301
|
Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2018; 41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Anti-cancer vaccines have raised many hopes from the start of immunotherapy but have not yet been clinically successful. The few positive results of anti-cancer vaccines have been observed in clinical situations of low tumor burden or preneoplastic lesions. Several new concepts and new results reposition this therapeutic approach in the field of immunotherapy. Indeed, cancers that respond to anti-PD-1/PD-L1 (20-30%) are those that are infiltrated by anti-tumor T cells with an inflammatory infiltrate. However, 70% of cancers do not appear to have an anti-tumor immune reaction in the tumor microenvironment. To induce this anti-tumor immunity, therapeutic combinations between vaccines and anti-PD-1/PD-L1 are being evaluated. In addition, the identification of neoepitopes against which the immune system is less tolerated is giving rise to a new enthusiasm by the first clinical results of the vaccine including these neoepitopes in humans. The ability of anti-cancer vaccines to induce a population of anti-tumor T cells called memory resident T cells that play an important role in immunosurveillance is also a new criterion to consider in the design of therapeutic vaccines.
Collapse
Affiliation(s)
- T Tran
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Blanc
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Granier
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Saldmann
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tanchot
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Hôpital Européen Georges Pompidou, Laboratory of Immunology, Assistance Publique des Hôpitaux de Paris, Paris, France.
- Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
302
|
Liao H, Zhu H, Liu S, Wang H. Expression of V-domain immunoglobulin suppressor of T cell activation is associated with the advanced stage and presence of lymph node metastasis in ovarian cancer. Oncol Lett 2018; 16:3465-3472. [PMID: 30127950 PMCID: PMC6096210 DOI: 10.3892/ol.2018.9059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative immune checkpoint that belongs to the B7 family. VISTA is primarily expressed on hematopoietic cells and inhibits T cell proliferation and cytokine production. The blockade of VISTA has demonstrated promising results in certain murine tumor models. In the present study, an immunohistochemical analysis of VISTA expression on tumor cells, intratumoral immune cells and vascular endothelial cells was performed in a cohort of 65 patients with ovarian cancer (OC). The associations between VISTA expression and different clinicopathological characteristics were evaluated using Fisher's exact test, and the analysis of overall survival in different groups was performed by the construction of Kaplan-Meier curves. The results indicated that high expression of VISTA on tumor cells or ICs was significantly associated with advanced tumor stage and the presence of lymph node metastasis (LNM). However, the percentage of cases with high expression of VISTA on tumor cells (24.6%) was decreased compared with those with high expression on ICs (44.6%). There was no association between VISTA expression and the 5-year overall survival rate, and advanced-stage disease was the only independent predictor of poor prognosis based on multivariate Cox regression analysis. In general, VISTA expression increased with advanced disease stage and LNM, indicating that VISTA expression is involved in the progression of OC. More importantly, these data implicate VISTA as a candidate immunotherapeutic target in OC.
Collapse
Affiliation(s)
- Hong Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongmei Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
303
|
High-Density Infiltration of V-domain Immunoglobulin Suppressor of T-cell Activation Up-regulated Immune Cells in Human Pancreatic Cancer. Pancreas 2018; 47:725-731. [PMID: 29771768 DOI: 10.1097/mpa.0000000000001059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED V-domain immunoglobulin suppressor of T-cell activation (VISTA) is constitutively expressed in hematopoietic lineage and is highly up-regulated in tumor infiltrated myeloid cells and regulatory T-cells in animal models. However, its expression in human pancreatic tumor microenvironment remains unknown. In this research, we aimed at the expression of VISTA in human pancreatic cancer samples. METHODS We performed immunohistochemistry to determine VISTA expression in human pancreatic cancer samples. RESULTS We found that 88.46% of the patients showed high-density infiltration of polymorphonuclear neutrophils and mononuclear immune cells with up-regulated expression of VISTA in cancer tissues, especially in the necrotic foci. Interestingly, it was minimally expressed in pancreatic cancerous cells and was not detectable in either normal ducts or islet cells in cancerous or normal pancreatic tissues. CONCLUSIONS We conclude that VISTA is predominantly expressed and up-regulated in the high-density infiltrated immune cells but minimal in human pancreatic cancerous cells. Our results for the first time highlight pancreatic immunosuppressive tumor microenvironment contributed by VISTA and its potential as a prominent target for pancreatic cancer immunotherapy.
Collapse
|
304
|
Kuklinski LF, Yan S, Li Z, Fisher JL, Cheng C, Noelle RJ, Angeles CV, Turk MJ, Ernstoff MS. VISTA expression on tumor-infiltrating inflammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival. Cancer Immunol Immunother 2018; 67:1113-1121. [PMID: 29737375 PMCID: PMC11028124 DOI: 10.1007/s00262-018-2169-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Adaptive immune responses contribute to the pathogenesis of melanoma by facilitating immune evasion. V-domain Ig suppressor of T-cell activation (VISTA) is a potent negative regulator of T-cell function and is expressed at high levels on monocytes, granulocytes, and macrophages, and at lower densities on T-cell populations within the tumor microenvironment. In this study, 85 primary melanoma specimens were selected from pathology tissue archives and immunohistochemically stained for CD3, PD-1, PD-L1, and VISTA. Pearson's correlation coefficients identified associations in expression between VISTA and myeloid infiltrate (r = 0.28, p = 0.009) and the density of PD-1+ inflammatory cells (r = 0.31, p = 0.005). The presence of VISTA was associated with a significantly worse disease-specific survival in univariate analysis (hazard ratio = 3.57, p = 0.005) and multivariate analysis (hazard ratio = 3.02, p = 0.02). Our findings show that VISTA expression is an independent negative prognostic factor in primary cutaneous melanoma and suggests its potential as an adjuvant immunotherapeutic intervention in the future.
Collapse
Affiliation(s)
- Lawrence F Kuklinski
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, USA
| | - Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Zhongze Li
- Biostatistics Shared Resource, Norris Cotton Cancer Center, Dartmouth-Hitchock Medical Center, Lebanon, NH, USA
| | - Jan L Fisher
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Departments of Biomedical Data Sciences, Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Christina V Angeles
- Department of Surgery, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Marc S Ernstoff
- Roswell Park Cancer Institute, University of Buffalo, The State University of New York, Elm and Carlton, Buffalo, NY, 14263, USA.
| |
Collapse
|
305
|
Goubet AG, Livartowski A, Romano E. [Immunotherapy in lung cancer: New concepts]. Rev Mal Respir 2018; 35:642-651. [PMID: 29941206 DOI: 10.1016/j.rmr.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
Abstract
Improvements in knowledge about the complexity of the tumor microenvironment have paved the way for a revolution in lung cancer treatment with the emergence of immune checkpoint inhibitors. The immune checkpoints negatively regulate immune cells and lead to a dormant state: the immune cells are then unable to interact effectively with their targets. The immune checkpoint inhibitors are monoclonal antibodies that block immune checkpoints and permit reactivation of the immune response against the tumor. Although immune checkpoint inhibitors are effective as monotherapy, several other immune targets exist. The better understanding of the involvement of these new targets in the immune response against tumors is leading to the design of new compounds and new therapeutic approaches.
Collapse
Affiliation(s)
- A-G Goubet
- Centre d'immunothérapie des cancers, Inserm U932, 26, rue d'Ulm, 75005 Paris, France
| | - A Livartowski
- Département d'oncologie médicale, institut Curie, 75005 Paris, France
| | - E Romano
- Centre d'immunothérapie des cancers, Inserm U932, 26, rue d'Ulm, 75005 Paris, France; Département d'oncologie médicale, institut Curie, 75005 Paris, France.
| |
Collapse
|
306
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
307
|
Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene 2018; 37:5269-5280. [PMID: 29855615 PMCID: PMC6160395 DOI: 10.1038/s41388-018-0288-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/08/2018] [Accepted: 04/02/2018] [Indexed: 12/30/2022]
Abstract
Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3+ cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.
Collapse
|
308
|
Özkan B, Lim H, Park SG. Immunomodulatory Function of Myeloid-Derived Suppressor Cells during B Cell-Mediated Immune Responses. Int J Mol Sci 2018; 19:E1468. [PMID: 29762501 PMCID: PMC5983618 DOI: 10.3390/ijms19051468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play roles in immune regulation during neoplastic and non-neoplastic inflammatory responses. This immune regulatory function is directed mainly toward T cells. However, MDSCs also regulate other cell populations, including B cells, during inflammatory responses. Indeed, B cells are essential for antibody-mediated immune responses. MDSCs regulate B cell immune responses directly via expression of effector molecules and indirectly by controlling other immune regulatory cells. B cell-mediated immune responses are a major component of the overall immune response; thus, MDSCs play a prominent role in their regulation. Here, we review the current knowledge about MDSC-mediated regulation of B cell responses.
Collapse
Affiliation(s)
- Bilgenaz Özkan
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Heejin Lim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.
| |
Collapse
|
309
|
Zhang M, Pang HJ, Zhao W, Li YF, Yan LX, Dong ZY, He XF. VISTA expression associated with CD8 confers a favorable immune microenvironment and better overall survival in hepatocellular carcinoma. BMC Cancer 2018; 18:511. [PMID: 29720116 PMCID: PMC5932869 DOI: 10.1186/s12885-018-4435-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) often arises in the setting of chronic inflammation with multiple inhibitory immune signals. V-domain Ig suppressor of T cell activation (VISTA) is identified as a novel negative checkpoint regulator. This study sought to determine the expression and prognostic value of VISTA in HCC and classify tumor microenvironments (TMEs) based on VISTA and CD8+ tumor-infiltrating lymphocytes (TILs). Methods The expression of VISTA and CD8 proteins was assessed in 183 HCC tissue microarrays (TMAs) by immunohistochemistry (IHC). VISTA and CD8A mRNA extracted from 372 patients with HCC in The Cancer Genome Atlas (TCGA) database was included as a validation cohort. Associations between the VISTA, clinicopathological variables, and survival were analyzed. Results VISTA expression was detected in 29.5% HCC tissues, among which 16.4% tissues were positive for tumor cells (TCs), and 16.9% tissues were positive for immune cells (ICs). VISTA expression was significantly associated with tissues with a high pathological grading (p = 0.038), without liver cirrhosis (p = 0.011), and with a high density of CD8 + TILs (p < 0.001). Kaplan-Meier curves demonstrated that patients with VISTA-positive staining in TCs (p = 0.037), but not in ICs, (p = 0.779) showed significantly prolonged overall survival (OS) than those with VISTA-negative expression. Classification of HCC TME-based VISTA and CD8 + TILs showed 4 immune subtypes: VISTA+/CD8+ (16.9%), VISTA+/CD8- (12.6%), VISTA-/CD8+ (16.4%), and VISTA-/CD8+ (54.1%). The dual positive VISTA+/CD8+ subtype showed significantly prolonged OS than other subtypes (p = 0.023). Conclusions VISTA protein expression in HCC showed cell specific and displayed different prognosis. VISTA expression was significantly associated with CD8 + TILs, Dual positive VISTA+/CD8+ showed favorable TME and better OS. Electronic supplementary material The online version of this article (10.1186/s12885-018-4435-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, China
| | - Hua-Jin Pang
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, China
| | - Wei Zhao
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, China
| | - Yu-Fa Li
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Rd, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Rd, Guangzhou, China
| | - Zhong-Yi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, China.
| | - Xiao-Feng He
- Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, China.
| |
Collapse
|
310
|
Donini C, D'Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis 2018; 10:S1581-S1601. [PMID: 29951308 DOI: 10.21037/jtd.2018.02.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery and clinical application of immune-checkpoint inhibitors has dramatically improved the treatments, outcomes and therapeutic concepts in multiple tumor settings. This breakthrough was mainly based on monoclonal antibodies blocking the inhibitory molecule CTLA-4 and or the PD-1/PD-L1 axis, with the aim of counteracting major tumor immune evasion mechanisms. Even acknowledging these important successes, not all the patients benefit from these treatments. Translational and clinical research efforts are ongoing to explore the potentialities of a new generation of immune-modulatory molecules to extend current clinical applications and contrast the unsolved issues of resistance and disease relapse that still affects a considerable rate of patients. New immune-checkpoints, with either stimulatory or inhibitory functions are emerging with key roles in regulating T cell response but also affecting other crucial effectors belonging to the innate immune response (e.g., natural killer). Their therapeutic exploitation, either alone or in strategical combinations, is providing important preclinical results, holding promises currently explored in initial clinical trials. The first results point toward favorable safety profiles with selective hints of activity in challenging settings. Important issues regarding the dose, schedule and rational combinations remain open and data from the clinical studies are needed. Here we provide an overview of the main emerging stimulatory or inhibitory immune-checkpoints exploitable in cancer treatment, briefly reporting their biological function, preclinical activity and preliminary clinical data.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Giovanni Grignani
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
311
|
Nsengimana J, Laye J, Filia A, O’Shea S, Muralidhar S, Poźniak J, Droop A, Chan M, Walker C, Parkinson L, Gascoyne J, Mell T, Polso M, Jewell R, Randerson-Moor J, Cook GP, Bishop DT, Newton-Bishop J. β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas. J Clin Invest 2018; 128:2048-2063. [PMID: 29664013 PMCID: PMC5919828 DOI: 10.1172/jci95351] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy prolongs survival in only a subset of melanoma patients, highlighting the need to better understand the driver tumor microenvironment. We conducted bioinformatic analyses of 703 transcriptomes to probe the immune landscape of primary cutaneous melanomas in a population-ascertained cohort. We identified and validated 6 immunologically distinct subgroups, with the largest having the lowest immune scores and the poorest survival. This poor-prognosis subgroup exhibited expression profiles consistent with β-catenin-mediated failure to recruit CD141+ DCs. A second subgroup displayed an equally bad prognosis when histopathological factors were adjusted for, while 4 others maintained comparable survival profiles. The 6 subgroups were replicated in The Cancer Genome Atlas (TCGA) melanomas, where β-catenin signaling was also associated with low immune scores predominantly related to hypomethylation. The survival benefit of high immune scores was strongest in patients with double-WT tumors for BRAF and NRAS, less strong in BRAF-V600 mutants, and absent in NRAS (codons 12, 13, 61) mutants. In summary, we report evidence for a β-catenin-mediated immune evasion in 42% of melanoma primaries overall and in 73% of those with the worst outcome. We further report evidence for an interaction between oncogenic mutations and host response to melanoma, suggesting that patient stratification will improve immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Jérémie Nsengimana
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Jon Laye
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Anastasia Filia
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sally O’Shea
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Sathya Muralidhar
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Joanna Poźniak
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Alastair Droop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- Medical Research Council (MRC) Medical Bioinformatics Centre, University of Leeds, Leeds, United Kingdom
| | - May Chan
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Christy Walker
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Louise Parkinson
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Joanne Gascoyne
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Tracey Mell
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Minttu Polso
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Rosalyn Jewell
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Graham P. Cook
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Julia Newton-Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
312
|
Toor SM, Elkord E. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer. Immunol Cell Biol 2018; 96:888-897. [PMID: 29635843 DOI: 10.1111/imcb.12054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022]
Abstract
Immune evasion is a characteristic of most human malignancies and is induced via various mechanisms. Immunosuppressive cells, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), are key mediators in assisting tumors to escape immune surveillance. Expansion of MDSC, Treg and elevated levels of immune checkpoints (IC) are frequently detected in the tumor microenvironment and periphery of cancer patients. Various therapeutic agents have been shown to target MDSC and to block IC for inducing anti-tumor immunity and reversal of tumor immune escape. Importantly, some recent studies have shown that MDSC targeting improves the efficacy of IC blockade in cancer therapy. However, there is a pressing need to improve our understanding of the distinct role of these cells to develop combination therapy that attacks tumor cells from all frontiers to improve cancer therapeutics. Herein, we discuss the role of MDSC in cancer progression, interactions with IC in the context of anti-cancer immunity and the current therapeutic strategies to target MDSC and block IC in cancer.
Collapse
Affiliation(s)
- Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
313
|
Villarroel-Espindola F, Yu X, Datar I, Mani N, Sanmamed M, Velcheti V, Syrigos K, Toki M, Zhao H, Chen L, Herbst RS, Schalper KA. Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res 2018; 24:1562-1573. [PMID: 29203588 PMCID: PMC5884702 DOI: 10.1158/1078-0432.ccr-17-2542] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Purpose: Determine the localized expression pattern and clinical significance of VISTA/PD-1H in human non-small cell lung cancer (NSCLC).Experimental Design: Using multiplex quantitative immunofluorescence (QIF), we performed localized measurements of VISTA, PD-1, and PD-L1 protein in 758 stage I-IV NSCLCs from 3 independent cohorts represented in tissue microarray format. The targets were selectively measured in cytokeratin+ tumor epithelial cells, CD3+ T cells, CD4+ T-helper cells, CD8+ cytotoxic T cells, CD20+ B lymphocytes and CD68+ tumor-associated macrophages. We determined the association between the targets, clinicopathological/molecular variables and survival. Genomic analyses of lung cancer cases from TCGA were also performed.Results: VISTA protein was detected in 99% of NSCLCs with a predominant membranous/cytoplasmic staining pattern. Expression in tumor and stromal cells was seen in 21% and 98% of cases, respectively. The levels of VISTA were positively associated with PD-L1, PD-1, CD8+ T cells and CD68+ macrophages. VISTA expression was higher in T-lymphocytes than in macrophages; and in cytotoxic T cells than in T-helper cells. Elevated VISTA was associated with absence of EGFR mutations and lower mutational burden in lung adenocarcinomas. Presence of VISTA in tumor compartment predicted longer 5-year survival.Conclusions: VISTA is frequently expressed in human NSCLC and shows association with increased tumor-infiltrating lymphocytes, PD-1 axis markers, specific genomic alterations and outcome. These results support the immunomodulatory role of VISTA in human NSCLC and suggests its potential as therapeutic target. Clin Cancer Res; 24(7); 1562-73. ©2017 AACR.
Collapse
Affiliation(s)
| | - Xiaoqing Yu
- Department of Public Health, Yale School of Medicine, New Haven, Connecticut
| | - Ila Datar
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Nikita Mani
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Miguel Sanmamed
- Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | | | | | - Maria Toki
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Public Health, Yale School of Medicine, New Haven, Connecticut
| | - Lieping Chen
- Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Roy S Herbst
- Medical Oncology and Yale Cancer Center, New Haven, Connecticut
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Medical Oncology and Yale Cancer Center, New Haven, Connecticut
| |
Collapse
|
314
|
Ni L, Dong C. New B7 Family Checkpoints in Human Cancers. Mol Cancer Ther 2018; 16:1203-1211. [PMID: 28679835 DOI: 10.1158/1535-7163.mct-16-0761] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/17/2017] [Accepted: 04/20/2017] [Indexed: 01/22/2023]
Abstract
T cells are the main effector cells in immune response against tumors. The activation of T cells is regulated by the innate immune system through positive and negative costimulatory molecules. Targeting immune checkpoint regulators such as programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) and CTL antigen 4 (CTLA-4) has achieved notable benefit in a variety of cancers, which leads to multiple clinical trials with antibodies targeting the other related B7/CD28 family members. Recently, five new B7 family ligands, B7-H3, B7-H4, B7-H5, B7-H6, and B7-H7, were identified. Here we review recent understanding of new B7 family checkpoint molecules as they have come to the front of cancer research with the concept that tumor cells exploit them to escape immune surveillance. The aim of this article is to address the structure and expression of the new B7 family molecules as well as their roles in controlling and suppressing immune responses of T cells as well as NK cells. We also discuss clinical significance and contribution of these checkpoint expressions in human cancers. Mol Cancer Ther; 16(7); 1203-11. ©2017 AACR.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
315
|
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 2018; 11:39. [PMID: 29544515 PMCID: PMC5856308 DOI: 10.1186/s13045-018-0582-8] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoints consist of inhibitory and stimulatory pathways that maintain self-tolerance and assist with immune response. In cancer, immune checkpoint pathways are often activated to inhibit the nascent anti-tumor immune response. Immune checkpoint therapies act by blocking or stimulating these pathways and enhance the body's immunological activity against tumors. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1(PD-L1) are the most widely studied and recognized inhibitory checkpoint pathways. Drugs blocking these pathways are currently utilized for a wide variety of malignancies and have demonstrated durable clinical activities in a subset of cancer patients. This approach is rapidly extending beyond CTLA-4 and PD-1/PD-L1. New inhibitory pathways are under investigation, and drugs blocking LAG-3, TIM-3, TIGIT, VISTA, or B7/H3 are being investigated. Furthermore, agonists of stimulatory checkpoint pathways such as OX40, ICOS, GITR, 4-1BB, CD40, or molecules targeting tumor microenvironment components like IDO or TLR are under investigation. In this article, we have provided a comprehensive review of immune checkpoint pathways involved in cancer immunotherapy, and discuss their mechanisms and the therapeutic interventions currently under investigation in phase I/II clinical trials. We also reviewed the limitations, toxicities, and challenges and outline the possible future research directions.
Collapse
Affiliation(s)
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
- Present Address: Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Aixa E Soyano
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Saranya Chumsri
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
316
|
|
317
|
Xu W, Hiếu T, Malarkannan S, Wang L. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018; 15:438-446. [PMID: 29375120 DOI: 10.1038/cmi.2017.148] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
Among various immunoregulatory molecules, the B7 family of immune-checkpoint receptors consists of highly valuable targets for cancer immunotherapy. Antibodies targeting two B7 family co-inhibitory receptors, CTLA-4 and PD-1, have elicited long-term clinical outcomes in previously refractory cancer types and are considered a breakthrough in cancer therapy. Despite the success, the relatively low response rate (20-30%) warrants efforts to identify and overcome additional immune-suppressive pathways. Among the expanding list of T cell inhibitory regulators, V domain immunoglobulin suppressor of T cell activation (VISTA) is a unique B7 family checkpoint that regulates a broad spectrum of immune responses. Here, we summarize recent advances that highlight the structure, expression, and multi-faceted immunomodulatory mechanisms of VISTA in the context of autoimmunity, inflammation, and anti-tumor immunity.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - TạMinh Hiếu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.,Department of Medicine, Milwaukee, WI 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Research Institute, 53226, Milwaukee, WI, USA
| | - Li Wang
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.
| |
Collapse
|
318
|
Borrie AE, Maleki Vareki S. T Lymphocyte–Based Cancer Immunotherapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:201-276. [DOI: 10.1016/bs.ircmb.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
319
|
Villanueva N, Bazhenova L. New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Ther Adv Respir Dis 2018; 12:1753466618794133. [PMID: 30215300 PMCID: PMC6144513 DOI: 10.1177/1753466618794133] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has significantly altered the treatment landscape for many cancers, including non-small cell lung cancer (NSCLC). Currently approved immuno-oncology agents for lung cancer are aimed at the reversal of immune checkpoints, programmed death protein-1 (PD-1) and programmed death ligand-1 (PD-L1). Although responses to checkpoint inhibitors are encouraging, and in some cases durable, these successes are not universal among all treated patients. In order to optimize our treatment approach utilizing immunotherapy, we must better understand the interaction between cancer and the immune system and evasion mechanisms. In this review, we will provide an overview of the immune system and cancer, and review novel therapies that promote tumor antigen release for immune system detection, activate the effector T-cell response, and reverse inhibitory antitumor signals.
Collapse
Affiliation(s)
- Nicolas Villanueva
- University of California, San Diego, Moore’s Cancer Center, San Diego, CA, USA
| | - Lyudmila Bazhenova
- 3855 Health Sciences Drive, #0987 La Jolla, University of California, San Diego, Moore’s Cancer Center, San Diego, CA 92093, USA
| |
Collapse
|
320
|
Ceeraz S, Eszterhas SK, Sergent PA, Armstrong DA, Ashare A, Broughton T, Wang L, Pechenick D, Burns CM, Noelle RJ, Vincenti MP, Fava RA. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene expression in response to simulated immune complexes. Arthritis Res Ther 2017; 19:270. [PMID: 29216931 PMCID: PMC5721690 DOI: 10.1186/s13075-017-1474-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Background In addition to activated T cells, the immune checkpoint inhibitor “V domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1474-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Ceeraz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Susan K Eszterhas
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA
| | - Petra A Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - David A Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Alix Ashare
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Thomas Broughton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Li Wang
- Microbiology and Immunology & Cancer Center Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dov Pechenick
- ImmuNext INC, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Christopher M Burns
- Department of Medicine, Section of Rheumatology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.,ImmuNext INC, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Matthew P Vincenti
- Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Roy A Fava
- Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA. .,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| |
Collapse
|
321
|
Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, Thompson JF, Wilmott JS, Long GV, Scolyer RA. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol 2017; 30:1666-1676. [PMID: 28776578 DOI: 10.1038/modpathol.2017.89] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Understanding the mechanisms of acquired resistance to anti-PD-1 will allow development of better treatment strategies for cancer patients. This study evaluated potential mechanisms of acquired resistance to anti-PD-1 in longitudinally collected metastatic melanoma patient biopsies. Thirty-four metastatic melanoma biopsies were collected from 16 patients who had initially responded to either anti-PD-1 (n=13) alone or combination of anti-PD-1 and ipilimumab (n=3) and then progressed. Biopsies were taken prior to treatment (PRE, n=12) and following progression of disease (PROG, n=22). Immunohistochemistry was performed on all biopsies to detect CD8, FOXP3, PD-1 and VISTA expression on T-cells and PTEN, β-catenin, PD-L1, HLA-A, and HLA-DPB1 expression in the tumor. The majority of patients showed significantly increased density of VISTA+ lymphocytes from PRE to PROG (12/18) (P=0.009) and increased expression of tumor PD-L1 from PRE to PROG (11/18). Intratumoral expression of FOXP3+ lymphocytes significantly increased (P=0.018) from PRE to PROG (10/18). Loss of tumor PTEN and downregulation of tumor HLA-A from PRE to PROG were each identified in 5/18 and 4/18 PROG biopsies, respectively. Downregulation of HLA-DPB1 from PRE to PROG was present in 3/18 PROG biopsies, whereas nuclear β-catenin activation was only identified in 2/18 PROG biopsies. Negative immune checkpoint regulation by VISTA represents an important potential mechanism of acquired resistance in melanoma patients treated with anti-PD-1. Downregulation of HLA-associated antigen presentation also occurs with acquired resistance. Augmentation of the VISTA immune checkpoint pathway may hold promise as a therapeutic strategy in metastatic melanoma patients, particularly those failing anti-PD-1 therapy, and warrants assessment in clinical trials.
Collapse
Affiliation(s)
- Hojabr Kakavand
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Louise A Jackett
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal North Shore and Mater Hospitals, St. Leonards, NSW, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal North Shore and Mater Hospitals, St. Leonards, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
322
|
Varricchi G, Galdiero MR, Marone G, Criscuolo G, Triassi M, Bonaduce D, Marone G, Tocchetti CG. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2017; 2:e000247. [PMID: 29104763 PMCID: PMC5663252 DOI: 10.1136/esmoopen-2017-000247] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiac toxicity after conventional antineoplastic drugs (eg, anthracyclines) has historically been a relevant issue. In addition, targeted therapies and biological molecules can also induce cardiotoxicity. Immune checkpoint inhibitors are a novel class of anticancer drugs, distinct from targeted or tumour type-specific therapies. Cancer immunotherapy with immune checkpoint blockers (ie, monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1)) has revolutionised the management of a wide variety of malignancies endowed with poor prognosis. These inhibitors unleash antitumour immunity, mediate cancer regression and improve the survival in a percentage of patients with different types of malignancies, but can also produce a wide spectrum of immune-related adverse events. Interestingly, PD-1 and PD-L1 are expressed in rodent and human cardiomyocytes, and early animal studies have demonstrated that CTLA-4 and PD-1 deletion can cause autoimmune myocarditis. Cardiac toxicity has largely been underestimated in recent reviews of toxicity of checkpoint inhibitors, but during the last years several cases of myocarditis and fatal heart failure have been reported in patients treated with checkpoint inhibitors alone and in combination. Here we describe the mechanisms of the most prominent checkpoint inhibitors, specifically ipilimumab (anti-CTLA-4, the godfather of checkpoint inhibitors) patient and monoclonal antibodies targeting PD-1 (eg, nivolumab, pembrolizumab) and PD-L1 (eg, atezolizumab). We also discuss what is known and what needs to be done about cardiotoxicity of checkpoint inhibitors in patients with cancer. Severe cardiovascular effects associated with checkpoint blockade introduce important issues for oncologists, cardiologists and immunologists.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore', National Research Council (CNR), Naples, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
323
|
Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, Liebler DC. Quantitative Mass Spectrometry Analysis of PD-L1 Protein Expression, N-glycosylation and Expression Stoichiometry with PD-1 and PD-L2 in Human Melanoma. Mol Cell Proteomics 2017; 16:1705-1717. [PMID: 28546465 PMCID: PMC5629259 DOI: 10.1074/mcp.ra117.000037] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 01/05/2023] Open
Abstract
Quantitative assessment of key proteins that control the tumor-immune interface is one of the most formidable analytical challenges in immunotherapeutics. We developed a targeted MS platform to quantify programmed cell death-1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2) at fmol/microgram protein levels in formalin fixed, paraffin-embedded sections from 22 human melanomas. PD-L1 abundance ranged 50-fold, from ∼0.03 to 1.5 fmol/microgram protein and the parallel reaction monitoring (PRM) data were largely concordant with total PD-L1-positive cell content, as analyzed by immunohistochemistry (IHC) with the E1L3N antibody. PD-1 was measured at levels up to 20-fold lower than PD-L1, but the abundances were not significantly correlated (r2 = 0.062, p = 0.264). PD-1 abundance was weakly correlated (r2 = 0.3057, p = 0.009) with the fraction of lymphocytes and histiocytes in sections. PD-L2 was measured from 0.03 to 1.90 fmol/microgram protein and the ratio of PD-L2 to PD-L1 abundance ranged from 0.03 to 2.58. In 10 samples, PD-L2 was present at more than half the level of PD-L1, which suggests that PD-L2, a higher affinity PD-1 ligand, is sufficiently abundant to contribute to T-cell downregulation. We also identified five branched mannose and N-acetylglucosamine glycans at PD-L1 position N192 in all 22 samples. Extent of PD-L1 glycan modification varied by ∼10-fold and the melanoma with the highest PD-L1 protein abundance and most abundant glycan modification yielded a very low PD-L1 IHC estimate, thus suggesting that N-glycosylation may affect IHC measurement and PD-L1 function. Additional PRM analyses quantified immune checkpoint/co-regulator proteins LAG3, IDO1, TIM-3, VISTA, and CD40, which all displayed distinct expression independent of PD-1, PD-L1, and PD-L2. Targeted MS can provide a next-generation analysis platform to advance cancer immuno-therapeutic research and diagnostics.
Collapse
Affiliation(s)
- Carlos A Morales-Betanzos
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hyoungjoo Lee
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paula I Gonzalez Ericsson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Justin M Balko
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Douglas B Johnson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee;
| |
Collapse
|
324
|
Prodeus A, Abdul-Wahid A, Sparkes A, Fischer NW, Cydzik M, Chiang N, Alwash M, Ferzoco A, Vacaresse N, Julius M, Gorczysnki RM, Gariépy J. VISTA.COMP - an engineered checkpoint receptor agonist that potently suppresses T cell-mediated immune responses. JCI Insight 2017; 2:94308. [PMID: 28931757 DOI: 10.1172/jci.insight.94308] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/10/2017] [Indexed: 01/25/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a recently discovered immune checkpoint ligand that functions to suppress T cell activity. The therapeutic potential of activating this immune checkpoint pathway to reduce inflammatory responses remains untapped, largely due to the inability to derive agonists targeting its unknown receptor. A dimeric construct of the IgV domain of VISTA (VISTA-Fc) was shown to suppress the activation of T cells in vitro. However, this effect required its immobilization on a solid surface, suggesting that VISTA-Fc may display limited efficacy as a VISTA-receptor agonist in vivo. Herein, we have designed a stable pentameric VISTA construct (VISTA.COMP) by genetically fusing its IgV domain to the pentamerization domain from the cartilage oligomeric matrix protein (COMP). In contrast to VISTA-Fc, VISTA.COMP does not require immobilization to inhibit the proliferation of CD4+ T cells undergoing polyclonal activation. Furthermore, we show that VISTA.COMP, but not VISTA-Fc, functions as an immunosuppressive agonist in vivo capable of prolonging the survival of skin allografts in a mouse transplant model as well as rescuing mice from acute concanavalin-A-induced hepatitis. Collectively, we believe our data demonstrate that VISTA.COMP is a checkpoint receptor agonist and the first agent to our knowledge targeting the putative VISTA-receptor to suppress T cell-mediated immune responses.
Collapse
Affiliation(s)
- Aaron Prodeus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Nicholas W Fischer
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Nicholas Chiang
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| | - Mays Alwash
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| | - Alessandra Ferzoco
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Julius
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Reginald M Gorczysnki
- Department of Pharmaceutical Sciences and.,Transplant Research Division, University Health Network, Toronto, Ontario, Canada
| | - Jean Gariépy
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| |
Collapse
|
325
|
Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. J Biotechnol 2017; 260:18-30. [PMID: 28867483 DOI: 10.1016/j.jbiotec.2017.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Interactions between protein ligands and receptors play crucial roles in cell-cell signalling. Most of the human cell surface receptors have been identified in the post-Human Genome Project era but many of their corresponding ligands remain unknown. To facilitate the pairing of orphan receptors, 2762 sequences encoding all human single-pass transmembrane proteins were selected for inclusion into a mammalian-cell expression library. This expression library, consisting of all the individual extracellular domains (ECDs), was constructed as a Fab fusion for each protein. In this format, individual ECD can be produced as a soluble protein or displayed on cell surface, depending on the applied heavy-chain Fab configuration. The unique design of the Fab fusion concept used in the library led to not only superior success rate of protein production, but also versatile applications in various high-throughput screening paradigms including protein-protein binding assays as well as cell binding assays, which were not possible for any other existing expression libraries. The protein library was screened against human coagulation factor VIIa (FVIIa), an approved therapeutic for the treatment of hemophilia, for binding partners by AlphaScreen and ForteBio assays. Two previously known physiological ligands of FVIIa, tissue factor (TF) and endothelial protein C receptor (EPCR) were identified by both assays. The cell surface displayed library was screened against V-domain Ig suppressor of T-cell activation (VISTA), an important immune-checkpoint regulator. Immunoglobulin superfamily member 11 (IgSF11), a potential target for cancer immunotherapy, was identified as a new and previously undescribed binding partner for VISTA. The specificity of the binding was confirmed and validated by both fluorescence-activated cell sorting (FACS) and surface plasmon resonance (SPR) assays in different experimental setups.
Collapse
|
326
|
Abstract
The recent demonstration of the antitumor efficacy of checkpoint protein inhibition has resulted in the approval of blocking antibodies against the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway in multiple different histologic findings. Therapeutic successes with PD-1/PD-L1 antibodies in melanoma and lung cancer have been followed by approvals in bladder, renal, and head and neck cancers and Hodgkin lymphoma, with others undoubtedly to come. However, PD-1 is only one of many checkpoints and agonistic regulatory molecules expressed on T cells by which maintenance of the balance between costimulatory and coinhibitory signaling pathways is perturbed in cancer. The manipulation of many of these molecules in cancer patients might be associated with clinical benefit. The majority of the T-cell cosignaling receptors belong to either the immunoglobulin superfamily or the tumor necrosis factor receptor superfamily. A total of 29 immunoglobulin superfamily and 26 tumor necrosis factor receptor superfamily cosignaling receptors have been identified that are expressed on T cells, providing fertile ground for development of inhibitory or agonistic antibodies and small molecules as cancer therapeutics. In the current work, we focus on some of the most promising new checkpoints and agonistic or cosignaling molecules that are in early clinical development as single agents or in combinations with PD-1/PD-L1, cytotoxic T-lymphocyte-associated protein 4 blockade, or chemotherapy with an emphasis on those that have reached the clinic and on important targets that are in late preclinical development.
Collapse
|
327
|
Programmed death one homolog maintains the pool size of regulatory T cells by promoting their differentiation and stability. Sci Rep 2017; 7:6086. [PMID: 28729608 PMCID: PMC5519767 DOI: 10.1038/s41598-017-06410-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
Programmed death one homolog (PD-1H) is an immunoglobulin superfamily molecule and primarily acts as a coinhibitor in the initiation of T cell response to antigens. Here, we report that genetic ablation of PD-1H in mice blocks the differentiation of naive T cells to Foxp3+ inducible Treg cells (iTreg) with a significant decrease of iTreg in lymphoid organs. This effect of PD-1H is highly specific for iTreg because both naturally generated iTreg in gut-related tissues and in vitro induced iTreg by TGF-β were decreased whereas the genesis of natural Treg (nTreg) remains normal. The suppressive function of both iTreg and nTreg, however, is not affected by the loss of PD-1H. In addition to decreased production, PD-1H deficient iTreg could also rapidly convert to CD4+ T helper 1 or T helper 17 cells in an inflammatory environment. Our results indicate that PD-1H is required for maintenance of iTreg pool size by promoting its differentiation and preventing its conversion to other CD4+ T cell subsets. These findings may have important implications for manipulating Tregs to control inflammation.
Collapse
|
328
|
Ceeraz S, Sergent PA, Plummer SF, Schned AR, Pechenick D, Burns CM, Noelle RJ. VISTA Deficiency Accelerates the Development of Fatal Murine Lupus Nephritis. Arthritis Rheumatol 2017; 69:814-825. [PMID: 27992697 DOI: 10.1002/art.40020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The targeting of negative checkpoint regulators as a means of augmenting antitumor immune responses is now an increasingly used and remarkably effective approach to the treatment of several human malignancies. The negative checkpoint regulator VISTA (V-domain Ig-containing suppressor of T cell activation; also known as programmed death 1 homolog or as death domain 1α) suppresses T cell responses and regulates myeloid activities. We proposed that exploitation of the VISTA pathway is a novel strategy for the treatment of human autoimmune disease, and therefore we undertook this study to determine the impact of VISTA genetic deficiency on lupus development in a lupus-prone mouse strain. METHODS To evaluate whether genetic deficiency of VISTA affects the development of lupus, we interbred VISTA-deficient mice with Sle1.Sle3 mice, a well-characterized model of systemic lupus erythematosus (SLE). RESULTS We demonstrated that the development of proteinuria and glomerulonephritis in these mice, designated Sle1.Sle3 VISTA-/- mice, was greatly accelerated and more severe compared to that in Sle1.Sle3 and C57BL/6 VISTA-/- mice. Analysis of cells from Sle1.Sle3 VISTA-/- mice showed enhanced activation of splenic CD4+ T cells and myeloid cell populations. No increase in titers of autoantibodies was seen in Sle1.Sle3 VISTA-/- mice. Most striking was a significant increase in proinflammatory cytokines, chemokines, and interferon (IFN)-regulated genes associated with SLE, such as IFNα, IFNγ, tumor necrosis factor, interleukin-10, and CXCL10, in Sle1.Sle3 VISTA-/- mice. CONCLUSION This study demonstrates for the first time that loss of VISTA in murine SLE exacerbates disease due to enhanced myeloid and T cell activation and cytokine production, including a robust IFNα signature, and supports a strategy of enhancement of the immunosuppressive activity of VISTA for the treatment of human lupus.
Collapse
Affiliation(s)
- Sabrina Ceeraz
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Petra A Sergent
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Sean F Plummer
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Alan R Schned
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | | | - Randolph J Noelle
- Geisel School of Medicine at Dartmouth, and ImmuNext, Inc., Lebanon, New Hampshire
| |
Collapse
|
329
|
Ohno T, Kondo Y, Zhang C, Kang S, Azuma M. Immune Checkpoint Molecule, VISTA Regulates T-Cell-Mediated Skin Inflammatory Responses. J Invest Dermatol 2017; 137:1384-1386. [DOI: 10.1016/j.jid.2016.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
|
330
|
Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Front Immunol 2017; 8:513. [PMID: 28515726 PMCID: PMC5413580 DOI: 10.3389/fimmu.2017.00513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Alan Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - John D. Hayball
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
331
|
Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X, Miller H, Olson M, Feng Y, Huang YH, Jo Turk M, Hwang ST, Malarkannan S, Wang L. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep 2017; 7:1485. [PMID: 28469254 PMCID: PMC5431161 DOI: 10.1038/s41598-017-01411-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an inhibitory immune-checkpoint molecule that suppresses CD4+ and CD8+ T cell activation when expressed on antigen-presenting cells. Vsir -/- mice developed loss of peripheral tolerance and multi-organ chronic inflammatory phenotypes. Vsir -/- CD4+ and CD8+ T cells were hyper-responsive towards self- and foreign antigens. Whether or not VISTA regulates innate immunity is unknown. Using a murine model of psoriasis induced by TLR7 agonist imiquimod (IMQ), we show that VISTA deficiency exacerbated psoriasiform inflammation. Enhanced TLR7 signaling in Vsir -/- dendritic cells (DCs) led to the hyper-activation of Erk1/2 and Jnk1/2, and augmented the production of IL-23. IL-23, in turn, promoted the expression of IL-17A in both TCRγδ+ T cells and CD4+ Th17 cells. Furthermore, VISTA regulates the peripheral homeostasis of CD27- γδ T cells and their activation upon TCR-mediated or cytokine-mediated stimulation. IL-17A-producing CD27- γδ T cells were expanded in the Vsir -/- mice and amplified the inflammatory cascade. In conclusion, this study has demonstrated that VISTA critically regulates the inflammatory responses mediated by DCs and IL-17-producing TCRγδ+ and CD4+ Th17 T cells following TLR7 stimulation. Our finding provides a rationale for therapeutically enhancing VISTA-mediated pathways to benefit the treatment of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Na Li
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Department of Histology and Embryology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Wenwen Xu
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Ying Yuan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Shanghai University of Traditional Chinese Medicine, College of Pharmacy, Shanghai, 201203, P. R. China
| | - Natarajan Ayithan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yasutomo Imai
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Dermatology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Halli Miller
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Michael Olson
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Yunfeng Feng
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Samuel T Hwang
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Dermatology, University of California Davis, Sacramento, CA, 95816, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Li Wang
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.
| |
Collapse
|
332
|
Wu L, Deng WW, Huang CF, Bu LL, Yu GT, Mao L, Zhang WF, Liu B, Sun ZJ. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol Immunother 2017; 66:627-636. [PMID: 28236118 PMCID: PMC11028774 DOI: 10.1007/s00262-017-1968-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Abstract
V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint regulatory molecule, suppresses T cell mediated immune responses. The aim of the present study was to profile the immunological expression, clinical significance and correlation of VISTA in human oral squamous cell carcinoma (OSCC). Human tissue microarrays, containing 165 primary OSCCs, 48 oral epithelial dysplasias and 43 normal oral mucosae, were applied to investigate the expression levels of VISTA, CD8, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed death ligand 1 (PD-L1), PI3Kα p110, IL13Rα2, phospho-STAT3 at tyrosine 705 (p-STAT3) and myeloid-derived suppressor cell (MDSC) markers (CD11b and CD33) by immunohistochemistry and digital pathology analysis. The results demonstrated that the protein level of VISTA was significantly higher in human OSCC specimens, and that VISTA expression in primary OSCCs was correlated with lymph node status. VISTA expression did not serve as an independent predictor for poor prognosis, while patient subgroup with VISTA high and CD8 low expression (22/165) had significantly poorer overall survival compared with other subgroups based on the multivariate and Cox hazard analyses among the primary OSCC patients in the present cohort. Additionally, the expression of VISTA was significantly correlated with PD-L1, CTLA-4, IL13Rα2, PI3K, p-STAT3, CD11b and CD33 according to Pearson's correlation coefficient test. Taken together, the results indicated that the VISTA high and CD8 low group, as an immunosuppressive subgroup, might be associated with a poor prognosis in primary OSCC. These findings indicated that VISTA might be a potential immunotherapeutic target in OSCC treatment.
Collapse
Affiliation(s)
- Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
333
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
334
|
Varn FS, Wang Y, Mullins DW, Fiering S, Cheng C. Systematic Pan-Cancer Analysis Reveals Immune Cell Interactions in the Tumor Microenvironment. Cancer Res 2017; 77:1271-1282. [PMID: 28126714 PMCID: PMC5798883 DOI: 10.1158/0008-5472.can-16-2490] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
With the recent advent of immunotherapy, there is a critical need to understand immune cell interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multidimensional datasets have enabled systematic approaches to dissect these interactions in large numbers of patients, furthering our understanding of the patient immune response to solid tumors. Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a coinfiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor microenvironment. By integrating patient mutation data, we found that while mutation burden was associated with immune infiltration differences between distinct tumor types, additional factors likely explained differences between tumors originating from the same tissue. We concluded this analysis by examining the prognostic value of individual immune cell subsets as well as how coinfiltration of functionally discordant cell types associated with patient survival. In multiple tumor types, we found that the protective effect of CD8+ T cell infiltration was heavily modulated by coinfiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-derived suppressor cells in tumor development. Our findings illustrate complex interactions between different immune cell types in the tumor microenvironment and indicate these interactions play meaningful roles in patient survival. These results demonstrate the importance of personalized immune response profiles when studying the factors underlying tumor immunogenicity and immunotherapy response. Cancer Res; 77(6); 1271-82. ©2017 AACR.
Collapse
Affiliation(s)
- Frederick S Varn
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Yue Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - David W Mullins
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Steven Fiering
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
- Norris Cotton Cancer Center, Lebanon, New Hampshire
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
335
|
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| | - Chen Dong
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| |
Collapse
|
336
|
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276:66-79. [PMID: 28258694 PMCID: PMC5702497 DOI: 10.1111/imr.12525] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.
Collapse
Affiliation(s)
- Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frederick S. Varn
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Chao Cheng
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
337
|
Böger C, Behrens HM, Krüger S, Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology 2017; 6:e1293215. [PMID: 28507801 PMCID: PMC5414883 DOI: 10.1080/2162402x.2017.1293215] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
A combined blockade of V-domain Ig suppressor of T-cell activation (VISTA) and PD-1 is a promising new cancer treatment option, which was efficient in murine tumor models and is currently tested in first phase I studies. Here, we analyzed the VISTA expression in a large and well-characterized gastric cancer (GC) cohort on 464 therapy-naive GC samples and 14 corresponding liver metastases using immunohistochemistry. Staining results were correlated with clinico-pathological characteristics, genetic alterations and survival. VISTA expression in tumor cells was detected in 41 GCs (8.8%) and 2 corresponding liver metastases (14.3%). Moreover, VISTA expression in immune cells was observed in 388 GCs (83.6%) and 6 liver metastases (42.9%). VISTA expression was associated with the Laurén phenotype, tumor localization, Epstein–Barr virus infection, KRAS- and PIK3CA-mutational status and PD-L1 expression. There was no significant correlation with patient outcome. Moreover, a change of VISTA expression in immune cells during tumor progression was observed. The co-incidence of VISTA and PD-L1 expression indicates a dual immune evasion mechanism of GC tumor cells and makes GC an interesting target for novel combined immune checkpoint inhibitor treatments.
Collapse
Affiliation(s)
- Christine Böger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
338
|
Zhang X, Zhu S, Li T, Liu YJ, Chen W, Chen J. Targeting immune checkpoints in malignant glioma. Oncotarget 2017; 8:7157-7174. [PMID: 27756892 PMCID: PMC5351697 DOI: 10.18632/oncotarget.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the body's anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered "immune privileged" and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma.
Collapse
Affiliation(s)
- Xuhao Zhang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Sanofi Research and Development, Cambridge, MA, USA
| | - Wei Chen
- ADC Biomedical Research Institute, Saint Paul, MN, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
339
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
340
|
Deng J, Le Mercier I, Kuta A, Noelle RJ. A New VISTA on combination therapy for negative checkpoint regulator blockade. J Immunother Cancer 2016; 4:86. [PMID: 28031817 PMCID: PMC5168856 DOI: 10.1186/s40425-016-0190-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Negative checkpoint regulators function to restrain T cell responses to maintain tolerance and limit immunopathology. However, in the setting of malignancy, these pathways work in concert to promote immune-mediate escape leading to the development of a clinically overt cancer. In the recent years, clinical trials demonstrating the efficacy of blocking antibodies against these molecules have invigorated the field of immunotherapy. In this review, we discuss the current understanding on established NCR blockade and how strategic combination therapy with anti-VISTA antibody can be used to target multiple non-redundant NCR pathways.
Collapse
Affiliation(s)
- Jie Deng
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA
| | - Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA ; ImmuNext, Inc., One Medical Center Drive, Lebanon, NH 03756 USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA ; ImmuNext, Inc., One Medical Center Drive, Lebanon, NH 03756 USA
| |
Collapse
|
341
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|
342
|
Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation. Sci Rep 2016; 6:34860. [PMID: 27721458 PMCID: PMC5056517 DOI: 10.1038/srep34860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Dies1/VISTA induces embryonic stem-cell differentiation, via BMP-pathway, but also acts as inflammation regulator and immune-response modulator. Dies1 inhibition in a melanoma-mouse model led to increased tumour-infiltrating T-cells and decreased tumour growth, emphasizing Dies1 relevance in tumour-microenvironment. Dies1 is involved in cell de/differentiation, inflammation and cancer processes, which mimic those associated with Epithelial-to-Mesenchymal-Transition (EMT). Despite this axis linking Dies1 with EMT and cancer, its expression, modulation and relevance in these contexts is unknown. To address this, we analysed Dies1 expression, its regulation by promoter-methylation and miR-125a-5p overexpression, and its association with BMP-pathway downstream-effectors, in a TGFβ1-induced EMT-model, cancer cell-lines and primary samples. We detected promoter-methylation as a mechanism controlling Dies1 expression in our EMT-model and in several cancer cell-lines. We showed that the relationship between Dies1 expression and BMP-pathway effectors observed in the EMT-model, was not present in all cell-lines, suggesting that Dies1 has other cell-specific effectors, beyond the BMP-pathway. We further demonstrated that: Dies1 expression loss is a recurrent event in GC, caused by promoter methylation and/or miR-125a-5p overexpression and; GC-microenvironment myofibroblasts overexpress Dies1. Our findings highlight Dies1 as a novel player in GC, with distinct roles within tumour cells and in the tumour-microenvironment.
Collapse
|
343
|
Mie M, Takahashi T. Current condition and issues of animal evaluation models for cancer immunotherapy. Nihon Yakurigaku Zasshi 2016; 148:144-8. [PMID: 27581962 DOI: 10.1254/fpj.148.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
344
|
Recent developments and future challenges in immune checkpoint inhibitory cancer treatment. Curr Opin Oncol 2016; 27:482-8. [PMID: 26352539 DOI: 10.1097/cco.0000000000000221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In this review, we focus on the recent findings and future challenges in cancer treatment with immune checkpoint inhibitors. RECENT FINDINGS Major progress has been made in recent years as the first immune checkpoint inhibitors are approved by the US Food and Drug Administration for the treatment of cancer patients. Anticytotoxic T-lymphocyte-associated protein 4 and antiprogrammed death protein 1/programmed death-ligand 1 (PD-L1) monoclonal antibodies are being extensively studied in many different tumor types, often showing impressive response rates, but also a typical serious toxicity profile in the form of auto-immunity. Unfortunately, it is not yet possible to prevent or predict these immune-related adverse events. Studies on mutational load, neo-epitopes, lactate dehydrogenase, PD-L1 expression, and T-cell infiltration suggest that these markers are correlating with efficacy, but have not yet reached the status of a validated biomarker for checkpoint inhibitors. Other immune checkpoints are being investigated and new checkpoint inhibitors are on the brink of being evaluated in clinical trials. SUMMARY The main challenge for the near future will be to predict efficacy of immune checkpoint blockade and to predict and prevent immune-related adverse events. More research should be done in order to find potential biomarkers that predict treatment response and/or toxicity; the optimal administration route, dosage, and frequency; and possible combinations of therapies that have an added or synergetic effect.
Collapse
|
345
|
Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 2016; 57:54-60. [DOI: 10.1016/j.oraloncology.2016.04.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
|
346
|
Park AJ, Rendini T, Martiniuk F, Levis WR. Leprosy as a model to understand cancer immunosurveillance and T cell anergy. J Leukoc Biol 2016; 100:47-54. [PMID: 27106673 DOI: 10.1189/jlb.5ru1215-537rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Leprosy is a disease caused by Mycobacterium leprae that presents on a spectrum of both clinical manifestations and T cell response. On one end of this spectrum, tuberculoid leprosy is a well-controlled disease, characterized by a cell-mediated immunity and immunosurveillance. On the opposite end of the spectrum, lepromatous leprosy is characterized by M. leprae proliferation and T cell anergy. Similar to progressive tumor cells, M. leprae escapes immunosurveillance in more severe forms of leprosy. The mechanisms by which M. leprae is able to evade the host immune response involve many, including the alterations of lipid droplets, microRNA, and Schwann cells, and involve the regulation of immune regulators, such as the negative checkpoint regulators CTLA-4, programmed death 1, and V-domain Ig suppressor of T cell activation-important targets in today's cancer immunotherapies. The means by which tumor cells become able to escape immunosurveillance through negative checkpoint regulators are evidenced by the successes of treatments, such as nivolumab and ipilimumab. Many parallels can be drawn between the immune responses seen in leprosy and cancer. Therefore, the understanding of how M. leprae encourages immune escape during proliferative disease states has potential to add to our understanding of cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew J Park
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Tina Rendini
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| | | | - William R Levis
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| |
Collapse
|
347
|
Abstract
INTRODUCTION Immune checkpoint inhibitors, like anti-PD-1/PD-L1 antibodies, are revolutionizing therapeutic concepts in the treatment of cancer. Said class of drugs will represent a multi-billion dollar market over the coming decade. Many companies have therefore developed important patent activities in the field. AREAS COVERED The present review gives an overview of the patent literature during the period 2010-2015 in the field of immune checkpoint inhibitors. In particular, the review presents a selection of international patent applications related to inhibitors of PD-1/PD-L1, CTLA-4, IDO, TIM3, LAG3, TIGIT, BTLA, VISTA, ICOS, KIRs and CD39. EXPERT OPINION Immune checkpoint inhibitors are now widely accepted as a key component of the therapeutic strategies in cancer. This fervent activity creates a maze of third-party patents that pose considerable risks for both newcomers and established companies. We can thus anticipate that the number of patent conflicts and disputes will increase in the near future. Treatments will involve combination therapy comprising at least one immune checkpoint inhibitor and companies will multiply patent filings in this field. Finally, we can expect that patents related to biomarkers that will render a patient eligible to a treatment with an immune checkpoint inhibitor will have tremendous commercial value.
Collapse
Affiliation(s)
- Matthieu Collin
- a Intellectual Property Department , Inserm Transfert , Paris , France
| |
Collapse
|
348
|
|
349
|
Abstract
The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts 02115.,Harvard Medical School, Boston, Massachusetts 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Harvard Medical School, Boston, Massachusetts 02115
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Novartis Institutes for BioMedical Research, Exploratory Immuno-oncology, Cambridge, Massachusetts 02139
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
350
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|