301
|
Lin XH, Liu ZY, Zhang DY, Zhang S, Tang WQ, Li DP, Zhang F, Chen RX, Weng SQ, Xue RY, Dong L. circRanGAP1/miR-27b-3p/NRAS Axis may promote the progression of hepatocellular Carcinoma. Exp Hematol Oncol 2022; 11:92. [PMID: 36348379 PMCID: PMC9644583 DOI: 10.1186/s40164-022-00342-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Though circular RNAs (circRNAs) are the key regulators in tumor carcinogenesis, they remain largely unexplored in hepatocellular carcinoma (HCC). METHODS The expression of RanGAP1-derived circRNAs (circ_0063531, circ_0063534, circ_0063513, circ_0063518, circ_0063507, circ_0063723) were evaluated in eight paired HCC and normal tissues, and the correlation between circRanGAP1 (circ_0063531) expression and clinicopathological characteristics in 40 HCC patients was determined. The association between miR-27b-3p and circRanGAP1 or NRAS was predicted using bioinformatics analysis. The expression of circRanGAP1, miR-27b-3p, and NRAS were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The potential oncogenic role of circ-RanGAP1 was assessed using CCK-8, colony formation, transwell assays in vitro, subcutaneous tumor mouse model, vein tail metastatic model, and orthotopically implanted intrahepatic HCC model in vivo. Luciferase reporter and RNA immunoprecipitation (RIP) assays were used to explore the binding site between miR-27b-3p and circ-RanGAP1 or NRAS. Protein expression was detected using western blotting. The localization of miR-27b-3p and circ-RanGAP1 was investigated using fluorescence in situ hybridization (FISH). The level of immune infiltration was assessed by bioinformatics analysis, flow cytometry, and orthotopically implanted intrahepatic HCC models. RESULTS Here, we found elevated circRanGAP1 in the cells and clinical tissues of patients with HCC. Increased circRanGAP1 levels are associated with enlarged tumors and the advanced stage of TNM. CircRanGAP1 promotes the growth, migration, and HCC cell invasion, concurrently with the growth and metastasis of tumors in-vivo. Moreover, circRanGAP1 is mainly located inside the cytoplasm. Mechanistically, circRanGAP1 as an oncogene promotes HCC progression by miR-27b-3p/NRAS/ERK axis, furthermore, affects the infiltration level of tumor-associated macrophages probably by sponging miR-27b-3p. Immune infiltration analysis shows that NRAS is positively correlated with the levels of CD68+ tumor-associated macrophages in HCC samples and that NRAS and CD68 are related to the poor outcome of HCC. CONCLUSION These results reveal that circRanGAP1 is a HCC oncogene that function by the miR-27b-3p/NRAS/ERK axis and regulates the infiltration levels of tumor-associated macrophages by sponging miR-27b-3p. Therefore, circRANGAP1/ NRAS axis may be an important potential treatment target against HCC.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dong-Ping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| |
Collapse
|
302
|
Li R, Tong R, Zhang Z, Deng M, Wang T, Hou G. Single-cell sequencing analysis and transcriptome analysis constructed the macrophage related gene-related signature in lung adenocarcinoma and verified by an independent cohort. Genomics 2022; 114:110520. [PMID: 36372305 DOI: 10.1016/j.ygeno.2022.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recent studies have emphasized the close relationship between macrophages and tumor immunity, and the prognosis of lung adenocarcinoma (LUAD) patients is intimately linked to this. Nonetheless, the prognostic signature and classification of different immune patterns in LUAD patients based on the macrophages is largely unexplored. METHODS Two sc-RNAseq datasets of LUAD patients were collected and reprocessed. The differentially expressed genes (DEGs) related to macrophages between LUAD tissues and normal lung tissues were then identified. Based upon the above genes, three distinct immune patterns in the TCGA-LUAD cohort were identified. The ssGSEA and CIBERSORT were applied for immune profiling and characterization of different subtypes. A four-gene prognostic signature for LUAD patients was established based on the DEGs between the subtypes using stepwise multi-Cox regression. TCGA-LUAD cohort was used as training set. Five GEO-LUAD datasets and an independent cohort containing 112 LUAD samples were used for validation. TIDE (tumor immune dysfunction and exclusion) and drug sensitivity analyses were also performed. RESULTS Macrophage-related differentially expressed genes were found out using the publicly available scRNA-seq data of LUAD. Three different immune patterns which were proved to have distinct immune infiltration characteristics in the TCGA-LUAD cohort were recognized based on the above macrophage-related genes. Thereafter, 174 DEGs among the above three different immune patterns were figured out; on the basis of this, a four-gene prognostic signature was constructed. This signature distinguished the prognosis of LUAD patients well in various GSE datasets as well as our independent cohort. Further analyses revealed that patients which had a higher risk score also accompanied with a lower immune infiltration level and a worse response to several immunotherapy biomarkers. CONCLUSION This study highlighted that macrophage were significantly associated with TME diversity and complexity. The four-gene prognostic signature could be used for predicting outcomes and immune landscapes for patients with LUAD.
Collapse
Affiliation(s)
- Ruixia Li
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang 110001, China
| | - Run Tong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Zhe Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Tao Wang
- Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd., Shenyang 110001, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; National Center for Respiratory Medicine, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; National Clinical Research Center for Respiratory Diseases, Beijing 100029, China.
| |
Collapse
|
303
|
Yu S, Yang R, Xu T, Li X, Wu S, Zhang J. Cancer-associated fibroblasts-derived FMO2 as a biomarker of macrophage infiltration and prognosis in epithelial ovarian cancer. Gynecol Oncol 2022; 167:342-353. [PMID: 36114029 DOI: 10.1016/j.ygyno.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Recent molecular profiling revealed that cancer-associated fibroblasts (CAFs) are essential for matrix remodeling and tumor progression. Our study aimed to investigate the role of flavin-containing monooxygenase 2 (FMO2) in epithelial ovarian cancer (EOC) as a novel CAF-derived prognostic biomarker. METHODS Primary fibroblasts were isolated from EOC samples. Microdissection and single-cell RNA sequencing (scRNA-seq) datasets (including TCGA, GSE9891, GSE63885, GSE118828 and GSE178913) were retrieved to determine the expression profiles. Gene set enrichment analysis (GSEA) was used to explore the correlation between FMO2 and stromal activation as well as immune infiltration. The predictive value of FMO2 and combined macrophage infiltration level was verified in an independent EOC cohort (n = 113). RESULTS We demonstrated that FMO2 was upregulated in tumor stroma and correlated with fibroblast activation. Besides, FMO2 had the predictive power for worse clinical outcome of EOC patients. In the mesenchymal subtype of EOC, the FMO2-defined signature revealed that FMO2 contributed to infiltration of tumor-infiltrating lymphocytes. Moreover, we confirmed the positive correlation between FMO2 and CD163+ cell infiltration level in EOC tissues, and showed that combination of FMO2 expression with CD163+ cell infiltration level in the tumor stroma could predict poor overall survival (HR = 3.63, 95% CI = 1.93-6.84, p = 0.0008). Additionally, FMO2 also predicted the prognosis of patients with ovarian cancer based on the expression of immune checkpoints (such as PD-L1 and PD1). CONCLUSION Our results address the tumor-supporting role of FMO2 in EOC and its association with immune components, and it might be a prospective target for stroma-oriented therapies against EOC.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
304
|
Zhang S, Chen S, Wang Z, Li J, Yuan Y, Feng W, Li W, Chen M, Liu Y. Prognosis prediction and tumor immune microenvironment characterization based on tryptophan metabolism-related genes signature in brain glioma. Front Pharmacol 2022; 13:1061597. [PMID: 36386216 PMCID: PMC9663932 DOI: 10.3389/fphar.2022.1061597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2023] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system with no significant therapeutic breakthrough in recent years. Most attempts to apply immunotherapy in glioma have failed. Tryptophan and its metabolism can regulate malignant features of cancers and reshape immune microenvironment of tumors. However, the role of tryptophan metabolism in glioma remains unclear. In current study, we explored the relationships between the expression pattern of tryptophan metabolism-related genes (TrMGs) and tumor characteristics, including prognosis and tumor microenvironment of gliomas through analyzing 1,523 patients' samples from multiple public databases and our own cohort. Based on expression of TrMGs, K-means clustering analysis stratified all glioma patients into two clusters with significantly different TrMG expression patterns, clinicopathological features and immune microenvironment. Furthermore, we constructed a tryptophan metabolism-related genes signature (TrMRS) based on seven essential TrMGs to classify the patients into TrMRS low- and high-risk groups and validated the prognostic value of the TrMRS in multiple cohorts. Higher TrMRS represented for potentially more active tryptophan catabolism, which could subsequently lead to less tryptophan in tumor. The TrMRS high-risk group presented with shorter overall survival, and further analysis confirmed TrMRS as an independent prognostic factor in gliomas. The nomograms uniting TrMRS with other prognostic factors manifested with satisfactory efficacy in predicting the prognosis of glioma patients. Additionally, analyses of tumor immune landscapes demonstrated that higher TrMRS was correlated with more immune cell infiltration and "hot" immunological phenotype. TrMRS was also demonstrated to be positively correlated with the expression of multiple immunotherapy targets, including PD1 and PD-L1. Finally, the TrMRS high-risk group manifested better predicted response to immune checkpoint inhibitors. In conclusion, our study illustrated the relationships between expression pattern of TrMGs and characteristics of gliomas, and presented a novel model based on TrMRS for prognosis prediction in glioma patients. The association between TrMRS and tumor immune microenvironment of gliomas indicated an important role of tryptophan and its metabolism in reshaping immune landscape and the potential ability to guide the application of immunotherapy for gliomas.
Collapse
Affiliation(s)
- Shuxin Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Neurosurgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wentao Feng
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mina Chen
- State Key Laboratory of Biotherapy, Neuroscience and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
305
|
Dogan NO, Ceylan H, Suadiye E, Sheehan D, Aydin A, Yasa IC, Wild AM, Richter G, Sitti M. Remotely Guided Immunobots Engaged in Anti-Tumorigenic Phenotypes for Targeted Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204016. [PMID: 36202751 DOI: 10.1002/smll.202204016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Building medical microrobots from the body's own cells may circumvent the biocompatibility concern and hence presents more potential in clinical applications to improve the possibility of escaping from the host defense mechanism. More importantly, live cells can enable therapeutically relevant functions with significantly higher efficiency than synthetic systems. Here, live immune cell-derived microrobots from macrophages, i.e., immunobots, which can be remotely steered with externally applied magnetic fields and directed toward anti-tumorigenic (M1) phenotypes, are presented. Macrophages engulf the engineered magnetic decoy bacteria, composed of 0.5 µm diameter silica Janus particles with one side coated with anisotropic FePt magnetic nanofilm and the other side coated with bacterial lipopolysaccharide (LPS). This study demonstrates the torque-based surface rolling locomotion of the immunobots along assigned trajectories inside blood plasma, over a layer of endothelial cells, and under physiologically relevant flow rates. The immunobots secrete signature M1 cytokines, IL-12 p40, TNF-α, and IL-6, and M1 cell markers, CD80 and iNOS, via toll-like receptor 4 (TLR4)-mediated stimulation with bacterial LPS. The immunobots exhibit anticancer activity against urinary bladder cancer cells. This study further demonstrates such immunobots from freshly isolated primary bone marrow-derived macrophages since patient-derivable macrophages may have a strong clinical potential for future cell therapies in cancer.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
306
|
Du S, Chen C, Qu S, Song H, Yang J, Li Y, Liu K, Lu Q, Luo W, Wang R, Guan X, Song Y, Han X. DNAzyme-Assisted Nano-Herb Delivery System for Multiple Tumor Immune Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203942. [PMID: 36156383 DOI: 10.1002/smll.202203942] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
As a promising therapeutic strategy against cancer, immunotherapy faces critical challenges, especially in solid tumors. Immune checkpoint blockade therapy, particularly blocking the interaction of the programmed cell death 1 (PD1)-PD1 ligand 1 (PD-L1) axis, can reverse the suppression of T cells so as to destroy tumor cells and exert antitumor effects. Here, a strategy of multiple activation of immune pathways is developed, to provide supporting evidence for potential antitumor therapies. Briefly, a pH/glutathione responsive drug-loading hollow-manganese dioxide (H-MnO2 )-based chlorine6 (Ce6)-modified DNAzyme therapeutic nanosystem for the combination of gene therapy and immunotherapy is established. The H-MnO2 nanoparticles could efficiently deliver the DNAzyme and glycyrrhizic acid (GA) to enhance the tumor target effects. In the tumor microenvironments, the biodegradation of H-MnO2 via pH-induced hydrolyzation allows the release of guest DNAzyme payloads and host Mn2+ ions, which serve as PD-L1 mRNA-targeting reagent and require DNAzyme cofactors for activating gene therapy. In addition, Mn2+ is also associated with the immune activation of thcGAS-STING pathway. Auxiliary photosensitizers Ce6 and GA could produce reactive oxygen species, resulting in immunogenic cell death. Overall, this study provides a general strategy for targeted gene inhibition and GA release, which is valuable for the development of potential tumor immunotherapies.
Collapse
Affiliation(s)
- Shiyu Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Suchen Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yayao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kunguo Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Wen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
307
|
Kong D, Yang Z, Li G, Wu Q, Gu Z, Wan D, Zhang Q, Zhang X, Cheng S, Liu B, Zhang K, Zhang W. SIRPα antibody combined with oncolytic virus OH2 protects against tumours by activating innate immunity and reprogramming the tumour immune microenvironment. BMC Med 2022; 20:376. [PMID: 36310169 PMCID: PMC9620659 DOI: 10.1186/s12916-022-02574-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The combination of oncolytic viruses (OVs) with immune checkpoint blockades is a research hotspot and has shown good efficacy. Here, we present the first attempt to combine oncolytic herpes simplex virus 2 (OH2) with an anti-SIRPα antibody as an antitumour treatment. Our results provide unique insight into the combination of innate immunity with OV. METHODS We verified the polarization and activation of OH2 in RAW264.7 cells in vitro. Subsequently, we evaluated the antitumour ability of OH2 and anti-SIRPα combined therapy in a tumour-bearing mouse model. RNA-seq and Single-cell RNA-seq were used to characterize the changes in the tumour microenvironment. RESULTS The OH2 lysates effectively stimulated RAW264.7 cells to polarize towards the M1 but not the M2 phenotype and activated the function of the M1 phenotype in vitro. In the macrophage clearance experiment, OH2 therapy induced polarization of M1 macrophages and participated in the antitumour immune response in a tumour-bearing mouse model. Treatment with a combination of OH2 and anti-SIRPα effectively inhibited tumour growth and significantly prolonged the survival time of the mice, and this result was more obvious in the mouse model with a larger tumour volume at the beginning of the treatment. These results suggest that combination therapy can more profoundly reshape the TME and activate stronger innate and adaptive immune responses. CONCLUSIONS Our data support the feasibility of oncolytic virus therapy in combination with anti-SIRPα antibodies and suggest a new strategy for oncolytic virus therapy.
Collapse
Affiliation(s)
- Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Duo Wan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
308
|
Chen S, Zuo M, Li T, Zhang S, Yang W, Chen N, Mao Q, Chen M, Liu Y. Extraventricular site indicates higher grade but better prognosis in adult supratentorial ependymomas: a 14-year single-center retrospective cohort. Neurosurg Rev 2022; 45:3771-3778. [DOI: 10.1007/s10143-022-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
309
|
Zhao B, Li H, Xia Y, Wang Y, Wang Y, Shi Y, Xing H, Qu T, Wang Y, Ma W. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol 2022; 15:153. [PMID: 36284349 PMCID: PMC9597993 DOI: 10.1186/s13045-022-01364-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Collapse
Affiliation(s)
- Binghao Zhao
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Huanzhang Li
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Xia
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yaning Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuekun Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yixin Shi
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hao Xing
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian Qu
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Wang
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin Ma
- grid.506261.60000 0001 0706 7839Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 People’s Republic of China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
310
|
Zhang Z, Wang B, Xu X, Xin T. Cuproptosis-related gene signature stratifies lower-grade glioma patients and predicts immune characteristics. Front Genet 2022; 13:1036460. [PMID: 36386799 PMCID: PMC9640744 DOI: 10.3389/fgene.2022.1036460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cuproptosis is the most recently discovered type of regulated cell death and is mediated by copper ions. Studies show that cuproptosis plays a significant role in cancer development and progression. Lower-grade gliomas (LGGs) are slow-growing brain tumors. The majority of LGGs progress to high-grade glioma, which makes it difficult to predict the prognosis. However, the prognostic value of cuproptosis-related genes (CRGs) in LGG needs to be further explored. mRNA expression profiles and clinical data of LGG patients were collected from public sources for this study. Univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression model were used to build a multigene signature that could divide patients into different risk groups. The differences in clinical pathological characteristics, immune infiltration characteristics, and mutation status were evaluated in risk subgroups. In addition, drug sensitivity and immune checkpoint scores were estimated in risk subgroups to provide LGG patients with precision medication. We found that all CRGs were differentially expressed in LGG and normal tissues. Patients were divided into high- and low-risk groups based on the risk score of the CRG signature. Patients in the high-risk group had a considerably lower overall survival rate than those in the low-risk group. According to functional analysis, pathways related to the immune system were enriched, and the immune state differed across the two risk groups. Immune characteristic analysis showed that the immune cell proportion and immune scores were different in the different groups. High-risk group was characterized by low sensitivity to chemotherapy but high sensitivity to immune checkpoint inhibitors. The current study revealed that the novel CRG signature was related to the prognosis, clinicopathological features, immune characteristics, and treatment perference of LGG.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bingcheng Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoqin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- *Correspondence: Tao Xin,
| |
Collapse
|
311
|
Zhu C, Xu J, Sun J, Cui S, Sun Y, Yu T, Wang C, Wang T, Wu Y, Ju F, Yao J, Liu K, Zhang W, Guan X. Circulating Tumor Cells and Breast Cancer Metastasis: From Enumeration to Somatic Mutational Profile. J Clin Med 2022; 11:jcm11206067. [PMID: 36294386 PMCID: PMC9604974 DOI: 10.3390/jcm11206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: This study investigates the association between circulating tumor cells (CTCs) and breast cancer metastasis. Methods: A retrospective study was conducted using patients with histologically confirmed breast cancer recruited from the First Affiliated Hospital of Nanjing Medical University during the period of August 2017−October 2020. We used adjusted logistic regression, the random forest algorithm, and sensitivity analysis to study the association between CTC enumeration and tumor metastasis. Further, we performed next-generation sequencing (NGS) on the CTCs obtained from two patients with breast cancer brain metastasis. Results: A total of 41 out of 116 enrolled patients were identified with tumor metastasis. CTC enumeration was significantly higher in patients with liver metastasis than in those without liver metastasis. Patients with CTCs ≥ 5 exhibited a higher risk of tumor metastasis than those with CTCs < 5 in the adjusted model (odds ratios (OR) = 6.25, 95% confidence interval (CI) = 2.63−15.58). The random forest model identified CTC enumeration as a significant metastasis-related variable with the highest mean decrease accuracy and mean decrease Gini score. No significant association was found between CTCs and visceral metastasis with an OR of 1.29 (95% CI = 0.98−2.05, p = 0.232). Upon further investigating organ-specific metastasis, we found that patients with high CTC levels were more likely to develop liver metastasis (OR = 4.87, 95% CI = 1.34−20.17, p = 0.021). The NGS study of CTCs identified a total of 120 indel mutations (e.g., CNGB1, NTSR1, ZG16). The enriched biological processes were mechanoreceptor differentiation and macrophage activation involved in the immune response. The enriched KEGG pathways included focal adhesion, the PI3K-Akt signaling pathway, and microRNAs involved in cancer. Conclusions: Our study revealed that CTCs ≥ 5 are a risk factor for tumor metastasis in breast cancer patients. In addition, we reported that CTCs ≥ 5 might be associated with a higher risk of liver metastasis in patients with metastatic breast cancer. We have provided the mutational profiles of CTCs based on next-generation sequencing.
Collapse
Affiliation(s)
- Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jinyu Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Tianyao Wang
- Stomatological College, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Wu
- Stomatological College, Nanjing Medical University, Nanjing 210029, China
| | - Feng Ju
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiafeng Yao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Kai Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wenwen Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
- Correspondence: (W.Z.); (X.G.)
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
- Correspondence: (W.Z.); (X.G.)
| |
Collapse
|
312
|
Zhang J, Gao J, Cui J, Wang Y, Jin Y, Zhang D, Lin D, Lin J. Tumor-associated macrophages in tumor progression and the role of traditional Chinese medicine in regulating TAMs to enhance antitumor effects. Front Immunol 2022; 13:1026898. [PMID: 36311793 PMCID: PMC9611775 DOI: 10.3389/fimmu.2022.1026898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.
Collapse
Affiliation(s)
- Jiatong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingwen Cui
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- The Preventive Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Center of Research and Innovation of Chinese Traditional Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Degui Lin, ; Jiahao Lin,
| |
Collapse
|
313
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
314
|
Zha L, Wang J, Cheng X. The effects of
RNA
methylation on immune cells development and function. FASEB J 2022; 36:e22552. [DOI: 10.1096/fj.202200716r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ling‐Feng Zha
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Jing‐Lin Wang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| |
Collapse
|
315
|
Feng Q, Ma X, Cheng K, Liu G, Li Y, Yue Y, Liang J, Zhang L, Zhang T, Wang X, Gao X, Nie G, Zhao X. Engineered Bacterial Outer Membrane Vesicles as Controllable Two-Way Adaptors to Activate Macrophage Phagocytosis for Improved Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206200. [PMID: 35985666 DOI: 10.1002/adma.202206200] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The most immune cells infiltrating tumor microenvironment (TME), tumor-associated macrophages (TAMs) closely resemble immunosuppressive M2-polarized macrophages. Moreover, tumor cells exhibit high expression of CD47 "don't eat me" signal, which obstructs macrophage phagocytosis. The precise and efficient activation of TAMs is a promising approach to tumor immunotherapy; however, re-education of macrophages remains a challenge. Bacteria-derived outer membrane vesicles (OMVs) are highly immunogenic nanovesicles that can robustly stimulate macrophages. Here, an OMV-based controllable two-way adaptor is reported, in which a CD47 nanobody (CD47nb) is fused onto OMV surface (OMV-CD47nb), with the outer surface coated with a polyethylene glycol (PEG) layer containing diselenide bonds (PEG/Se) to form PEG/Se@OMV-CD47nb. The PEG/Se layer modification not only mitigates the immunogenicity of OMV-CD47nb, thereby remarkedly increasing the dose that can be administered safely through intravenous injection, but also equips the formulation with radiation-triggered controlled release of OMV-CD47nb. Application of radiation to tumors in mice injected with the nanoformulation results in remodeling of TME. As two-way adaptors, OMV-CD47nb activates TAM phagocytosis of tumor cells via multiple pathways, including induction of M1 polarization and blockade of "don't eat me" signal. Moreover, this activation of TAMs results in the stimulation of T cell-mediated antitumor immunity through effective antigen presentation.
Collapse
Affiliation(s)
- Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
316
|
SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment. Heliyon 2022; 8:e10866. [PMID: 36217463 PMCID: PMC9547238 DOI: 10.1016/j.heliyon.2022.e10866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Amino acid metabolism participates in forming immunosuppressive tumor microenvironment. Amino acid transporters (AATs), as a gate for admission, remains to be studied. Materials and methods We identified LUAD-specific prognostic AATs, SLC7A5 by differential expression analysis, logistic regression, machine learning, Kaplan-Meier analysis, AUC value filtrating and Cox regression. Then differential expression and distribution of SLC7A5 were depicted. Copy number variation, DNA methylation, transcriptional factors and ceRNA network were investigated to explore potential mechanism causing differential expression. The prognostic and clinical relation were evaluated by Kaplan-Meier analysis, Cox regression analysis. GSEA and GSVA were used to analyze altered pathways between SLC7A5 high- and low-groups. The expression of HLA-related genes and immune checkpoint genes, and immune cells infiltration were detected. SLC7A5 expression in immune cells was evaluated by single-cell sequencing data. IPS and an independent immunotherapy cohort assessed response rates of patients with distinct SLC7A5 expression. Proliferation assay and wound healing assay validated the effects of SLC7A5 on proliferation and migration of LUAD cells. Western blotting and cell viability assays were performed to detect mTORC1 pathway activity and sensitivity to rapamycin. Results SLC7A5 was a LUAD-specific prognostic AAT and had significant differential expression in transcription and translation level. Methylation levels of cg00728300, cg00858400, cg12408911, cg08710629 were negative correlation with SLC7A5 expression. FOXP3 and TFAP2A were possible transcription factors and miR-30a-5p, miR-184, miR-195-5p may target SLC7A5 mRNA. SLC7A5 high-expression indicated poor prognosis and was an independent prognostic factor. mTORC1, cell cycle, DNA damage repair, response to reactive oxygen, angiogenesis, epithelial-mesenchymal transition (EMT) and various growth factors signaling pathways were activated in SLC7A5 high-expression group. Interestingly, SLC7A5 high-expression group had less immune-related genes expression and immune cells infiltration. Single-cell sequencing data also suggested SLC7A5 was downregulated in various T cells, especially effector T cells. Moreover, high SLC7A5 expression indicated poor immunotherapy efficacy and higher sensitivity to inhibitors of mTORC1 pathway, cell cycle and angiogenesis. SLC7A5 deficiency abrogated proliferation, migration and mTORC1 pathway activity. Conclusions In summary, as a LUAD-specific prognostic AAT, SLC7A5 is involved in activation of multiple oncogenic pathways and indicates poor prognosis. Moreover, SLC7A5 may participate in forming immunosuppressive TME and is associated with low response of immunotherapy. SLC7A5 is promising to be a new diagnostic and prognostic biomarker and therapeutic target in LUAD.
Collapse
|
317
|
Shang X, Zhang W, Zhang X, Yu M, Liu J, Cheng Y, Cheng B. PTPRD/PTPRT mutation as a predictive biomarker of immune checkpoint inhibitors across multiple cancer types. Front Immunol 2022; 13:991091. [PMID: 36248841 PMCID: PMC9556668 DOI: 10.3389/fimmu.2022.991091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) are dramatically changing the treatment landscape of a variety of cancers. Nevertheless, the variability in ICI responses highlight the importance in identifying predictive biomarkers. PTPRD and PTPRT (PTPRD/PTPRT) are the phosphatases of JAK-STAT signaling, a critical pathway in anti-cancer immunity regulation. However, the pan-cancer association between PTPRD/PTPRT mutation and the efficacy of ICIs remains unclear across pan-cancer patients. Methods We analyzed the association between PTPRD/PTPRT mutations and patient outcomes using clinical data and genomic mutations from TCGA pan-cancer cohort. Furthermore, the ICI-treatment cohort was used to evaluate the relationship between PTPRD/PTPRT mutation and the efficacy of ICIs. Another ICIs-treatment cohort was used to validate the findings. The TCGA pan-cancer dataset was analyzed to explore the correlation between PTPRD/PTPRT mutations and immune signatures. Moreover, we combined four factors to construct a nomogram model that could be used to predict the survival of pan-cancer patients receiving ICI treatment. The calibration curves and area under the curve were applied to assess the performance of the model. Results PTPRD/PTPRT mutations were shown to be associated with a worse prognosis in TCGA cohort (P < 0.05). In the Samstein cohort, prolonged overall survival (OS) was observed in PTPRD/PTPRT mutant cancers, compared with wild-type cancers (mOS: 40.00 vs 16.00 months, HR = 0.570, 95%CI: 0.479-0.679, P < 0.0001). In the validation cohort, significant OS advantage was observed in PTPRD/PTPRT mutant patients (mOS: 31.32 vs 15.53 months, HR = 0.658, 95%CI: 0.464-0.934, P = 0.0292). Furthermore, PTPRD/PTPRT mutations were associated with a higher tumor mutational burden, MSI score, and TCR score (P < 0.0001). Enhanced immune signatures were found in the PTPRD/PTPRT mutant cancers (P < 0.05). Finally, we successfully established a nomogram model that could be used to predict the survival of NSCLC patients who received ICI treatment. Based on the risk score of the model, patients in the low-risk group showed a better mOS than those in the high-risk group (mOS: 2.75 vs 1.08 years, HR = 0.567, 95%CI: 0.492-0.654; P < 0.001). Conclusions PTPRD/PTPRT mutations may be a potential biomarker for predicting ICI treatment responsiveness in multiple cancer types.
Collapse
Affiliation(s)
- Xiaoling Shang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xun Zhang
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Yu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Liu
- The Internet of Things, Shandong University of Science and Technology, Qingdao, China
| | - Yufeng Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
318
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
319
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
320
|
ADAM-10 Regulates MMP-12 during Lipopolysaccharide-Induced Inflammatory Response in Macrophages. J Immunol Res 2022; 2022:3012218. [PMID: 36157882 PMCID: PMC9507754 DOI: 10.1155/2022/3012218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
A disintegrin and metalloprotease 10 (ADAM-10), a member of the ADAM protease family, has biological activities related to TNF-α activation, cell adhesion, and migration, among other functions. Macrophages are important immune cells that are involved in the inflammatory response of the body. ADAM-10 is involved in inflammatory responses, but the specific regulatory mechanisms are not fully understood. In this study, we investigated the regulatory mechanism of ADAM-10 in the lipopolysaccharide-promoted proliferation (LPS) of the macrophage inflammatory response. Differentially expressed or regulated proteins were identified in interfered ADAM-10 (sh ADAM-10) macrophages using tandem mass tag (TMT) proteomics. The changes and regulatory role of ADAM-10 during LPS-induced inflammatory response in normal, interfering, and overexpressing ADAM-10 (EX ADAM-10) cells were determined. Results indicated that ADAM-10 interference affected inflammation-related pathways and reduced matrix metalloproteinase 12 (MMP-12) protein levels, as identified by TMT proteomics. In normal cells, LPS decreased ADAM-10 gene expression, but promoted ADAM-10 secretion, MMP-12 and TNF-α gene expression, and MMP-12, iNOS, IL-10, and cyclinD1 protein expression. Additionally, ADAM-10 knockdown decreased macrophage viability in sh-ADAM-10 cells. Moreover, an MMP-12 inhibitor had no impact on the viability effect of LPS on cells or the expression of ADAM-10. iNOS expression decreased, whereas IL-10 expression increased after ADAM-10 depletion. ADAM-10 knockdown decreased MMP-12, iNOS, TNF-α, IL-1β, and FKN, while overexpression had an opposite effect. ADAM-10 overexpression further increased MMP-12, iNOS, and TNF-α gene expression in response to LPS. Cell viability was increased in EX ADAM-10 cells, and ADAM-10 secretion was further increased in the EX and LPS groups. Flow cytometry and immunofluorescence staining revealed that EX-ADAM 10 cells had increased iNOS expression, which acted as an IL-6 expression driver. In summary, we found that ADAM-10 is activated by LPS and positively participates in LPS-stimulated macrophage inflammatory responses by positively regulating MMP-12 during the inflammatory process.
Collapse
|
321
|
Tran T, Lavillegrand JR, Lereverend C, Esposito B, Cartier L, Montabord M, Tran-Rajau J, Diedisheim M, Gruel N, Ouguerram K, Paolini L, Lenoir O, Pinteaux E, Brabencova E, Tanchot C, Urquia P, Lehmann-Che J, Le Naour R, Merrouche Y, Stockmann C, Mallat Z, Tedgui A, Ait-Oufella H, Tartour E, Potteaux S. Mild dyslipidemia accelerates tumorigenesis through expansion of Ly6C hi monocytes and differentiation to pro-angiogenic myeloid cells. Nat Commun 2022; 13:5399. [PMID: 36104342 PMCID: PMC9475043 DOI: 10.1038/s41467-022-33034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1β-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.
Collapse
Affiliation(s)
- Thi Tran
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Cedric Lereverend
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
| | - Bruno Esposito
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Lucille Cartier
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | | | | | - Marc Diedisheim
- Service de diabétologie, Hôpital Cochin APHP. GlandOmics, Cheverny, Paris, France
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Institut Curie, 75005, Paris, France
- Department of Translational Research, Institut Curie Research Centre, Institut Curie, 75005, Paris, France
| | | | - Lea Paolini
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Olivia Lenoir
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eva Brabencova
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | - Corinne Tanchot
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Pauline Urquia
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jacqueline Lehmann-Che
- Université Paris Cité, INSERM, U976 HIPI, F-75010, Paris, France
- Molecular Oncology Unit, Saint Louis Hospital, APHP, F-75010, Paris, France
| | - Richard Le Naour
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
| | - Yacine Merrouche
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | - Christian Stockmann
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- University of Zurich, Institute of Anatomy, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Ziad Mallat
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alain Tedgui
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- AP-HP Hôpital Européen Georges Pompidou. Service d'immunologie, Paris, France
| | - Stephane Potteaux
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Université Paris Cité, INSERM, U976 HIPI, F-75010, Paris, France.
| |
Collapse
|
322
|
Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene 2022; 41:4618-4632. [PMID: 36085418 PMCID: PMC9546774 DOI: 10.1038/s41388-022-02457-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Exosomes can selectively secrete harmful metabolic substances from cells to maintain cellular homeostasis, and complex crosstalk occurs between exosomes and tumor-associated macrophages (TAMs) in the glioma immune microenvironment. However, the precise mechanisms by which these exosome-encapsulated cargos create an immunosuppressive microenvironment remain unclear. Herein, we investigated the effect of glioma-derived exosomes (GDEs) on macrophage polarization and glioma progression. We performed sequencing analysis of cerebrospinal fluid (CSF) and tumor tissues from glioma patients to identify functional microRNAs (miRNAs). High levels of miR-3591-3p were found in CSF and GDEs but not in normal brain tissue or glial cells. Functionally, GDEs and miR-3591-3p significantly induced M2 macrophage polarization and increased the secretion of IL10 and TGFβ1, which in turn promoted glioma invasion and migration. Moreover, miR-3591-3p overexpression in glioma cell lines resulted in G2/M arrest and markedly increased apoptosis. Mechanistically, miR-3591-3p can directly target CBLB and MAPK1 in macrophages and glioma cells, respectively, and further activate the JAK2/PI3K/AKT/mTOR, JAK2/STAT3, and MAPK signaling pathways. In vivo experiments confirmed that macrophages lentivirally transduced with miR-3591-3p can significantly promote glioma progression. Thus, our study demonstrates that tumor-suppressive miR-3591-3p in glioma cells can be secreted via exosomes and target TAMs to induce the formation of an immunosuppressive microenvironment. Collectively, these findings provide new insights into the role of glioma exosomal miRNAs in mediating the establishment of an immunosuppressive tumor microenvironment and show that miR-3591-3p may be a valuable biomarker and that blocking the encapsulation of miR-3591-3p into exosomes may become a novel immunotherapeutic strategy for glioma.
Collapse
|
323
|
Guo H, Zhang W, Wang L, Shao Z, Huang X. Biomimetic cell membrane-coated glucose/oxygen-exhausting nanoreactor for remodeling tumor microenvironment in targeted hypoxic tumor therapy. Biomaterials 2022; 290:121821. [DOI: 10.1016/j.biomaterials.2022.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
|
324
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
325
|
Qin S, Liu G, Jin H, Chen X, He J, Xiao J, Qin Y, Mao Y, Zhao L. The comprehensive expression and functional analysis of m6A modification "readers" in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:6269-6298. [PMID: 35963644 PMCID: PMC9417225 DOI: 10.18632/aging.204217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
N6-methyladenosine (m6A) modification regulators are essential for the diagnosis and treatment of various cancers. However, the comprehensive analysis about roles of m6A "readers" in hepatocellular carcinoma (HCC) remains unclear. UALCAN, GEPIA2, HPA, Kaplan Meier plotter, cBioPortal, STRING WebGestalt, Metascape and TIMER 2.0 database and Cytoscape software were used to comprehensively analyze the bioinformatic data. We found that m6A "readers" were upregulated at the mRNA level and protein level in HCC patients. Highly expressed YTHDF1, IGF2BP3 and NKAP were positively correlated with advanced HCC stage and had a poor prognosis in OS and PFS. The gene alterations of m6A "readers" happened frequently, and YTHDF3 had the highest mutation rate. The function of m6A "readers" on HCC may be closely correlated with splicing related proteins (including HNRNP family, SNRP family, and SR family), metabolic process, protein binding and RNA splicing related signaling pathways. Moreover, although the correlation of YTHDF3 and CD8+ T cell infiltration, and the correlation of IGF2BP3 and infiltration of mast cells and CAF are negative, most m6A "readers" had a positive correlation with immune cells (including CD8+ T cell, CD4+ T cell, Tregs, B cell, neutrophil, monocyte, macrophage, myeloid dendritic cell, nature killer cell, mast cell, and CAF). Macrophages, CD4+ T cell, Treg, B cell, monocyte, and myeloid dendritic cell had a positively strong correlation (Rho>0.4) with most m6A "readers" (such as YTHDC1, YTHDC2, YTHDF1, IGF2BP3, HNRNPA2B1 and HNRNPC). In conclusion, by comprehensive analysis of m6A "readers", we found that they were involved in the prognosis of HCC, and m6A "readers" might regulate the development and progression of HCC by participating in some metabolism-related and RNA splicing-related signaling pathways as well as immune cell infiltration.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Gaoming Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
326
|
Halimani N, Nesterchuk M, Andreichenko IN, Tsitrina AA, Elchaninov A, Lokhonina A, Fatkhudinov T, Dashenkova NO, Brezgina V, Zatsepin TS, Mikaelyan AS, Kotelevtsev YV. Phenotypic Alteration of BMDM In Vitro Using Small Interfering RNA. Cells 2022; 11:cells11162498. [PMID: 36010574 PMCID: PMC9406732 DOI: 10.3390/cells11162498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Autologous macrophage transfer is an emerging platform for cell therapy. It is anticipated that conventional macrophage reprogramming based on ex vivo polarization using cytokines and ligands of TLRs may enhance the therapeutic effect. We describe an alternative approach based on small interfering RNA (siRNA) knockdown of selected molecular cues of macrophage polarization, namely EGR2, IRF3, IRF5, and TLR4 in Raw264.7 monocyte/macrophage cell line and mouse-bone-marrow-derived macrophages (BMDMs). The impact of IRF5 knockdown was most pronounced, curtailing the expression of other inflammatory mediators such as IL-6 and NOS2, especially in M1-polarized macrophages. Contrary to IRF5, EGR2 knockdown potentiated M1-associated markers while altogether abolishing M2 marker expression, which is indicative of the principal role of EGR2 in the maintenance of alternative phenotypes. IRF3 knockdown suppressed M1 polarization but upregulated Arg 1, a canonical marker of alternative polarization in M1 macrophages. As anticipated, the knockdown of TLR4 also attenuated the M1 phenotype but, akin to IRF3, significantly induced Arginase 1 in M0 and M1, driving the phenotype towards M2. This study validates RNAi as a viable option for the alteration and maintenance of macrophage phenotypes.
Collapse
Affiliation(s)
- Noreen Halimani
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
- Correspondence: (N.H.); (Y.V.K.)
| | - Mikhail Nesterchuk
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Irina N. Andreichenko
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Anastasia Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Timur Fatkhudinov
- Department of Histology, Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Nataliya O. Dashenkova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Vera Brezgina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Timofei S. Zatsepin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Arsen S. Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| | - Yuri V. Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation and Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
- Correspondence: (N.H.); (Y.V.K.)
| |
Collapse
|
327
|
Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022; 12:22722-22747. [PMID: 36105955 PMCID: PMC9376763 DOI: 10.1039/d2ra03786f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment for cancer combining low-intensity ultrasound and sonosensitizers. SDT activates sonosensitizers through ultrasound, releasing energy and generating reactive oxygen species to kill tumor cells. Compared with traditional photodynamic therapy (PDT), SDT is a promising anti-cancer therapy with the advantages of better targeting, deeper tissue penetration, and higher focusing ability. With the development and broad application of nanomaterials, novel sonosensitizers with tumor-targeting specificity can deliver to deep tumors and enhance the tumor microenvironment. In this review, we first review the mechanisms of sonodynamic therapy. In addition, we also focus on the current types of sonosensitizers and the latest design strategies of nanomaterials in sonosensitizers. Finally, we summarize the combined strategy of sonodynamic therapy.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| |
Collapse
|
328
|
Chen Y, He J, Chen R, Wang Z, Dai Z, Liang X, Wu W, Luo P, Zhang J, Peng Y, Zhang N, Liu Z, Zhang L, Zhang H, Cheng Q. Pan-Cancer Analysis of the Immunological Role of PDIA5: A Potential Target for Immunotherapy. Front Immunol 2022; 13:881722. [PMID: 36003400 PMCID: PMC9393377 DOI: 10.3389/fimmu.2022.881722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
The aberrant protein disulfide isomerase A5 (PDIA5) expression was relevant to the poor prognosis of patients with human cancers. However, its relationship with the epigenetic and genetic alterations and its effect on tumor immunity is still lacking. In the present study, we comprehensively analyzed the immune infiltration role of PDIA5 in human cancers based on large-scale bioinformatics analyses and in vitro experiments. Obvious DNA methylation and moderate alteration frequency of PDIA5 were observed in human cancers. The expression level of PDIA5 was significantly correlated with infiltrated immune cells, immune pathways, and other immune signatures. We found that cancer cells and macrophages exhibited high PDIA5 expression in human cancers using the single-cell RNA sequencing analysis. We also demonstrated the interaction between PDIA5 and immune cells in glioblastoma multiforme (GBM). Multiplex immunofluorescence staining showed the upregulated expression level of PDIA5 and the increased number of M2 macrophage markers-CD163 positive cells in pan-cancer samples. Notably, PDIA5 silencing resulted in upregulated expression of PD-L1 and SPP1 in U251 cells. Silencing of PDIA5 in hepG2 cells, U251 cells, and PC3 cells contributed to a decline in their ability of proliferation, clone formation, and invasion and inhibited the migration of cocultured M2 macrophages. Additionally, PDIA5 also displayed predictive value in the immunotherapy response of both murine and human cancer cohorts. Overall, our findings indicated that PDIA5 might be a potential target for immunotherapies in cancers.
Collapse
Affiliation(s)
- Yu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Changsha, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Hao Zhang, ; Liyang Zhang,
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Quan Cheng, ; Hao Zhang, ; Liyang Zhang,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Hao Zhang, ; Liyang Zhang,
| |
Collapse
|
329
|
Qian H, Fu Y, Guo M, Chen Y, Zhang D, Wei Y, Jin F, Zeng Q, Wang Y, Chai C, Ding S, Cheng W, Chen T. Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Mol Ther 2022; 30:2817-2827. [PMID: 35450820 PMCID: PMC9372320 DOI: 10.1016/j.ymthe.2022.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has faced a series of challenges and has shown very little efficacy in solid tumors to date. Although genetically engineered macrophages have achieved definite therapeutic effect in solid tumors, heterogeneous expression of engineered proteins and the potential for toxicity limit further applications. Herein, we propose a nongenetic and simple macrophage cell engineering strategy through glycan metabolic labeling and click reaction for the treatment of solid tumors. The aptamer-engineered M1 macrophage (ApEn-M1) showed enhanced active targeting ability for tumor cells in vitro and in vivo, resulting in significant cytotoxicity effects. Moreover, ApEn-M1 exhibited superior antitumor efficacy in a breast cancer xenograft mouse model and a lung metastasis mouse model of breast cancer. Interestingly, the ApEn-M1 could reprogram the immunity microenvironment by increasing T cell infiltration and enhancing T cell activity in the tumor region. Additionally, the administration of ApEn-M1 showed no obvious systemic side effects. With glycan metabolic labeling, the macrophages could be efficiently labeled with aptamers on the cell surface via click reaction without genetic alteration or cell damage. Hence, this study serves as a proof of concept for cell-surface anchor engineering and expands the range of nongenetic macrophage cell engineering strategies.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixin Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Minkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China.
| |
Collapse
|
330
|
Zeng W, Yu M, Chen T, Liu Y, Yi Y, Huang C, Tang J, Li H, Ou M, Wang T, Wu M, Mei L. Polypyrrole Nanoenzymes as Tumor Microenvironment Modulators to Reprogram Macrophage and Potentiate Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201703. [PMID: 35678111 PMCID: PMC9376744 DOI: 10.1002/advs.202201703] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Indexed: 05/07/2023]
Abstract
Nanozyme-based tumor catalytic therapy has attracted widespread attention in recent years, but its therapeutic outcome is drastically diminished by species of nanozyme, concentration of substrate, pH value, and reaction temperature, etc. Herein, a novel Cu-doped polypyrrole nanozyme (CuP) with trienzyme-like activities, including catalase (CAT), glutathione peroxidase (GPx), and peroxidase (POD), is first proposed by a straightforward one-step procedure, which can specifically promote O2 and ·OH elevation but glutathione (GSH) reduction in tumor microenvironment (TME), causing irreversible oxidative stress damage to tumor cells and reversing the redox balance. The PEGylated CuP nanozyme (CuPP) has been demonstrated to efficiently reverse immunosuppressive TME by overcoming tumor hypoxia and re-educating macrophage from pro-tumoral M2 to anti-tumoral M1 phenotype. More importantly, CuPP exhibits hyperthermia-enhanced enzyme-mimic catalytic and immunoregulatory activities, which results in intense immune responses and almost complete tumor inhibition by further combining with αPD-L1. This work opens intriguing perspectives not only in enzyme-catalytic nanomedicine but also in macrophage-based tumor immunotherapy.
Collapse
Affiliation(s)
- Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Ting Chen
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Hanyue Li
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
- Tianjin Key Laboratory of Biomedical MaterialsKey Laboratory of Biomaterials and Nanotechnology for Cancer ImmunotherapyInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
331
|
Huang X, Gao M, Xing H, Du Z, Wu Z, Liu J, Li T, Cao J, Yang X, Li R, Wang W, Wang J, Luo S. Rationally Designed Heptamethine Cyanine Photosensitizers that Amplify Tumor-Specific Endoplasmic Reticulum Stress and Boost Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202728. [PMID: 35796192 DOI: 10.1002/smll.202202728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cancer phototherapy activates immunogenic cell death (ICD) and elicits a systemic antitumor immune response, which is an emerging approach for tumor treatment. Most available photosensitizers require a combination of immune adjuvants or checkpoint inhibitors to trigger antitumor immunity because of the immunosuppressive tumor microenvironment and the limited phototherapeutic effect. A class of tumor-targeting heptamethine cyanine photosensitizers modified with an endoplasmic reticulum (ER)-targeting group (benzenesulfonamide) are synthesized. Phototherapy of tumor cells markedly amplifies ER stress and promotes tumor antigen release, as the ER is required for protein synthesis, secretion, and transport. More importantly, different electron-donating or -withdrawing substitutions are introduced into benzenesulfonamide to modulate the nonradiative decay pathways through intramolecular charge transfer, including singlet-triplet intersystem crossing (photodynamic effect) and internal thermal conversion (photothermal effect). Thus, a heptamethine cyanine photosensitizer containing a binitro-substituted benzenesulfonamide (ER-Cy-poNO2 ) is identified that preferentially accumulates in the ER of tumor cells. It significantly enhances the phototherapeutic effect by inducing excessive ER stress and robust ICD. Consequently, this small molecular photosensitizer triggers a sufficient antitumor immune response and effectively suppresses the growth of both primary and distant metastatic tumors, whereas no apparent toxicity is observed. This heptamethine cyanine photosensitizer has the potential to enhance cancer-targeted immunotherapy.
Collapse
Affiliation(s)
- Xie Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mingquan Gao
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Third Military Medical University (Army Medical University), Daping, Chongqing, 400042, China
| | - Zaizhi Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zifei Wu
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiang Cao
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weidong Wang
- School of Medicine, University of Electronic Science and Technology of China, Department of Radiation Oncology, Sichuan Key Laboratory of Radiation Oncology Sichuan Cancer Hospital, Chengdu, 610041, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
332
|
Zhong J, Wang Z, Hounye AH, Liu J, Zhang J, Qi M, Hou M. A novel pyroptosis-related LncRNA signature predicts prognosis and indicates tumor immune microenvironment in skin cutaneous melanoma. Life Sci 2022; 307:120832. [DOI: 10.1016/j.lfs.2022.120832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
|
333
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022; 13:844142. [PMID: 35874717 PMCID: PMC9299092 DOI: 10.3389/fimmu.2022.844142] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Collapse
Affiliation(s)
- Bingzhe Lv
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongjiang Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wei Cheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
334
|
Chen G, Yang F, Fan S, Jin H, Liao K, Li X, Liu GB, Liang J, Zhang J, Xu JF, Pi J. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022; 13:956181. [PMID: 35958612 PMCID: PMC9361286 DOI: 10.3389/fimmu.2022.956181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body’s innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.
Collapse
Affiliation(s)
- Gengshi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Pathogenic Biology and Immunology, School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Jing Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| |
Collapse
|
335
|
Tan Y, Zhao L, Yang YG, Liu W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front Oncol 2022; 12:953283. [PMID: 35898884 PMCID: PMC9309262 DOI: 10.3389/fonc.2022.953283] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein. It is widely involved in solid tumor progression, such as intensification of macrophage recruitment, inhibition of T-cell activity, aggravation of tumor interstitial fibrosis, promotion of tumor metastasis, chemotherapy resistance, and angiogenesis. Most of these pathologies are affected by tumor-associated macrophages (TAMs), an important component of the tumor microenvironment (TME). TAMs have been extensively characterized, including their subsets, phenotypes, activation status, and functions, and are considered a promising therapeutic target for cancer treatment. This review focuses on the interaction between OPN and TAMs in mediating tumor progression. We discuss the strategies for targeting OPN and TAMs to treat cancer and factors that may affect the therapeutic outcomes of blocking OPN or depleting TAMs. We also discuss the role of cancer cell- vs. TAM-derived OPN in tumorigenesis, the mechanisms of how OPN affects TAM recruitment and polarization, and why OPN could mediate anti-tumor and pro-tumor effects, as well as previously reported discrepancies.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| |
Collapse
|
336
|
Gao J, Liang Y, Wang L. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front Immunol 2022; 13:888713. [PMID: 35844605 PMCID: PMC9280632 DOI: 10.3389/fimmu.2022.888713] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Different stimuli can polarize macrophages into two basic types, M1 and M2. Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) are composed of heterogeneous subpopulations, which include the M1 anti-tumor and M2 pro-tumor phenotypes. TAMs predominantly play a M2-like tumor-promoting role in the TME and regulate various malignant effects, such as angiogenesis, immune suppression, and tumor metastasis; hence, TAMs have emerged as a hot topic of research in cancer therapy. This review focuses on three main aspects of TAMs. First, we summarize macrophage polarization along with the effects on the TME. Second, recent advances and challenges in cancer treatment and the role of M2-like TAMs in immune checkpoint blockade and CAR-T cell therapy are emphasized. Finally, factors, such as signaling pathways, associated with TAM polarization and potential strategies for targeting TAM repolarization to the M1 pro-inflammatory phenotype for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuanzheng Liang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liang Wang,
| |
Collapse
|
337
|
Xu B, Sun H, Song X, Liu Q, Jin W. Mapping the Tumor Microenvironment in TNBC and Deep Exploration for M1 Macrophages-Associated Prognostic Genes. Front Immunol 2022; 13:923481. [PMID: 35844580 PMCID: PMC9279655 DOI: 10.3389/fimmu.2022.923481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) remains the worst molecular subtype due to high heterogeneity and lack of effective therapeutic targets. Here we investigated the tumor and immune microenvironment heterogeneity of TNBC using scRNA-seq and bulk RNA-seq data from public databases and our cohort. Macrophage subpopulations accounted for a high proportion of tumor immune microenvironment (TIME), and M1 macrophages were associated with better clinical outcomes. Furthermore, three maker genes including IFI35, PSMB9, and SAMD9L showed a close connection with M1 macrophages. Specifically, IFI35 was positively associated with macrophage activation, chemotaxis, and migration. Also, patients with high IFI35 expression had a better prognosis. In vitro studies subsequently demonstrated that IFI35 was upregulated during the M1 subtype differentiation of macrophages. In summary, our data suggested that IFI35 maybe a promising novel target that helps to reshape macrophage polarization towards the M1 subtype for anti-tumor effects.
Collapse
Affiliation(s)
- Baojin Xu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Hefen Sun
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoqing Song
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiqi Liu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Wei Jin,
| |
Collapse
|
338
|
Yang L, Zhang Y, Zhang Y, Xu Y, Li Y, Xie Z, Wang H, Lin Y, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Live Macrophage-Delivered Doxorubicin-Loaded Liposomes Effectively Treat Triple-Negative Breast Cancer. ACS NANO 2022; 16:9799-9809. [PMID: 35678390 DOI: 10.1021/acsnano.2c03573] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triple-negative breast cancer is often aggressive and resistant to various cancer therapies, especially corresponding targeted drugs. It is shown that targeted delivery of chemotherapeutic drugs to tumor sites could enhance treatment outcome against triple-negative breast cancer. In this study, we exploited the active tumor-targeting capability of macrophages by loading doxorubicin-carrying liposomes on their surfaces via biotin-avidin interactions. Compared with conventional liposomes, this macrophage-liposome (MA-Lip) system further increased doxorubicin accumulation in tumor sites, penetrated deeper into tumor tissue, and enhanced antitumor immune response. As a result, the MA-Lip system significantly lengthened the survival rate of 4T1 cell-bearing mice with low toxicity. Besides, the MA-Lip system used highly biocompatible and widely approved materials, which ensured its long-term safety. This study provides a system for triple-negative breast cancer treatment and offers another macrophage-based strategy for tumor delivery.
Collapse
Affiliation(s)
- Lan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuai Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhiqiang Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yunzhu Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Pharmacy, Evidence-Based Pharmacy Center, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| |
Collapse
|
339
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
340
|
Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines 2022; 10:biomedicines10071493. [PMID: 35884798 PMCID: PMC9313317 DOI: 10.3390/biomedicines10071493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs. Other immune cell types, including natural killer (NK) cells and macrophages, have also been engineered to express CARs to treat cancer. Additionally, CAR technology has been adapted in novel approaches to treating autoimmune disease and other conditions and diseases. In this article, we review these recent advancements in alternative CAR therapies and design, as well as their mechanisms of action, challenges in application, and potential future directions.
Collapse
|
341
|
Peptidoglycan-Like Components in Z-100, Extracted from Mycobacterium tuberculosis Strain Aoyama B, Increase IL-12p40 via NOD2. J Immunol Res 2022; 2022:3530937. [PMID: 35785036 PMCID: PMC9242757 DOI: 10.1155/2022/3530937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Z-100 is a hot-water extract of the human-type Mycobacterium tuberculosis strain Aoyama B. While Z-100’s macrophage-mediated immunomodulatory effects have been reported, the mechanistic details have not been fully clarified. Here, we studied the immunomodulatory effects of Z-100 on mouse bone marrow-derived cells, human CD14+ cells, and skin. Methods. Mouse bone marrow-derived cells and CD14+ cells were cultured in the presence of granulocyte-macrophage colony-stimulating factor, differentiated into macrophage-like cells, and then stimulated with Z-100. Furthermore, since Z-100 is subcutaneously administered clinically, we injected Z-100 into mice and measured gene expression in the skin. Results. While Z-100 stimulation increased the production of interleukin- (IL-) 12p40 and IL-1β in mouse bone marrow-derived macrophages, levels of IL-1β were low. In contrast, TNF-α production did not increase. Meanwhile, stimulation of human CD14+ cells with Z-100 increased production of IL-12p40, TNF-α, and IL-1β. Because Z-100 appeared to have the most stable effect on IL-12p40, we examined the components of Z-100 that induce IL-12p40 production. We found that Z-100 contained peptidoglycan-like components. In addition, an siRNA study showed that Z-100 increased the production of IL-12p40 via nucleotide-binding oligomerization domain 2 (NOD2). Further, subcutaneous administration of Z-100 to mice significantly elevated expression of IL-12p40 and IL-1β and showed a trend towards increasing TNF-α in the skin. Conclusion. Z-100 induced the production of immunomodulatory cytokines from various types of macrophages and specifically increased IL-12p40 production through peptidoglycan-like components via NOD2.
Collapse
|
342
|
Liu B, Liu Z, Feng C, Tu C. A Necroptosis-Related lncRNA Signature Predicts Prognosis and Indicates the Immune Microenvironment in Soft Tissue Sarcomas. Front Genet 2022; 13:899545. [PMID: 35795204 PMCID: PMC9251335 DOI: 10.3389/fgene.2022.899545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The necroptosis and long noncoding RNA (lncRNA) are critical in the occurrence and development of malignancy, while the association between the necroptosis-related lncRNAs (NRlncRNAs) and soft tissue sarcoma (STS) remains controversial. Therefore, the present study aims to construct a novel signature based on NRlncRNAs to predict the prognosis of STS patients and investigate its possible role. Methods: The transcriptome data and clinical characteristics were extracted from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression database (GTEx). A novel NRlncRNA signature was established and verified by the COX regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, the K-M survival analysis, ROC, univariate, multivariate Cox regression analysis, and nomogram were used to evaluate the predictive value of the signature. Also, a variety of bioinformatic analysis algorithms explored the differences between the potential mechanism, tumor immune status, and drug sensitivity in the two-risk group. Finally, the RT-qPCR was performed to evaluate the expression of signature NRlncRNAs. Results: A novel signature consisting of seven NRlncRNAs was successfully established and verified with stable prediction performance and general applicability for STS. Next, the GSEA showed that the patients in the high-risk group were mainly enriched with tumor-related pathways, while the low-risk patients were significantly involved in immune-related pathways. In parallel, we found that the STS patients in the low-risk group had a better immune status than that in the high-risk group. Additionally, there were significant differences in the sensitivity to anti-tumor agents between the two groups. Finally, the RT-qPCR results indicated that these signature NRlncRNAs were abnormally expressed in STS. Conclusion: To the best of our knowledge, it is the first study to construct an NRlncRNA signature for STS. More importantly, the novel signature displays stable value and translational potential for predicting prognosis, tumor immunogenicity, and therapeutic response in STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Chao Tu,
| |
Collapse
|
343
|
Lyadova I, Vasiliev A. Macrophages derived from pluripotent stem cells: prospective applications and research gaps. Cell Biosci 2022; 12:96. [PMID: 35725499 PMCID: PMC9207879 DOI: 10.1186/s13578-022-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable cell source able to give rise to different cell types of the body. Among the various pathways of iPSC differentiation, the differentiation into macrophages is a recently developed and rapidly growing technique. Macrophages play a key role in the control of host homeostasis. Their dysfunction underlies many diseases, including hereditary, infectious, oncological, metabolic and other disorders. Targeting macrophage activity and developing macrophage-based cell therapy represent promising tools for the treatment of many pathological conditions. Macrophages generated from human iPSCs (iMphs) provide great opportunities in these areas. The generation of iMphs is based on a step-wise differentiation of iPSCs into mesoderm, hematopoietic progenitors, myeloid monocyte-like cells and macrophages. The technique allows to obtain standardizable populations of human macrophages from any individual, scale up macrophage production and introduce genetic modifications, which gives significant advantages over the standard source of human macrophages, monocyte-derived macrophages. The spectrum of iMph applications is rapidly growing. iMphs have been successfully used to model hereditary diseases and macrophage-pathogen interactions, as well as to test drugs. iMph use for cell therapy is another promising and rapidly developing area of research. The principles and the details of iMph generation have recently been reviewed. This review systemizes current and prospective iMph applications and discusses the problem of iMph safety and other issues that need to be explored before iMphs become clinically applicable.
Collapse
Affiliation(s)
- Irina Lyadova
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation.
| | - Andrei Vasiliev
- Koltzov Institute of Developmental Biology of RAS, Moscow, Russian Federation
| |
Collapse
|
344
|
Silver nanoclusters show advantages in macrophage tracing in vivo and modulation of anti-tumor immuno-microenvironment. J Control Release 2022; 348:470-482. [PMID: 35691499 DOI: 10.1016/j.jconrel.2022.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022]
Abstract
Macrophage-based nanomedicine represents an emerging powerful strategy for cancer therapy. Unfortunately, some obstacles and challenges limit the translational applications of macrophage-mediated nanodrug delivery system. For instance, tracking and effective cell delivery for targeted tumor sites remain to be overcome, and controlling the states of macrophages is still rather difficult due to their plastic nature in response to external stimuli. To address these critical issues, here, we reported a novel type of silver nanoclusters (AgNCs) with excellent fluorescent intensity, especially long-lasting cell labeling stability after endocytosis by macrophages, indicating promising applications in tracking macrophage-based nanomedicine delivery. Our mechanistic investigations uncovered that these merits originate from the escape of AgNCs from lysosomal degradation within macrophages. In addition, the AgNCs would prime the M1-like polarization of macrophages (at least in part) through the toll-like receptor 4 signaling pathway. The engineered macrophages laden with AgNCs could be employed for lung metastasis breast cancer treatment, showing the effective targeting propensity to metastatic tumors, remarkable regulation of tumor immune microenvironment and inhibition of tumor growth. Collectively, AgNC-trained macrophages appear to be a promising strategy for tumor immune-microenvironment regulation, which might be generalized to a wider spectrum of cancer therapeutics.
Collapse
|
345
|
Cai D, Ma X, Guo H, Zhang H, Bian A, Yu H, Cheng W. Prognostic value of p16, p53, and pcna in sarcoma and an evaluation of immune infiltration. J Orthop Surg Res 2022; 17:305. [PMID: 35689249 PMCID: PMC9185979 DOI: 10.1186/s13018-022-03193-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background p16, p53, and proliferating cell nuclear antigen (pcna) genes play significant roles in many chromatin modifications and have been found to be highly expressed in a variety of tumor tissues. Therefore, they have been used as target genes for some tumor therapies. However, the differential expressions of the p16, p53, and pcna genes in human sarcomas and their effects on prognosis have not been widely reported. Methods The Oncomine dataset was used to analyze the transcription levels of p16, p53, and pcna genes, and the gene expression profile interactive analysis (GEPIA) dataset was used to analyze the differential expressions of p16, p53, and pcna. The expression levels of p16, p53, and pcna were further analyzed by Western Blotting. GEPIA and Kaplan–Meier analyses were used to analyze the prognostic value of p16, p53, and pcna. Furthermore, p16, p53, and pcna gene mutations and their association with overall survival (OS) and disease-free survival (DFS) were analyzed using cBioPortal datasets. In addition, genes co-expressed with p16, p53, and pcna were analyzed using Oncomine. The DAVID dataset was used to analyze the functional enrichment of p16, p53, pcna, and their co-expressed genes by Gene Ontology (GO) and Metascape were used to construct a network map. Finally, the immune cell infiltration of p16, p53, and pcna in patients with sarcoma was reported by Tumor Immune Estimation Resource (TIMER). Results p16, p53, and pcna were up-regulated in human sarcoma tissues and almost all sarcoma cell lines. Western Blotting showed that the expression of p16, p53, and pcna was elevated in osteosarcoma cell lines. The expression of pcna was correlated with OS, the expression of p16, p53, and pcna was correlated with relapse-free survival, and the genetic mutation of p16 was negatively correlated with OS and DFS. We also found that p16, p53, and pcna genes were positively/negatively correlated with immune cell infiltration in sarcoma. Conclusions The results of this study showed that p16, p53, and pcna can significantly affect the survival and immune status of sarcoma patients. Therefore, p16, p53, and pcna could be used as potential biomarkers of prognosis and immune infiltration in human sarcoma and provide a possible therapeutic target for sarcoma.
Collapse
Affiliation(s)
- Dechao Cai
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xiao Ma
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Huihui Guo
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Haotian Zhang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Ashuai Bian
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Haoran Yu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Wendan Cheng
- Department of Orthopedics, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| |
Collapse
|
346
|
Tuo B, Chen Z, Dang Q, Chen C, Zhang H, Hu S, Sun Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis 2022; 13:539. [PMID: 35676257 PMCID: PMC9177590 DOI: 10.1038/s41419-022-04949-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.
Collapse
Affiliation(s)
- Baojing Tuo
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhuang Chen
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chen Chen
- grid.207374.50000 0001 2189 3846School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
| | - Hao Zhang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shengyun Hu
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
347
|
Li M, He L, Zhu J, Zhang P, Liang S. Targeting tumor-associated macrophages for cancer treatment. Cell Biosci 2022; 12:85. [PMID: 35672862 PMCID: PMC9172100 DOI: 10.1186/s13578-022-00823-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/29/2022] [Indexed: 02/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30–50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM’s functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.,Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
348
|
Abstract
Tumor-associated macrophages (TAMs) are abundant, nearly accounting for 30-50% of stromal cells in the tumor microenvironment. TAMs exhibit an immunosuppressive M2-like phenotype in advanced cancer, which plays a crucial role in tumor growth, invasion and migration, angiogenesis and immunosuppression. Consequently, the TAM-targeting therapies are particularly of significance in anti-cancer strategies. The application of TAMs as anti-cancer targets is expected to break through traditional tumor-associated therapies and achieves favorable clinical effect. However, the heterogeneity of TAMs makes the strategy of targeting TAMs variable and uncertain. Discovering the subset specificity of TAMs might be a future option for targeting TAMs therapy. Herein, the review focuses on highlighting the different modalities to modulate TAM's functions, including promoting the phagocytosis of TAMs, TAMs depletion, blocking TAMs recruitment, TAMs reprogramming and suppressing immunosuppressive tumor microenvironment. We also discuss about several ways to improve the efficacy of TAM-targeting therapy from the perspective of combination therapy and specificity of TAMs subgroups.
Collapse
Affiliation(s)
- Mengjun Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Linye He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, 610041, Chengdu, China.
| |
Collapse
|
349
|
Ding J, Meng Y, Han Z, Luo X, Guo X, Li Y, Liu S, Zhuang K. Pan-Cancer Analysis of the Oncogenic and Immunological Role of RCN3: A Potential Biomarker for Prognosis and Immunotherapy. Front Oncol 2022; 12:811567. [PMID: 35651805 PMCID: PMC9149440 DOI: 10.3389/fonc.2022.811567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022] Open
Abstract
Despite emerging publications have elucidated a functional association between RCN3 and tumors, no evidence about a pan-cancer analysis of RCN3 is available. Our study first conducted a comprehensive assessment of its expression profiles, prognosis value, immune infiltration, and relevant cellular pathways via bioinformatics techniques based on the public database of TCGA (The Cancer Genome Atlas). RCN3 is highly expressed in most tumors, and it is associated with poor prognosis. Kaplan-Meier analysis and Cox regression analysis suggested that the high expression of RCN3 was associated with poor overall survival (OS) in pan-cancer, Cox regression analysis also indicated high RCN3 expression was correlated with disease-specific survival (DSS) and progression-free interval (PFI) in most tumors. We observed a regulation function of RCN3 at genetic and epigenetic levels through CNA and DNA methylation using cBioPortal database. Based on Gene Set Enrichment Analysis, we first identified related pathways of RCN3 and its potential biological functions in pan-cancer, RCN3 was implicated in oncogenic pathways, and was related to extracellular matrix and immune regulation. We found that RCN3 positively correlated with the levels of infiltrating cells such as TAMs and CAFs, but negatively correlated with CD8+ T-cells by analyzing immune cell infiltration data we downloaded from published work and online databases, further investigation of the correlation between immunosuppressive genes, chemokines, chemokines receptors, and high RCN3 expression showed a significant positive association in the vast majority of TCGA cancer types. These results indicated its role as an immune regulatory in cancers and suggested that RCN3 is a potential biomarker for immunotherapy. Also, we found that expression of RCN3 was much higher in CRC tissues than in normal tissues with a higher expression level of RCN3 closely correlating to advanced American Joint Committee on Cancer (AJCC) stage, poor differentiation, increased tumor size, and poor prognosis of CRC. Biological function experiments showed that RCN3 regulated CRC cells’ proliferation and metastasis ability. Upregulation of RCN3 in CRC cells increased the expression of immune related factor, including TGFβ1, IL-10, and IL-6. Thus, our pan-cancer analysis offers a deep understanding of potential oncogenic roles of RCN3 in different cancers.
Collapse
Affiliation(s)
- Jian Ding
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Meng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zelong Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobei Luo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuxue Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Pazhou Lab, Guangzhou, China
| | - Kangmin Zhuang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
350
|
Tang XX, Shimada H, Ikegaki N. Macrophage-mediated anti-tumor immunity against high-risk neuroblastoma. Genes Immun 2022; 23:129-140. [PMID: 35525858 PMCID: PMC9232393 DOI: 10.1038/s41435-022-00172-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy. Neuroblastoma lacks classical HLA Class I expression and exhibits low mutation burden, allowing neuroblastoma cells to evade CD8+ T cell-mediated immunity. Neuroblastoma cells do not express PD-L1, and tumor-associated macrophages are the predominant PD-L1+ cells in the tumor. In this study, we performed gene expression profiling and survival analyses on large neuroblastoma datasets to address the prognostic effect of PD-L1 gene expression and the possible involvement of the SLAMF7 pathway in the anti-neuroblastoma immunity. High-level expression of PD-L1 was found significantly associated with better outcome of high-risk neuroblastoma patients; two populations of PD-1+ PD-L1+ macrophages could be present in high-risk tumors with PD-1/PD-L1 ratios, ≈1 and >1. Patients with the PD-1/PD-L1 ratio >1 tumor showed inferior survival. High-level co-expression of SLAMF7 and SH2D1B was significantly associated with better survival of the high-risk neuroblastoma patients. Together, this study supports the hypothesis that macrophages are important effector cells in the anti-high-risk neuroblastoma immunity, that PD-1 blockade therapy can be beneficial to the high-risk neuroblastoma subset with the PD-1/PD-L1 expression ratio >1, and that SLAMF7 is a new therapeutic target of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Xao X Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|