301
|
López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005; 579:1900-3. [PMID: 15792793 DOI: 10.1016/j.febslet.2005.02.047] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 02/09/2005] [Accepted: 02/14/2005] [Indexed: 12/17/2022]
Abstract
Disease-causing point mutations are assumed to act predominantly through subsequent individual changes in the amino acid sequence that impair the normal function of proteins. However, point mutations can have a more dramatic effect by altering the splicing pattern of the gene. Here, we describe an approach to estimate the overall importance of splicing mutations. This approach takes into account the complete set of genes known to be involved in disease and suggest that, contrary to current assumptions, many mutations causing disease may actually be affecting the splicing pattern of the genes.
Collapse
Affiliation(s)
- Núria López-Bigas
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | | | | | |
Collapse
|
302
|
Conrad NK, Steitz JA. A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J 2005; 24:1831-41. [PMID: 15861127 PMCID: PMC1142595 DOI: 10.1038/sj.emboj.7600662] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/06/2005] [Indexed: 11/09/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus produces a 1077 nucleotide noncoding, polyadenylated, exclusively nuclear RNA called PAN that is highly expressed in lytically infected cells. We report that PAN contains a novel post-transcriptional element essential for its abundant accumulation. The element, PAN-ENE (PAN RNA expression and nuclear retention element), increases the efficiency of 3'-end formation in vivo and is sufficient to enhance RNA abundance from an otherwise inefficiently expressed intronless beta-globin construct. The PAN-ENE does not concomitantly increase the production of encoded protein. Rather, it retains the unspliced beta-globin mRNA in the nucleus. Tethering of export factors can override the nuclear retention of the PAN-ENE, supporting a mechanism whereby the PAN-ENE blocks assembly of an export-competent mRNP. The activities of the PAN-ENE are specific to intronless constructs, since inserting the PAN-ENE into a spliced beta-globin construct has no effect on mRNA abundance and does not affect localization. This is the first characterization of a cis-acting element that increases RNA abundance of intronless transcripts but inhibits assembly of an export-competent mRNP.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA. Tel.: +1 203 737 4418; Fax: +1 203 624 8213; E-mail:
| |
Collapse
|
303
|
Ellison KS, Maranchuk RA, Mottet KL, Smiley JR. Control of VP16 translation by the herpes simplex virus type 1 immediate-early protein ICP27. J Virol 2005; 79:4120-31. [PMID: 15767413 PMCID: PMC1061579 DOI: 10.1128/jvi.79.7.4120-4131.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) ICP27 is an essential and multifunctional regulator of gene expression that modulates the synthesis and maturation of viral and cellular mRNAs. Processes that are affected by ICP27 include transcription, pre-mRNA splicing, polyadenylation, and nuclear RNA export. We have examined how ICP27 influences the expression of the essential HSV tegument protein and transactivator of immediate-early gene expression VP16. We monitored the effects of ICP27 on the levels, nuclear export, and polyribosomal association of VP16 mRNA and on the amount and stability of VP16 protein. Deletion of ICP27 reduced the levels of VP16 mRNA without altering its nuclear export or the stability of the encoded protein. However, the translational yield of the VP16 mRNA produced in the absence of ICP27 was reduced 9- to 80-fold relative to that for wild-type infection, suggesting a defect in translation. In the absence of ICP27, the majority of cytoplasmic VP16 mRNA was not associated with actively translating polyribosomes but instead cosedimented with 40S ribosomal subunits, indicating that the translational defect is likely at the level of initiation. These effects were mRNA specific, as polyribosomal analysis of two cellular transcripts (glyceraldehyde-3-phosphate dehydrogenase and beta-actin) and two early HSV transcripts (thymidine kinase and ICP8) indicated that ICP27 is not required for efficient translation of these mRNAs. Thus, we have uncovered a novel mRNA-specific translational regulatory function of ICP27.
Collapse
Affiliation(s)
- Kimberly S Ellison
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
304
|
Guang S, Mertz JE. Pre-mRNA processing enhancer (PPE) elements from intronless genes play additional roles in mRNA biogenesis than do ones from intron-containing genes. Nucleic Acids Res 2005; 33:2215-26. [PMID: 15843684 PMCID: PMC1083424 DOI: 10.1093/nar/gki506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most mRNA-encoding genes require introns for efficient expression in high eukaryotes. However, mRNAs can efficiently accumulate in the cytoplasm without intron excision if they contain cis-acting elements such as the post-transcriptional regulatory element (PRE) of hepatitis B virus (HBV), the constitutive transport element (CTE) of Mason–Pfizer monkey virus (MPMV), or the pre-mRNA processing enhancer (PPE) of herpes simplex virus' thymidine kinase (HSV-TK) gene. We compared the activities of these viral elements, the Rev-responsive element (RRE) of the human immunodeficiency virus (HIV), and the human c-Jun gene's enhancer (CJE), an element newly identified here, to enable expression of an intronless variant of the human β-globin gene. The PRE, PPE and CJE from naturally intronless genes, but not the CTE or RRE from intron-containing genes, significantly enhanced stability, 3′ end processing and cytoplasmic accumulation. When the transcripts included the β-globin gene's first intron, the PRE, PPE and CJE still enhanced mRNA biogenesis, in some cases without intron excision. Thus, elements enabling stability, 3′ end formation and nucleocytoplasmic export, not the presence of introns or their excision per se, are necessary for mRNA biogenesis. While the CTE and RRE primarily enhance nucleocytoplasmic export, PPE-like elements from naturally intronless genes facilitate polyadenylation as well.
Collapse
Affiliation(s)
| | - Janet E. Mertz
- To whom correspondence should be addressed. Tel: +1 608 262 2383; Fax: +1 608 262 2824;
| |
Collapse
|
305
|
Ostedgaard LS, Rokhlina T, Karp PH, Lashmit P, Afione S, Schmidt M, Zabner J, Stinski MF, Chiorini JA, Welsh MJ. A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proc Natl Acad Sci U S A 2005; 102:2952-7. [PMID: 15703296 PMCID: PMC549485 DOI: 10.1073/pnas.0409845102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated viruses (AAVs) such as AAV5 that transduce airway epithelia from the apical surface are attractive vectors for gene transfer in cystic fibrosis (CF). However, their utility in CF has been limited because packaging of the insert becomes inefficient when its length exceeds approximately 4,900-5,000 bp. To partially circumvent this size constraint, we previously developed a CF transmembrane conductance regulator (CFTR) transgene that deleted a portion of the R domain (CFTRDeltaR). In this study, we focused on shortening the other elements in the AAV expression cassette. We found that portions of the CMV immediate/early (CMVie) enhancer/promoter could be deleted without abolishing activity. We also tested various intervening sequences, poly(A) signals, and an intron to develop an expression cassette that meets the size restrictions imposed by AAV. We then packaged these shortened elements with the CFTRDeltaR transgene into AAV5 and applied them to the apical surface of differentiated CF airway epithelia. Two to 4 weeks later, the AAV5 vectors partially corrected the CF Cl(-) transport defect. These results demonstrate that a single AAV vector can complement the CF defect in differentiated airway epithelia and thereby further the development of effective CF gene transfer.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Howard Hughes Medical Institute and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Abstract
MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular mRNAs that contain partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. MiRNA was originally discovered in the intergenic regions of the Caenorhabditis elegans genome as native RNA fragments that modulate a wide range of genetic regulatory pathways during animal development. However, neither RNA promoter nor polymerase responsible for miRNA biogenesis was determined. Recent findings of intron-derived miRNA in C. elegans, mouse, and human have inevitably led to an alternative pathway for miRNA biogenesis, which relies on the coupled interaction of Pol-II-mediated pre-mRNA transcription and intron excision, occurring in certain nuclear regions proximal to genomic perichromatin fibrils.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9112, USA.
| | | |
Collapse
|
307
|
Rose AB. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:744-51. [PMID: 15546357 DOI: 10.1111/j.1365-313x.2004.02247.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Introns are often required for full expression of genes in organisms as diverse as plants, insects, nematodes, yeast, and mammals. To explore the potential mechanisms of intron-mediated enhancement in Arabidopsis thaliana, the effect of varying the position of an intron was determined using a series of reporter gene fusions between TRYPTOPHAN BIOSYNTHESIS1 (TRP1) and GUS. Two introns that differ in the degree to which they stimulate expression were individually tested at six locations within coding sequences and two positions in the 3'-UTR. The ability of the first introns from both the TRP1 and POLYUBIQUITIN10 (UBQ10) genes to elevate mRNA accumulation in transgenic plants was found to decline with distance from the promoter, despite their being efficiently spliced from all coding sequence locations. Neither intron significantly enhanced mRNA accumulation when positioned 1.1 kb or more from the start of transcription. In addition, measurements of GUS enzyme activity revealed that both introns at all locations elevated GUS activity more than they enhanced mRNA accumulation. The stimulation mediated by two of four other introns tested at the position nearest the promoter was also greater at the level of GUS activity than mRNA accumulation. These findings support a model in which introns increase transcription and promote translation by two distinct mechanisms.
Collapse
Affiliation(s)
- Alan B Rose
- Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
308
|
Koay MA, Woon PY, Zhang Y, Miles LJ, Duncan EL, Ralston SH, Compston JE, Cooper C, Keen R, Langdahl BL, MacLelland A, O'Riordan J, Pols HA, Reid DM, Uitterlinden AG, Wass JAH, Brown MA. Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 2004; 19:1619-27. [PMID: 15355556 DOI: 10.1359/jbmr.040704] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 01/15/2004] [Accepted: 05/18/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Genetic studies based on cohorts with rare and extreme bone phenotypes have shown that the LRP5 gene is an important genetic modulator of BMD. Using family-based and case-control approaches, this study examines the role of the LRP5 gene in determining normal population variation of BMD and describes significant association and suggestive linkage between LRP5 gene polymorphisms and BMD in >900 individuals with a broad range of BMD. INTRODUCTION Osteoporosis is a common, highly heritable condition determined by complex interactions of genetic and environmental etiologies. Genetic factors alone can account for 50-80% of the interindividual variation in BMD. Mutations in the LRP5 gene on chromosome 11q12-13 have been associated with rare syndromes characterized by extremely low or high BMD, but little is known about the contribution of this gene to the development of osteoporosis and determination of BMD in a normal population. MATERIALS AND METHODS To examine the entire spectrum of low to high BMD, 152 osteoporotic probands, their families (597 individuals), and 160 women with elevated BMD (T score > 2.5) were recruited. BMD at the lumbar spine, femoral neck, and hip were measured in each subject using DXA. RESULTS PAGE sequencing of the LRP5 gene revealed 10 single nucleotide polymorphisms (SNPs), 8 of which had allele frequencies of >5%, in exons 8, 9, 10, 15, and 18 and in introns 6, 7, and 21. Within families, a strong association was observed between an SNP at nucleotide C171346A in intron 21 and total hip BMD (p < 1 x 10(-5) in men only, p = 0.0019 in both men and women). This association was also observed in comparisons of osteoporotic probands and unrelated elevated BMD in women (p = 0.03), along with associations with markers in exons 8 (C135242T, p = 0.007) and 9 (C141759T, p = 0.02). Haplotypes composed of two to three of the SNPs G121513A, C135242T, G138351A, and C141759T were strongly associated with BMD when comparing osteoporotic probands and high BMD cases (p < 0.003). An SNP at nucleotide C165215T in exon 18 was linked to BMD at the lumbar spine, femoral neck, and total hip (parametric LOD scores = 2.8, 2.5, and 2.2 and nonparametric LOD scores = 0.3, 1.1, and 2.2, respectively) but was not genetically associated with BMD variation. CONCLUSION These results show that common LRP5 polymorphisms contribute to the determination of BMD in the general population.
Collapse
Affiliation(s)
- M Audrey Koay
- Institute of Musculoskeletal Sciences, University of Oxford, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
McLaren M, Asai K, Cochrane A. A novel function for Sam68: enhancement of HIV-1 RNA 3' end processing. RNA (NEW YORK, N.Y.) 2004; 10:1119-29. [PMID: 15208447 PMCID: PMC1370602 DOI: 10.1261/rna.5263904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.
Collapse
Affiliation(s)
- Meredith McLaren
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
310
|
Lai MC, Tarn WY. Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem 2004; 279:31745-9. [PMID: 15184380 DOI: 10.1074/jbc.c400173200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine/arginine-rich proteins (SR proteins) function in precursor mRNA (pre-mRNA) splicing and may also act as adaptors for mRNA export. SR proteins are dynamically phosphorylated in their RS domain, and differential phosphorylation modulates their splicing activity and subcellular localization. In this study, we investigated the influence of phosphorylation on the function of SR proteins in events occurring during mRNA maturation. Immunoprecipitation experiments showed that the mRNA export receptor TAP associates preferentially with the hypophosphorylated form of shuttling SR proteins, including ASF/SF2. Overexpression of ASF induced subnuclear relocalization of TAP to SR protein-enriched nuclear speckles, suggesting their interaction in vivo. Moreover, the ASF found in a nucleoplasmic fraction rich in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes is hyperphosphorylated, whereas mature messenger RNP (mRNP)-bound ASF is hypophosphorylated. Therefore, hypophosphorylation of ASF in mRNPs coincides with its higher affinity for TAP, suggesting that dephosphorylation of ASF promotes both its incorporation into mRNPs and recruitment of TAP for mRNA export. Thus, the phosphorylation state of RS domains may modulate the function of mammalian shuttling SR proteins during mRNA maturation or export.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
311
|
Kuersten S, Segal SP, Verheyden J, LaMartina SM, Goodwin EB. NXF-2, REF-1, and REF-2 affect the choice of nuclear export pathway for tra-2 mRNA in C. elegans. Mol Cell 2004; 14:599-610. [PMID: 15175155 DOI: 10.1016/j.molcel.2004.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/26/2004] [Accepted: 04/12/2004] [Indexed: 11/30/2022]
Abstract
In C. elegans, tra-2 mRNA nuclear export is controlled by a 3'UTR element, the TRE. In the absence of TRA-1, the TRE retains tra-2 mRNA in the nucleus. The binding of TRA-1 to the 3'UTR overcomes this retention resulting in export of a TRA-1/tra-2 mRNA complex. Here, we find that, unlike most mRNAs, tra-2 mRNA exits the nucleus via an alternative pathway to NXF-1 that requires CRM1 activity. Inhibition of export by NXF-1 depends upon the TRE, CeNXF-2, CeREF-1, and CeREF-2. Removal of the TRE or any one of these factors results in export of tra-2 by NXF-1. NXF-2 and REF-1 specifically bind the TRE, suggesting that they directly control tra-2 mRNA export. Furthermore, choice of proper export pathway affects tra-2 translational control. Therefore, tra-2 mRNA export is highly regulated and plays an important role in development by regulating the activity of tra-2 mRNA in the cytoplasm.
Collapse
Affiliation(s)
- Scott Kuersten
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
312
|
Abstract
Over the past decade many studies have revealed a complex web of interconnections between the numerous steps required for eukaryotic gene expression. One set of interconnections link nuclear pre-mRNA splicing and the subsequent metabolism of the spliced mRNAs. It is now apparent that the means of connection is a set of proteins, collectively called the exon junction complex, which are deposited as a consequence of splicing upstream of mRNA exon-exon junctions.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
313
|
Dimaano C, Ullman KS. Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore. Mol Cell Biol 2004; 24:3069-76. [PMID: 15060131 PMCID: PMC381686 DOI: 10.1128/mcb.24.8.3069-3076.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Christian Dimaano
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
314
|
Sanford JR, Gray NK, Beckmann K, Cáceres JF. A novel role for shuttling SR proteins in mRNA translation. Genes Dev 2004; 18:755-68. [PMID: 15082528 PMCID: PMC387416 DOI: 10.1101/gad.286404] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Ser-Arg-rich (SR) proteins comprise a large family of nuclear phosphoproteins that are required for constitutive and alternative splicing. A subset of SR proteins shuttles continuously between the nucleus and the cytoplasm, suggesting that the role of shuttling SR proteins in gene expression may not be limited to nuclear pre-mRNA splicing, but may also include unknown cytoplasmic functions. Here, we show that shuttling SR proteins, in particular SF2/ASF, associate with translating ribosomes and stimulate translation when tethered to a reporter mRNA in Xenopus oocytes. Moreover, SF2/ASF enhances translation of reporter mRNAs in HeLa cells, and this activity is dependent on its ability to shuttle from the nucleus to the cytoplasm and is increased by the presence of an exonic-splicing enhancer. Furthermore, SF2/ASF can stimulate translation in vitro using a HeLa cell-free translation system. Thus, the association of SR proteins with translating ribosomes, as well as the stimulation of translation both in vivo and in vitro, strongly suggest a role for shuttling SR proteins in translation. We propose that shuttling SR proteins play multiple roles in the posttranscriptional expression of eukaryotic genes and illustrate how they may couple splicing and translation.
Collapse
Affiliation(s)
- Jeremy R Sanford
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
315
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
316
|
Chen CYA, Xu N, Zhu W, Shyu AB. Functional dissection of hnRNP D suggests that nuclear import is required before hnRNP D can modulate mRNA turnover in the cytoplasm. RNA (NEW YORK, N.Y.) 2004; 10:669-680. [PMID: 15037776 PMCID: PMC1370557 DOI: 10.1261/rna.5269304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 12/30/2003] [Indexed: 05/24/2023]
Abstract
Many shuttling proteins not only function in the nucleus but also control mRNA fates in the cytoplasm. We test whether a link exists between their nuclear association with mRNPs and their cytoplasmic functions using the p37 isoform of hnRNP D, which inhibits the rapid cytoplasmic mRNA decay in NIH3T3 cells. We showed that p37 shuttles between nucleus and cytoplasm, and narrowed down the nuclear import signal to a 50-amino-acid C-terminal domain. A p37 mutant missing this domain, still capable of associating with target mRNAs in vitro, was confined to the cytoplasm, where it was unable to block cytoplasmic mRNA turnover. Introducing heterologous shuttling domains to this mutant, thereby restoring its ability to enter the nucleus, concomitantly restored its cytoplasmic function. Association of p37 with its target mRNAs can only be detected when it can enter the nucleus. Our results suggest that nuclear import of hnRNP D is a prerequisite for it to exert its cytoplasmic function. This study provides a useful model system to elucidate the mechanisms by which "nuclear history" affects cytoplasmic mRNA fates.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
317
|
Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA (NEW YORK, N.Y.) 2004; 10:622-33. [PMID: 15037772 PMCID: PMC1370553 DOI: 10.1261/rna.5258504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies over the past years indicate that there is extensive coupling between nuclear export of mRNA and pre-mRNA processing. Here, we visualized the distribution of exon junction complex (EJC) proteins and RNA export factors relative to sites of abundant pre-mRNA synthesis in the nucleus. We analyzed both HeLa cells infected with adenovirus and murine erythroleukemia (MEL) cells stably transfected with the human beta-globin gene. Using in situ hybridization and confocal microscopy, we observe accumulation of EJC proteins (REF/Aly, Y14, SRm160, UAP56, RNPS1, and Magoh) and core spliceosome components (U snRNPs) at sites of transcription. This suggests that EJC proteins bind stably to pre-mRNA cotranscriptionally. No concentration of the export factors NXF1/TAP, p15, and Dbp5 was detected on nascent transcripts, arguing that in mammalian cells these proteins bind the mRNA shortly before or after release from the sites of transcription. These results also suggest that binding of EJC proteins to the mRNA is not sufficient to recruit TAP-p15, consistent with recent findings showing that the EJC does not play a crucial role in mRNA export. Contrasting to the results obtained in MEL cells expressing normal human beta-globin transcripts, mutant pre-mRNAs defective in splicing and 3'end processing do not colocalize with SRm160, REF, UAP56, or Sm proteins. This shows that the accumulation of EJC proteins at transcription sites requires efficient processing of the nascent pre-mRNAs, arguing that transcription per se is not sufficient for the stable assembly of the EJC.
Collapse
Affiliation(s)
- Noélia Custódio
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | | | | | | | | | | |
Collapse
|
318
|
Pryor A, Tung L, Yang Z, Kapadia F, Chang TH, Johnson LF. Growth-regulated expression and G0-specific turnover of the mRNA that encodes URH49, a mammalian DExH/D box protein that is highly related to the mRNA export protein UAP56. Nucleic Acids Res 2004; 32:1857-65. [PMID: 15047853 PMCID: PMC390356 DOI: 10.1093/nar/gkh347] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and both are able to rescue the loss of Sub2p (the yeast homolog of UAP56), indicating that both proteins have similar functions. UAP56 mRNA is more abundant than URH49 mRNA in many tissues, although in testes URH49 mRNA is much more abundant. UAP56 and URH49 mRNAs are present at similar levels in proliferating cultured cells. However, when the cells enter quiescence, the URH49 mRNA level decreases 3-6-fold while the UAP56 mRNA level remains relatively constant. The amount of URH49 mRNA increases to the level found in proliferating cells within 5 h when quiescent cells are growth-stimulated or when protein synthesis is inhibited. URH49 mRNA is relatively unstable (T(1/2) = 4 h) in quiescent cells, but is stabilized immediately following growth stimulation or inhibition of protein synthesis. In contrast, there is much less change in the content or stability of UAP56 mRNA following growth stimulation. Our observations suggest that in mammalian cells, two UAP56-like RNA helicases are involved in splicing and nuclear export of mRNA. Differential expression of these helicases may lead to quantitative or qualitative changes in mRNA expression.
Collapse
Affiliation(s)
- Anne Pryor
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
319
|
Curry BJ, Roman SD, Wallace CA, Scott R, Miriami E, Aitken RJ. Identification and characterization of a novel splice variant of mouse and rat cytochrome b5/cytochrome b5 reductase. Genomics 2004; 83:425-38. [PMID: 14962668 DOI: 10.1016/j.ygeno.2003.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 08/22/2003] [Indexed: 10/27/2022]
Abstract
Cytochrome b5/cytochrome b5 reductase (cb5/cb5r) is a cytosolic fusion protein between the hemoprotein cytochrome b5 and the flavoprotein cytochrome b5 reductase. We describe the identification and characterization of a novel splice variant of cb5/cb5r in the mouse and rat and show that expression of the variant is conserved in both species but is not expressed in human tissue. Characterization of the exon structure of cb5/cb5r indicated that the variant was due to the deletion of the whole of exon 12, thus the variant was named cb5/cb5rdelta12. Exon 12 codes for the flavin-adenine dinucleotide binding domain of cb5/cb5r. Expression analysis revealed the transcript of cb5/cb5rdelta12 in mouse and rat testis, brain, and skeletal muscle and also in the male germ line. We postulate that cb5/cb5rdelta12 may function in a dominant negative fashion, limiting the amount of damage caused by the production of reactive oxygen species by cb5/cb5r.
Collapse
Affiliation(s)
- Benjamin J Curry
- ARC Centre of Excellence for Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
320
|
Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 2004; 18:210-22. [PMID: 14752011 PMCID: PMC324426 DOI: 10.1101/gad.1163204] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammalian cells, spliced mRNAs yield greater quantities of protein per mRNA molecule than do otherwise identical mRNAs not made by splicing. This increased translational yield correlates with enhanced cytoplasmic polysome association of spliced mRNAs, and is attributable to deposition of exon junction complexes (EJCs). Translational stimulation can be replicated by tethering the EJC proteins Y14, Magoh, and RNPS1 or the nonsense-mediated decay (NMD) factors Upf1, Upf2, and Upf3b to an intronless reporter mRNA. Thus, in addition to its previously characterized role in NMD, the EJC also promotes mRNA polysome association. Furthermore, the ability to stimulate translation when bound inside an open reading frame appears to be a general feature of factors required for NMD.
Collapse
Affiliation(s)
- Ajit Nott
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
321
|
Chan CC, Dostie J, Diem MD, Feng W, Mann M, Rappsilber J, Dreyfuss G. eIF4A3 is a novel component of the exon junction complex. RNA (NEW YORK, N.Y.) 2004; 10:200-9. [PMID: 14730019 PMCID: PMC1370532 DOI: 10.1261/rna.5230104] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 11/19/2003] [Indexed: 05/19/2023]
Abstract
The exon junction complex (EJC) is a protein complex that assembles near exon-exon junctions of mRNAs as a result of splicing. EJC proteins play important roles in postsplicing events including mRNA export, cytoplasmic localization, and nonsense-mediated decay. Recent evidence suggests that mRNA translation is also influenced by the splicing history of the transcript. Here we identify eIF4A3, a DEAD-box RNA helicase and a member of the eIF4A family of translation initiation factors, as a novel component of the EJC. We show that eIF4A3 associates preferentially with nuclear complexes containing the EJC proteins magoh and Y14. Furthermore, eIF4A3, but not the highly related eIF4A1 or eIF4A2, preferentially associates with spliced mRNA. In vitro splicing and mapping experiments demonstrate that eIF4A3 binds mRNAs at the position of the EJC. Using monoclonal antibodies, we show that eIF4A3 is found in the nucleus whereas eIF4A1 and eIF4A2 are found in the cytoplasm. Thus, eIF4A3 likely provides a splicing-dependent influence on the translation of mRNAs.
Collapse
Affiliation(s)
- Chia C Chan
- Howard Hughes Medical Institute and Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
322
|
Jin L, Guzik BW, Bor YC, Rekosh D, Hammarskjöld ML. Tap and NXT promote translation of unspliced mRNA. Genes Dev 2004; 17:3075-86. [PMID: 14701875 PMCID: PMC305259 DOI: 10.1101/gad.1155703] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tap has been proposed to play a role in general mRNA export and also functions in expression of RNA with retained introns that contain the MPMV CTE (constitutive transport element). Tap forms a functional heterodimer with NXT/p15. We have previously demonstrated that unspliced intron-containing CTE RNA is efficiently exported to the cytoplasm in mammalian cells. Here we show that Tap and NXT proteins function together to enhance translation of proteins from the exported CTE RNA. Pulse chase experiments show that Tap/NXT significantly increases the rate of protein synthesis. Sucrose gradient analysis demonstrates that Tap and NXT efficiently shift the unspliced RNA into polyribosomal fractions. Furthermore, Tap, but not NXT is detected in polyribosomes. Taken together, our results indicate that Tap and NXT serve a role in translational regulation of RNA after export to the cytoplasm. They further suggest that Tap/NXT may play a role in remodeling of cytoplasmic RNP complexes, providing a link between export pathways and cytoplasmic fate.
Collapse
Affiliation(s)
- Li Jin
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, and Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
323
|
Lin SL, Chang D, Wu DY, Ying SY. A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 2003; 310:754-60. [PMID: 14550267 DOI: 10.1016/j.bbrc.2003.09.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 90% of the human genome consists of non-protein-coding regions. Introns constitute most of the non-coding regions located in precursor messenger RNAs (pre-mRNAs). During pre-mRNA maturation, the introns are excised out of mRNA and thought to be completely digested prior to translation. If the introns were merely metabolic "leavings," why would the genome hold such a large amount of extraneous genetic materials? Here we show a novel posttranscriptional gene silencing system identified within mammalian introns. By packaging human spliceosome-recognition sites along with an exonic insert into an artificial intron, we observed that the splicing and processing of such an exon-containing intron in either sense or antisense conformation produced equivalent gene silencing effects, while a palindromic hairpin insert containing both sense and antisense strands resulted in synergistic effects. These findings may explain how cells respond to the presence of transgenic introns that are homologous to pre-existing exons during genomic evolution.
Collapse
Affiliation(s)
- Shi-Lung Lin
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
324
|
Li C, Lin RI, Lai MC, Ouyang P, Tarn WY. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol Cell Biol 2003; 23:7363-76. [PMID: 14517304 PMCID: PMC230327 DOI: 10.1128/mcb.23.20.7363-7376.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pnn/DRS protein is associated with desmosomes and colocalizes with splicing factors in nuclear speckled domains. The potential interaction of Pnn with RNPS1, a pre-mRNA splicing factor and a component of the exon-exon junction complex, prompted us to examine whether Pnn is involved in nuclear mRNA processing. By immunoprecipitation, we found that Pnn associates preferentially with mRNAs produced by splicing in vitro. Oligonucleotide-directed RNase H digestion revealed that Pnn binds to the spliced mRNAs at a position immediately upstream of the splice junction and that 5' splice site utilization determines the location of Pnn in alternatively spliced mRNAs. Immunoprecipitation further showed that Pnn binds to mRNAs produced from a transiently expressed reporter in vivo. Although associated with mRNPs, Pnn is a nuclear-restricted protein as revealed by the heterokaryon assay. Overexpression of an amino-terminal fragment of Pnn that directly interacts with RNPS1 leads to blockage of pre-mRNA splicing. However, although suppression of Pnn expression shows no significant effect on splicing, it leads to some extent to nuclear accumulation of bulk poly(A)(+) RNA. Therefore, Pnn may participate, via its interaction with RNPS1, in mRNA metabolism in the nucleus, including mRNA splicing and export.
Collapse
Affiliation(s)
- Chin Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
325
|
Abstract
Rds3p is a well-conserved 12-kDa protein with five CxxC zinc fingers that has been implicated in the activation of certain drug transport genes and in the pre-mRNA splicing pathway. Here we show that Rds3p resides in the yeast spliceosome and is essential for splicing in vitro. Rds3p purified from yeast stably associates with at least five U2 snRNP proteins, Cus1p, Hsh49p, Hsh155p, Rse1p, and Ist3p/Snu17p, and with the Yra1p RNA export factor. A mutation upstream of the first Rds3p zinc finger causes the conditional release of the putative branchpoint nucleotide binding protein, Ist3p/Snu17p, and weakens Rse1p interaction with the Rds3p complex. The resultant U2 snRNP particle migrates exceptionally slowly in polyacrylamide gels, suggestive of a disorganized structure. U2 snRNPs depleted of Rds3p fail to form stable prespliceosomes, although U2 snRNA stability is not affected. Metabolic depletion of Yra1p blocks cell growth but not splicing, suggesting that Yra1p association with Rds3p relates to Yra1p's role in RNA trafficking. Together these data establish Rds3p as an essential component of the U2 snRNP SF3b complex and suggest a new link between the nuclear processes of pre-mRNA splicing and RNA export.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | |
Collapse
|
326
|
Noé V, MacKenzie S, Ciudad CJ. An intron is required for dihydrofolate reductase protein stability. J Biol Chem 2003; 278:38292-300. [PMID: 12865433 DOI: 10.1074/jbc.m212746200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the expression of dihydrofolate reductase minigenes with and without an intron. The levels of protein were significantly higher in the presence of dihydrofolate reductase intron 1. However, mRNA levels in both constructs were comparable. In addition, the RNA transcribed from either construct was correctly polyadenylated and exported to the cytoplasm. The intron-mediated increase in dihydrofolate reductase protein levels was position-independent and was also observed when dihydrofolate reductase intron 1 was replaced by heterologous introns. The translational rate of dihydrofolate reductase protein was increased in transfectants from the intron-containing minigene. In addition, the protein encoded by the intronless construct was unstable and subject to lysosomal degradation, thus showing a shorter half-life than the protein encoded by the intron-containing minigene. We conclude that an intron is required for the translation and stability of dihydrofolate reductase protein.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona E-08028, Spain.
| | | | | |
Collapse
|
327
|
Mansfield SG, Clark RH, Puttaraju M, Kole J, Cohn JA, Mitchell LG, Garcia-Blanco MA. 5' exon replacement and repair by spliceosome-mediated RNA trans-splicing. RNA (NEW YORK, N.Y.) 2003; 9:1290-7. [PMID: 13130143 PMCID: PMC1370493 DOI: 10.1261/rna.5101903] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/08/2003] [Indexed: 05/24/2023]
Abstract
Spliceosome-mediated RNA trans-splicing (SMaRT) has been used previously to reprogram mutant endogenous CFTR and factor VIII mRNAs in human epithelial cell and tissue models and knockout mice, respectively. Those studies used 3' exon replacement (3'ER); a process in which the distal portion of RNA is reprogrammed. Here, we also show that the 5' end of mRNA can be completely rewritten by 5'ER. For proof-of-concept, and to test whether 5'ER could generate functional CFTR, we generated a mutant minigene target containing CFTR exons 10-24 (deltaF508) and a mini-intron 10, and a pretrans-splicing molecule (targeted to intron 10) containing CFTR exons 1-10 (+F508), and tested these two constructs in 293T cells for anion efflux transport. Cells cotransfected with target and PTM showed a consistent increase in anion efflux, but there was no response in control cells that received PTM or target alone. Using a LacZ reporter system to accurately quantify trans-splicing efficiency, we tested several unique PTM designs. These studies provided two important findings as follows: (1) efficient trans-splicing can be achieved by binding the PTM to different locations in the target, and (2) relatively few changes in PTM design can have a profound impact on trans-splicing activity. Tethering the PTM close to the target 3' splice site (as opposed to the donor site) and inserting an intron in the PTM coding resulted in a 65-fold enhancement of LacZ activity. These studies demonstrate that (1) SMaRT can be used to reprogram the 5' end of mRNA, and (2) efficiency can be improved substantially.
Collapse
Affiliation(s)
- S Gary Mansfield
- Intronn, Inc., Gaithersburg, Maryland 20878, USA. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27713, USA
| | | | | | | | | | | | | |
Collapse
|
328
|
Wiegand HL, Lu S, Cullen BR. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 2003; 100:11327-32. [PMID: 12972633 PMCID: PMC208756 DOI: 10.1073/pnas.1934877100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are generally expressed more effectively in human cells than are intronless versions of the same gene. We have asked whether this effect is due directly to splicing or instead reflects the action of components of the exon junction complex (EJC) that is assembled at splice junctions after splicing is completed. Here, we show that intron removal does not enhance gene expression if EJC formation is blocked. Conversely, RNA tethering of the EJC components SRm160 or RNPS1 boosts the expression of intronless mRNAs but not of spliced mRNAs. Splicing and RNPS1 tethering are shown to enhance the same steps in mRNA biogenesis and function, including mRNA 3' end processing and translation. Together, these data argue that the EJC is primarily responsible for the positive effect of splicing on gene expression.
Collapse
Affiliation(s)
- Heather L Wiegand
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
329
|
Abstract
Many crucial decisions, such as the location and timing of cell division, cell-fate determination, and embryonic axes establishment, are made in the early embryo, a time in development when there is often little or no transcription. For this reason, the control of variation in gene expression in the early embryo often relies on post-transcriptional control of maternal genes. Although the early embryo is rife with translational control, controlling mRNA activity is also important in other developmental processes, such as stem-cell proliferation, sex determination, neurogenesis and erythropoiesis.
Collapse
Affiliation(s)
- Scott Kuersten
- Laboratory of Genetics, University of Wisconsin-Madison, 445 Henry Mall, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
330
|
Wang L, Menon S, Bolin SR, Bello LJ. A hepadnavirus regulatory element enhances expression of a type 2 bovine viral diarrhea virus E2 protein from a bovine herpesvirus 1 vector. J Virol 2003; 77:8775-82. [PMID: 12885896 PMCID: PMC167231 DOI: 10.1128/jvi.77.16.8775-8782.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, the possibility of using virus vectors to immunize cattle against selected bovine viral diarrhea virus (BVDV) genes has gained widespread interest. However, when we attempted to express the E2 protein from type 2 (890 strain) BVDV in a bovine herpesvirus 1 (BHV1) vector, we observed that expression was poor. This often happens when genes from a cytoplasmic virus are expressed in the cell nucleus. To counter this effect, we attempted to enhance expression by a strategy employed by viruses. RNAs of retroviruses and hepadnaviruses contain cis-acting elements that facilitate expression of RNAs that otherwise are degraded or retained within the nucleus. In Mason-Pfizer monkey virus, the required RNA sequence element is known as a constitutive transport element (CTE). A related element from woodchuck hepatitis virus is known as the woodchuck posttranscriptional regulatory element (WPRE). We tested the ability of the CTE, the WPRE, and introns to enhance expression of E2. All three elements stimulated expression of E2 from plasmids. The combination of the WPRE and an intron yielded the highest level of E2 expression in plasmids. However, when E2 was expressed from a BHV1 vector, the presence of an intron was inhibitory. In contrast, the WPRE was very efficient at stimulating E2 expression from a BHV1 vector. This result represents the first expression of a type 2 BVDV E2 protein from a mammalian virus vector and raises the possibility that the WPRE may provide a general method of enhancing foreign gene expression from BHV1 and other herpesvirus vectors.
Collapse
Affiliation(s)
- Lingshu Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
331
|
MacMorris M, Brocker C, Blumenthal T. UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:847-57. [PMID: 12810918 PMCID: PMC1370451 DOI: 10.1261/rna.5480803] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 04/14/2003] [Indexed: 05/20/2023]
Abstract
Expression of a gfp transgene in the intestines of living Caenorhabditis elegans has been measured following depletion by RNAi of a variety of known splicing factors and mRNA export proteins. Reduction of most splicing factors showed only a small effect on expression of the transgene in the animal injected with dsRNA, although most of these RNAi's resulted in embryonic lethality in their offspring. In contrast, RNAi of nxf-1, the worm homolog of mammalian NXF1/TAP, a key component of the mRNA export machinery, resulted in dramatic suppression of GFP expression in the injected animals. When we tested other proteins previously reported to be involved in marking mRNAs for export, we obtained widely divergent results. Whereas RNAi of the worm REF/Aly homologs had no obvious effect, either in the injected animals or their offspring, RNAi of UAP56, reported to be the partner of REF/Aly, resulted in strong suppression of GFP expression due to nuclear retention of its mRNA. Overexpression of UAP56 also resulted in rapid loss of GFP expression and lethality at all stages of development. We conclude that UAP56 plays a key role in mRNA export in C. elegans, but that REF/Aly may not. It also appears that some RNA processing factors are required for viability (e.g., U2AF, PUF60, SRp54, SAP49, PRP8, U1-70K), whereas others are not (e.g., U2A', CstF50).
Collapse
Affiliation(s)
- Margaret MacMorris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
332
|
Longman D, Johnstone IL, Cáceres JF. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA (NEW YORK, N.Y.) 2003; 9:881-891. [PMID: 12810921 PMCID: PMC1370454 DOI: 10.1261/rna.5420503] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 04/14/2003] [Indexed: 05/24/2023]
Abstract
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK
| | | | | |
Collapse
|
333
|
Abstract
Eukaryotic mRNA is processed by enzymes and packaged with proteins within nuclei to generate functional messenger ribonucleoprotein (mRNP) particles. Processing and packaging factors can interact with mRNA cotranscriptionally to form an early mRNP. Erroneous mRNP formation leads to nuclear retention and degradation of the mRNA. It therefore appears that one function of cotranscriptional mRNP assembly is to discard aberrant mRNPs early in their biogenesis. Cotranscriptional mRNP assembly may also enable the transcription machinery to respond to improper mRNP formation.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C., Denmark.
| | | | | | | |
Collapse
|
334
|
Lu S, Cullen BR. Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA (NEW YORK, N.Y.) 2003; 9:618-30. [PMID: 12702820 PMCID: PMC1370427 DOI: 10.1261/rna.5260303] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 02/11/2003] [Indexed: 05/22/2023]
Abstract
We have examined how splicing affects the expression of a range of human and nonhuman genes in vertebrate cells. Although our data demonstrate that splicing invariably enhances the level of gene expression, this positive effect is generally moderate. However, in the case of the human beta-globin gene, splicing is essential for significant protein expression. In the absence of introns, 3' end processing is inefficient, and this appears to be causally linked to a significant decrease in the level of both nuclear and cytoplasmic 3' end-processed RNA. In contrast, splicing appears to only modestly enhance nuclear mRNA export. Consistent with this observation, intronless beta-globin gene expression was only partially rescued by the insertion of retroviral nuclear mRNA export elements. Surprisingly, in the case of the highly intron dependent beta-globin gene, the mRNA that did reach the cytoplasm was also only inefficiently translated if it derived from an intronless expression plasmid. Together, these data argue that splicing can increase gene expression by enhancing mRNA 3' end processing, and hence, mRNA production. Moreover, in the case of the highly intron-dependent beta-globin gene, splicing also significantly enhanced the translational utilization of cytoplasmic beta-globin mRNAs.
Collapse
Affiliation(s)
- Shihua Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|