac metabolism are involved in cellular consequences leading to increased oxidative stress, interstitial fibrosis, myocyte death, and altered intracellular ions transient and calcium homeostasis. Clinically, an early detection of asymptomatic diastolic dysfunction is possible. When patients develop signals and symptoms of heart failure, isolated diastolic dysfunction is usually detected. Systolic dysfunction is a late finding. Treatment of heart failure due to diabetic cardiomyopathy is not different from myocardiopathies of other etiologies and must follow the guidelines according to ventricular function, whether diastolic or diastolic and systolic impairment.
Collapse
Affiliation(s)
- Katashi Okoshi
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, UNESP, SP, Brazil.
| | | | | | | | | |
Collapse
|
317
|
Kewalramani G, Puthanveetil P, Kim MS, Wang F, Lee V, Hau N, Beheshti E, Ng N, Abrahani A, Rodrigues B. Acute dexamethasone-induced increase in cardiac lipoprotein lipase requires activation of both Akt and stress kinases. Am J Physiol Endocrinol Metab 2008; 295:E137-47. [PMID: 18460599 DOI: 10.1152/ajpendo.00004.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Following dexamethasone (DEX), cardiac energy generation is mainly through utilization of fatty acids (FA), with DEX animals demonstrating an increase in coronary lipoprotein lipase (LPL), an enzyme that hydrolyzes lipoproteins to FA. We examined the mechanisms by which DEX augments cardiac LPL. DEX was injected in rats, and hearts were removed, or isolated cardiomyocytes were incubated with DEX (0-8 h), for measurement of LPL activity and Western blotting. Acute DEX induced whole body insulin resistance, likely an outcome of a decrease in insulin signaling in skeletal muscle, but not cardiac tissue. The increase in luminal LPL activity after DEX was preceded by rapid nongenomic alterations, which included phosphorylation of AMPK and p38 MAPK, that led to phosphorylation of heat shock protein (HSP)25 and actin cytoskeleton rearrangement, facilitating LPL translocation to the myocyte cell surface. Unlike its effects in vivo, although DEX activated AMPK and p38 MAPK in cardiomyocytes, there was no phosphorylation of HSP25, nor was there any evidence of F-actin polymerization or an augmentation of LPL activity up to 8 h after DEX. Combining DEX with insulin appreciably enhanced cardiomyocyte LPL activity, which closely mirrored a robust elevation in phosphorylation of HSP25 and F-actin polymerization. Silencing of p38 MAPK, inhibition of PI 3-kinase, or preincubation with cytochalasin D prevented the increases in LPL activity. Our data suggest that, following DEX, it is a novel, rapid, nongenomic phosphorylation of stress kinases that, together with insulin, facilitates LPL translocation to the myocyte cell surface.
Collapse
Affiliation(s)
- Girish Kewalramani
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Wei Z, Su H, Zhang H, Zhou X, Zhu T, Liu L, Zhu Y, He G, Tian Q, Zhang J. Assessment of Left Ventricular Wall Motion in Diabetic Rats Using Velocity Vector Imaging Combined with Stress Echocardiography. Echocardiography 2008; 25:609-16. [DOI: 10.1111/j.1540-8175.2008.00672.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
319
|
Kim MS, Wang F, Puthanveetil P, Kewalramani G, Hosseini-Beheshti E, Ng N, Wang Y, Kumar U, Innis S, Proud CG, Abrahani A, Rodrigues B. Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes. Circ Res 2008; 103:252-60. [PMID: 18583709 DOI: 10.1161/circresaha.108.178681] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The diabetic heart switches to exclusively using fatty acid (FA) for energy supply and does so by multiple mechanisms including hydrolysis of lipoproteins by lipoprotein lipase (LPL) positioned at the vascular lumen. We determined the mechanism that leads to an increase in LPL after diabetes. Diazoxide (DZ), an agent that decreases insulin secretion and causes hyperglycemia, induced a substantial increase in LPL activity at the vascular lumen. This increase in LPL paralleled a robust phosphorylation of Hsp25, decreasing its association with PKCdelta, allowing this protein kinase to phosphorylate and activate protein kinase D (PKD), an important kinase that regulates fission of vesicles from the golgi membrane. Rottlerin, a PKCdelta inhibitor, prevented PKD phosphorylation and the subsequent increase in LPL. Incubating control myocytes with high glucose and palmitic acid (Glu+PA) also increased the phosphorylation of Hsp25, PKCdelta, and PKD in a pattern similar to that seen with diabetes, in addition to augmenting LPL activity. In myocytes in which PKD was silenced or a mutant form of PKCdelta was expressed, high Glu+PA were incapable of increasing LPL. Moreover, silencing of cardiomyocyte Hsp25 allowed phorbol 12-myristate 13-acetate to elicit a significant phosphorylation of PKCdelta, an appreciable association between PKCdelta and PKD, and a vigorous activation of PKD. As these cells also demonstrated an additional increase in LPL, our data imply that after diabetes, PKD control of LPL requires dissociation of Hsp25 from PKCdelta, association between PKCdelta and PKD, and vesicle fission. Results from this study could help in restricting cardiac LPL translocation, leading to strategies that overcome contractile dysfunction after diabetes.
Collapse
Affiliation(s)
- Min Suk Kim
- Faculty of Pharmaceutical Sciences, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT. Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 2008; 80:78-87. [PMID: 18573863 DOI: 10.1093/cvr/cvn172] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS The role of peroxisome proliferator-activated receptor delta (PPARdelta) in the development of cardiomyopathy, which is widely observed in diabetic disorders, is likely because cardiomyocyte-restricted PPARdelta deletion causes cardiac hypertrophy. Thus, we investigated the effect of hyperglycaemia-induced oxidative stress on the expression of cardiac PPARdelta both in vivo and in vitro. METHODS AND RESULTS We used male Wistar rats to examine the effect of hyperglycaemia on PPARdelta expression in streptozotocin-induced diabetic rats, primary neonatal rat cardiomyocytes, and H9c2 embryonic rat cardiomyocytes. PPARdelta mRNA (messenger ribonucleic acid) and protein levels were measured using northern and western blotting, respectively. The lipid deposition within the heart section was assessed by oil red O staining. The formation of reactive oxygen species (ROS) and changes in morphology, protein synthesis, and alpha-actinin content in hyperglycaemic cells were also examined. Inhibitors of ROS production or mitogen-activated protein kinase (MAPK) activation were employed to investigate the possible mechanisms. Cardiomyopathy induced in streptozotocin-diabetic rats was associated with a marked decrease in cardiac PPARdelta expression. Also, ROS production, cell size, and protein synthesis were increased while PPARdelta expression was reduced in cells exposed to hyperglycaemia in vitro. However, these glucose-induced changes were abolished in the presence of tiron or PD98059 (MEK/ERK inhibitor). CONCLUSION Our results suggest that inhibitors of ROS production or MAPK activation are involved in reduction of cardiac PPARdelta expression in response to hyperglycaemia.
Collapse
Affiliation(s)
- Bu-Chin Yu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan 70101, ROC
| | | | | | | | | |
Collapse
|
321
|
Tuunanen H, Ukkonen H, Knuuti J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 2008; 10:142-8. [PMID: 18417015 DOI: 10.1007/s11886-008-0024-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that cardiac metabolism is abnormal in heart failure (HF). Experimental studies suggest that in severe HF, cardiac metabolism reverts to a more fetal-like substrate use characterized by enhanced glucose and downregulated free fatty acid (FFA) metabolism. Correspondingly, in humans, when FFA levels are similar, myocardial glucose metabolism is increased, and FFA metabolism is decreased. However, depression of left ventricular function and insulin resistance induces a shift back to greater FFA uptake and oxidation by increasing circulating FFA availability. Myocardial insulin resistance may further impair myocardial glucose uptake and lead to an energy depletion state. Experimental and preliminary clinical studies suggest that metabolic modulators enhancing myocardial glucose oxidation may improve cardiac function in patients with chronic HF. However, it has been found that acute FFA deprivation is harmful to the cardiac performance. Optimizing myocardial energy metabolism may serve as an additional approach for managing HF, but further studies are warranted.
Collapse
Affiliation(s)
- Helena Tuunanen
- Turku PET Centre, Turku University Central Hospital, PO Box 52, FIN-20521 Turku, Finland
| | | | | |
Collapse
|
322
|
Abstract
Cardiovascular diseases are foreseeable complications of diabetes mellitus; heart failure is a prominent complication among these. Diabetic cardiomyopathy is a distinct entity independent of coronary artery disease and hypertension. Most of our knowledge on diabetic cardiomyopathy's pathogenesis comes from studies performed on various animal models. The recent advances in the domain confirm that the disease is above all a maladaptation of the heart mostly driven by the metabolic derangements that accompany diabetes mellitus.
Collapse
Affiliation(s)
- Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, University of Texas Medical School at Houston, 6431 Fannin Street, MSB 1.246, Houston, TX 77030, USA
| | | |
Collapse
|
323
|
Effects of folic acid on cardiac myocyte apoptosis in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Drugs Ther 2008; 22:299-304. [PMID: 18470605 DOI: 10.1007/s10557-008-6109-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/25/2008] [Indexed: 02/05/2023]
Abstract
BACKGROUND The effect of folic acid on cardiac myocyte apoptosis secondary to diabetes is unknown. METHODS Diabetic rats were divided into diabetic control (DC, n = 11), low-dose (LDF, 0.4 mg/kg/day, n = 12) and high-dose (HDF, 1.2 mg/kg/day, n = 12) folic acid groups. Non-diabetic rats (n = 11) were used as the normal control (NC). RESULTS After 11 weeks of treatment, compared with the NC group, the DC group showed a reduced blood levels of reactive oxygen species (ROS, P < 0.01). The rate of cardiac myocyte apoptosis in the diabetic control group was also greater than in the non-diabetic control group (P < 0.01). In folic acid-treated rats, the blood levels of ROS was higher than in the diabetic control group (P < 0.05). There was a dose-dependent reduction in the rate of cardiac myocyte apoptosis in the folic acid groups (P < 0.01), and this was accompanied by an increased level of anti-apoptotic protein Bcl-2 and decreased level of pro-apoptotic protein Bax and Fas (P < 0.01). CONCLUSIONS Dietary folic acid supplementation diminishes the cardiac myocyte apoptosis in streptozotocin-induced diabetes. The apoptosis suppression is accompanied by an increase in the expression of Bcl-2 and a decrease in Bax and Fas.
Collapse
|
324
|
Hruz PW, Yan Q, Struthers H, Jay PY. HIV protease inhibitors that block GLUT4 precipitate acute, decompensated heart failure in a mouse model of dilated cardiomyopathy. FASEB J 2008; 22:2161-7. [PMID: 18256305 DOI: 10.1096/fj.07-102269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The clinical use of HIV protease inhibitors is associated with insulin resistance and other metabolic changes that increase long-term cardiovascular risk. Since the failing heart has increased reliance on glucose, the influence of drug exposure on glucose homeostasis, myocardial glucose uptake, cardiac function, and survival was determined in TG9 mice, an established transgenic model of dilated cardiomyopathy generated by cardiac-specific overexpression of Cre-recombinase, as these animals progressed to overt heart failure. Beginning on day of life 75, TG9 mice and nontransgenic littermate controls were given a daily 10 mg/kg intraperitoneal injection of HIV protease inhibitors (ritonavir, lopinavir/ritonavir 4:1, atazanavir, atazanavir/ritonavir 4:1) or vehicle. Glucose tolerance testing, measurement of in vivo myocardial 2-deoxyglucose uptake, and echocardiography were performed before and 30 min following drug administration. The progression of dilated cardiomyopathy in TG9 animals was accompanied by impaired glucose tolerance, which was acutely exacerbated by exposure to ritonavir. Ritonavir and lopinavir precipitated acute, decompensated heart failure and death from pulmonary edema in TG9 mice. However, atazanavir, which does not inhibit glucose transport, had no effect. These studies demonstrate that, in the presence of dilated cardiomyopathy, HIV protease inhibitors that impair glucose transport induce acute, decompensated heart failure. The potential for HIV protease inhibitors to contribute to or exacerbate cardiomyopathy in human patients warrants further investigation.
Collapse
Affiliation(s)
- Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | |
Collapse
|
325
|
Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 2008; 51:93-102. [PMID: 18191731 DOI: 10.1016/j.jacc.2007.10.021] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/04/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
Abstract
Increasing evidence points to insulin resistance as a primary etiologic factor in the development of nonischemic heart failure (HF). The myocardium normally responds to injury by altering substrate metabolism to increase energy efficiency. Insulin resistance prevents this adaptive response and can lead to further injury by contributing to lipotoxicity, sympathetic up-regulation, inflammation, oxidative stress, and fibrosis. Animal models have repeatedly demonstrated the existence of an insulin-resistant cardiomyopathy, one that is characterized by inefficient energy metabolism and is reversible by improving energy use. Clinical studies in humans strongly support the link between insulin resistance and nonischemic HF. Insulin resistance is highly prevalent in the nonischemic HF population, predates the development of HF, independently defines a worse prognosis, and predicts response to antiadrenergic therapy. Potential options for treatment include metabolic-modulating agents and antidiabetic drugs. This article reviews the basic science evidence, animal experiments, and human clinical data supporting the existence of an "insulin-resistant cardiomyopathy" and proposes specific potential therapeutic approaches.
Collapse
Affiliation(s)
- Ronald M Witteles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
326
|
Yeih DF, Lin LY, Yeh HI, Lai YJ, Chiang FT, Tseng CD, Chu SH, Tseng YZ. Temporal changes in cardiac force- and flow-generation capacity, loading conditions, and mechanical efficiency in streptozotocin-induced diabetic rats. Am J Physiol Heart Circ Physiol 2008; 294:H867-74. [DOI: 10.1152/ajpheart.00573.2007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus may result in impaired cardiac contractility, but the underlying mechanisms remain unclear. We aimed to investigate the temporal alterations in cardiac force- and flow-generation capacity and loading conditions as well as mechanical efficiency in the evolution of systolic dysfunction in streptozotocin (STZ)-induced diabetic rats. Adult male Wistar rats were randomized into control and STZ-induced diabetic groups. Invasive hemodynamic studies were done at 8, 16, and 22 wk post-STZ injection. Maximal systolic elastance (Emax) and maximum theoretical flow (Qmax) were assessed by curve-fitting techniques, and ventriculoarterial coupling and mechanical efficiency were assessed by a single-beat estimation technique. In contrast to early occurring and persistently depressed Emax, Qmax progressively increased with time but was decreased at 22 wk post-STZ injection, which temporally correlated with the changes in cardiac output. The favorable loading conditions enhanced stroke volume and Qmax, whereas ventriculoarterial uncoupling attenuated the cardiac mechanical efficiency in diabetic animals. The changes in Emax and Qmax are discordant during the progression of contractile dysfunction in the diabetic heart. In conclusion, our study showed that depressed Qmax and cardiac mechanical efficiency, occurring preceding overt systolic heart failure, are two major determinants of deteriorating cardiac performance in diabetic rats.
Collapse
|
327
|
Andersen NH, Bojesen A, Christiansen JS, Gravholt CH. Glycemia, lipidemia and systolic left ventricular function evaluated by myocardial strain rate: a tissue Doppler echocardiographic study. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:151-154. [PMID: 17935868 DOI: 10.1016/j.ultrasmedbio.2007.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 08/09/2007] [Indexed: 05/25/2023]
Abstract
Recent studies have indicated that hyperglycemia and insulin resistance are significantly correlated to left ventricular (LV) long-axis function, and it seems that optimized glycemic control is significantly related to improved LV function. The aim of the study was to investigate the relation between glucose metabolism, lipid levels and LV long-axis function in normal subjects. The study population consisted of 20 unselected male patients, free of medication and without history of cardiac disease. The main outcome measures were LV systolic strain rate in the long-axis plane, examined by tissue Doppler echocardiography and fasting values of plasma glucose, insulin, cholesterol and triglycerides. The mean systolic strain rate was found to correlate significantly to age (r(2) = 0.34, p < 0.01), fasting blood glucose levels (r(2) = 0.25, p < 0.01) and low-density lipoprotein (LDL) cholesterol levels (r(2) = 0.38, p < 0.01). however, did not correlate significantly to traditional measures of insulin resistance like truncal body fat, fasting insulin or triglyceride levels. In conclusion, LV systolic function seems significantly related to fasting levels of glucose and LDL cholesterol in normal subjects.
Collapse
|
328
|
How OJ, Larsen TS, Hafstad AD, Khalid A, Myhre ESP, Murray AJ, Boardman NT, Cole M, Clarke K, Severson DL, Aasum E. Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Physiol Biochem 2007; 113:211-20. [PMID: 18158644 DOI: 10.1080/13813450701783281] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO(2)) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO(2) was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO(2), while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARgamma-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.
Collapse
Affiliation(s)
- O-J How
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Affiliation(s)
- Frederick L Ruberg
- C-8 Section of Cardiology, Boston Medical Center, 88 E Newton St, Boston, MA 02118, USA.
| |
Collapse
|
330
|
Abstract
The pathophysiologic processes of diabetes mellitus and heart failure are likely interrelated. In particular, hyperglycemia and insulin resistance can induce myocardial contractile systolic and diastolic abnormalities at the cellular level. Furthermore, patients with heart failure and concomitant diabetes mellitus are more likely to have underlying comorbid conditions resulting in greater vulnerability to adverse consequences. It is reassuring that the majority of patients with diabetes mellitus and heart failure respond to standard heart failure medical regimens comparable to their nondiabetes counterparts. However, the safety profiles of current antidiabetic medications are far from ideal when used in patients with heart failure. Emerging novel therapies that reverse the metabolic and structural changes induced by the diabetic milieu are currently under clinical development, and their potential benefits may even extend beyond the diabetic population.
Collapse
Affiliation(s)
- Hadi N Skouri
- Department of Cardiovascular Medicine, The Cleveland Clinic, 9500 Euclid Avenue, F25, Cleveland, OH 44195, USA
| | | |
Collapse
|
331
|
Abstract
Diabetes mellitus increases the risk of heart failure independently of underlying coronary artery disease, and many believe that diabetes leads to cardiomyopathy. The underlying pathogenesis is partially understood. Several factors may contribute to the development of cardiac dysfunction in the absence of coronary artery disease in diabetes mellitus. This review discusses the latest findings in diabetic humans and in animal models and reviews emerging new mechanisms that may be involved in the development and progression of cardiac dysfunction in diabetes.
Collapse
Affiliation(s)
- Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes and Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City 84112, USA
| | | |
Collapse
|
332
|
Stilli D, Lagrasta C, Berni R, Bocchi L, Savi M, Delucchi F, Graiani G, Monica M, Maestri R, Baruffi S, Rossi S, Macchi E, Musso E, Quaini F. Preservation of ventricular performance at early stages of diabetic cardiomyopathy involves changes in myocyte size, number and intercellular coupling. Basic Res Cardiol 2007; 102:488-99. [PMID: 17585379 DOI: 10.1007/s00395-007-0665-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/03/2007] [Accepted: 05/23/2007] [Indexed: 01/07/2023]
Abstract
In a rat model of diabetic cardiomyopathy, we tested whether specific changes in myocyte turnover and intercellular coupling contribute to preserving ventricular performance after a short period of hyperglycemia. In 41 rats with streptozotocin-induced diabetes and 24 control animals, cardiac electromechanical properties were assessed by telemetry ECG, epicardial potential mapping, and hemodynamic measurements to document normal ventricular function. Myocardial remodeling, expression of gap-junction proteins and myocyte regeneration were evaluated by tissue morphometry, immunohistochemistry and immunoblotting. Ventricular myocyte number and volume were also determined. In diabetic hearts, after 3 weeks of hyperglycemia, left ventricular mass was lowered by 23%, while left ventricular wall thickness and chamber volume were maintained, in the absence of fibrosis and myocyte hypertrophy. In the presence of a marked DNA oxidative damage, an increased rate of DNA replication and mitotic divisions associated with generation of new myocytes were detected. The number of cells expressing the receptor for Stem Cell Factor (c-kit) and their rate of proliferation were preserved in the left ventricle while the atrial storage of these primitive cells was severely reduced by diabetes-induced oxidative stress. Despite a down-regulation of Connexin43 and over-expression of both Connexin40 and Connexin45, the junctional proteins were normally distributed in diabetic ventricular myocardium,justifying the preserved tissue excitability and conduction velocity. In conclusion, before the appearance of the diabetic cardiomyopathic phenotype,myocardial cell proliferation associated with gap junction protein remodeling may contribute to prevent marked alterations of cardiac structure and electrophysiological properties, preserving ventricular performance.
Collapse
Affiliation(s)
- Donatella Stilli
- Dept of Evolutionary and Functional, Biology-Physiology Section, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Hafstad AD, Khalid AM, How OJ, Larsen TS, Aasum E. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endocrinol Metab 2007; 292:E1288-94. [PMID: 17213470 DOI: 10.1152/ajpendo.00504.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.
Collapse
Affiliation(s)
- Anne D Hafstad
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
334
|
Abstract
Perhexiline, 2-(2,2-dicyclohexylethyl)piperidine, was originally developed as an anti-anginal drug in the 1970s. Despite its success, its use diminished due to the occurrence of poorly understood side effects including neurotoxicity and hepatotoxicity in a small proportion of patients. Recently, perhexiline's mechanism of action and the molecular basis of its toxicity have been elucidated. Perhexiline reduces fatty acid metabolism through the inhibition of carnitine palmitoyltransferase, the enzyme responsible for mitochondrial uptake of long-chain fatty acids. The corresponding shift to greater carbohydrate utilization increases myocardial efficiency (work done per unit oxygen consumption) and this oxygen-sparing effect explains its antianginal efficacy. Perhexiline's side effects are attributable to high plasma concentrations occurring with standard doses in patients with impaired metabolism due to CYP2D6 mutations. Accordingly, dose modification in these poorly metabolizing patients identified through therapeutic plasma monitoring can eliminate any significant side effects. Herein we detail perhexiline's pharmacology with particular emphasis on its mechanism of action and its side effects. We discuss how therapeutic plasma monitoring has led to perhexiline's safe reintroduction into clinical practice and how recent clinical data attesting to its safety and remarkable efficacy led to a renaissance in its use in both refractory angina and chronic heart failure. Finally, we discuss the application of pharmacogenetics in combination with therapeutic plasma monitoring to potentially broaden perhexiline's use in heart failure, aortic stenosis, and other cardiac conditions.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
335
|
Armoni M, Harel C, Karnieli E. Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab 2007; 18:100-7. [PMID: 17317207 DOI: 10.1016/j.tem.2007.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 01/17/2007] [Accepted: 02/09/2007] [Indexed: 01/22/2023]
Abstract
The insulin-responsive glucose transporter 4 (GLUT4) has a major role in glucose uptake and metabolism in insulin target tissues (i.e. adipose and muscle cells). In these tissues, the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors and the winged-helix-forkhead box class O (FOXO) family of factors are two key families of transcription factors that regulate glucose homeostasis and insulin responsiveness. Type 2 diabetes mellitus and obesity are associated with impaired regulation of GLUT4 gene expression and elevated levels of free fatty acids and proinflammatory factors. Based on our studies of the interplay between PPAR-gamma, FOXO1 and free fatty acids, and inflammation in regulating GLUT4 transcription in sickness and in health, we suggest a novel paradigm to increase insulin sensitivity in bona fide insulin target cells.
Collapse
Affiliation(s)
- Michal Armoni
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | | | |
Collapse
|
336
|
Shen X, Bornfeldt KE. Mouse models for studies of cardiovascular complications of type 1 diabetes. Ann N Y Acad Sci 2007; 1103:202-17. [PMID: 17376839 DOI: 10.1196/annals.1394.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mouse models represent a powerful tool for investigating the underlying mechanisms of disease. Type 1 diabetes results in a markedly increased risk of cardiovascular disease. The cardiovascular complications are manifested primarily as ischemic heart disease caused by accelerated atherosclerosis, but also as cardiomyopathy, defined as ventricular dysfunction in the absence of clear ischemic heart disease. Several mouse models are now available to study atherosclerosis and cardiomyopathy associated with type 1 diabetes. For studies of diabetes-accelerated atherosclerosis, these models include low-density lipoprotein (LDL) receptor-deficient and apolipoprotein E-deficient mice in which diabetes is induced by streptozotocin or viral infection. In these mouse models, type 1 diabetes can be induced without marked changes in plasma lipid levels, thereby mimicking the accelerated atherosclerosis seen in patients with type 1 diabetes. However, mouse models that exhibit thrombotic events and myocardial infarctions as a result of diabetes still need to be developed. Conversely, cardiomyopathy associated with diabetes has now been extensively evaluated in streptozotocin-treated C57BL/6 mice, and in transgenic mice expressing calmodulin under a beta-cell-specific promoter. These mouse models have given significant insight into the molecular mechanisms causing cardiomyopathy, and indicate that increased oxidative stress contributes to diabetes-associated cardiomyopathy. In this review, we will discuss the available mouse models for studies of cardiovascular complications of type 1 diabetes, the potential mechanisms underlying these complications, and the need for new and improved mouse models.
Collapse
Affiliation(s)
- Xia Shen
- Department of Pathology, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195-7470, USA
| | | |
Collapse
|
337
|
Marsh SA, Powell PC, Agarwal A, Dell'Italia LJ, Chatham JC. Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty rats: role of hydronephrosis. Am J Physiol Heart Circ Physiol 2007; 293:H292-8. [PMID: 17351065 DOI: 10.1152/ajpheart.01362.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.
Collapse
Affiliation(s)
- Susan A Marsh
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0005, USA
| | | | | | | | | |
Collapse
|
338
|
Abstract
Diabetes mellitus, a disease which is increasing in prevalence, is a major risk factor for coronary heart disease. In patients following acute myocardial infarction, the presence of diabetes is a powerful risk factor for the development of heart failure, and this intersection of heart failure and diabetes following myocardial infarction carries substantial risk. The poor prognosis associated with heart failure in diabetic patients following myocardial infarction is likely multifactorial. Aggressive strategies for prevention and treatment of heart failure are crucial to reducing the risk associated with diabetes and heart failure following myocardial infarction. This review summarizes epidemiologic, pathophysiologic, and therapeutic data related to diabetes and heart failure in the post-myocardial infarction setting.
Collapse
Affiliation(s)
- Jerry D Estep
- Cardiovascular Division, Baylor College of Medicine, 1709 Dryden Street-BCM 620, Suite 500, Box 13, Houston, TX 77030, USA
| | | |
Collapse
|
339
|
Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2007; 20:3347-65. [PMID: 17182864 DOI: 10.1101/gad.1492806] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Postnatal growth of the heart is primarily achieved through hypertrophy of individual myocytes. Cardiac growth observed in athletes represents adaptive or physiological hypertrophy, whereas cardiac growth observed in patients with hypertension or valvular heart diseases is called maladaptive or pathological hypertrophy. These two types of hypertrophy are morphologically, functionally, and molecularly distinct from each other. The serine/threonine protein kinase Akt is activated by various extracellular stimuli in a phosphatidylinositol-3 kinase-dependent manner and regulates multiple aspects of cellular functions including survival, growth and metabolism. In this review we will discuss the role of the Akt signaling pathway in the heart, focusing on the regulation of cardiac growth, contractile function, and coronary angiogenesis. How this signaling pathway contributes to the development of physiological/pathological hypertrophy and heart failure will also be discussed.
Collapse
Affiliation(s)
- Ichiro Shiojima
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
340
|
Yue P, Arai T, Terashima M, Sheikh AY, Cao F, Charo D, Hoyt G, Robbins RC, Ashley EA, Wu J, Yang PC, Tsao PS. Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol 2006; 292:H2106-18. [PMID: 17122193 DOI: 10.1152/ajpheart.00856.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The db/db mouse is a well-established model of diabetes. Previous reports have documented contractile dysfunction (i.e., cardiomyopathy) in these animals, although the extant literature provides limited insights into cardiac structure and function as they change over time. To better elucidate the natural history of cardiomyopathy in db/db mice, we performed cardiac magnetic resonance (CMR) scans on these animals. CMR imaging was conducted with a 4.7-T magnet on female db/db mice and control db/+ littermates at 5, 9, 13, 17, and 22 wk of age. Gated gradient echo sequences were used to obtain cineographic short-axis slices from apex to base. From these images left ventricular (LV) mass (LVM), wall thickness, end-diastolic volume (LVEDV), and ejection fraction (LVEF) were determined. Additionally, cardiac [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET scanning, pressure-volume loops, and real-time quantitative PCR on db/db myocardium were performed. Relative to control, db/db mice developed significant increases in LVM and wall thickness as early as 9 wk of age. LVEDV diverged slightly later, at 13 wk. Interestingly, compared with the baseline level, LVEF in the db/db group did not decrease significantly until 22 wk. Additionally, [(18)F]FDG metabolic imaging showed a 40% decrease in glucose uptake in db/db mice. Furthermore, contractile dysfunction was observed in 15-wk db/db mice undergoing pressure-volume loops. Finally, real-time quantitative PCR revealed an age-dependent recapitulation of the fetal gene program, consistent with a myopathic process. In summary, as assessed by CMR, db/db mice develop characteristic structural and functional changes consistent with cardiomyopathy.
Collapse
Affiliation(s)
- Patrick Yue
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5406, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Abstract
ATP-binding cassette (ABC) transporters are multidomain integral membrane proteins that utilise the energy of ATP hydrolysis to translocate solutes across cellular membranes in all phyla. ABC transporters form one of the largest of all protein families and are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. Elucidation of the structure and mechanism of ABC transporters is essential to the rational design of agents to control their function. While a wealth of high-resolution structures of ABC proteins have been produced in recent years, many fundamental questions regarding the protein's mechanism remain unanswered. In this review, we examine the recent structural data concerning ABC transporters and related proteins in the light of other experimental and theoretical data, and discuss these data in relation to current ideas concerning the transporters' molecular mechanism.
Collapse
Affiliation(s)
- P. M. Jones
- Department of Cell and Molecular Biology, University of Technology Sydney, Broadway, 2007 Sydney, Australia
| | - A. M. George
- Department of Cell and Molecular Biology, University of Technology Sydney, Broadway, 2007 Sydney, Australia
| |
Collapse
|