301
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
302
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
303
|
Zhang Y, Xu B, Shi J, Li J, Lu X, Xu L, Yang H, Hamad N, Wang C, Napier D, He S, Liu C, Liu Z, Qian H, Chen L, Wei X, Zheng X, Huang JA, Thibault O, Craven R, Wei D, Pan Y, Zhou BP, Wu Y, Yang XH. BRD4 modulates vulnerability of triple-negative breast cancer to targeting of integrin-dependent signaling pathways. Cell Oncol (Dordr) 2020; 43:1049-1066. [PMID: 33006750 PMCID: PMC7716866 DOI: 10.1007/s13402-020-00537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Junfeng Shi
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jieming Li
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinlan Lu
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Li Xu
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Helen Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nevean Hamad
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Shuixiang He
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Chunming Liu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xucai Zheng
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Rolf Craven
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dongping Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China.
| | - Binhua P Zhou
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
304
|
Pharmacological methods to transcriptionally modulate double-strand break DNA repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 354:187-213. [PMID: 32475473 DOI: 10.1016/bs.ircmb.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is much interest in targeting DNA repair pathways for use in cancer therapy, as the effectiveness of many therapeutic agents relies on their ability to cause damage to DNA, and deficiencies in DSB repair pathways can make cells more sensitive to specific cancer therapies. For example, defects in the double-strand break (DSB) pathways, non-homologous end joining (NHEJ) and homology-directed repair (HDR), induce sensitivity to radiation therapy and poly(ADP)-ribose polymerase (PARP) inhibitors, respectively. However, traditional approaches to inhibit DNA repair through small molecule inhibitors have often been limited by toxicity and poor bioavailability. This review identifies several pharmacologic manipulations that modulate DSB repair by reducing expression of DNA repair factors. A number of pathways have been identified that modulate activity of NHEJ and HDR through this mechanism, including growth and hormonal receptor signaling pathways as well as epigenetic modifiers. We also discuss the effects of anti-angiogenic therapy on DSB repair. Preclinically, these pharmacological manipulations of DNA repair factor expression have been shown to increase sensitivity to specific cancer therapies, including ionizing radiation and PARP inhibitors. When applicable, relevant clinical trials are discussed and areas for future study are identified.
Collapse
|
305
|
Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics. mSystems 2019; 4:4/6/e00596-19. [PMID: 31796568 PMCID: PMC6890932 DOI: 10.1128/msystems.00596-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi. To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis. IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.
Collapse
|
306
|
Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT, Brodbelt JS, Marcotte EM, Miller KM. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 2019; 33:1751-1774. [PMID: 31753913 PMCID: PMC6942044 DOI: 10.1101/gad.331231.119] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samantha T Refvik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
307
|
Zhang W, Ge H, Jiang Y, Huang R, Wu Y, Wang D, Guo S, Li S, Wang Y, Jiang H, Cheng J. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett 2019; 469:510-523. [PMID: 31765738 DOI: 10.1016/j.canlet.2019.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
The bromodomain and extra-terminal domain protein BRD4 has been recognized as a key oncogenic driver and a druggable target against cancer. However, these BRD4 inhibitors as monotherapy were moderate in efficacy in preclinical models. Here we utilized a small-scale drug synergy screen that combined the BRD4 inhibitor (JQ1) with 8 epigenetic or transcriptional targeted chemicals and identified THZ1 (a CDK7 inhibitor) acting synergistically with JQ1 against head neck squamous cell carcinoma (HNSCC). Combinational JQ1 and THZ1 treatment impaired cell proliferation, induced apoptosis and senescence, which were largely recapitulated by dual BRD4 and CDK7 knockdown. Combinational treatment inhibited tumor growth and progression in 4NQO-induced HNSCC and xenograft animal models. RNA-sequencing analyses identified hundreds of differentially expressed genes modulated by JQ1 and THZ1, which were significantly enriched in categories including cell cycle and apoptosis. Mechanistically, combinational treatment reduced H3K27ac enrichment in the super-enhancer region of YAP1, which inactivated its transcription and in turn induced anti-proliferative and pro-apoptotic effects. Combined BRD4 and CDK7 upregulation associated with worst prognosis in HNSCC patients. Collectively, our findings reveal a novel therapeutic strategy of pharmacological inhibitions of BRD4 and CDK7 against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Han Ge
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yue Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Dongmiao Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Songsong Guo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, 210029, People's Republic of China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
308
|
Cheng X, Huang Z, Long D, Jin W. BET inhibitor bromosporine enhances 5-FU effect in colorectal cancer cells. Biochem Biophys Res Commun 2019; 521:840-845. [PMID: 31708100 DOI: 10.1016/j.bbrc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022]
Abstract
Treatment of colorectal cancer (CRC) remains a challenge because of the lack of effective early treatment strategies and high incidence of relapse. 5-Fluorouracil (5-FU) is a typical CRC treatment. Bromosporine is an innovative bromodomain and extraterminal domain (BET) inhibitor. We investigated if CRC could be targeted by the combination of 5-FU and bromosporine in a synergistic manner in vivo and in vitro. Our findings shown that the combination treatment inhibits cell viability, formation of colonies, increased apoptosis and cell cycle arrest at G0-G1. In addition, the expression level of BRD4 was high in HCT116 cells exposed to 5-FU that showed lower apoptosis against the parental cells. Moreover, the 5-FU-resistance was reversed significantly by BRD4 knockdown or inhibition. The drug combination showed increased activity against tumor than individual drug exposure in the xenograft model. In conclusion, this work serves as a basic clinical evaluation of 5-FU and bromosporine as an effective therapeutic approach for CRC.
Collapse
Affiliation(s)
- Xueyuan Cheng
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Zhong Huang
- Department of General Surgery, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai People's Hospital, Beihai, 536000, Guangxi Zhuang, China
| | - Di Long
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China.
| | - Wei Jin
- Department of General Surgery, Wuming Hospital of Guangxi Medical University, Nanning, 530199, Guangxi Zhuang, China
| |
Collapse
|
309
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
310
|
Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol 2019; 16:645-654. [PMID: 31591549 DOI: 10.1038/s41585-019-0237-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
Metastatic biopsy programmes combined with advances in genomic sequencing have provided new insights into the molecular landscape of castration-resistant prostate cancer (CRPC), identifying actionable targets, and emerging resistance mechanisms. The detection of DNA repair aberrations, such as mutation of BRCA2, could help select patients for poly(ADP-ribose) polymerase (PARP) inhibitor or platinum chemotherapy, and mismatch repair gene defects and microsatellite instability have been associated with responses to checkpoint inhibitor immunotherapy. Poor prognostic features, such as the presence of RB1 deletion, might help guide future therapeutic strategies. Our understanding of the molecular features of CRPC is now being translated into the clinic in the form of increased molecular testing for use of these agents and for clinical trial eligibility. Genomic testing offers opportunities for improving patient selection for systemic therapies and, ultimately, patient outcomes. However, challenges for precision oncology in advanced prostate cancer still remain, including the contribution of tumour heterogeneity, the timing and potential cooperation of multiple driver gene aberrations, and diverse resistant mechanisms. Defining the optimal use of molecular biomarkers in the clinic, including tissue-based and liquid biopsies, is a rapidly evolving field.
Collapse
Affiliation(s)
- Sheng-Yu Ku
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Martin E Gleave
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Himisha Beltran
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
311
|
Ordoñez R, Martínez-Calle N, Agirre X, Prosper F. DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters? Cancers (Basel) 2019; 11:cancers11101424. [PMID: 31554341 PMCID: PMC6827153 DOI: 10.3390/cancers11101424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.
Collapse
Affiliation(s)
- Raquel Ordoñez
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nicolás Martínez-Calle
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Xabier Agirre
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Felipe Prosper
- Área de Hemato-Oncología, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
- Departamento de Hematología, Clínica Universidad de Navarra, Universidad de Navarra, Avenida Pío XII-36, 31008 Pamplona, Spain.
| |
Collapse
|
312
|
Inducing the Degradation of Disease-Related Proteins Using Heterobifunctional Molecules. Molecules 2019; 24:molecules24183272. [PMID: 31500395 PMCID: PMC6766870 DOI: 10.3390/molecules24183272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/02/2023] Open
Abstract
Current drug development strategies that target either enzymatic or receptor proteins for which specific small molecule ligands can be designed for modulation, result in a large portion of the proteome being overlooked as undruggable. The recruitment of natural degradation cascades for targeted protein removal using heterobifunctional molecules (or degraders) provides a likely avenue to expand the druggable proteome. In this review, we discuss the use of this drug development strategy in relation to degradation cascade-recruiting mechanisms and successfully targeted disease-related proteins. Essential characteristics to be considered in degrader design are deliberated upon and future development challenges mentioned.
Collapse
|
313
|
Pham TND, Stempel S, Shields MA, Spaulding C, Kumar K, Bentrem DJ, Matsangou M, Munshi HG. Quercetin Enhances the Anti-Tumor Effects of BET Inhibitors by Suppressing hnRNPA1. Int J Mol Sci 2019; 20:E4293. [PMID: 31480735 PMCID: PMC6747365 DOI: 10.3390/ijms20174293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins, which are important epigenetic readers, are often dysregulated in cancer. While a number of BET inhibitors are currently in early phase clinical trials, BET inhibitors show limited single-agent activity. The purpose of this study is to determine if Quercetin, a naturally occurring polyphenolic flavonoid often found abundant in fruits and vegetables, can enhance the anti-tumor effects of BET inhibitors. The efficacy of the combination was evaluated in vitro and in a xenograft model of pancreatic cancer. Co-treatment with BET inhibitors and Quercetin promoted apoptosis, decreased sphere-forming ability by cancer cells, and decreased cell proliferation. We found that hnRNPA1, a nuclear protein known to control mRNA export and mRNA translation of anti-apoptotic proteins, mediates some anti-tumor effects by Quercetin. Additionally, we show that combining BET inhibitors with Quercetin or hnRNPA1 knockdown decreased the anti-apoptotic protein Survivin. Significantly, Quercetin decreased hnRNPA1 in vivo and enhanced the effects of BET inhibitors at suppressing tumor growth. Together, these results demonstrate that Quercetin enhances the efficacy of BET inhibitors by suppressing hnRNPA1, and identify combination therapy with Quercetin and BET inhibitors for the treatment of cancer patients.
Collapse
Affiliation(s)
- Thao N D Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | - Sophie Stempel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mario A Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | - David J Bentrem
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria Matsangou
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|
314
|
Chandhok NS, Prebet T. Insights into novel emerging epigenetic drugs in myeloid malignancies. Ther Adv Hematol 2019; 10:2040620719866081. [PMID: 31431820 PMCID: PMC6685116 DOI: 10.1177/2040620719866081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetics has been defined as ‘a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence’ and several epigenetic regulators are recurrently mutated in hematological malignancies. Epigenetic modifications include changes such as DNA methylation, histone modifications and RNA associated gene silencing. Transcriptional regulation, chromosome stability, DNA replication and DNA repair are all controlled by these modifications. Mutations in genes encoding epigenetic modifiers are a frequent occurrence in hematologic malignancies and important in both the initiation and progression of cancer. Epigenetic modifications are also frequently reversible, allowing excellent opportunities for therapeutic intervention. The goal of epigenetic therapies is to reverse epigenetic dysregulation, restore the epigenetic balance, and revert malignant cells to a more normal condition. The role of epigenetic therapies thus far is most established in hematologic malignancies, with several agents already approved by the US Food and Drug Administration. In this review, we discuss pharmacological agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | - Thomas Prebet
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, 35 Park Street, New Haven, CT 06511, USA
| |
Collapse
|
315
|
Zhang P, Li R, Xiao H, Liu W, Zeng X, Xie G, Yang W, Shi L, Yin Y, Tao K. BRD4 Inhibitor AZD5153 Suppresses the Proliferation of Colorectal Cancer Cells and Sensitizes the Anticancer Effect of PARP Inhibitor. Int J Biol Sci 2019; 15:1942-1954. [PMID: 31523195 PMCID: PMC6743290 DOI: 10.7150/ijbs.34162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Bromodomain-containing protein 4(BRD4) is reported to play a vital role in the development of numerous malignant diseases, which is considered as a promising target for cancer therapy. AZD5153, a novel specific BRD4 inhibitor, showed potent anticancer effects in several cancer types, but its therapeutic potential has not been fully evaluated in colorectal cancer cells. Objective: We sought to evaluate the therapeutic potential of BRD4 inhibition of by AZD5153 and its combined anticancer cancer effect with PARP inhibitor BMN673 in vitro and in vivo in colorectal cancer. Methods: We analyzed The Cancer Genome Atlas (TCGA) database to investigate BRD4 expression in colorectal cancer patient. Clonogenic assays 、MTT assays and PI/Annexin V staining were used to determine the effect of AZD5153 and BMN673 and combination therapy on cell viability and apoptosis induction. Western blotting was applied to detect relevant molecules changes. Propidium iodide staining was performed to examine cell cycle distributions after monotherapy or combination therapy. Nude mice xenograft model was generated to confirm the therapeutic effect of AZD5153 and BMN673 combination in vivo, and IHC staining was used to detect the expression level of BRD4 and related markers in colorectal patient and xenograft. Results: Analysis of TCGA database indicated that BRD4 was overexpressed in colorectal cancer patient. The clonogenic and MTT assays and PI/Annexin V staining demonstrated that AZD5153 significantly suppressed cell proliferation and induced apoptosis in colorectal cancer cells HCT116 and LoVo. Western blotting showed that AZD5153 inhibited the expression of c-Myc and increased expression of the apoptosis markers, cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP), besides, we found that BRD4 knockdown could also inhibited cell proliferation and induced cell apoptosis. Moreover, AZD5153 inhibited the expression of Wee1 and impaired G2M cell cycle checkpoint, thus sensitized the anticancer effect of BMN673 in vitro and in vivo. Conclusion: Our data revealed that AZD5153suppressed the proliferation of colorectal cancer cells and sensitized them to the anticancer effect of the PARP inhibitor BMN673 via Wee1 inhibition in vitro and in vivo. This suggested that targeting BRD4 might be a valuable strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Changsha, Hunan Province 410013, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Genchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
316
|
Tian CQ, Chen L, Chen HD, Huan XJ, Hu JP, Shen JK, Xiong B, Wang YQ, Miao ZH. Inhibition of the BET family reduces its new target gene IDO1 expression and the production of L-kynurenine. Cell Death Dis 2019; 10:557. [PMID: 31324754 PMCID: PMC6642217 DOI: 10.1038/s41419-019-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
The bromodomain and extra terminal domain (BET) family members, including BRD2, BRD3, and BRD4, act as epigenetic readers to regulate gene expression. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that participates in tumor immune escape primarily by catalyzing tryptophan to L-kynurenine. Here, we report that IDO1 is a new target gene of the BET family. RNA profiling showed that compound 9, a new BET inhibitor, reduced IDO1 mRNA up to seven times in Ty-82 cells. IDO1 differentially expressed in tumor cells and its expression could be induced with interferon gamma (IFN-γ). BET inhibitors (ABBV-075, JQ1, and OTX015) inhibited both constitutive and IFN-γ-inducible expression of IDO1. Similarly, reduction of BRD2, BRD3, or BRD4 decreased IDO1 expression. All these BET family members bound to the IDO1 promoter via the acetylated histone H3. JQ1 led to their release and reduced enrichment of RNA polymerase II (Pol II) on the promoter. IFN-γ increased the binding of BRD2, BRD3, BRD4, and Pol II on the IDO1 promoter by increasing the acetylation of histone H3, which could be prevented by JQ1 partially or even completely. Furthermore, both JQ1 and OTX015 decreased the production of L-kynurenine. The combination of BET inhibitors with the IDO1 inhibitor further reduced L-kynurenine, though only marginally. Importantly, the BET inhibitor ABBV-075 significantly inhibited the growth of human Ty-82 xenografts in nude mice and reduced both protein and mRNA levels of IDO1 in the xenografts. This finding lays a basis for the potential combination of BET inhibitors and IDO1 inhibitors for the treatment of IDO1-expressing cancers.
Collapse
MESH Headings
- A549 Cells
- Acetylation
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Female
- Gene Expression/drug effects
- HL-60 Cells
- HeLa Cells
- Histones/metabolism
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic
- Pyridones/pharmacology
- RNA, Messenger/genetics
- Sulfonamides/pharmacology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transfection
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Lin Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Ping Hu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing-Kang Shen
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Bing Xiong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Open Studio for Drugability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237, Shandong, China.
| |
Collapse
|
317
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
318
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
319
|
Astorgues-Xerri L, Vázquez R, Odore E, Rezai K, Kahatt C, Mackenzie S, Bekradda M, Coudé MM, Dombret H, Gardin C, Lokiec F, Raymond E, Noel K, Cvitkovic E, Herait P, Bertoni F, Riveiro ME. Insights into the cellular pharmacological properties of the BET-inhibitor OTX015/MK-8628 (birabresib), alone and in combination, in leukemia models. Leuk Lymphoma 2019; 60:3067-3070. [DOI: 10.1080/10428194.2019.1617860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Ramiro Vázquez
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Elodie Odore
- RadioPharmacology Department, Curie Institute–Rene Huguenin Hospital, Saint Cloud, France
| | - Keyvan Rezai
- RadioPharmacology Department, Curie Institute–Rene Huguenin Hospital, Saint Cloud, France
| | | | | | | | | | - Herve Dombret
- Laboratoire de Transfert des Leucémies, Université Paris Diderot, Paris, France
| | - Claude Gardin
- Laboratoire de Transfert des Leucémies, Université Paris Diderot, Paris, France
| | - Francois Lokiec
- RadioPharmacology Department, Curie Institute–Rene Huguenin Hospital, Saint Cloud, France
| | - Eric Raymond
- Medical Oncology Department, CHUV, Lausanne, Switzerland
| | - Kay Noel
- Oncoethix SA, Lucerne, Switzerland
| | | | | | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | |
Collapse
|
320
|
Stratton MS, Farina FM, Elia L. Epigenetics and vascular diseases. J Mol Cell Cardiol 2019; 133:148-163. [PMID: 31211956 DOI: 10.1016/j.yjmcc.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease remains the number one cause of death and disability worldwide despite significant improvements in diagnosis, prevention, and early intervention efforts. There is an urgent need for improved understanding of cardiovascular processes responsible for disease development in order to develop more effective therapeutic strategies. Recent knowledge gleaned from the study of epigenetic mechanisms in the vasculature has uncovered new potential targets for intervention. Herein, we provide an overview of epigenetic mechanism, and review recent findings related to epigenetics in vascular diseases, highlighting classical epigenetic mechanism such as DNA methylation and histone modification as well as the newly discovered non-coding RNA mechanisms.
Collapse
Affiliation(s)
- Matthew S Stratton
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, United States of America.
| | - Floriana Maria Farina
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | - Leonardo Elia
- Humanitas Clinical and Research Center, Via Manzoni 113, 20089 Rozzano, MI, Italy; Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
321
|
Stevens TM, Morlote D, Xiu J, Swensen J, Brandwein-Weber M, Miettinen MM, Gatalica Z, Bridge JA. NUTM1-rearranged neoplasia: a multi-institution experience yields novel fusion partners and expands the histologic spectrum. Mod Pathol 2019; 32:764-773. [PMID: 30723300 PMCID: PMC8194366 DOI: 10.1038/s41379-019-0206-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022]
Abstract
Poorly differentiated neoplasms lacking characteristic histopathologic features represent a significant challenge to the pathologist for diagnostic classification. Classically, NUT carcinoma (previously NUT midline carcinoma) is poorly differentiated but typically exhibits variable degrees of squamous differentiation. Diagnosis is genetically defined by NUTM1 rearrangement, usually with BRD4 as the fusion partner. In this multi-institutional next-generation sequencing and fluorescence in situ hybridization study, 26 new NUTM1-rearranged neoplasms are reported, including 20 NUT carcinomas, 4 sarcomas, and 2 tumors of an uncertain lineage. NUTM1 fusion partners were available in 24 of 26 cases. BRD4 was the fusion partner in 18/24 (75%) cases, NSD3 in 2/24 cases (8.3%), and BRD3 in 1/24 (4.2%) cases. Two novel fusion partners were identified: MGA in two sarcomas (myxoid spindle cell sarcoma and undifferentiated sarcoma) (2/24 cases 8.3%) and MXD4 in a round cell sarcoma in the cecum (1/24 cases 4.2%). Eleven cases tested for NUT immunoexpression were all positive, including the MGA and MXD4-rearranged tumors. Our results confirm that NUTM1 gene rearrangements are found outside the classic clinicopathological setting of NUT carcinoma. In addition, as novel fusion partners like MGA and MXD4 may not be susceptible to targeted therapy with bromodomain inhibitors, detecting the NUTM1 rearrangement may not be enough, and identifying the specific fusion partner may become necessary. Studies to elucidate the mechanism of tumorigenesis of novel fusion partners are needed.
Collapse
Affiliation(s)
- Todd M. Stevens
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana Morlote
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - Julia A. Bridge
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
322
|
Bishop TR, Zhang Y, Erb MA. Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends Pharmacol Sci 2019; 40:388-402. [PMID: 31078321 PMCID: PMC6746237 DOI: 10.1016/j.tips.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Upon binding of transcription factors to cis-regulatory DNA sequences, transcriptional coregulators are required for the activation or suppression of chromatin-dependent transcriptional signaling. These coregulators are frequently implicated in oncogenesis via causal roles in dysregulated, malignant transcriptional control and represent one of the fastest-growing target classes in small-molecule drug discovery. However, challenges in targeting coregulators include identifying evidence of cancer-specific genetic dependency, matching the pharmacologically addressable protein fold to a functional role in disease pathology, and achieving the necessary selectivity to exploit a given genetic dependency. We discuss here how recent trends in cancer pharmacology have confronted these challenges, positioning coregulators as tractable targets in the development of new cancer therapies.
Collapse
Affiliation(s)
- Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
323
|
Abstract
PURPOSE OF REVIEW Pharmacological inhibition of Bromodomain and Extra-Terminal (BET) domain proteins is a very exciting epigenetic therapeutic modality. Due to the central role of BET proteins in transcription regulation, their inhibition heavily affects lymphoma cells and BET inhibitors show a clear preclinical antitumor activity as single agents and in combination, paired with early reports of clinical activity. RECENT FINDINGS Relevant data have been recently presented on the mechanism of action of the BET inhibitors, on modalities to improve their activity in lymphomas, and their clinical evaluation. SUMMARY There are now plenty of preclinical data sustaining BET proteins as therapeutic targets in lymphomas. Newer compounds and combinations with other agents may be pursued in the future aiming also to identify those patients that they most likely benefit from BET inhibition.
Collapse
|
324
|
Ambrosini G, Do C, Tycko B, Realubit RB, Karan C, Musi E, Carvajal RD, Chua V, Aplin AE, Schwartz GK. Inhibition of NF-κB-Dependent Signaling Enhances Sensitivity and Overcomes Resistance to BET Inhibition in Uveal Melanoma. Cancer Res 2019; 79:2415-2425. [PMID: 30885979 DOI: 10.1158/0008-5472.can-18-3177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
Bromodomain and extraterminal protein inhibitors (BETi) are epigenetic therapies aimed to target dysregulated gene expression in cancer cells. Despite early successes of BETi in a range of malignancies, the development of drug resistance may limit their clinical application. Here, we evaluated the mechanisms of BETi resistance in uveal melanoma, a disease with little treatment options, using two approaches: a high-throughput combinatorial drug screen with the clinical BET inhibitor PLX51107 and RNA sequencing of BETi-resistant cells. NF-κB inhibitors synergistically sensitized uveal melanoma cells to PLX51107 treatment. Furthermore, genes involved in NF-κB signaling were upregulated in BETi-resistant cells, and the transcription factor CEBPD contributed to the mechanism of resistance. These findings suggest that inhibitors of NF-κB signaling may improve the efficacy of BET inhibition in patients with advanced uveal melanoma. SIGNIFICANCE: These findings provide evidence that inhibitors of NF-κB signaling synergize with BET inhibition in in vitro and in vivo models, suggesting a clinical utility of these targeted therapies in patients with uveal melanoma.
Collapse
Affiliation(s)
- Grazia Ambrosini
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Catherine Do
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Department of Biomedical Research, Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Ronald B Realubit
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Charles Karan
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Elgilda Musi
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Richard D Carvajal
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| | - Vivian Chua
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gary K Schwartz
- The Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Hematology/Oncology, Columbia University Medical Center, New York, New York
| |
Collapse
|
325
|
Guerra S, Cichowski K. Targeting Cancer at the Intersection of Signaling and Epigenetics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030617-050400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While mutations resulting in the chronic activation of signaling pathways drive human cancer, the epigenetic state of a cell ultimately dictates the biological response to any given oncogenic signal. Moreover, large-scale genomic sequencing efforts have now identified a plethora of mutations in chromatin regulatory genes in human tumors, which can amplify, modify, or complement traditional oncogenic events. Nevertheless, the co-occurrence of oncogenic and epigenetic defects appears to create novel therapeutic vulnerabilities, which can be targeted by specific drug combinations. Here we discuss general mechanisms by which oncogenic and epigenetic alterations cooperate in human cancer and synthesize the field's early efforts in developing promising therapeutic combinations. Collectively, these studies reveal common themes underlying potential chemical synthetic lethal interactions and support both the expansion and refinement of this type of therapeutic approach.
Collapse
Affiliation(s)
- Stephanie Guerra
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
326
|
Wu Y, Wang Y, Diao P, Zhang W, Li J, Ge H, Song Y, Li Z, Wang D, Liu L, Jiang H, Cheng J. Therapeutic Targeting of BRD4 in Head Neck Squamous Cell Carcinoma. Am J Cancer Res 2019; 9:1777-1793. [PMID: 31037138 PMCID: PMC6485194 DOI: 10.7150/thno.31581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
The bromodomain and extraterminal family members are epigenetic readers and transcriptional coactivators which are critically involved in various biological processes including tumorigenesis. BRD4 has been increasingly appreciated as a key oncogene and promising anticancer target. Here, we sought to characterize the expression of BRD4 and its tumorigenic roles as well as therapeutic targeting in HNSCC. Methods: Expression of BRD4 mRNA and protein was determined by bioinformatics interrogation of publically available databases, primary HNSCC samples and 4NQO-induced HNSCC animal model. The tumorigenic roles of BRD4 in HNSCC were evaluated by genetic and pharmacological approach in vitro and in vivo. Therapeutic efficiency of BRD4 targeting by JQ1 was assessed in three preclinical models including xenograft model, 4NQO-induced model and patients-derived xenograft model. Gene candidates responsible for therapeutic effects of JQ1 were identified by transcriptional profiling in HNSCC cells after JQ1 exposure. Results: Significant upregulation of BRD4 was found in primary HNSCC samples and 4NQO-induced HNSCC model. Its overexpression associated with aggressive clinicopathological features and inferior overall and disease-free survival. BRD4 depletion by genetic silencing or pharmacological inhibition impaired cell proliferation, migration and invasion and reduced tumor growth and metastasis in vivo. Transcriptional profiling of HNSCC cells following JQ1 exposure identified hundreds of genes which might mediated its antitumor effects and enriched in cancer-relevant pathways. A novel prognostic risk score derived from JQ1-regulated genes was developed to stratify patients into subgroups with favorable or inferior prognosis. Conclusions: Our findings reveal that BRD4 serves as a novel and critical mediator underlying tumorigenesis and a robust prognostic biomarker in HNSCC. Therapeutic targeting of BRD4 represents a potent and promising strategy against HNSCC.
Collapse
|
327
|
Cooper JM, Patel AJ, Chen Z, Liao CP, Chen K, Mo J, Wang Y, Le LQ. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res 2019; 25:3404-3416. [PMID: 30796033 DOI: 10.1158/1078-0432.ccr-18-2437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE BET bromodomain inhibitors have emerged as a promising therapy for numerous cancer types in preclinical studies, including neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumor (MPNST). However, potential mechanisms underlying resistance to these inhibitors in different cancers are not completely understood. In this study, we explore new strategy to overcome BET inhibitor resistance in MPNST.Experimental Design: Through modeling tumor evolution by studying genetic changes underlying the development of MPNST, a lethal sarcoma with no effective medical treatment, we identified a targetable addiction to BET bromodomain family member BRD4 in MPNST. This served as a controlled model system to delineate mechanisms of sensitivity and resistance to BET bromodomain inhibitors in this disease. RESULTS Here, we show that a malignant progression-associated increase in BRD4 protein levels corresponds to partial sensitivity to BET inhibition in MPNST. Strikingly, genetic depletion of BRD4 protein levels synergistically sensitized MPNST cells to diverse BET inhibitors in culture and in vivo. CONCLUSIONS Collectively, MPNST sensitivity to combination genetic and pharmacologic inhibition of BRD4 revealed the presence of a unique addiction to BRD4 in MPNST. Our discovery that a synthetic lethality exists between BET inhibition and reduced BRD4 protein levels nominates MPNST for the investigation of emerging therapeutic interventions such as proteolysis-targeting chimeras (PROTACs) that simultaneously target bromodomain activity and BET protein abundance.
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Cancer Biology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Kun Chen
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
328
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
329
|
Abstract
PURPOSE OF REVIEW Increasing evidence suggests that epigenome plays a central role in cancer development making it a promising target for anticancer treatments. Here, we review two new classes of epigenome-targeting agents: the bromodomain and extraterminal domain proteins (BET) inhibitors and the enhancer of zeste homolog (EZH2) inhibitors. RECENT FINDINGS Clinical research evaluating BET and EZH2 inhibitors is still at an early stage; however, both classes of drugs have demonstrated activity among different hematologic malignancies and solid tumors. Several studies on BETi and EZH2i are ongoing to better define their potential role in cancer treatment, which patients are most likely to benefit and if the association with other drugs can improve their efficacy.
Collapse
|
330
|
Villar-Prados A, Wu SY, Court KA, Ma S, LaFargue C, Chowdhury MA, Engelhardt MI, Ivan C, Ram PT, Wang Y, Baggerly K, Rodriguez-Aguayo C, Lopez-Berestein G, Ming-Yang S, Maloney DJ, Yoshioka M, Strovel JW, Roszik J, Sood AK. Predicting Novel Therapies and Targets: Regulation of Notch3 by the Bromodomain Protein BRD4. Mol Cancer Ther 2019; 18:421-436. [PMID: 30420565 PMCID: PMC6363833 DOI: 10.1158/1535-7163.mct-18-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Systematic approaches for accurate repurposing of targeted therapies are needed. We developed and aimed to biologically validate our therapy predicting tool (TPT) for the repurposing of targeted therapies for specific tumor types by testing the role of Bromodomain and Extra-Terminal motif inhibitors (BETi) in inhibiting BRD4 function and downregulating Notch3 signaling in ovarian cancer.Utilizing established ovarian cancer preclinical models, we carried out in vitro and in vivo studies with clinically relevant BETis to determine their therapeutic effect and impact on Notch3 signaling.Treatment with BETis or siRNA-mediated BRD4 knockdown resulted in decreased cell viability, reduced cell proliferation, and increased cell apoptosis in vitro. In vivo studies with orthotopic mouse models demonstrated that treatment with BETi decreased tumor growth. In addition, knockdown of BRD4 with doxycycline-inducible shRNA increased survival up to 50% (P < 0.001). Treatment with either BETis or BRD4 siRNA decreased Notch3 expression both in vitro and in vivo BRD4 inhibition also decreased the expression of NOTCH3 targets, including HES1 Chromatin immunoprecipitation revealed that BRD4 was present at the NOTCH3 promoter.Our findings provide biological validation for the TPT by demonstrating that BETis can be an effective therapeutic agent for ovarian cancer by downregulating Notch3 expression.The TPT could rapidly identify candidate drugs for ovarian or other cancers along with novel companion biomarkers.
Collapse
Affiliation(s)
- Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Sherry Y Wu
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Karem A Court
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher LaFargue
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mamur A Chowdhury
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Margaret I Engelhardt
- John P. and Kathrine G. McGovern Medical School, The University of Texas, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prahlad T Ram
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shyh Ming-Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | - David J Maloney
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland
| | | | | | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
331
|
van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res 2019; 34:215-230. [PMID: 30715766 DOI: 10.1002/jbmr.3662] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Phenotypic variation in skeletal traits and diseases is the product of genetic and environmental factors. Epigenetic mechanisms include information-containing factors, other than DNA sequence, that cause stable changes in gene expression and are maintained during cell divisions. They represent a link between environmental influences, genome features, and the resulting phenotype. The main epigenetic factors are DNA methylation, posttranslational changes of histones, and higher-order chromatin structure. Sometimes non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly expanding experimental evidence for a role of epigenetic factors in the differentiation of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and osteoarthritis. However, different from genetic factors, epigenetic signatures are cell- and tissue-specific and can change with time. Thus, elucidating their role has particular difficulties, especially in human studies. Nevertheless, epigenomewide association studies are beginning to disclose some disease-specific patterns that help to understand skeletal cell biology and may lead to development of new epigenetic-based biomarkers, as well as new drug targets useful for treating diffuse and localized disorders. Here we provide an overview and update of recent advances on the role of epigenomics in bone and cartilage diseases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Lopez-Delgado
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
332
|
Copsel SN, Lightbourn CO, Barreras H, Lohse I, Wolf D, Bader CS, Manov J, Kale BJ, Shah D, Brothers SP, Perez VL, Komanduri KV, Wahlestedt C, Levy RB. BET Bromodomain Inhibitors Which Permit Treg Function Enable a Combinatorial Strategy to Suppress GVHD in Pre-clinical Allogeneic HSCT. Front Immunol 2019; 9:3104. [PMID: 30733722 PMCID: PMC6353853 DOI: 10.3389/fimmu.2018.03104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023] Open
Abstract
A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-β. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses.
Collapse
Affiliation(s)
- Sabrina N Copsel
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Casey O Lightbourn
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ines Lohse
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cameron S Bader
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John Manov
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brandon J Kale
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Devangi Shah
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shaun P Brothers
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Victor L Perez
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Krishna V Komanduri
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Center for Therapeutic Innovation and Department of Psychiatry and Behavior Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert B Levy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
333
|
Tan X, Tong J, Wang YJ, Fletcher R, Schoen RE, Yu J, Shen L, Zhang L. BET Inhibitors Potentiate Chemotherapy and Killing of SPOP-Mutant Colon Cancer Cells via Induction of DR5. Cancer Res 2019; 79:1191-1203. [PMID: 30674532 DOI: 10.1158/0008-5472.can-18-3223] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Bromodomain and extraterminal domain (BET) family proteins such as BRD4 are epigenetic readers that control expression of a number of oncogenic proteins. Targeting this family of proteins has recently emerged as a promising anticancer approach. BET inhibitors (BETi), either alone or in combination with other anticancer agents, have exhibited efficacy in a variety of tumors. However, the molecular mechanisms underlying differential response to BETi are not well understood. In this study, we report that death receptor 5 (DR5), a key component of the extrinsic apoptotic pathway, is markedly induced in response to BRD4 depletion and BETi treatment in colorectal cancer cells. Induction of DR5, following BET inhibition, was mediated by endoplasmic reticulum stress and CHOP-dependent transcriptional activation. Enhanced DR5 induction was necessary for the chemosensitization and apoptotic effects of BETi and was responsible for increased BETi sensitivity in colorectal cancer cells containing a mutation in speckle-type POZ protein (SPOP), a subunit of BRD4 E3 ubiquitin ligase. In a colorectal cancer xenograft model, BETi combined with chemotherapy suppressed the tumor growth in a DR5-dependent manner and potently inhibited patient-derived xenograft tumor growth with enhanced DR5 induction and apoptosis. These findings suggest that BETi alone or in combination with chemotherapy is effective against colorectal cancer due to enhanced DR5 induction and apoptosis. DR5 induction may also serve as a useful marker for designing personalized treatment and improved colorectal cancer combination therapies.Significance: These findings reveal how BET inhibition sensitizes chemotherapy and kills a subset of colon cancer cells with specific genetic alterations and may provide a new molecular marker for improving colon cancer therapies.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yi-Jun Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rochelle Fletcher
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert E Schoen
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
334
|
Fiskus W, Cai T, DiNardo CD, Kornblau SM, Borthakur G, Kadia TM, Pemmaraju N, Bose P, Masarova L, Rajapakshe K, Perera D, Coarfa C, Mill CP, Saenz DT, Saenz DN, Sun B, Khoury JD, Shen Y, Konopleva M, Bhalla KN. Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J 2019; 9:4. [PMID: 30647404 PMCID: PMC6333829 DOI: 10.1038/s41408-018-0165-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
First-generation bromodomain extra-terminal protein (BETP) inhibitors (BETi) (e.g., OTX015) that disrupt binding of BETP BRD4 to chromatin transcriptionally attenuate AML-relevant progrowth and prosurvival oncoproteins. BETi treatment induces apoptosis of AML BPCs, reduces in vivo AML burden and induces clinical remissions in a minority of AML patients. Clinical efficacy of more potent BETis, e.g., ABBV-075 (AbbVie, Inc.), is being evaluated. Venetoclax and A-1210477 bind and inhibit the antiapoptotic activity of BCL2 and MCL1, respectively, lowering the threshold for apoptosis. BETi treatment is shown here to perturb accessible chromatin and activity of enhancers/promoters, attenuating MYC, CDK6, MCL1 and BCL2, while inducing BIM, HEXIM1, CDKN1A expressions and apoptosis of AML cells. Treatment with venetoclax increased MCL1 protein levels, but cotreatment with ABBV-075 reduced MCL1 and Bcl-xL levels. ABBV-075 cotreatment synergistically induced apoptosis with venetoclax or A-1210477 in patient-derived, CD34+ AML cells. Compared to treatment with either agent alone, cotreatment with ABBV-075 and venetoclax was significantly more effective in reducing AML cell-burden and improving survival, without inducing toxicity, in AML-engrafted immune-depleted mice. These findings highlight the basis of superior activity and support interrogation of clinical efficacy and safety of cotreatment with BETi and BCL2 or MCL1 inhibitor in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Biomarkers, Tumor
- Cell Line, Tumor
- Disease Models, Animal
- Drug Synergism
- Female
- Humans
- Indoles/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Pyridones/pharmacology
- Sulfonamides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Warren Fiskus
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianyu Cai
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Steven M Kornblau
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gautam Borthakur
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tapan M Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Prithviraj Bose
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lucia Masarova
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dimuthu Perera
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher P Mill
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dyana T Saenz
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David N Saenz
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Baohua Sun
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Shen
- AbbVie, Inc., North Chicago, IL, 60064, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kapil N Bhalla
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
335
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
336
|
Corman A, Jung B, Häggblad M, Bräutigam L, Lafarga V, Lidemalm L, Hühn D, Carreras-Puigvert J, Fernandez-Capetillo O. A Chemical Screen Identifies Compounds Limiting the Toxicity of C9ORF72 Dipeptide Repeats. Cell Chem Biol 2018; 26:235-243.e5. [PMID: 30527999 DOI: 10.1016/j.chembiol.2018.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/14/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The expansion of GGGGCC repeats within the first intron of C9ORF72 constitutes the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Through repeat-associated non-ATG translation, these expansions are translated into dipeptide repeats (DPRs), some of which accumulate at nucleoli and lead to cell death. We here performed a chemical screen to identify compounds reducing the toxicity of ALS-related poly(PR) peptides. Our screening identified sodium phenylbutyrate, currently in clinical trials, and BET Bromodomain inhibitors as modifiers of poly(PR) toxicity in cell lines and developing zebrafish embryos. Mechanistically, we show that BET Bromodomain inhibitors rescue the nucleolar stress induced by poly(PR) or actinomycin D, alleviating the effects of the DPR in nucleolus-related functions such as mRNA splicing or translation. Our work suggests that BET Bromodomain inhibitors might have beneficial effects in diseases linked to nucleolar stress such as ALS/FTD.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 21 Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
337
|
Mensah AA, Cascione L, Gaudio E, Tarantelli C, Bomben R, Bernasconi E, Zito D, Lampis A, Hahne JC, Rinaldi A, Stathis A, Zucca E, Kwee I, Gattei V, Valeri N, Riveiro ME, Bertoni F. Bromodomain and extra-terminal domain inhibition modulates the expression of pathologically relevant microRNAs in diffuse large B-cell lymphoma. Haematologica 2018; 103:2049-2058. [PMID: 30076183 PMCID: PMC6269312 DOI: 10.3324/haematol.2018.191684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Aberrant changes in microRNA expression contribute to lymphomagenesis. Bromodomain and extra-terminal domain inhibitors such as OTX015 (MK-8628, birabresib) have demonstrated preclinical and clinical activity in hematologic tumors. MicroRNA profiling of diffuse large B-cell lymphoma cells treated with OTX015 revealed changes in the expression levels of a limited number of microRNAs, including miR-92a-1-5p, miR-21-3p, miR-155-5p and miR-96-5p. Analysis of publicly available chromatin immunoprecipitation sequencing data of diffuse large B-cell lymphoma cells treated with bromodomain and extra-terminal domain (BET) inhibitors showed that the BET family member BRD4 bound to the upstream regulatory regions of multiple microRNA genes and that this binding decreased following BET inhibition. Alignment of our microRNA profiling data with the BRD4 chromatin immunoprecipitation sequencing data revealed that microRNAs downregulated by OTX015 also exhibited reduced BRD4 binding in their promoter regions following treatment with another bromodomain and extra-terminal domain inhibitor, JQ1, indicating that BRD4 contributes directly to microRNA expression in lymphoma. Treatment with bromodomain and extra-terminal domain inhibitors also decreased the expression of the arginine methyltransferase PRMT5, which plays a crucial role in B-cell transformation and negatively modulates the transcription of miR-96-5p. The data presented here indicate that in addition to previously observed effects on the expression of coding genes, bromodomain and extra-terminal domain inhibitors also modulate the expression of microRNAs involved in lymphomagenesis.
Collapse
Affiliation(s)
- Afua A Mensah
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | - Elena Bernasconi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Domenico Zito
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Andrea Lampis
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Jens C Hahne
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | - Andrea Rinaldi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | - Nicola Valeri
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London and Surrey, UK
| | | | - Francesco Bertoni
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|
338
|
Pham TND, Kumar K, DeCant BT, Shang M, Munshi SZ, Matsangou M, Ebine K, Munshi HG. Induction of MNK Kinase-dependent eIF4E Phosphorylation by Inhibitors Targeting BET Proteins Limits Efficacy of BET Inhibitors. Mol Cancer Ther 2018; 18:235-244. [PMID: 30446586 DOI: 10.1158/1535-7163.mct-18-0768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
BET inhibitors (BETi), which target transcription of key oncogenic genes, are currently being evaluated in early-phase clinical trials. However, because BETis show limited single-agent activity, there is increasing interest in identifying signaling pathways to enhance the efficacy of BETis. Here, we demonstrate increased MNK kinase-dependent eIF4E phosphorylation following treatment with BETis, indicating activation of a prosurvival feedback mechanism in response to BETis. BET PROTACs, which promote degradation of BET proteins, also induced eIF4E phosphorylation in cancer cells. Mechanistically, we show that the effect of BETis on MNK-eIF4E phosphorylation was mediated by p38 MAPKs. We also show that BETis suppressed RacGAP1 to induce Rac signaling-mediated eIF4E phosphorylation. Significantly, MNK inhibitors and MNK1/2 knockdown enhanced the efficacy of BETis in suppressing proliferation of cancer cells in vitro and in a syngeneic mouse model. Together, these results demonstrate a novel prosurvival feedback signaling induced by BETis, providing a mechanistic rationale for combination therapy with BET and MNK inhibitors for synergistic inhibition of cancer cells.
Collapse
Affiliation(s)
- Thao N D Pham
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| | - Krishan Kumar
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Brian T DeCant
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meng Shang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Samad Z Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maria Matsangou
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Kazumi Ebine
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
339
|
Gu J, Song S, Han H, Xu H, Fan G, Qian C, Qiu Y, Zhou W, Zhuang W, Li B. The BET Bromodomain Inhibitor OTX015 Synergizes with Targeted Agents in Multiple Myeloma. Mol Pharm 2018; 15:5387-5396. [PMID: 30339013 DOI: 10.1021/acs.molpharmaceut.8b00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Treatment failure remains a main challenge in the management of high-risk multiple myeloma (MM) even with the expanding repertoire of new drugs. Combinatorial therapy is considered an encouraging strategy that can overcome the compensatory mechanisms and undesirable off-target effects that limit the benefits of many prospective agents. Preliminary results of a current phase I trial have indicated that the new BET bromodomain inhibitor OTX015 has favorable activity and tolerability. However, OTX015 is not efficacious enough as a monotherapy. Here, we provide evidence that synergistic drug combinations with OTX015 were generally more specific to particular cellular contexts than single agent activities. In addition, pairing OTX015 with three classes of drugs dramatically enhanced the antitumor activity in mouse models of disseminated human myeloma. Our studies further underscored that the BET inhibitor OTX015 sensitized MM cells by interrupting several pathways and genes critical for MM cell proliferation and drug response, which provided the rationale for multiple myeloma therapy with OTX015 combined with conventional chemotherapeutic drugs. Thus, the context specificity of synergistic combinations not only provide profound insights into therapeutically relevant selectivity but also improve control of complex biological systems.
Collapse
Affiliation(s)
- Jie Gu
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Huiying Han
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Hongxia Xu
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Gao Fan
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Chen'ao Qian
- Department of Bioinformatics, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Yingchun Qiu
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Wenqi Zhou
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Bingzong Li
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
340
|
Abstract
Non-small cell lung carcinoma (NSCLC) accounts for significant morbidity and mortality worldwide, with most patients diagnosed at advanced stages and managed increasingly with targeted therapies and immunotherapy. In this review, we discuss diagnostic and predictive immunohistochemical markers in NSCLC, one of the most common tumors encountered in surgical pathology. We highlight 2 emerging diagnostic markers: nuclear protein in testis (NUT) for NUT carcinoma; SMARCA4 for SMARCA4-deficient thoracic tumors. Given their highly aggressive behavior, proper recognition facilitates optimal management. For patients with advanced NSCLCs, we discuss the utility and limitations of immunohistochemistry (IHC) for the "must-test" predictive biomarkers: anaplastic lymphoma kinase, ROS1, programmed cell death protein 1, and epidermal growth factor receptor. IHC using mutant-specific BRAF V600E, RET, pan-TRK, and LKB1 antibodies can be orthogonal tools for screening or confirmation of molecular events. ERBB2 and MET alterations include both activating mutations and gene amplifications, detection of which relies on molecular methods with a minimal role for IHC in NSCLC. IHC sits at the intersection of an integrated surgical pathology and molecular diagnostic practice, serves as a powerful functional surrogate for molecular testing, and is an indispensable tool of precision medicine in the care of lung cancer patients.
Collapse
|
341
|
Qian G, Yao W, Zhang S, Bajpai R, Hall WD, Shanmugam M, Lonial S, Sun SY. Co-inhibition of BET and proteasome enhances ER stress and Bim-dependent apoptosis with augmented cancer therapeutic efficacy. Cancer Lett 2018; 435:44-54. [PMID: 30059709 DOI: 10.1016/j.canlet.2018.07.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Agents that inhibit bromodomain and extra-terminal domain (BET) protein have been actively tested in the clinic as potential anticancer drugs. Proteasome inhibitors such as carfilzomib (CFZ) are FDA-approved for the treatment of patients with advanced multiple myeloma and have been tested against other cancers. The current study focuses on the combination of a BET inhibitor (e.g., JQ1) and a proteasome inhibitor (e.g., CFZ) as a novel cancer therapeutic strategy and the underlying mechanisms. The tested combination (JQ1 with CFZ) synergistically decreased cell survival and enhanced apoptosis in vitro and inhibited tumor growth in vivo. The dramatic induction of apoptosis was accompanied by enhanced elevation of Bim and ER stress. Bim knockout significantly attenuated apoptosis induced by the combination, suggesting a critical role of Bim induction in mediating the enhanced induction of apoptosis by BET and proteasome co-inhibition. The combination significantly increased Bim mRNA levels with limited effect on Bim protein stability, suggesting a primary transcriptional regulation of enhanced Bim expression. Our findings warrant further investigation of this combinatorial strategy as an effective regimen against cancer in the clinic.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Weilong Yao
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Shuo Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Richa Bajpai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - William D Hall
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
342
|
Tarantelli C, Bernasconi E, Gaudio E, Cascione L, Restelli V, Arribas AJ, Spriano F, Rinaldi A, Mensah AA, Kwee I, Ponzoni M, Zucca E, Carrassa L, Riveiro ME, Rezai K, Stathis A, Cvitkovic E, Bertoni F. BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance. ESMO Open 2018; 3:e000387. [PMID: 30305939 PMCID: PMC6173228 DOI: 10.1136/esmoopen-2018-000387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability. Birabresib (MK-8628/OTX015) has shown antitumour activity in different preclinical models and has been the first BET inhibitor to successfully undergo early clinical trials. Materials and methods The activity of birabresib as a single agent and in combination, as well as its mechanism of action was studied in MCL cell lines. Results Birabresib showed in vitro and in vivo activities, which appeared mediated via downregulation of MYC targets, cell cycle and NFKB pathway genes and were independent of direct downregulation of CCND1. Additionally, the combination of birabresib with other targeted agents (especially pomalidomide, or inhibitors of BTK, mTOR and ATR) was beneficial in MCL cell lines. Conclusion Our data provide the rationale to evaluate birabresib in patients affected by MCL.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Elena Bernasconi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Eugenio Gaudio
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Luciano Cascione
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Alberto Jesus Arribas
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Filippo Spriano
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Afua Adjeiwaa Mensah
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | - Maurilio Ponzoni
- Department of Onco-Haematology, Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Zucca
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Laura Carrassa
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Keyvan Rezai
- Institut Curie, Hôpital René Huguenin, Saint-Cloud, France
| | - Anastasios Stathis
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Esteban Cvitkovic
- OTD Oncology, Therapeutic Development, Clichy, France.,OncoEthix GmbH, a wholly owned subsidiary of Merck Sharp & Dohme Corp, and Merck & Co., Inc, Kenilworth, New Jersey, USA
| | - Francesco Bertoni
- Università della Svizzera italiana (USI), Institute of Oncology Research (IOR), Bellinzona, Switzerland
| |
Collapse
|
343
|
Furlan A, Agbazahou F, Henry M, Gonzalez-Pisfil M, Le Nézet C, Champelovier D, Fournier M, Vandenbunder B, Bidaux G, Héliot L. P-TEFb et Brd4. Med Sci (Paris) 2018; 34:685-692. [DOI: 10.1051/medsci/20183408015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
La physiologie d’une cellule est dictée par l’intégration des signaux qu’elle reçoit et la mise en place de réponses adaptées par le biais, entre autres, de programmes transcriptionnels adéquats. Pour assurer un contrôle optimal de ces réponses, des mécanismes de régulation ont été sélectionnés, dont un processus de pause transcriptionnelle et de levée de cette pause par P-TEFb (positive transcription elongation factor) et Brd4 (bromodomain-containing protein 4). Le dérèglement de ce processus peut conduire à l’apparition de pathologies. P-TEFb et Brd4 ont ainsi émergé au cours des dernières années comme des cibles thérapeutiques potentielles dans le cadre des cancers et du syndrome d‘immunodéficience acquise (sida) notamment.
Collapse
|
344
|
Shi J, Song S, Han H, Xu H, Huang M, Qian C, Zhang X, Ouyang L, Hong Y, Zhuang W, Li B. Potent Activity of the Bromodomain Inhibitor OTX015 in Multiple Myeloma. Mol Pharm 2018; 15:4139-4147. [PMID: 30048594 DOI: 10.1021/acs.molpharmaceut.8b00554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several studies demonstrate that the bromodomain inhibitor OTX015 has an antitumor activity in cancers. However, translation of these data to molecules suitable for clinical development has yet to be accomplished in multiple myeloma (MM). Here, we identified genes and biologic processes that substantiated the antimyeloma activity of OTX015 with global transcriptomics. OTX015 exerted a strong antiproliferative effect and induced cell cycle arrest in vitro. Gene expression profiling uncovered that OTX015 targeted NF-κB, EGFR, cell cycle regulation, and the cancer proliferation signaling pathway. Gene expression signatures displaying various levels of sensitivity to OTX015 were also identified. The data also showed that oral administration of OTX015 displayed significant antitumor activity in the mice model of disseminated human myeloma. In addition, our study provided the first evidence and rationale that OTX015 could promote osteoblast differentiation of mesenchymal stem cells (MSCs) and inhibited osteoclast formation and resorption in vivo experiments. Herein our results expanded the understanding of the mechanism for BET inhibitors OTX015 in MM. Our study provided an impressive basis for the clinical application of the novel antimyeloma agent OTX015 and uncovered signaling pathways that may play key roles in myeloma cell proliferation.
Collapse
Affiliation(s)
- Jixiang Shi
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China
- Department of Haematology , The Central Hospital of Zibo , Zibo 255000 , China
| | | | | | | | | | | | | | | | - Yating Hong
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | | | - Bingzong Li
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China
| |
Collapse
|
345
|
Liao S, Maertens O, Cichowski K, Elledge SJ. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev 2018; 32:1188-1200. [PMID: 30135075 PMCID: PMC6120715 DOI: 10.1101/gad.315648.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Using CRISPR and ORF expression screens, Liao et al. systematically examined the ability of cancer drivers to mediate resistance of NUT midline carcinoma (NMC) to bromodomain and extraterminal domain inhibitors (BETis) and uncovered six general classes/pathways mediating resistance. Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Collapse
Affiliation(s)
- Sida Liao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ophélia Maertens
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Karen Cichowski
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Program in Virology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
346
|
Hoffer L, Voitovich YV, Raux B, Carrasco K, Muller C, Fedorov AY, Derviaux C, Amouric A, Betzi S, Horvath D, Varnek A, Collette Y, Combes S, Roche P, Morelli X. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach. J Med Chem 2018; 61:5719-5732. [PMID: 29883107 DOI: 10.1021/acs.jmedchem.8b00653] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past few decades, hit identification has been greatly facilitated by advances in high-throughput and fragment-based screenings. One major hurdle remaining in drug discovery is process automation of hit-to-lead (H2L) optimization. Here, we report a time- and cost-efficient integrated strategy for H2L optimization as well as a partially automated design of potent chemical probes consisting of a focused-chemical-library design and virtual screening coupled with robotic diversity-oriented de novo synthesis and automated in vitro evaluation. The virtual library is generated by combining an activated fragment, corresponding to the substructure binding to the target, with a collection of functionalized building blocks using in silico encoded chemical reactions carefully chosen from a list of one-step organic transformations relevant in medicinal chemistry. The proof of concept was demonstrated using the optimization of bromodomain inhibitors as a test case, leading to the validation of several compounds with improved affinity by several orders of magnitude.
Collapse
Affiliation(s)
- Laurent Hoffer
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Yuliia V Voitovich
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France.,Department of Organic Chemistry , Lobachevsky State University of Nizhni Novgorod , 23 Gagarin Avenue , 603950 Nizhni Novgorod , Russia
| | - Brigitt Raux
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Kendall Carrasco
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Christophe Muller
- IPC Drug Discovery Platform , Institut Paoli-Calmettes , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
| | - Aleksey Y Fedorov
- Department of Organic Chemistry , Lobachevsky State University of Nizhni Novgorod , 23 Gagarin Avenue , 603950 Nizhni Novgorod , Russia
| | - Carine Derviaux
- IPC Drug Discovery Platform , Institut Paoli-Calmettes , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
| | - Agnès Amouric
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France.,IPC Drug Discovery Platform , Institut Paoli-Calmettes , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
| | - Stéphane Betzi
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Yves Collette
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France.,IPC Drug Discovery Platform , Institut Paoli-Calmettes , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
| | - Sébastien Combes
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Philippe Roche
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France
| | - Xavier Morelli
- CRCM, CNRS, Inserm, Institut Paoli-Calmettes , Aix-Marseille University , 13009 Marseille , France.,IPC Drug Discovery Platform , Institut Paoli-Calmettes , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
| |
Collapse
|
347
|
Gollavilli PN, Pawar A, Wilder-Romans K, Natesan R, Engelke CG, Dommeti VL, Krishnamurthy PM, Nallasivam A, Apel IJ, Xu T, Qin ZS, Feng FY, Asangani IA. EWS/ETS-Driven Ewing Sarcoma Requires BET Bromodomain Proteins. Cancer Res 2018; 78:4760-4773. [DOI: 10.1158/0008-5472.can-18-0484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
|
348
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
349
|
Gray SG. We're Stressed Out: BET-Ting on Oxidative Stress? Bioessays 2018; 40:e1800049. [PMID: 29664185 DOI: 10.1002/bies.201800049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin 8, Ireland.,HOPE Directorate, St. James's Hospital, Dublin 8, Ireland.,Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.,Labmed Directorate, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
350
|
Abstract
Immunohistochemistry is a widely available technique that is less challenging and can provide clinically meaningful results quickly and cost-efficiently in comparison with other techniques. In addition, immunohistochemistry allows for the evaluation of cellular localization of proteins in the context of tumor structure. In an era of precision medicine, pathologists are required to classify lung cancer into specific subtypes and assess biomarkers relevant to molecular-targeted therapies. This review summarizes the hot topics of immunohistochemistry in lung cancer, including (i) adenocarcinoma vs squamous cell carcinoma; (ii) neuroendocrine markers; (iii) ALK, ROS1, and EGFR; (iv) PD-L1 (CD274); (v) lung carcinoma vs malignant mesothelioma; and (vi) NUT carcinoma. Major pitfalls in evaluating immunohistochemical results are also described.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|