301
|
Abstract
Hepatocytes operate in highly structured repeating anatomical units termed liver lobules. Blood flow along the lobule radial axis creates gradients of oxygen, nutrients and hormones, which, together with morphogenetic fields, give rise to a highly variable microenvironment. In line with this spatial variability, key liver functions are expressed non-uniformly across the lobules, a phenomenon termed zonation. Technologies based on single-cell transcriptomics have constructed a global spatial map of hepatocyte gene expression in mice revealing that ~50% of hepatocyte genes are expressed in a zonated manner. This broad spatial heterogeneity suggests that hepatocytes in different lobule zones might have not only different gene expression profiles but also distinct epigenetic features, regenerative capacities, susceptibilities to damage and other functional aspects. Here, we present genomic approaches for studying liver zonation, describe the principles of liver zonation and discuss the intrinsic and extrinsic factors that dictate zonation patterns. We also explore the challenges and solutions for obtaining zonation maps of liver non-parenchymal cells. These approaches facilitate global characterization of liver function with high spatial resolution along physiological and pathological timescales.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
302
|
Peloquin GL, Johnston L, Damarla M, Damico RL, Hassoun PM, Kolb TM. SU5416 does not attenuate early RV angiogenesis in the murine chronic hypoxia PH model. Respir Res 2019; 20:123. [PMID: 31208454 PMCID: PMC6580559 DOI: 10.1186/s12931-019-1079-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Right ventricular (RV) angiogenesis has been associated with adaptive myocardial remodeling in pulmonary hypertension (PH), though molecular regulators are poorly defined. Endothelial cell VEGFR-2 is considered a "master regulator" of angiogenesis in other models, and the small molecule VEGF receptor tyrosine kinase inhibitor SU5416 is commonly used to generate PH in rodents. We hypothesized that SU5416, through direct effects on cardiac endothelial cell VEGFR-2, would attenuate RV angiogenesis in a murine model of PH. METHODS C57 BL/6 mice were exposed to chronic hypoxia (CH-PH) to generate PH and stimulate RV angiogenesis. SU5416 (20 mg/kg) or vehicle were administered at the start of the CH exposure, and weekly thereafter. Angiogenesis was measured after one week of CH-PH using a combination of unbiased stereological measurements and flow cytometry-based quantification of myocardial endothelial cell proliferation. In complementary experiments, primary cardiac endothelial cells from C57 BL/6 mice were exposed to recombinant VEGF (50 ng/mL) or grown on Matrigel in the presence of SU5416 (5 μM) or vehicle. RESULT SU5416 directly inhibited VEGF-mediated ERK phosphorylation, cell proliferation, and Kdr transcription, but not Matrigel tube formation in primary murine cardiac endothelial cells in vitro. SU5416 did not inhibit CH-PH induced RV angiogenesis, endothelial cell proliferation, or RV hypertrophy in vivo, despite significantly altering the expression profile of genes involved in angiogenesis. CONCLUSIONS These findings demonstrate that SU5416 directly inhibited VEGF-induced proliferation of murine cardiac endothelial cells but does not attenuate CH-PH induced RV angiogenesis or myocardial remodeling in vivo.
Collapse
Affiliation(s)
- Grace L Peloquin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Laura Johnston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, 5th Floor, Baltimore, MD, 21205, USA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, 5th Floor, Baltimore, MD, 21205, USA
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, 5th Floor, Baltimore, MD, 21205, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, 5th Floor, Baltimore, MD, 21205, USA
| | - Todd M Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, 5th Floor, Baltimore, MD, 21205, USA.
| |
Collapse
|
303
|
Weiner GA, Shah SH, Angelopoulos CM, Bartakova AB, Pulido RS, Murphy A, Nudleman E, Daneman R, Goldberg JL. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nat Commun 2019; 10:2477. [PMID: 31171770 PMCID: PMC6554348 DOI: 10.1038/s41467-019-10219-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Blood vessels in the central nervous system (CNS) develop unique features, but the contribution of CNS neurons to regulating those features is not fully understood. We report that inhibiting spontaneous cholinergic activity or reducing starburst amacrine cell numbers prevents invasion of endothelial cells into the deep layers of the retina and causes blood-retinal-barrier (BRB) dysfunction in mice. Vascular endothelial growth factor (VEGF), which drives angiogenesis, and Norrin, a Wnt ligand that induces BRB properties, are decreased after activity blockade. Exogenous VEGF restores vessel growth but not BRB function, whereas stabilizing beta-catenin in endothelial cells rescues BRB dysfunction but not vessel formation. We further identify that inhibiting cholinergic activity reduces angiogenesis during oxygen-induced retinopathy. Our findings demonstrate that neural activity lies upstream of VEGF and Norrin, coordinating angiogenesis and BRB formation. Neural activity originating from specific neural circuits may be a general mechanism for driving regional angiogenesis and barrier formation across CNS development. During retinal development, waves of cholinergic neural activity play a role in retinal circuit development. Here, the authors show that this activity also contributes to layer-specific angiogenesis and formation of the blood-retinal barrier.
Collapse
Affiliation(s)
- G A Weiner
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92037, USA.,Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, 92037, USA
| | - S H Shah
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, 92037, USA.,Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, 92037, USA.,Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - C M Angelopoulos
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - A B Bartakova
- Shiley Eye Institute, Department of Ophthalmology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - R S Pulido
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - A Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - E Nudleman
- Shiley Eye Institute, Department of Ophthalmology, University of California, San Diego, La Jolla, CA, 92037, USA
| | - R Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - J L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA.,Shiley Eye Institute, Department of Ophthalmology, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
304
|
Ouyang X, Dong C, Ubogu EE. In situ molecular characterization of endoneurial microvessels that form the blood-nerve barrier in normal human adult peripheral nerves. J Peripher Nerv Syst 2019; 24:195-206. [PMID: 31119823 DOI: 10.1111/jns.12326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
The blood-nerve barrier (BNB) formed by tight junction-forming endoneurial microvessels located in the innermost compartment of peripheral nerves, and the perineurium serve to maintain the internal microenvironment required for normal signal transduction. The specific molecular components that define the normal adult human BNB are not fully known. Guided by data derived from the adult human BNB transcriptome, we evaluated the in situ expression of 25 junctional complex, transporter, cell membrane, and cytoskeletal proteins in four histologically normal adult sural nerves by indirect fluorescent immunohistochemistry to determine proteins specifically expressed by restrictive endoneurial microvascular endothelium. Using Ulex Europaeus Agglutinin-1 expression to detect endothelial cells, we ascertained that the selected proteins were uniformly expressed in ≥90% of endoneurial microvessels. P-glycoprotein (also known as adenosine triphosphate-binding cassette subfamily B member 1) and solute carrier family 1 member 1 demonstrated restricted expression by endoneurial endothelium only, with classic tight junction protein claudin-5 also expressed on fenestrated epineurial macrovessels, and vascular-specific adherens junction protein cadherin-5 also expressed by the perineurium. The expression profiles of the selected proteins provide significant insight into the molecular composition of normal adult peripheral nerves. Further work is required to elucidate the human adult BNB molecular signature in order to better understand its development and devise strategies to restore function in peripheral neuropathies.
Collapse
Affiliation(s)
- Xuan Ouyang
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chaoling Dong
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
305
|
Browne S, Healy KE. Matrix-assisted cell transplantation for tissue vascularization. Adv Drug Deliv Rev 2019; 146:155-169. [PMID: 30605738 DOI: 10.1016/j.addr.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Cell therapy offers much promise for the treatment of ischemic diseases by augmenting tissue vasculogenesis. Matrix-assisted cell transplantation (MACT) has been proposed as a solution to enhance cell survival and integration with host tissue following transplantation. By designing semi synthetic matrices (sECM) with the correct physical and biochemical signals, encapsulated cells are directed towards a more angiogenic phenotype. In this review, we describe the choice of cells suitable for pro-angiogenic therapies, the properties that should be considered when designing sECM for transplantation and their relative importance. Pre-clinical models where MACT has been successfully applied to promote angiogenesis are reviewed to show the great potential of this strategy to treat ischemic conditions.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
306
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
307
|
Collier DM, Villalba N, Sackheim A, Bonev AD, Miller ZD, Moore JS, Shui B, Lee JC, Lee FK, Reining S, Kotlikoff MI, Nelson MT, Freeman K. Extracellular histones induce calcium signals in the endothelium of resistance-sized mesenteric arteries and cause loss of endothelium-dependent dilation. Am J Physiol Heart Circ Physiol 2019; 316:H1309-H1322. [PMID: 30848676 PMCID: PMC6620684 DOI: 10.1152/ajpheart.00655.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
Histone proteins are elevated in the circulation after traumatic injury owing to cellular lysis and release from neutrophils. Elevated circulating histones in trauma contribute to coagulopathy and mortality through a mechanism suspected to involve endothelial cell (EC) dysfunction. However, the functional consequences of histone exposure on intact blood vessels are unknown. Here, we sought to understand the effects of clinically relevant concentrations of histones on the endothelium in intact, resistance-sized, mesenteric arteries (MAs). EC Ca2+ was measured with high spatial and temporal resolution in MAs from mice selectively expressing the EC-specific, genetically encoded ratiometric Ca2+ indicator, Cx40-GCaMP-GR, and vessel diameter was measured by edge detection. Application of purified histone protein directly to the endothelium of en face mouse and human MA preparations produced large Ca2+ signals that spread within and between ECs. Surprisingly, luminal application of histones had no effect on the diameter of pressurized arteries. Instead, after prolonged exposure (30 min), it reduced dilations to endothelium-dependent vasodilators and ultimately caused death of ~25% of ECs, as evidenced by markedly elevated cytosolic Ca2+ levels (793 ± 75 nM) and uptake of propidium iodide. Removal of extracellular Ca2+ but not depletion of intracellular Ca2+ stores prevented histone-induced Ca2+ signals. Histone-induced signals were not suppressed by transient receptor potential vanilloid 4 (TRPV4) channel inhibition (100 nM GSK2193874) or genetic ablation of TRPV4 channels or Toll-like receptor receptors. These data demonstrate that histones are robust activators of noncanonical EC Ca2+ signaling, which cause vascular dysfunction through loss of endothelium-dependent dilation in resistance-sized MAs. NEW & NOTEWORTHY We describe the first use of the endothelial cell (EC)-specific, ratiometric, genetically encoded Ca2+ indicator, Cx40-GCaMP-GR, to study the effect of histone proteins on EC Ca2+ signaling. We found that histones induce an influx of Ca2+ in ECs that does not cause vasodilation but instead causes Ca2+ overload, EC death, and vascular dysfunction in the form of lost endothelium-dependent dilation.
Collapse
Affiliation(s)
- Daniel M Collier
- Department of Pharmacology, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Nuria Villalba
- Department of Surgery, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Adrian Sackheim
- Department of Surgery, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Zachary D Miller
- Department of Surgery, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Jesse S Moore
- Department of Surgery, University of Vermont Larner College of Medicine , Burlington, Vermont
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Frank K Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Shaun Reining
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont Larner College of Medicine , Burlington, Vermont
- Division of Cardiovascular Sciences, University of Manchester , Manchester, United Kingdom
| | - Kalev Freeman
- Department of Pharmacology, University of Vermont Larner College of Medicine , Burlington, Vermont
- Department of Surgery, University of Vermont Larner College of Medicine , Burlington, Vermont
| |
Collapse
|
308
|
Williams IM, Wu JC. Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arterioscler Thromb Vasc Biol 2019; 39:1317-1329. [PMID: 31242035 DOI: 10.1161/atvbaha.119.312265] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial cells (ECs) are critical for several aspects of cardiovascular disease therapy, including vascular regeneration, personalized drug development, and tissue engineering. Human pluripotent stem cells (hPSCs) afford us with an unprecedented opportunity to produce virtually unlimited quantities of human ECs. In this review, we highlight key developments and outstanding challenges in our ability to derive ECs de novo from hPSCs. Furthermore, we consider strategies for recapitulating the vessel- and tissue-specific functional heterogeneity of ECs in vitro. Finally, we discuss ongoing attempts to utilize hPSC-derived ECs and their progenitors for various therapeutic applications. Continued progress in generating hPSC-derived ECs will profoundly enhance our ability to discover novel drug targets, revascularize ischemic tissues, and engineer clinically relevant tissue constructs. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ian M Williams
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA
| |
Collapse
|
309
|
Lim HY, O'Malley C, Donnan G, Nandurkar H, Ho P. A review of global coagulation assays - Is there a role in thrombosis risk prediction? Thromb Res 2019; 179:45-55. [PMID: 31078120 DOI: 10.1016/j.thromres.2019.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/27/2023]
Abstract
Normal haemostasis requires maintenance of a careful equilibrium between the necessity to clot when bleeding and the retention of fluid phase at all other times. Disruption of this equilibrium can result in catastrophic outcomes, e.g. acute myocardial infarction and pulmonary embolism. However, despite the significant therapeutic advances in cardiovascular medicine over recent years, our ability to provide an accurate cardiovascular risk assessment remains an unmet need. Routine coagulation testing is not a useful reflection of haemostasis and cannot be reliably used to predict bleeding and thrombosis risks. Global coagulation assays such as viscoelastic testing, thrombin and fibrin generation have been proposed as better measures of the haemostatic function. These assays, particularly viscoelastic testing, have been increasingly used to assess bleeding risks and guide blood product replacement in trauma and massive transfusion settings. However, the role of these assays in thrombosis is less well-defined but given the complexities of the coagulation system, these global coagulation assays when used in combination may provide a better assessment of cardiovascular and thrombosis risk at an individual level. Hence, we explore the role of some of the currently available global coagulation assays - the viscoelastic, thrombin generation and fibrin generation tests - and provide a review of the literature of the current evidence for these assays specifically in the field of venous thromboembolism and cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Yin Lim
- Department of Haematology, Northern Hospital, 185 Cooper St, Epping, VIC 3076, Australia; Australian Centre for Blood Diseases, Monash University, Monash AMREP Building, Level 1 Walkway via the Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade (corner Genetics Lane), Parkville, VIC 3052, Australia.
| | - Cindy O'Malley
- RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Geoffrey Donnan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade (corner Genetics Lane), Parkville, VIC 3052, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Monash AMREP Building, Level 1 Walkway via the Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Prahlad Ho
- Department of Haematology, Northern Hospital, 185 Cooper St, Epping, VIC 3076, Australia; Australian Centre for Blood Diseases, Monash University, Monash AMREP Building, Level 1 Walkway via the Alfred Centre, 99 Commercial Road, Melbourne, VIC 3004, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade (corner Genetics Lane), Parkville, VIC 3052, Australia
| |
Collapse
|
310
|
Su J, Satchell SC, Wertheim JA, Shah RN. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior. Biomaterials 2019; 201:99-112. [PMID: 30807988 PMCID: PMC6777960 DOI: 10.1016/j.biomaterials.2019.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022]
Abstract
The basement membrane is a specialized extracellular matrix substrate responsible for support and maintenance of epithelial and endothelial structures. Engineered basement membrane-like hydrogel systems have the potential to advance understanding of cell-cell and cell-matrix interactions by allowing precise tuning of the substrate or matrix biochemical and biophysical properties. In this investigation, we developed tunable hydrogel substrates with conjugated bioactive peptides to modulate cell binding and growth factor signaling by endothelial cells. Hydrogels were formed by employing a poly(ethylene glycol) crosslinker to covalently crosslink gelatin polymers and simultaneously conjugate laminin-derived YIGSR peptides or vascular endothelial growth factor (VEGF)-mimetic QK peptides to the gelatin. Rheological characterization revealed rapid formation of hydrogels with similar stiffnesses across tested formulations, and swelling analysis demonstrated dependency on peptide and crosslinker concentrations in hydrogels. Levels of phosphorylated VEGF Receptor 2 in cells cultured on hydrogel substrates revealed that while human umbilical vein endothelial cells (HUVECs) responded to both soluble and conjugated forms of the QK peptide, conditionally-immortalized human glomerular endothelial cells (GEnCs) only responded to the conjugated presentation of the peptide. Furthermore, whereas HUVECs exhibited greatest upregulation in gene expression when cultured on YIGSR- and QK-conjugated hydrogel substrates after 5 days, GEnCs exhibited greatest upregulation when cultured on Matrigel control substrates at the same time point. These results indicate that conjugation of bioactive peptides to these hydrogel substrates significantly influenced endothelial cell behavior in cultures but with differential responses between HUVECs and GEnCs.
Collapse
Affiliation(s)
- Jimmy Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simon C Satchell
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Jason A Wertheim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA; Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Ramille N Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
311
|
Kilani B, Gourdou-Latyszenok V, Guy A, Bats ML, Peghaire C, Parrens M, Renault MA, Duplàa C, Villeval JL, Rautou PE, Couffinhal T, James C. Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfb-positive hematopoietic cells. J Thromb Haemost 2019; 17:827-840. [PMID: 30801958 DOI: 10.1111/jth.14417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Essentials To reliably study the respective roles of blood and endothelial cells in hemostasis, mouse models with a strong and specific endothelial expression of the Cre recombinase are needed. Using mT/mG reporter mice and conditional JAK2V617F/WT mice, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Comparison of recombination efficiency and specificity towards blood lineage reveals major differences between endothelial transgenic mice. Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2;JAK2V617F/WT transgenic mice. SUMMARY: Background The vessel wall, and particularly blood endothelial cells (BECs), are intensively studied to better understand hemostasis and target thrombosis. To understand the specific role of BECs, it is important to have mouse models that allow specific and homogeneous expression of genes of interest in all BEC beds without concomitant expression in blood cells. Inducible Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 transgenic mice are widely used for BEC targeting. However, issues remain in terms of recombination efficiency and specificity regarding hematopoietic cells. Objectives To determine which mouse model to choose when strong expression of a transgene is required in adult BECs from various organs, without concomitant expression in hematopoietic cells. Methods Using mT/mG reporter mice to measure recombination efficiency and conditional JAK2V617F/WT mice to assess specificity regarding hematopoietic cells, we compared Pdgfb-iCreERT2 and Cdh5(PAC)-CreERT2 with well-characterized Tie2-Cre mice. Results Adult Cdh5(PAC)-CreERT2 mice are endothelial specific but require a dose of 10 mg of tamoxifen to allow constant Cre expression. Pdgfb-iCreERT2 mice injected with 5 mg of tamoxifen are appropriate for most endothelial research fields except liver studies, as hepatic sinusoid ECs are not recombined. Surprisingly, 2 months after induction of Cre-mediated recombination, all Pdgfb-iCreERT2;JAK2V617F/WT mice developed a myeloproliferative neoplasm that is related to the presence of JAK2V617F in hematopoietic cells, showing for the first time that Cre-mediated recombination occurs in a small number of adult hematopoietic stem cells in Pdgfb-iCreERT2 transgenic mice. Conclusion This study provides useful guidelines for choosing the best mouse line to study the role of BECs in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Badr Kilani
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Alexandre Guy
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie-Lise Bats
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Claire Peghaire
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Marie Parrens
- CHU de Bordeaux, Laboratoire d'Anatomopathologie, Pessac, F-33600, France
| | - Marie-Ange Renault
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | - Cecile Duplàa
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
| | | | - Pierre-Emmanuel Rautou
- Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Thierry Couffinhal
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, service des Maladies Cardiaques et Vasculaires, Pessac, F-33600, France
| | - Chloe James
- University of Bordeaux, UMR 1034, INSERM, Biology of Cardiovascular Diseases, Pessac, F-33600, France
- CHU de Bordeaux, Laboratoire d'Hématologie, F-33600, Pessac, France
| |
Collapse
|
312
|
Wu MA, Tsvirkun D, Bureau L, Boccon-Gibod I, Inglebert M, Duperray A, Bouillet L, Misbah C, Cicardi M. Paroxysmal Permeability Disorders: Development of a Microfluidic Device to Assess Endothelial Barrier Function. Front Med (Lausanne) 2019; 6:89. [PMID: 31069229 PMCID: PMC6491734 DOI: 10.3389/fmed.2019.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Background: Paroxysmal Permeability Disorders (PPDs) are pathological conditions caused by periodic short lasting increase of endothelial permeability, in the absence of inflammatory, degenerative, ischemic vascular injury. PPDs include primary angioedema, idiopathic systemic capillary leak syndrome and some rare forms of localized retroperitoneal-mediastinal edema. Aim: to validate a microfluidic device to study endothelial permeability in flow conditions. Materials and Methods: we designed a microchannel network (the smallest channel is 30μm square section). Human Umbilical Vein Endothelial Cells (HUVECs) were cultured under constant shear stress in the networks. Endothelial permeability assessment was based on interaction of biotinylated fibronectin used as a matrix for HUVECs and FITC-conjugated avidin. The increase in endothelial permeability was identified as changes in fluorescence intensity detected by confocal fluorescent microscopy. Results: The microchannels were constantly perfused with a steady flow of culture medium, ensuring a physiologically relevant level of shear stress at the wall of ~0.2 Pa. Our preliminary results demonstrated that circulation of culture medium or plasma from healthy volunteers was associated with low fluorescence of fibronectin matrix. When bradykinin diluted in culture medium was perfused, an increase in average fluorescence was detected. Conclusion: Our microvasculature model is suitable to study endothelial functions in physiological flow conditions and in the presence of factors like bradykinin known as mediator of several PPDs. Therefore, it can be a promising tool to better understand the mechanisms underlying disorders of endothelial permeability.
Collapse
Affiliation(s)
- Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Daria Tsvirkun
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France.,Belozersky Institute of Physico-chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lionel Bureau
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France
| | - Isabelle Boccon-Gibod
- Department of Internal Medicine, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | | | - Alain Duperray
- Univ. Grenoble Alpes, IAB, Grenoble, France.,INSERM, IAB, Grenoble, France
| | - Laurence Bouillet
- Department of Internal Medicine, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Chaouqi Misbah
- Univ. Grenoble Alpes, LIPHY, Grenoble, France.,CNRS, LIPHY, Grenoble, France
| | - Marco Cicardi
- IRCCS-Istituti Clinici Scientifici Maugeri, University of Milan, Milan, Italy
| |
Collapse
|
313
|
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 2019; 19:13-22. [PMID: 30506414 DOI: 10.1007/s12012-018-9493-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were "Cardiovascular Disease," "Endothelial Cell Dysfunction," "Inflammation," "Treatment," and "Oxidative Stress." The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
314
|
Sarker MD, Naghieh S, Sharma NK, Ning L, Chen X. Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9156921. [PMID: 31065331 PMCID: PMC6466897 DOI: 10.1155/2019/9156921] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Over the past decades, tissue regeneration with scaffolds has achieved significant progress that would eventually be able to solve the worldwide crisis of tissue and organ regeneration. While the recent advancement in additive manufacturing technique has facilitated the biofabrication of scaffolds mimicking the host tissue, thick tissue regeneration remains challenging to date due to the growing complexity of interconnected, stable, and functional vascular network within the scaffold. Since the biological performance of scaffolds affects the blood vessel regeneration process, perfect selection and manipulation of biological factors (i.e., biopolymers, cells, growth factors, and gene delivery) are required to grow capillary and macro blood vessels. Therefore, in this study, a brief review has been presented regarding the recent progress in vasculature formation using single, dual, or multiple biological factors. Besides, a number of ways have been presented to incorporate these factors into scaffolds. The merits and shortcomings associated with the application of each factor have been highlighted, and future research direction has been suggested.
Collapse
Affiliation(s)
- M. D. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - N. K. Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Liqun Ning
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
315
|
Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 2019; 8:43257. [PMID: 30932813 PMCID: PMC6443350 DOI: 10.7554/elife.43257] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
The brain, spinal cord, and retina are supplied by capillaries that do not permit free diffusion of molecules between serum and parenchyma, a property that defines the blood-brain and blood-retina barriers. Exceptions to this pattern are found in circumventricular organs (CVOs), small midline brain structures that are supplied by high permeability capillaries. In the eye and brain, high permeability capillaries are also present in the choriocapillaris, which supplies the retinal pigment epithelium and photoreceptors, and the ciliary body and choroid plexus, the sources of aqueous humor and cerebrospinal fluid, respectively. We show here that (1) endothelial cells in these high permeability vascular systems have very low beta-catenin signaling compared to barrier-competent endothelial cells, and (2) elevating beta-catenin signaling leads to a partial conversion of permeable endothelial cells to a barrier-type state. In one CVO, the area postrema, high permeability is maintained, in part, by local production of Wnt inhibitory factor-1.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xiaowu Gu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
316
|
Li Y, Wan J, Wang F, Guo J, Wang C. Effect of increasing liver blood flow on nanodrug clearance by the liver for enhanced antitumor therapy. Biomater Sci 2019; 7:1507-1515. [PMID: 30675877 DOI: 10.1039/c8bm01371c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The clinical applications of particulate drug delivery systems have demonstrated limited treatment outcomes, which is largely attributable to the elimination of such systems by the immune system, especially in the liver. Inspired by the mechanism of nanomaterial clearance by the liver, we designed a new anticancer auxiliary delivery system by introducing norepinephrine loaded poly(acrylic acid) nanogels as angiotonics. The auxilliary system effectively decreased the liver uptake of nanodrugs by increasing the liver blood flow rate. With administration of the as-prepared norepinephrine-loaded poly(acrylic acid) nanogels, the blood perfusion amount increased significantly by 177.0% (i.e. 2.77 times) as observed directly by ultrasonic imaging, indicating an increased blood flow rate in the liver. Since the blood flow rate plays a key role in nanomaterial clearance in the liver, nanodrug clearance should be changed by modulation of the blood flow. Our in vivo experimental results clearly showed the enhancement of nanodrug efficiency with this two-step treatment, with a 52% improvement in plasma drug concentration, obvious drug accumulation in the tumor, and significant antitumor effects. These results indicate that a pre-conditioning strategy involving norepinephrine-loaded poly(acrylic acid) nanogels can serve as an ideal route for reducing nanodrug clearance by the liver.
Collapse
Affiliation(s)
- Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China.
| | | | | | | | | |
Collapse
|
317
|
González-Ramos S, Paz-García M, Rius C, Del Monte-Monge A, Rodríguez C, Fernández-García V, Andrés V, Martínez-González J, Lasunción MA, Martín-Sanz P, Soehnlein O, Boscá L. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1. FASEB J 2019; 33:3912-3921. [PMID: 30496704 DOI: 10.1096/fj.201801231rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic disease characterized by vascular lipid retention and inflammation, and pattern recognition receptors (PRRs) are important contributors in early stages of the disease. Given the implication of the intracellular PRR nucleotide-binding oligomerization domain 1 (NOD1) in cardiovascular diseases, we investigated its contribution to early atherosclerosis. We evidenced NOD1 induction in atherosclerotic human and mouse tissues, predominantly in vascular endothelial cells. Accordingly, NOD1 genetic inactivation in Apoe-/- mice reduced not only atherosclerosis burden, but also monocyte and neutrophil accumulation in atheromata. Of note, in the presence of either peptidoglycan or oxidized LDLs, endothelial NOD1 triggered VCAM-1 up-regulation through the RIP2-NF-κB axis in an autocrine manner, enhancing firm adhesion of both sets of myeloid cells to the inflamed micro- and macrovasculature in vivo. Our data define a major proatherogenic role for endothelial NOD1 in early leukocyte recruitment to the athero-prone vasculature, thus introducing NOD1 as an innovative therapeutic target and potential prognostic molecule.-González-Ramos, S., Paz-García, M., Rius, C., del Monte-Monge, A., Rodríguez, C., Fernández-García, V., Andrés, V., Martínez-González, J., Lasunción, M. A., Martín-Sanz, P., Soehnlein, O., Boscá, L. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1.
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Cristina Rius
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Del Monte-Monge
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau- Instituto Catalán de Ciencias Cardiovasculares (ICCC), Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José Martínez-González
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (CSIC-IIBB), Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Miguel A Lasunción
- Hospital Universitario Ramón y Cajal (IRyCIS), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany
- Karolinska Institutet, Stockholm, Sweden
- German Center for Cardiovascular research (DZHK), Partner Site Munich Heart Alliance (MHA), Berlin, Germany
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
318
|
Mojiri A, Alavi P, Lorenzana Carrillo MA, Nakhaei-Nejad M, Sergi CM, Thebaud B, Aird WC, Jahroudi N. Endothelial cells of different organs exhibit heterogeneity in von Willebrand factor expression in response to hypoxia. Atherosclerosis 2019; 282:1-10. [PMID: 30665023 DOI: 10.1016/j.atherosclerosis.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS We have previously demonstrated that in response to hypoxia, von Willebrand factor (VWF) expression is upregulated in lung and heart endothelial cells both in vitro and in vivo, but not in kidney endothelial cells. The aim of our current study was to determine whether endothelial cells of different organs employ distinct molecular mechanisms to mediate VWF response to hypoxia. METHODS We used cultured human primary lung, heart and kidney endothelial cells to determine the activation of endogenous VWF as well as exogenously expressed VWF promoter in response to hypoxia. Chromatin immunoprecipitation and siRNA knockdown analyses were used to determine the roles of VWF promoter associated transacting factors in mediating its hypoxia response. Platelet aggregates formations in vascular beds of mice were used as a marker for potential functional consequences of hypoxia-induced VWF upregulation in vivo. RESULTS Our analyses demonstrated that while Yin Yang 1 (YY1) and specificity protein 1 (Sp1) participate in the hypoxia-induced upregulation of VWF specifically in lung endothelial cells, GATA6 mediates this process specifically in heart endothelial cells. In both cell types, the response to hypoxia involves the decreased association of the NFIB repressor with the VWF promoter, and the increased acetylation of the promoter-associated histone H4. In mice exposed to hypoxia, the upregulation of VWF expression was concomitant with the presence of thrombi in heart and lung, but not kidney vascular beds. CONCLUSIONS Heart and lung endothelial cells demonstrated VWF upregulation in response to hypoxia, using distinct mechanisms, while this response was lacking in kidney endothelial cells.
Collapse
Affiliation(s)
- Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Parnian Alavi
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | - Consolato M Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thebaud
- Ottawa Hospital Research Institute & CHEO Research Institute, Pediatrics, Ottawa, Ontario, Canada
| | - William C Aird
- Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Canada.
| |
Collapse
|
319
|
Palomo M, Diaz-Ricart M, Carreras E. Endothelial Dysfunction in Hematopoietic Cell Transplantation. Clin Hematol Int 2019; 1:45-51. [PMID: 34595410 PMCID: PMC8432381 DOI: 10.2991/chi.d.190317.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
The goal of this review is to look at the role of endothelial damage and dysfunction in the initiation and development of early complications that appear after hematopoietic cell transplantation (HCT). These early complications share overlapping clinical manifestations and the suspicion of underlying endothelial damage. Several studies using different approaches, such as animal and in vitro models, the analysis of soluble biomarkers and clinical findings have provided evidence of this endothelial dysfunction. Historically, the first complication in which the role of endothelial damage was elucidated was the veno-oclusive disease/sinusoidal obstructive syndrome. In the last two decades, increasing evidence of the implication of the endothelium in the pathophysiology of other syndromes such as capillary leak syndrome, transplant-associated microangiopathy, or even graft versus host disease has accumulated. This knowledge opens up potential pharmacologic interventions to prevent/and/or treat endothelial damage and, therefore, to improve the outcome of patients receiving HCT.
Collapse
Affiliation(s)
- Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Maribel Diaz-Ricart
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team
| |
Collapse
|
320
|
Oosterhoff LA, Kruitwagen HS, van Wolferen ME, van Balkom BWM, Mokry M, Lansu N, van den Dungen NAM, Penning LC, Spanjersberg TCF, de Graaf JW, Veenendaal T, Zomerdijk F, Fledderus JO, Spee B, van Steenbeek FG. Characterization of Endothelial and Smooth Muscle Cells From Different Canine Vessels. Front Physiol 2019; 10:101. [PMID: 30809157 PMCID: PMC6379353 DOI: 10.3389/fphys.2019.00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Vasculature performs a critical function in tissue homeostasis, supply of oxygen and nutrients, and the removal of metabolic waste products. Vascular problems are implicated in a large variety of pathologies and accurate in vitro models resembling native vasculature are of great importance. Unfortunately, existing in vitro models do not sufficiently reflect their in vivo counterpart. The complexity of vasculature requires the examination of multiple cell types including endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), as well as vessel location in the body from which they originate. The use of canine blood vessels provides a way to study vasculature with similar vessel size and physiology compared to human vasculature. We report an isolation procedure that provides the possibility to isolate both the endothelial and smooth muscle cells from the same vessels simultaneously, enabling new opportunities in investigating vasculature behavior. Canine primary ECs and VSMCs were isolated from the vena cava, vena porta and aorta. All tissue sources were derived from three donors for accurate comparison and to reduce inter-animal variation. The isolation and purification of the two distinct cell types was confirmed by morphology, gene- and protein-expression and function. As both cell types can be derived from the same vessel, this approach allows accurate modeling of vascular diseases and can also be used more widely, for example, in vascular bioreactors and tissue engineering designs. Additionally, we identified several new genes that were highly expressed in canine ECs, which may become candidate genes for novel EC markers. In addition, we observed transcriptional and functional differences between arterial- and venous-derived endothelium. Further exploration of the transcriptome and physiology of arteriovenous differentiation of primary cells may have important implications for a better understanding of the fundamental behavior of the vasculature and pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Loes A Oosterhoff
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Monique E van Wolferen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bas W M van Balkom
- Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Epigenomics Facility, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nico Lansu
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Epigenomics Facility, University Medical Center Utrecht, Utrecht, Netherlands
| | - Noortje A M van den Dungen
- Epigenomics Facility, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Talitha C F Spanjersberg
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Johannes W de Graaf
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tomas Veenendaal
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Flin Zomerdijk
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Joost O Fledderus
- Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
321
|
Nakhaei-Nejad M, Farhan M, Mojiri A, Jabbari H, Murray AG, Jahroudi N. Regulation of von Willebrand Factor Gene in Endothelial Cells That Are Programmed to Pluripotency and Differentiated Back to Endothelial Cells. Stem Cells 2019; 37:542-554. [PMID: 30682218 DOI: 10.1002/stem.2978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Endothelial cells play a central role in physiological function and pathophysiology of blood vessels in health and disease. However, the molecular mechanism that establishes the endothelial phenotype, and contributes to its signature cell type-specific gene expression, is not yet understood. We studied the regulation of a highly endothelial-specific gene, von Willebrand factor (VWF), in induced pluripotent stem cells generated from primary endothelial cells (human umbilical vein endothelial cells [HUVEC] into a pluripotent state [HiPS]) and subsequently differentiated back into endothelial cells. This allowed us to explore how VWF expression is regulated when the endothelial phenotype is revoked (endothelial cells to HiPS), and re-established (HiPS back to endothelial cells [EC-Diff]). HiPS were generated from HUVECs, their pluripotency established, and then differentiated back to endothelial cells. We established phenotypic characteristics and robust angiogenic function of EC-Diff. Gene array analyses, VWF chromatin modifications, and transacting factors binding assays were performed on the three cell types (HUVEC, HiPS, and EC-Diff). The results demonstrated that generally cohorts of transacting factors that function as transcriptional activators, and those that contribute to histone acetylation and DNA demethylation, were significantly decreased in HiPS compared with HUVECs and EC-Diff. In contrast, there were significant increases in the gene expression levels of epigenetic modifiers that function as methyl transferases in HiPS compared with endothelial cells. The results demonstrated that alterations in chromatin modifications of the VWF gene, in addition to expression and binding of transacting factors that specifically function as activators, are responsible for establishing endothelial specific regulation of the VWF gene. Stem Cells 2019;37:542-554.
Collapse
Affiliation(s)
| | - Maikel Farhan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Vermont, Burlington, Vermont, USA
| | - Allan G Murray
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
322
|
Raheel H, Ghaffari S, Khosraviani N, Mintsopoulos V, Auyeung D, Wang C, Kim YH, Mullen B, Sung HK, Ho M, Fairn G, Neculai D, Febbraio M, Heit B, Lee WL. CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: role in fatty acid delivery. Am J Physiol Lung Cell Mol Physiol 2019; 316:L740-L750. [PMID: 30702342 DOI: 10.1152/ajplung.00127.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin. We then validated our in vitro findings using a tissue-specific knockout mouse model. We observed that albumin transcytosis was saturable in the skin but not the lung microvascular endothelial cells, implicating a receptor-mediated process. We identified the scavenger receptor CD36 as being both necessary and sufficient for albumin transcytosis across dermal microvascular endothelium, in contrast to the lung where macropinocytosis dominated. Mutations in the apical helical bundle of CD36 prevented albumin internalization by cells. Mice deficient in CD36 specifically in endothelial cells exhibited lower basal permeability to albumin and less basal tissue edema in the skin but not in the lung. Finally, these mice also exhibited a smaller subcutaneous fat layer despite having identical total body weights and circulating fatty acid levels as wild-type animals. In conclusion, CD36 mediates albumin transcytosis in the skin but not the lung. Albumin transcytosis may serve to regulate fatty acid delivery from the circulation to tissues.
Collapse
Affiliation(s)
- Hira Raheel
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto , Canada
| | - Negar Khosraviani
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto , Canada
| | | | - Derek Auyeung
- Department of Biochemistry, University of Toronto , Toronto , Canada
| | - Changsen Wang
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto , Canada
| | - Yun Hye Kim
- The Hospital for Sick Children , Toronto , Canada
| | - Brendan Mullen
- Department of Pathology, Mount Sinai Hospital , Toronto , Canada
| | - Hoon-Ki Sung
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto , Canada.,The Hospital for Sick Children , Toronto , Canada
| | - May Ho
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary , Calgary , Canada
| | - Gregory Fairn
- Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto , Canada
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University, School of Basic Medical Sciences , Hangzhou, Zhejiang , People's Republic of China
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Alberta, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Western University , London , Canada
| | - Warren L Lee
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science, Saint Michael's Hospital , Toronto , Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto , Canada.,Department of Biochemistry, University of Toronto , Toronto , Canada
| |
Collapse
|
323
|
Potential Medication Treatment According to Pathological Mechanisms in Abdominal Aortic Aneurysm. J Cardiovasc Pharmacol 2019; 71:46-57. [PMID: 28953105 DOI: 10.1097/fjc.0000000000000540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease with high mortality. Because of the lack of effective medications to stop or reverse the progression of AAA, surgical operation has become the most predominant recommendation of treatment for patients. There are many potential mechanisms, including inflammation, smooth muscle cell apoptosis, extracellular matrix degradation, oxidative stress, and so on, involving in AAA pathogenesis. According to those mechanisms, some potential therapeutic drugs have been proposed and tested in animal models and even in clinical trials. This review focuses on recent advances in both pathogenic mechanisms and potential pharmacologic therapies of AAA.
Collapse
|
324
|
Daniel E, Cleaver O. Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Curr Top Dev Biol 2019; 132:177-220. [PMID: 30797509 DOI: 10.1016/bs.ctdb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organogenesis requires tightly coordinated and patterned growth of numerous cell types to form a fully mature and vascularized organ. Endothelial cells (ECs) that line blood vessels develop alongside the growing organ, but only recently has their role in directing epithelial and stromal growth been appreciated. Endothelial, epithelial, and stromal cells in embryonic organs actively communicate with one another throughout development to ensure that the organ forms appropriately. What signals tell blood vessel progenitors where to go? How are tissues influenced by the vasculature that pervades it? In this chapter, we review the ways in which crosstalk between ECs and epithelial or stromal cells during development leads to a fully patterned pancreas, lung, or kidney. ECs in all of these organs are necessary for proper epithelial and stromal growth, but how they direct this process is organ- and time-specific, highlighting the concept of dynamic EC heterogeneity. We end with a discussion on how understanding cell-cell crosstalk during development can be applied therapeutically through the generation of transplantable miniature organ-like tissues called "organoids." We will discuss the current state of organoid technology and highlight the major challenges in forming a properly patterned vascular network that will be critical in transforming them into a viable therapeutic option.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
325
|
Pulgar VM. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci 2019; 12:1019. [PMID: 30686985 PMCID: PMC6337067 DOI: 10.3389/fnins.2018.01019] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
The blood brain barrier (BBB) presents a formidable challenge to the delivery of drugs into the brain. Several strategies aim to overcome this obstacle and promote efficient and specific crossing through BBB of therapeutically relevant agents. One of those strategies uses the physiological process of receptor-mediated transcytosis (RMT) to transport cargo through the brain endothelial cells toward brain parenchyma. Recent developments in our understanding of intracellular trafficking and receptor binding as well as in protein engineering and nanotechnology have potentiated the opportunities for treatment of CNS diseases using RMT. In this mini-review, the current understanding of BBB structure is discussed, and recent findings exemplifying critical advances in RMT-mediated brain drug delivery are briefly presented.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
326
|
Ma S, Bai Z, Wu H, Wang W. The DPP-4 inhibitor saxagliptin ameliorates ox-LDL-induced endothelial dysfunction by regulating AP-1 and NF-κB. Eur J Pharmacol 2019; 851:186-193. [PMID: 30639312 DOI: 10.1016/j.ejphar.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Diabetes-associated cardiovascular complications are the leading cause of death for diabetic patients. Dipeptidyl peptidase 4 (DPP-4) inhibitor agents, known as gliptins, are a class of potent anti-glycemic agents developed to treat diabetes. Recently, gliptins have been shown to have independent cardiovascular benefits. In this study, we revealed the protective role of saxagliptin in vascular endothelial cells. Our data show that saxagliptin suppresses oxidized low-density lipoprotein cholesterol (ox-LDL)-induced expression of its receptor lectin-like ox-LDL receptor-1 (LOX-1). Saxagliptin treatment reduces ox-LDL-induced production of cytokines and vascular adhesion molecules including tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), vascular cell adhesion molecule 1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). The presence of saxagliptin suppressed ox-LDL-induced adhesion of monocytes to endothelial cells in co-culture adhesion experiments. Moreover, saxagliptin mitigated ox-LDL-induced production of reactive oxygen species and suppressed elevated expression of endothelial nicotinamide adenine dinucleotide phosphate oxidase subunit (NOX-4) induced by ox-LDL. Mechanistically, saxagliptin exerted inhibitory effects against ox-LDL-induced phosphorylation of JNK kinase, expression of the activator protein 1 (AP-1) subunits c-Jun/c-fos, and AP-1 promoter activity. Saxagliptin also suppressed nuclear factor κB (NF-κB) p65 accumulation and inhibited its promoter activity. Our data elaborate the molecular mechanism of saxagliptin-mediated endothelial protection and indicate that saxagliptin could have vascular benefits independent on its anti-glycemic function.
Collapse
Affiliation(s)
- Suxia Ma
- Cardiology Department 2, Shangqiu First People's Hospital, Shangqiu, Henan 476100, China
| | - Zhifeng Bai
- Cardiology Department 2, Shangqiu First People's Hospital, Shangqiu, Henan 476100, China.
| | - Huiying Wu
- Cardiology Department, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450007, China
| | - Wei Wang
- Cardiology Department, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450007, China
| |
Collapse
|
327
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
328
|
miR-449a induces EndMT, promotes the development of atherosclerosis by targeting the interaction between AdipoR2 and E-cadherin in Lipid Rafts. Biomed Pharmacother 2019; 109:2293-2304. [DOI: 10.1016/j.biopha.2018.11.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
|
329
|
Luu AZ, Chowdhury B, Al-Omran M, Teoh H, Hess DA, Verma S. Role of Endothelium in Doxorubicin-Induced Cardiomyopathy. JACC Basic Transl Sci 2018; 3:861-870. [PMID: 30623145 PMCID: PMC6314956 DOI: 10.1016/j.jacbts.2018.06.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
The clinical use of doxorubicin in cancer is limited by cardiotoxic effects that can lead to heart failure. Whereas earlier work focused on the direct impact of doxorubicin on cardiomyocytes, recent studies have turned to the endothelium, because doxorubicin-damaged endothelial cells can trigger the development and progression of cardiomyopathy by decreasing the release and activity of key endothelial factors and inducing endothelial cell death. Thus, the endothelium represents a novel target for improving the detection, management, and prevention of doxorubicin-induced cardiomyopathy.
Collapse
Key Words
- AKT, protein kinase B
- Bcl-2, B-cell lymphoma-2
- DNA, deoxyribonucleic acid
- ERK1/2, extracellular signal-regulated kinase 1/2
- ET, endothelin
- LV, left ventricular
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NO, nitric oxide
- NOS, nitric oxide synthase
- NRG-1, neuregulin-1
- PGI2, prostaglandin I2
- PI3K, phosphoinositide 3-kinase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- ZO, zona occludens
- cardiomyopathy
- doxorubicin
- endothelium
- heart failure
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
330
|
Ruther F, Distler T, Boccaccini AR, Detsch R. Biofabrication of vessel-like structures with alginate di-aldehyde-gelatin (ADA-GEL) bioink. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:8. [PMID: 30594988 DOI: 10.1007/s10856-018-6205-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
One of the key challenges in the field of blood vessel engineering is the in vitro production of small and large diameter vessels. Considering that a combination of alginate di-aldehyde and gelatin (ADA-GEL) has been successfully applied for different biofabrication approaches, the aim of this study was to exploit ADA-GEL for the fabrication of vessel structures with diameters up to 4 mm. To explore plotting possibilities and to study the swelling behaviour, a library of vessel-like constructs with different diameters made from 2, 3 and 4% (w/v) alginate was created by using various hand-crafted double-needle extrusion systems. Vessel diameters were varied through changes of the double-needle core and outer diameters. A straightforward model for the production of vessel of different diameters from a variety of double-needle systems was established and vessel-constructs with diameters of up to 3.7 mm could be created. It was successfully demonstrated that an artificial vessel, consisting of an outer layer of 7.5% ADA50-GEL50 and an inner core of 3% gelatin, can support the proliferation and migration of an immobilized co-culture containing fibroblast (NHDF) and endothelial (HUVEC) cells. The openness and tightness of the hollow ADA-GEL structures were further confirmed by a dye injection test. Nanoindentation was performed to determine the Young's modulus of the used materials. Cell vitality was proved after 1, 2 and 3 weeks of incubation. The results showed a nearly twofold increase of viable cells per week. Fluorescent images confirmed cell migration during the whole incubation time.
Collapse
Affiliation(s)
- F Ruther
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - T Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
331
|
Bioengineering the innate vasculature of complex organs: what have we learned so far. Curr Opin Organ Transplant 2018; 23:657-663. [DOI: 10.1097/mot.0000000000000577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
332
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
333
|
Heaps CL, Bray JF, McIntosh AL, Schroeder F. Endothelial nitric oxide synthase protein distribution and nitric oxide production in endothelial cells along the coronary vascular tree. Microvasc Res 2018; 122:34-40. [PMID: 30439484 DOI: 10.1016/j.mvr.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/30/2018] [Accepted: 11/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Freshly isolated endothelial cells from both conduit arteries and microvasculature were used to test the hypothesis that eNOS protein content and nitric oxide production in coronary endothelial cells increases with vessel radius. METHODS Porcine hearts were obtained from a local abattoir. Large and small arteries as well as arterioles were dissected free of myocardium and homogenized as whole vessels. Additionally, endothelial cells were isolated from both conduit arteries and left ventricular myocardium by tissue digestion with collagenase, followed by endothelial cell isolation using biotinylated-anti-CD31 and streptavidin-coated paramagnetic beads. Purity of isolated endothelial cells was confirmed by immunofluorescence and immunoblot. RESULTS In whole vessel lysate, immunoblot analysis revealed that protein content for eNOS was greater in arterioles compared to small and large arteries. Nitric oxide metabolites (nitrite plus nitrate; NOx) levels measured from whole vessel lysate decreased as vessel size increased, with both arterioles and small arteries displaying significantly greater NOx content than conduit. Consistent with our hypothesis, both eNOS protein level and NOx were significantly greater in endothelial cells isolated from conduit arteries compared with those from coronary microvasculature. Furthermore, confocal microscopy revealed that eNOS protein was present in all conduit and microvascular endothelial cells, although eNOS staining was less intense in microvascular cells than those of conduit artery. CONCLUSIONS These findings demonstrate increased eNOS protein and NOx content in endothelial cells of conduit arteries compared with the microcirculation and underscore the importance of comparing endothelial-specific molecules in freshly isolated endothelial cells, rather than whole lysate of different sized vessels.
Collapse
Affiliation(s)
- Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Jeffrey F Bray
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
334
|
Graupera M, Claret M. Endothelial Cells: New Players in Obesity and Related Metabolic Disorders. Trends Endocrinol Metab 2018; 29:781-794. [PMID: 30266200 DOI: 10.1016/j.tem.2018.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Metabolic disorders such as obesity are accompanied by endothelial cell (EC) dysfunction and decreased vascular density. The current paradigm posits that metabolic alterations associated with obesity secondarily lead to EC dysfunction. However, in view of recent evidence reporting that EC dysfunction per se is able to cause metabolic dysregulation, this paradigm should be revisited and further elaborated. In this article we summarize current views and discuss evidence in favor of a causal role for ECs in systemic metabolic dysregulation. We also integrate and contextualize current research in a pathophysiological framework and discuss potential therapeutic strategies targeting angiogenesis to help to counteract obesity.
Collapse
Affiliation(s)
- Mariona Graupera
- Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 l'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain.
| |
Collapse
|
335
|
Halpern KB, Shenhav R, Massalha H, Toth B, Egozi A, Massasa EE, Medgalia C, David E, Giladi A, Moor AE, Porat Z, Amit I, Itzkovitz S. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol 2018; 36:962-970. [PMID: 30222169 PMCID: PMC6546596 DOI: 10.1038/nbt.4231] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
Spatially resolved single-cell RNA sequencing (scRNAseq) is a powerful approach for inferring connections between a cell's identity and its position in a tissue. We recently combined scRNAseq with spatially mapped landmark genes to infer the expression zonation of hepatocytes. However, determining zonation of small cells with low mRNA content, or without highly expressed landmark genes, remains challenging. Here we used paired-cell sequencing, in which mRNA from pairs of attached mouse cells were sequenced and gene expression from one cell type was used to infer the pairs' tissue coordinates. We applied this method to pairs of hepatocytes and liver endothelial cells (LECs). Using the spatial information from hepatocytes, we reconstructed LEC zonation and extracted a landmark gene panel that we used to spatially map LEC scRNAseq data. Our approach revealed the expression of both Wnt ligands and the Dkk3 Wnt antagonist in distinct pericentral LEC sub-populations. This approach can be used to reconstruct spatial expression maps of non-parenchymal cells in other tissues.
Collapse
Affiliation(s)
- Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rom Shenhav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hassan Massalha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Beata Toth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efi E. Massasa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chiara Medgalia
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas E. Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- The Flow Cytometry Unit, Life Sciences Faculty, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
336
|
Li X, Wang X, Yao D, Jiang J, Guo X, Gao Y, Li Q, Shen C. Effects of aligned and random fibers with different diameter on cell behaviors. Colloids Surf B Biointerfaces 2018; 171:461-467. [DOI: 10.1016/j.colsurfb.2018.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 11/29/2022]
|
337
|
Mojiri A, Alavi P, Jahroudi N. Von Willebrand factor contribution to pathophysiology outside of von Willebrand disease. Microcirculation 2018; 26:e12510. [PMID: 30365187 DOI: 10.1111/micc.12510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
VWF is a procoagulant protein that plays a central role in the initiation of platelets aggregate formation and thrombosis. While von Willebrand disease has long been known to result from qualitative and quantitative deficiencies of VWF, it is recently that contribution of elevated levels of VWF to various pathological conditions including thrombosis, inflammation, angiogenesis, and cancer metastasis has been appreciated. Here, we discuss contribution of elevated levels of VWF to various thrombotic and nonthrombotic pathological conditions.
Collapse
Affiliation(s)
- Anahita Mojiri
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Parnian Alavi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
338
|
Pill K, Melke J, Mühleder S, Pultar M, Rohringer S, Priglinger E, Redl HR, Hofmann S, Holnthoner W. Microvascular Networks From Endothelial Cells and Mesenchymal Stromal Cells From Adipose Tissue and Bone Marrow: A Comparison. Front Bioeng Biotechnol 2018; 6:156. [PMID: 30410879 PMCID: PMC6209673 DOI: 10.3389/fbioe.2018.00156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
A promising approach to overcome hypoxic conditions in tissue engineered constructs is to use the potential of endothelial cells (EC) to form networks in vitro when co-cultured with a supporting cell type in a 3D environment. Adipose tissue-derived stromal cells (ASC) as well as bone marrow-derived stromal cells (BMSC) have been shown to support vessel formation of EC in vitro, but only very few studies compared the angiogenic potential of both cell types using the same model. Here, we aimed at investigating the ability of ASC and BMSC to induce network formation of EC in a co-culture model in fibrin. While vascular structures of BMSC and EC remained stable over the course of 3 weeks, ASC-EC co-cultures developed more junctions and higher network density within the same time frame. Both co-cultures showed positive staining for neural glial antigen 2 (NG2) and basal lamina proteins. This indicates that vessels matured and were surrounded by perivascular cells as well as matrix molecules involved in stabilization. Gene expression analysis revealed a significant increase of vascular endothelial growth factor (VEGF) expression in ASC-EC co-culture compared to BMSC-EC co-culture. These observations were donor-independent and highlight the importance of organotypic cell sources for vascular tissue engineering.
Collapse
Affiliation(s)
- Karoline Pill
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Severin Mühleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marianne Pultar
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sabrina Rohringer
- Department of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz R Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
339
|
Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018; 31:812-823. [PMID: 29637627 DOI: 10.1002/ca.23083] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the principal regulator of transport of molecules and cells into and out of the central nervous system (CNS). It comprises endothelial cells, pericytes, immune cells, astrocytes, and basement membrane, collectively known as the neurovascular unit. The development of the barrier involves many complex pathways from all the progenitors of the neurovascular unit, but the timing of its formation is not entirely known. The coordinated activities of all the components of the neurovascular unit and other tissues ensure that materials required for growth and maintenance are allowed into the CNS while extraneous ones are excluded. This review summarizes current knowledge of the anatomy, development, and physiology of the BBB, and alterations that occur in disease conditions. Clin. Anat. 31:812-823, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yousra Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Fareed Jumah
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Louis Coplan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alec Krosser
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
340
|
Fernandez-Piñeiro I, Alvarez-Trabado J, Márquez J, Badiola I, Sanchez A. Xanthan gum-functionalised span nanoparticles for gene targeting to endothelial cells. Colloids Surf B Biointerfaces 2018; 170:411-420. [DOI: 10.1016/j.colsurfb.2018.06.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
341
|
Rowan SC, Rochfort KD, Piouceau L, Cummins PM, O’Rourke M, McLoughlin P. Pulmonary endothelial permeability and tissue fluid balance depend on the viscosity of the perfusion solution. Am J Physiol Lung Cell Mol Physiol 2018; 315:L476-L484. [DOI: 10.1152/ajplung.00437.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluid filtration in the pulmonary microcirculation depends on the hydrostatic and oncotic pressure gradients across the endothelium and the selective permeability of the endothelial barrier. Maintaining normal fluid balance depends both on specific properties of the endothelium and of the perfusing blood. Although some of the essential properties of blood needed to prevent excessive fluid leak have been identified and characterized, our understanding of these remains incomplete. The role of perfusate viscosity in maintaining normal fluid exchange has not previously been examined. We prepared a high-viscosity perfusion solution (HVS) with a relative viscosity of 2.5, i.e., within the range displayed by blood flowing in vessels of different diameters in vivo (1.5–4.0). Perfusion of isolated murine lungs with HVS significantly reduced the rate of edema formation compared with perfusion with a standard solution (SS), which had a lower viscosity similar to plasma (relative viscosity 1.5). HVS did not alter capillary filtration pressure. Increased endothelial shear stress produced by increasing flow rates of SS, to mimic the increased shear stress produced by HVS, did not reduce edema formation. HVS significantly reduced extravasation of Evans blue-labeled albumin compared with SS, indicating that it attenuated endothelial leak. These findings demonstrate for the first time that the viscosity of the solution perfusing the pulmonary microcirculation is an important physiological property contributing to the maintenance of normal fluid exchange. This has significant implications for our understanding of fluid homeostasis in the healthy lung, edema formation in disease, and reconditioning of donor organs for transplantation.
Collapse
Affiliation(s)
- Simon C. Rowan
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Keith D. Rochfort
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Lucie Piouceau
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Philip M. Cummins
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Malachy O’Rourke
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
342
|
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7:36187. [PMID: 30188322 PMCID: PMC6126923 DOI: 10.7554/elife.36187] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacob S Heng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
343
|
Dong C, Helton ES, Zhou P, Ouyang X, d'Anglemont de Tassigny X, Pascual A, López-Barneo J, Ubogu EE. Glial-derived neurotrophic factor is essential for blood-nerve barrier functional recovery in an experimental murine model of traumatic peripheral neuropathy. Tissue Barriers 2018; 6:1-22. [PMID: 29913111 DOI: 10.1080/21688370.2018.1479570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.
Collapse
Affiliation(s)
- Chaoling Dong
- a Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology , University of Alabama at Birmingham , Birmingham , Alabama , United States of America
| | - E Scott Helton
- a Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology , University of Alabama at Birmingham , Birmingham , Alabama , United States of America
| | - Ping Zhou
- a Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology , University of Alabama at Birmingham , Birmingham , Alabama , United States of America
| | - Xuan Ouyang
- a Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology , University of Alabama at Birmingham , Birmingham , Alabama , United States of America
| | - Xavier d'Anglemont de Tassigny
- b Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville , Spain
| | - Alberto Pascual
- b Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville , Spain
| | - José López-Barneo
- b Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville , Spain
| | - Eroboghene E Ubogu
- a Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology , University of Alabama at Birmingham , Birmingham , Alabama , United States of America
| |
Collapse
|
344
|
Dorsey TB, Kim D, Grath A, James D, Dai G. Multivalent biomaterial platform to control the distinct arterial venous differentiation of pluripotent stem cells. Biomaterials 2018; 185:1-12. [PMID: 30216805 DOI: 10.1016/j.biomaterials.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 11/25/2022]
Abstract
Vascular endothelial cells (ECs) differentiated from pluripotent stem cells have enormous potential to be used in a variety of therapeutic areas such as tissue engineering of vascular grafts and re-vascularization of ischemic tissues. To date, various protocols have been developed to differentiate stem cells toward vascular ECs. However, current methods are still not sufficient to drive the distinct arterial venous differentiation. Therefore, developing refined method of arterial-venous differentiation is critically needed to address this gap. Here, we developed a biomaterial platform to mimic multivalent ephrin-B2/EphB4 signaling and investigated its role in the early arterial and venous specification of pluripotent stem cells. Our results show immobilized ephrinB2 or EphB4 on hydrogel substrates have a distinct effect on arterial venous differentiation by regulating several arterial venous markers. When in combination with Wnt pathway agonist or BMP4 signaling, the ephrin-B2/EphB4 biomaterial platform can create diverging EC progenitor populations, demonstrating differential gene expression pattern across a wide range of arterial and venous markers, as well as phenotypic markers such as anti-thrombotic, pro-atherogenic and osteogenic genes, that are consistent with the in vivo expression patterns of arterial and venous ECs. Importantly, this distinct EC progenitor population cannot be achieved by current methods of applying soluble factors or hemodynamic stimuli alone, illustrating that fine-tuning of developmental signals using the biomaterial platform offers a new approach to better control the arterial venous differentiation of stem cells.
Collapse
Affiliation(s)
- Taylor B Dorsey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Diana Kim
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Alexander Grath
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Guohao Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
345
|
Jian WX, Zhang Z, Chu SF, Peng Y, Chen NH. Potential roles of brain barrier dysfunctions in the early stage of Alzheimer’s disease. Brain Res Bull 2018; 142:360-367. [DOI: 10.1016/j.brainresbull.2018.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
|
346
|
Zhang X, Chen Y, Tang L, Zhang Y, Duan P, Su L, Tong H. The liver sinusoidal endothelial cell damage in rats caused by heatstroke. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218794328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study was designed to explore whether liver sinusoidal endothelial cells (SECs) play a pathological role in liver injury of heatstroke (HS) in rats. An HS rat model was prepared in a pre-warmed incubator. Rats were randomized into four groups: HS-sham group (SHAM group), the 39°C group, the 42°C group, and the HS group. The serum concentrations of SEC injury biomarkers including hyaluronic acid (HA), von Willebrand factor (vWF), thrombomodulin (TM), were measured. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and endothelium-derived vasoactive substances including endothelin-1 (ET-1) and nitric oxide (NO) were determined using a commercially available kit. Hepatic tissues were obtained for histopathological examination, electron microscopy examination, immunohistochemistry, and reverse transcription polymerase chain reaction (PCR) analysis. Our study team found increased levels of plasma ALT/AST during the course of HS. We were also able to detect microcirculation changes and inflammatory injury of the liver (especially in the sinusoidal areas). In addition, markers of SEC injury were significantly elevated. Thrombosis-related markers including vWF and TF expression levels were significantly upregulated and TM levels downregulated. Furthermore, imbalance between ET-1 and NO levels were detected. In conclusion, damage of SECs could result in microcirculation disturbances and pro-inflammatory injury in the liver during HS, which could prove to be a potential pathogenic mechanism of liver injury in HS.
Collapse
Affiliation(s)
- Xingqin Zhang
- Department of Critical Care Medicine, Foshan Hospital of TCM, Foshan, China
| | - Yi Chen
- Department of Critical Care Medicine, The Fifth People’s Hospital of Dongguan, Dongguan Hospital Affiliated to Medical College of Jinan University, Dongguan, China
| | - Liqun Tang
- Department of Critical Care Medicine, Foshan Hospital of TCM, Foshan, China
| | - Yunhai Zhang
- Department of Critical Care Medicine, Foshan Hospital of TCM, Foshan, China
| | - Pengkai Duan
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Trauma Care and Tissue Repair of PLA, Guangzhou, China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Trauma Care and Tissue Repair of PLA, Guangzhou, China
| | - Huasheng Tong
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Key Laboratory of Tropical Trauma Care and Tissue Repair of PLA, Guangzhou, China
| |
Collapse
|
347
|
Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu DM, Loudon KW, Vento-Tormo R, Stephenson E, Cagan A, Farndon SJ, Del Castillo Velasco-Herrera M, Guzzo C, Richoz N, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Maxwell PH, Lindsay S, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Clatworthy M, Behjati S. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 2018; 361:594-599. [PMID: 30093597 PMCID: PMC6104812 DOI: 10.1126/science.aat1699] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022]
Abstract
Messenger RNA encodes cellular function and phenotype. In the context of human cancer, it defines the identities of malignant cells and the diversity of tumor tissue. We studied 72,501 single-cell transcriptomes of human renal tumors and normal tissue from fetal, pediatric, and adult kidneys. We matched childhood Wilms tumor with specific fetal cell types, thus providing evidence for the hypothesis that Wilms tumor cells are aberrant fetal cells. In adult renal cell carcinoma, we identified a canonical cancer transcriptome that matched a little-known subtype of proximal convoluted tubular cell. Analyses of the tumor composition defined cancer-associated normal cells and delineated a complex vascular endothelial growth factor (VEGF) signaling circuit. Our findings reveal the precise cellular identities and compositions of human kidney tumors.
Collapse
Affiliation(s)
| | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Maxine G B Tran
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London NW3 2PS, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London NW3 2PS, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Grace Collord
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rachel A Botting
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dorin-Mirel Popescu
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | | | - Emily Stephenson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sarah J Farndon
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1E, UK
| | | | | | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | | | - Tevita Aho
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - James N Armitage
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Imran Mushtaq
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Stephen Farrell
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dyanne Rampling
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Johanna Burge
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Susan Lindsay
- Human Developmental Biology Resource, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Grant D Stewart
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Neil Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- UCL Great Ormond Street Hospital Institute of Child Health, London WC1N 1E, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | | | - Menna Clatworthy
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
348
|
Jaldin-Fincati JR, Pereira RVS, Bilan PJ, Klip A. Insulin uptake and action in microvascular endothelial cells of lymphatic and blood origin. Am J Physiol Endocrinol Metab 2018; 315:E204-E217. [PMID: 29509435 DOI: 10.1152/ajpendo.00008.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas the blood microvasculature constitutes a biological barrier to the action of blood-borne insulin on target tissues, the lymphatic microvasculature might act as a barrier to subcutaneously administrated insulin reaching the circulation. Here, we evaluate the interaction of insulin with primary microvascular endothelial cells of lymphatic [human dermal lymphatic endothelial cells (HDLEC)] and blood [human adipose microvascular endothelial cells (HAMEC)] origin, derived from human dermal and adipose tissues, respectively. HDLEC express higher levels of insulin receptor and signal in response to insulin as low as 2.5 nM, while HAMEC only activate signaling at 100 nM (a dose that blood vessels do not normally encounter). Low insulin acts specifically through the insulin receptor, while supraphysiological insulin acts through both the IR and insulin growth factor-1 receptor. At supraphysiological or injection site-compatible doses pertinent to lymphatic microvessels, insulin enters HAMEC and HDLEC via fluid-phase endocytosis. Conversely, at physiologically circulating doses (0.2 nM) pertinent to blood microvessels, insulin enters HAMEC through a receptor-mediated process requiring IR autophosphorylation but not downstream insulin signaling. At physiological doses, internalized insulin is barely degraded and is instead released intact to the extracellular medium. In conclusion, we document for the first time the mechanism of interaction of insulin with lymphatic endothelial cells, which may be relevant to insulin absorption during therapeutic injections. Furthermore, we describe distinct action and uptake routes for insulin at physiological and supraphysiological doses in blood microvascular endothelial cells, providing a potential explanation for previously conflicting studies on endothelial insulin uptake.
Collapse
Affiliation(s)
- Javier R Jaldin-Fincati
- Cell Biology Program, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Rafaela V S Pereira
- Cell Biology Program, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Philip J Bilan
- Cell Biology Program, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Amira Klip
- Cell Biology Program, Research Institute, The Hospital for Sick Children , Toronto, Ontario , Canada
| |
Collapse
|
349
|
The role of von Willebrand factor in thrombotic microangiopathy. Pediatr Nephrol 2018; 33:1297-1307. [PMID: 28748411 DOI: 10.1007/s00467-017-3744-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023]
Abstract
Thrombotic microangiopathy (TMA) is caused by thrombus formation in the microvasculature. The disease spectrum of TMA includes, amongst others, thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS). TTP is caused by defective cleavage of von Willebrand factor (VWF), whereas aHUS is caused by overshooting complement activation and subsequent endothelial cell (EC) injury. Despite their distinct pathophysiology, the clinical manifestation of TTP and aHUS consisting of microangiopathic haemolytic anaemia and thrombocytopenia is often similar and difficult to distinguish. Recent evidence hints at both a genetic and functional link between TTP and aHUS, especially between VWF and the complement system. There is novel in vitro evidence that complement activation not only results in VWF release from ECs, but that VWF also functions as a negative complement regulator, thus protecting the EC surface from ongoing complement attack. Although contrary to previous experimental work suggesting that complement can be activated on VWF multimers, there may be an explanation in vivo that rationalizes these apparently contradictory findings, whereby a system primarily meant to regulate becomes overwhelmed or pathologic in the disease state. The importance of unravelling these recent findings for our understanding of TMA pathology becomes even more evident considering that glomerular ECs express VWF in a heterogeneous pattern with an overall decreased expression level, thus potentially leaving the glomerular ECs vulnerable to complement-mediated injury. Taken together, these findings support the concept that TTP and aHUS represent two extreme ends of a TMA disease spectrum rather than isolated disease entities.
Collapse
|
350
|
Verkaik M, Juni RP, van Loon EPM, van Poelgeest EM, Kwekkeboom RFJ, Gam Z, Richards WG, Ter Wee PM, Hoenderop JG, Eringa EC, Vervloet MG. FGF23 impairs peripheral microvascular function in renal failure. Am J Physiol Heart Circ Physiol 2018; 315:H1414-H1424. [PMID: 30028196 DOI: 10.1152/ajpheart.00272.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.
Collapse
Affiliation(s)
- Melissa Verkaik
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Rio P Juni
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Ellen P M van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Rick F J Kwekkeboom
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Zeineb Gam
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | | | - Pieter M Ter Wee
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Etto C Eringa
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Marc G Vervloet
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | | |
Collapse
|